Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/algorithms/node_classification.py: 15%

60 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-10-20 07:00 +0000

1""" This module provides the functions for node classification problem. 

2 

3The functions in this module are not imported 

4into the top level `networkx` namespace. 

5You can access these functions by importing 

6the `networkx.algorithms.node_classification` modules, 

7then accessing the functions as attributes of `node_classification`. 

8For example: 

9 

10 >>> from networkx.algorithms import node_classification 

11 >>> G = nx.path_graph(4) 

12 >>> G.edges() 

13 EdgeView([(0, 1), (1, 2), (2, 3)]) 

14 >>> G.nodes[0]["label"] = "A" 

15 >>> G.nodes[3]["label"] = "B" 

16 >>> node_classification.harmonic_function(G) 

17 ['A', 'A', 'B', 'B'] 

18 

19References 

20---------- 

21Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August). 

22Semi-supervised learning using gaussian fields and harmonic functions. 

23In ICML (Vol. 3, pp. 912-919). 

24""" 

25import networkx as nx 

26 

27__all__ = ["harmonic_function", "local_and_global_consistency"] 

28 

29 

30@nx.utils.not_implemented_for("directed") 

31@nx._dispatch(node_attrs="label_name") 

32def harmonic_function(G, max_iter=30, label_name="label"): 

33 """Node classification by Harmonic function 

34 

35 Function for computing Harmonic function algorithm by Zhu et al. 

36 

37 Parameters 

38 ---------- 

39 G : NetworkX Graph 

40 max_iter : int 

41 maximum number of iterations allowed 

42 label_name : string 

43 name of target labels to predict 

44 

45 Returns 

46 ------- 

47 predicted : list 

48 List of length ``len(G)`` with the predicted labels for each node. 

49 

50 Raises 

51 ------ 

52 NetworkXError 

53 If no nodes in `G` have attribute `label_name`. 

54 

55 Examples 

56 -------- 

57 >>> from networkx.algorithms import node_classification 

58 >>> G = nx.path_graph(4) 

59 >>> G.nodes[0]["label"] = "A" 

60 >>> G.nodes[3]["label"] = "B" 

61 >>> G.nodes(data=True) 

62 NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) 

63 >>> G.edges() 

64 EdgeView([(0, 1), (1, 2), (2, 3)]) 

65 >>> predicted = node_classification.harmonic_function(G) 

66 >>> predicted 

67 ['A', 'A', 'B', 'B'] 

68 

69 References 

70 ---------- 

71 Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August). 

72 Semi-supervised learning using gaussian fields and harmonic functions. 

73 In ICML (Vol. 3, pp. 912-919). 

74 """ 

75 import numpy as np 

76 import scipy as sp 

77 

78 X = nx.to_scipy_sparse_array(G) # adjacency matrix 

79 labels, label_dict = _get_label_info(G, label_name) 

80 

81 if labels.shape[0] == 0: 

82 raise nx.NetworkXError( 

83 f"No node on the input graph is labeled by '{label_name}'." 

84 ) 

85 

86 n_samples = X.shape[0] 

87 n_classes = label_dict.shape[0] 

88 F = np.zeros((n_samples, n_classes)) 

89 

90 # Build propagation matrix 

91 degrees = X.sum(axis=0) 

92 degrees[degrees == 0] = 1 # Avoid division by 0 

93 # TODO: csr_array 

94 D = sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0)) 

95 P = (D @ X).tolil() 

96 P[labels[:, 0]] = 0 # labels[:, 0] indicates IDs of labeled nodes 

97 # Build base matrix 

98 B = np.zeros((n_samples, n_classes)) 

99 B[labels[:, 0], labels[:, 1]] = 1 

100 

101 for _ in range(max_iter): 

102 F = (P @ F) + B 

103 

104 return label_dict[np.argmax(F, axis=1)].tolist() 

105 

106 

107@nx.utils.not_implemented_for("directed") 

108@nx._dispatch(node_attrs="label_name") 

109def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"): 

110 """Node classification by Local and Global Consistency 

111 

112 Function for computing Local and global consistency algorithm by Zhou et al. 

113 

114 Parameters 

115 ---------- 

116 G : NetworkX Graph 

117 alpha : float 

118 Clamping factor 

119 max_iter : int 

120 Maximum number of iterations allowed 

121 label_name : string 

122 Name of target labels to predict 

123 

124 Returns 

125 ------- 

126 predicted : list 

127 List of length ``len(G)`` with the predicted labels for each node. 

128 

129 Raises 

130 ------ 

131 NetworkXError 

132 If no nodes in `G` have attribute `label_name`. 

133 

134 Examples 

135 -------- 

136 >>> from networkx.algorithms import node_classification 

137 >>> G = nx.path_graph(4) 

138 >>> G.nodes[0]["label"] = "A" 

139 >>> G.nodes[3]["label"] = "B" 

140 >>> G.nodes(data=True) 

141 NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) 

142 >>> G.edges() 

143 EdgeView([(0, 1), (1, 2), (2, 3)]) 

144 >>> predicted = node_classification.local_and_global_consistency(G) 

145 >>> predicted 

146 ['A', 'A', 'B', 'B'] 

147 

148 References 

149 ---------- 

150 Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). 

151 Learning with local and global consistency. 

152 Advances in neural information processing systems, 16(16), 321-328. 

153 """ 

154 import numpy as np 

155 import scipy as sp 

156 

157 X = nx.to_scipy_sparse_array(G) # adjacency matrix 

158 labels, label_dict = _get_label_info(G, label_name) 

159 

160 if labels.shape[0] == 0: 

161 raise nx.NetworkXError( 

162 f"No node on the input graph is labeled by '{label_name}'." 

163 ) 

164 

165 n_samples = X.shape[0] 

166 n_classes = label_dict.shape[0] 

167 F = np.zeros((n_samples, n_classes)) 

168 

169 # Build propagation matrix 

170 degrees = X.sum(axis=0) 

171 degrees[degrees == 0] = 1 # Avoid division by 0 

172 # TODO: csr_array 

173 D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0))) 

174 P = alpha * ((D2 @ X) @ D2) 

175 # Build base matrix 

176 B = np.zeros((n_samples, n_classes)) 

177 B[labels[:, 0], labels[:, 1]] = 1 - alpha 

178 

179 for _ in range(max_iter): 

180 F = (P @ F) + B 

181 

182 return label_dict[np.argmax(F, axis=1)].tolist() 

183 

184 

185def _get_label_info(G, label_name): 

186 """Get and return information of labels from the input graph 

187 

188 Parameters 

189 ---------- 

190 G : Network X graph 

191 label_name : string 

192 Name of the target label 

193 

194 Returns 

195 ------- 

196 labels : numpy array, shape = [n_labeled_samples, 2] 

197 Array of pairs of labeled node ID and label ID 

198 label_dict : numpy array, shape = [n_classes] 

199 Array of labels 

200 i-th element contains the label corresponding label ID `i` 

201 """ 

202 import numpy as np 

203 

204 labels = [] 

205 label_to_id = {} 

206 lid = 0 

207 for i, n in enumerate(G.nodes(data=True)): 

208 if label_name in n[1]: 

209 label = n[1][label_name] 

210 if label not in label_to_id: 

211 label_to_id[label] = lid 

212 lid += 1 

213 labels.append([i, label_to_id[label]]) 

214 labels = np.array(labels) 

215 label_dict = np.array( 

216 [label for label, _ in sorted(label_to_id.items(), key=lambda x: x[1])] 

217 ) 

218 return (labels, label_dict)