Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/algorithms/components/semiconnected.py: 50%
12 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
1"""Semiconnectedness."""
2import networkx as nx
3from networkx.utils import not_implemented_for, pairwise
5__all__ = ["is_semiconnected"]
8@not_implemented_for("undirected")
9@nx._dispatch
10def is_semiconnected(G):
11 r"""Returns True if the graph is semiconnected, False otherwise.
13 A graph is semiconnected if and only if for any pair of nodes, either one
14 is reachable from the other, or they are mutually reachable.
16 This function uses a theorem that states that a DAG is semiconnected
17 if for any topological sort, for node $v_n$ in that sort, there is an
18 edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is
19 semiconnected by condensing the graph: i.e. constructing a new graph `H`
20 with nodes being the strongly connected components of `G`, and edges
21 (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some
22 $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute
23 the topological sort of `H` and check if for every $n$ there is an edge
24 $(scc_n, scc_{n+1})$.
26 Parameters
27 ----------
28 G : NetworkX graph
29 A directed graph.
31 Returns
32 -------
33 semiconnected : bool
34 True if the graph is semiconnected, False otherwise.
36 Raises
37 ------
38 NetworkXNotImplemented
39 If the input graph is undirected.
41 NetworkXPointlessConcept
42 If the graph is empty.
44 Examples
45 --------
46 >>> G = nx.path_graph(4, create_using=nx.DiGraph())
47 >>> print(nx.is_semiconnected(G))
48 True
49 >>> G = nx.DiGraph([(1, 2), (3, 2)])
50 >>> print(nx.is_semiconnected(G))
51 False
53 See Also
54 --------
55 is_strongly_connected
56 is_weakly_connected
57 is_connected
58 is_biconnected
59 """
60 if len(G) == 0:
61 raise nx.NetworkXPointlessConcept(
62 "Connectivity is undefined for the null graph."
63 )
65 if not nx.is_weakly_connected(G):
66 return False
68 H = nx.condensation(G)
70 return all(H.has_edge(u, v) for u, v in pairwise(nx.topological_sort(H)))