Coverage Report

Created: 2024-11-21 07:00

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
124
#define CAST_SMALL_KEY 10
56
57
25.4k
#define S1 cast_sbox1
58
25.4k
#define S2 cast_sbox2
59
25.4k
#define S3 cast_sbox3
60
25.4k
#define S4 cast_sbox4
61
4.96k
#define S5 cast_sbox5
62
4.96k
#define S6 cast_sbox6
63
4.96k
#define S7 cast_sbox7
64
4.96k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
30.4k
#define B0(x) ( (uint8_t) (x>>24) )
68
30.4k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
30.4k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
30.4k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
8.91k
#define F1(l, r, i) do {         \
76
8.91k
    t = ctx->Km[i] + r;           \
77
8.91k
    t = ROTL32(ctx->Kr[i], t);          \
78
8.91k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
8.91k
  } while (0)
80
8.28k
#define F2(l, r, i) do {         \
81
8.28k
    t = ctx->Km[i] ^ r;           \
82
8.28k
    t = ROTL32( ctx->Kr[i], t);         \
83
8.28k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
8.28k
  } while (0)
85
8.28k
#define F3(l, r, i) do {         \
86
8.28k
    t = ctx->Km[i] - r;           \
87
8.28k
    t = ROTL32(ctx->Kr[i], t);          \
88
8.28k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
8.28k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
48
{
99
48
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
309
    {
101
309
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
309
      l = READ_UINT32(src);
105
309
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
309
      F1(l, r,  0);
109
309
      F2(r, l,  1);
110
309
      F3(l, r,  2);
111
309
      F1(r, l,  3);
112
309
      F2(l, r,  4);
113
309
      F3(r, l,  5);
114
309
      F1(l, r,  6);
115
309
      F2(r, l,  7);
116
309
      F3(l, r,  8);
117
309
      F1(r, l,  9);
118
309
      F2(l, r, 10);
119
309
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
309
      if (ctx->rounds & 16) {
122
252
  F1(l, r, 12);
123
252
  F2(r, l, 13);
124
252
  F3(l, r, 14);
125
252
  F1(r, l, 15);
126
252
      }
127
      /* Put l,r into outblock */
128
309
      WRITE_UINT32(dst, r);
129
309
      WRITE_UINT32(dst + 4, l);
130
309
    }
131
48
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
76
{
141
76
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
1.60k
    {
143
1.60k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
1.60k
      r = READ_UINT32(src);
147
1.60k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
1.60k
      if (ctx->rounds & 16) {
152
381
  F1(r, l, 15);
153
381
  F3(l, r, 14);
154
381
  F2(r, l, 13);
155
381
  F1(l, r, 12);
156
381
      }
157
1.60k
      F3(r, l, 11);
158
1.60k
      F2(l, r, 10);
159
1.60k
      F1(r, l,  9);
160
1.60k
      F3(l, r,  8);
161
1.60k
      F2(r, l,  7);
162
1.60k
      F1(l, r,  6);
163
1.60k
      F3(r, l,  5);
164
1.60k
      F2(l, r,  4);
165
1.60k
      F1(r, l,  3);
166
1.60k
      F3(l, r,  2);
167
1.60k
      F2(r, l,  1);
168
1.60k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
1.60k
      WRITE_UINT32(dst, l);
172
1.60k
      WRITE_UINT32(dst + 4, r);
173
1.60k
    }
174
76
}
175
176
/***** Key Schedule *****/
177
178
1.73k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
1.73k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
248
#define EXPAND(set, full) do {           \
182
248
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
248
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
248
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
248
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
248
                      \
187
248
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
248
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
248
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
248
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
248
                      \
192
248
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
248
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
248
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
248
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
248
                      \
197
248
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
248
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
248
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
248
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
248
                      \
202
248
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
248
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
248
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
248
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
248
                      \
207
248
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
248
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
248
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
248
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
248
                  \
212
248
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
248
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
248
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
248
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
248
    if (full)               \
217
248
      {                 \
218
122
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
122
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
122
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
122
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
122
      }                  \
223
248
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
124
{
229
124
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
124
  uint32_t w;
231
124
  int full;
232
233
124
  assert (length >= CAST5_MIN_KEY_SIZE);
234
124
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
124
  full = (length > CAST_SMALL_KEY);
237
238
124
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
124
  switch (length & 3)
242
124
    {
243
63
    case 0:
244
63
      w = READ_UINT32 (key + length - 4);
245
63
      break;
246
22
    case 3:
247
22
      w = READ_UINT24 (key + length - 3) << 8;
248
22
      break;
249
24
    case 2:
250
24
      w = READ_UINT16 (key + length - 2) << 16;
251
24
      break;
252
15
    case 1:
253
15
      w = (uint32_t) key[length - 1] << 24;
254
15
      break;
255
124
    }
256
257
124
  if (length <= 8)
258
62
    {
259
62
      x1 = w;
260
62
      x2 = x3 = 0;
261
62
    }
262
62
  else
263
62
    {
264
62
      x1 = READ_UINT32 (key + 4);
265
62
      if (length <= 12)
266
25
  {
267
25
    x2 = w;
268
25
    x3 = 0;
269
25
  }
270
37
      else
271
37
  {
272
37
    x2 = READ_UINT32 (key + 8);
273
37
    x3 = w;
274
37
  }
275
62
    }
276
277
1.73k
  EXPAND(SET_KM, full);
278
1.73k
  EXPAND(SET_KR, full);
279
280
124
  ctx->rounds = full ? 16 : 12;
281
124
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}