Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/linalg/graphmatrix.py: 16%
37 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
1"""
2Adjacency matrix and incidence matrix of graphs.
3"""
4import networkx as nx
6__all__ = ["incidence_matrix", "adjacency_matrix"]
9@nx._dispatch(edge_attrs="weight")
10def incidence_matrix(
11 G, nodelist=None, edgelist=None, oriented=False, weight=None, *, dtype=None
12):
13 """Returns incidence matrix of G.
15 The incidence matrix assigns each row to a node and each column to an edge.
16 For a standard incidence matrix a 1 appears wherever a row's node is
17 incident on the column's edge. For an oriented incidence matrix each
18 edge is assigned an orientation (arbitrarily for undirected and aligning to
19 direction for directed). A -1 appears for the source (tail) of an edge and
20 1 for the destination (head) of the edge. The elements are zero otherwise.
22 Parameters
23 ----------
24 G : graph
25 A NetworkX graph
27 nodelist : list, optional (default= all nodes in G)
28 The rows are ordered according to the nodes in nodelist.
29 If nodelist is None, then the ordering is produced by G.nodes().
31 edgelist : list, optional (default= all edges in G)
32 The columns are ordered according to the edges in edgelist.
33 If edgelist is None, then the ordering is produced by G.edges().
35 oriented: bool, optional (default=False)
36 If True, matrix elements are +1 or -1 for the head or tail node
37 respectively of each edge. If False, +1 occurs at both nodes.
39 weight : string or None, optional (default=None)
40 The edge data key used to provide each value in the matrix.
41 If None, then each edge has weight 1. Edge weights, if used,
42 should be positive so that the orientation can provide the sign.
44 dtype : a NumPy dtype or None (default=None)
45 The dtype of the output sparse array. This type should be a compatible
46 type of the weight argument, eg. if weight would return a float this
47 argument should also be a float.
48 If None, then the default for SciPy is used.
50 Returns
51 -------
52 A : SciPy sparse array
53 The incidence matrix of G.
55 Notes
56 -----
57 For MultiGraph/MultiDiGraph, the edges in edgelist should be
58 (u,v,key) 3-tuples.
60 "Networks are the best discrete model for so many problems in
61 applied mathematics" [1]_.
63 References
64 ----------
65 .. [1] Gil Strang, Network applications: A = incidence matrix,
66 http://videolectures.net/mit18085f07_strang_lec03/
67 """
68 import scipy as sp
70 if nodelist is None:
71 nodelist = list(G)
72 if edgelist is None:
73 if G.is_multigraph():
74 edgelist = list(G.edges(keys=True))
75 else:
76 edgelist = list(G.edges())
77 A = sp.sparse.lil_array((len(nodelist), len(edgelist)), dtype=dtype)
78 node_index = {node: i for i, node in enumerate(nodelist)}
79 for ei, e in enumerate(edgelist):
80 (u, v) = e[:2]
81 if u == v:
82 continue # self loops give zero column
83 try:
84 ui = node_index[u]
85 vi = node_index[v]
86 except KeyError as err:
87 raise nx.NetworkXError(
88 f"node {u} or {v} in edgelist but not in nodelist"
89 ) from err
90 if weight is None:
91 wt = 1
92 else:
93 if G.is_multigraph():
94 ekey = e[2]
95 wt = G[u][v][ekey].get(weight, 1)
96 else:
97 wt = G[u][v].get(weight, 1)
98 if oriented:
99 A[ui, ei] = -wt
100 A[vi, ei] = wt
101 else:
102 A[ui, ei] = wt
103 A[vi, ei] = wt
104 return A.asformat("csc")
107@nx._dispatch(edge_attrs="weight")
108def adjacency_matrix(G, nodelist=None, dtype=None, weight="weight"):
109 """Returns adjacency matrix of G.
111 Parameters
112 ----------
113 G : graph
114 A NetworkX graph
116 nodelist : list, optional
117 The rows and columns are ordered according to the nodes in nodelist.
118 If nodelist is None, then the ordering is produced by G.nodes().
120 dtype : NumPy data-type, optional
121 The desired data-type for the array.
122 If None, then the NumPy default is used.
124 weight : string or None, optional (default='weight')
125 The edge data key used to provide each value in the matrix.
126 If None, then each edge has weight 1.
128 Returns
129 -------
130 A : SciPy sparse array
131 Adjacency matrix representation of G.
133 Notes
134 -----
135 For directed graphs, entry i,j corresponds to an edge from i to j.
137 If you want a pure Python adjacency matrix representation try
138 networkx.convert.to_dict_of_dicts which will return a
139 dictionary-of-dictionaries format that can be addressed as a
140 sparse matrix.
142 For MultiGraph/MultiDiGraph with parallel edges the weights are summed.
143 See `to_numpy_array` for other options.
145 The convention used for self-loop edges in graphs is to assign the
146 diagonal matrix entry value to the edge weight attribute
147 (or the number 1 if the edge has no weight attribute). If the
148 alternate convention of doubling the edge weight is desired the
149 resulting SciPy sparse array can be modified as follows:
151 >>> G = nx.Graph([(1, 1)])
152 >>> A = nx.adjacency_matrix(G)
153 >>> print(A.todense())
154 [[1]]
155 >>> A.setdiag(A.diagonal() * 2)
156 >>> print(A.todense())
157 [[2]]
159 See Also
160 --------
161 to_numpy_array
162 to_scipy_sparse_array
163 to_dict_of_dicts
164 adjacency_spectrum
165 """
166 return nx.to_scipy_sparse_array(G, nodelist=nodelist, dtype=dtype, weight=weight)