Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-mini-gmp/camellia-absorb.c
Line
Count
Source
1
/* camellia-absorb.c
2
3
   Final key setup processing for the camellia block cipher.
4
5
   Copyright (C) 2006,2007 NTT
6
   (Nippon Telegraph and Telephone Corporation).
7
8
   Copyright (C) 2010 Niels Möller
9
10
   This file is part of GNU Nettle.
11
12
   GNU Nettle is free software: you can redistribute it and/or
13
   modify it under the terms of either:
14
15
     * the GNU Lesser General Public License as published by the Free
16
       Software Foundation; either version 3 of the License, or (at your
17
       option) any later version.
18
19
   or
20
21
     * the GNU General Public License as published by the Free
22
       Software Foundation; either version 2 of the License, or (at your
23
       option) any later version.
24
25
   or both in parallel, as here.
26
27
   GNU Nettle is distributed in the hope that it will be useful,
28
   but WITHOUT ANY WARRANTY; without even the implied warranty of
29
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30
   General Public License for more details.
31
32
   You should have received copies of the GNU General Public License and
33
   the GNU Lesser General Public License along with this program.  If
34
   not, see http://www.gnu.org/licenses/.
35
*/
36
37
/*
38
 * Algorithm Specification 
39
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
40
 */
41
42
/* Based on camellia.c ver 1.2.0, see
43
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
44
 */
45
46
#if HAVE_CONFIG_H
47
# include "config.h"
48
#endif
49
50
/* For CHAR_BIT, needed by HAVE_NATIVE_64_BIT */
51
#include <limits.h>
52
53
#include "camellia-internal.h"
54
55
#include "macros.h"
56
57
void
58
_nettle_camellia_absorb(unsigned nkeys, uint64_t *dst, uint64_t *subkey)
59
1.24k
{
60
1.24k
  uint64_t kw2, kw4;
61
1.24k
  uint32_t dw, tl, tr;
62
1.24k
  unsigned i;
63
  
64
  /* At this point, the subkey array contains the subkeys as described
65
     in the spec, 26 for short keys and 34 for large keys. */
66
67
  /* absorb kw2 to other subkeys */
68
1.24k
  kw2 = subkey[1];
69
70
1.24k
  subkey[3] ^= kw2;
71
1.24k
  subkey[5] ^= kw2;
72
1.24k
  subkey[7] ^= kw2;
73
4.40k
  for (i = 8; i < nkeys; i += 8)
74
3.16k
    {
75
      /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
76
   and xor the result into the 32 high bits, but it still generates
77
   worse code than for explicit 32-bit operations. */
78
3.16k
      kw2 ^= (kw2 & ~subkey[i+1]) << 32;
79
3.16k
      dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROTL32(1, dw); 
80
81
3.16k
      subkey[i+3] ^= kw2;
82
3.16k
      subkey[i+5] ^= kw2;
83
3.16k
      subkey[i+7] ^= kw2;
84
3.16k
    }
85
1.24k
  subkey[i] ^= kw2;
86
  
87
  /* absorb kw4 to other subkeys */  
88
1.24k
  kw4 = subkey[nkeys + 1];
89
90
4.40k
  for (i = nkeys - 8; i > 0; i -= 8)
91
3.16k
    {
92
3.16k
      subkey[i+6] ^= kw4;
93
3.16k
      subkey[i+4] ^= kw4;
94
3.16k
      subkey[i+2] ^= kw4;
95
3.16k
      kw4 ^= (kw4 & ~subkey[i]) << 32;
96
3.16k
      dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROTL32(1, dw);      
97
3.16k
    }
98
99
1.24k
  subkey[6] ^= kw4;
100
1.24k
  subkey[4] ^= kw4;
101
1.24k
  subkey[2] ^= kw4;
102
1.24k
  subkey[0] ^= kw4;
103
104
  /* key XOR is end of F-function */
105
1.24k
  dst[0] = subkey[0] ^ subkey[2];
106
1.24k
  dst[1] = subkey[3];
107
108
1.24k
  dst[2] = subkey[2] ^ subkey[4];
109
1.24k
  dst[3] = subkey[3] ^ subkey[5];
110
1.24k
  dst[4] = subkey[4] ^ subkey[6];
111
1.24k
  dst[5] = subkey[5] ^ subkey[7];
112
113
4.40k
  for (i = 8; i < nkeys; i += 8)
114
3.16k
    {
115
3.16k
      tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]);
116
3.16k
      dw = tl & (subkey[i] >> 32);
117
3.16k
      tr = subkey[i+2] ^ ROTL32(1, dw);
118
3.16k
      dst[i-2] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr);
119
120
3.16k
      dst[i-1] = subkey[i];
121
3.16k
      dst[i] = subkey[i+1];
122
123
3.16k
      tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]);
124
3.16k
      dw = tl & (subkey[i+1] >> 32);
125
3.16k
      tr = subkey[i-1] ^ ROTL32(1, dw);
126
3.16k
      dst[i+1] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr);
127
128
3.16k
      dst[i+2] = subkey[i+2] ^ subkey[i+4];
129
3.16k
      dst[i+3] = subkey[i+3] ^ subkey[i+5];
130
3.16k
      dst[i+4] = subkey[i+4] ^ subkey[i+6];
131
3.16k
      dst[i+5] = subkey[i+5] ^ subkey[i+7];
132
3.16k
    }
133
1.24k
  dst[i-2] = subkey[i-2];
134
1.24k
  dst[i-1] = subkey[i] ^ subkey[i-1];
135
136
#if !HAVE_NATIVE_64_BIT
137
  for (i = 0; i < nkeys; i += 8)
138
    {
139
      /* apply the inverse of the last half of F-function */
140
      CAMELLIA_F_HALF_INV(dst[i+1]);
141
      CAMELLIA_F_HALF_INV(dst[i+2]);
142
      CAMELLIA_F_HALF_INV(dst[i+3]);
143
      CAMELLIA_F_HALF_INV(dst[i+4]);
144
      CAMELLIA_F_HALF_INV(dst[i+5]);
145
      CAMELLIA_F_HALF_INV(dst[i+6]);
146
    }
147
#endif
148
  
149
1.24k
}