Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/algorithms/swap.py: 8%

165 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-10-20 07:00 +0000

1"""Swap edges in a graph. 

2""" 

3 

4import math 

5 

6import networkx as nx 

7from networkx.utils import py_random_state 

8 

9__all__ = ["double_edge_swap", "connected_double_edge_swap", "directed_edge_swap"] 

10 

11 

12@nx.utils.not_implemented_for("undirected") 

13@py_random_state(3) 

14@nx._dispatch 

15def directed_edge_swap(G, *, nswap=1, max_tries=100, seed=None): 

16 """Swap three edges in a directed graph while keeping the node degrees fixed. 

17 

18 A directed edge swap swaps three edges such that a -> b -> c -> d becomes 

19 a -> c -> b -> d. This pattern of swapping allows all possible states with the 

20 same in- and out-degree distribution in a directed graph to be reached. 

21 

22 If the swap would create parallel edges (e.g. if a -> c already existed in the 

23 previous example), another attempt is made to find a suitable trio of edges. 

24 

25 Parameters 

26 ---------- 

27 G : DiGraph 

28 A directed graph 

29 

30 nswap : integer (optional, default=1) 

31 Number of three-edge (directed) swaps to perform 

32 

33 max_tries : integer (optional, default=100) 

34 Maximum number of attempts to swap edges 

35 

36 seed : integer, random_state, or None (default) 

37 Indicator of random number generation state. 

38 See :ref:`Randomness<randomness>`. 

39 

40 Returns 

41 ------- 

42 G : DiGraph 

43 The graph after the edges are swapped. 

44 

45 Raises 

46 ------ 

47 NetworkXError 

48 If `G` is not directed, or 

49 If nswap > max_tries, or 

50 If there are fewer than 4 nodes or 3 edges in `G`. 

51 NetworkXAlgorithmError 

52 If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made 

53 

54 Notes 

55 ----- 

56 Does not enforce any connectivity constraints. 

57 

58 The graph G is modified in place. 

59 

60 References 

61 ---------- 

62 .. [1] Erdős, Péter L., et al. “A Simple Havel-Hakimi Type Algorithm to Realize 

63 Graphical Degree Sequences of Directed Graphs.” ArXiv:0905.4913 [Math], 

64 Jan. 2010. https://doi.org/10.48550/arXiv.0905.4913. 

65 Published 2010 in Elec. J. Combinatorics (17(1)). R66. 

66 http://www.combinatorics.org/Volume_17/PDF/v17i1r66.pdf 

67 .. [2] “Combinatorics - Reaching All Possible Simple Directed Graphs with a given 

68 Degree Sequence with 2-Edge Swaps.” Mathematics Stack Exchange, 

69 https://math.stackexchange.com/questions/22272/. Accessed 30 May 2022. 

70 """ 

71 if nswap > max_tries: 

72 raise nx.NetworkXError("Number of swaps > number of tries allowed.") 

73 if len(G) < 4: 

74 raise nx.NetworkXError("DiGraph has fewer than four nodes.") 

75 if len(G.edges) < 3: 

76 raise nx.NetworkXError("DiGraph has fewer than 3 edges") 

77 

78 # Instead of choosing uniformly at random from a generated edge list, 

79 # this algorithm chooses nonuniformly from the set of nodes with 

80 # probability weighted by degree. 

81 tries = 0 

82 swapcount = 0 

83 keys, degrees = zip(*G.degree()) # keys, degree 

84 cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree 

85 discrete_sequence = nx.utils.discrete_sequence 

86 

87 while swapcount < nswap: 

88 # choose source node index from discrete distribution 

89 start_index = discrete_sequence(1, cdistribution=cdf, seed=seed)[0] 

90 start = keys[start_index] 

91 tries += 1 

92 

93 if tries > max_tries: 

94 msg = f"Maximum number of swap attempts ({tries}) exceeded before desired swaps achieved ({nswap})." 

95 raise nx.NetworkXAlgorithmError(msg) 

96 

97 # If the given node doesn't have any out edges, then there isn't anything to swap 

98 if G.out_degree(start) == 0: 

99 continue 

100 second = seed.choice(list(G.succ[start])) 

101 if start == second: 

102 continue 

103 

104 if G.out_degree(second) == 0: 

105 continue 

106 third = seed.choice(list(G.succ[second])) 

107 if second == third: 

108 continue 

109 

110 if G.out_degree(third) == 0: 

111 continue 

112 fourth = seed.choice(list(G.succ[third])) 

113 if third == fourth: 

114 continue 

115 

116 if ( 

117 third not in G.succ[start] 

118 and fourth not in G.succ[second] 

119 and second not in G.succ[third] 

120 ): 

121 # Swap nodes 

122 G.add_edge(start, third) 

123 G.add_edge(third, second) 

124 G.add_edge(second, fourth) 

125 G.remove_edge(start, second) 

126 G.remove_edge(second, third) 

127 G.remove_edge(third, fourth) 

128 swapcount += 1 

129 

130 return G 

131 

132 

133@py_random_state(3) 

134@nx._dispatch 

135def double_edge_swap(G, nswap=1, max_tries=100, seed=None): 

136 """Swap two edges in the graph while keeping the node degrees fixed. 

137 

138 A double-edge swap removes two randomly chosen edges u-v and x-y 

139 and creates the new edges u-x and v-y:: 

140 

141 u--v u v 

142 becomes | | 

143 x--y x y 

144 

145 If either the edge u-x or v-y already exist no swap is performed 

146 and another attempt is made to find a suitable edge pair. 

147 

148 Parameters 

149 ---------- 

150 G : graph 

151 An undirected graph 

152 

153 nswap : integer (optional, default=1) 

154 Number of double-edge swaps to perform 

155 

156 max_tries : integer (optional) 

157 Maximum number of attempts to swap edges 

158 

159 seed : integer, random_state, or None (default) 

160 Indicator of random number generation state. 

161 See :ref:`Randomness<randomness>`. 

162 

163 Returns 

164 ------- 

165 G : graph 

166 The graph after double edge swaps. 

167 

168 Raises 

169 ------ 

170 NetworkXError 

171 If `G` is directed, or 

172 If `nswap` > `max_tries`, or 

173 If there are fewer than 4 nodes or 2 edges in `G`. 

174 NetworkXAlgorithmError 

175 If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made 

176 

177 Notes 

178 ----- 

179 Does not enforce any connectivity constraints. 

180 

181 The graph G is modified in place. 

182 """ 

183 if G.is_directed(): 

184 raise nx.NetworkXError( 

185 "double_edge_swap() not defined for directed graphs. Use directed_edge_swap instead." 

186 ) 

187 if nswap > max_tries: 

188 raise nx.NetworkXError("Number of swaps > number of tries allowed.") 

189 if len(G) < 4: 

190 raise nx.NetworkXError("Graph has fewer than four nodes.") 

191 if len(G.edges) < 2: 

192 raise nx.NetworkXError("Graph has fewer than 2 edges") 

193 # Instead of choosing uniformly at random from a generated edge list, 

194 # this algorithm chooses nonuniformly from the set of nodes with 

195 # probability weighted by degree. 

196 n = 0 

197 swapcount = 0 

198 keys, degrees = zip(*G.degree()) # keys, degree 

199 cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree 

200 discrete_sequence = nx.utils.discrete_sequence 

201 while swapcount < nswap: 

202 # if random.random() < 0.5: continue # trick to avoid periodicities? 

203 # pick two random edges without creating edge list 

204 # choose source node indices from discrete distribution 

205 (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) 

206 if ui == xi: 

207 continue # same source, skip 

208 u = keys[ui] # convert index to label 

209 x = keys[xi] 

210 # choose target uniformly from neighbors 

211 v = seed.choice(list(G[u])) 

212 y = seed.choice(list(G[x])) 

213 if v == y: 

214 continue # same target, skip 

215 if (x not in G[u]) and (y not in G[v]): # don't create parallel edges 

216 G.add_edge(u, x) 

217 G.add_edge(v, y) 

218 G.remove_edge(u, v) 

219 G.remove_edge(x, y) 

220 swapcount += 1 

221 if n >= max_tries: 

222 e = ( 

223 f"Maximum number of swap attempts ({n}) exceeded " 

224 f"before desired swaps achieved ({nswap})." 

225 ) 

226 raise nx.NetworkXAlgorithmError(e) 

227 n += 1 

228 return G 

229 

230 

231@py_random_state(3) 

232@nx._dispatch 

233def connected_double_edge_swap(G, nswap=1, _window_threshold=3, seed=None): 

234 """Attempts the specified number of double-edge swaps in the graph `G`. 

235 

236 A double-edge swap removes two randomly chosen edges `(u, v)` and `(x, 

237 y)` and creates the new edges `(u, x)` and `(v, y)`:: 

238 

239 u--v u v 

240 becomes | | 

241 x--y x y 

242 

243 If either `(u, x)` or `(v, y)` already exist, then no swap is performed 

244 so the actual number of swapped edges is always *at most* `nswap`. 

245 

246 Parameters 

247 ---------- 

248 G : graph 

249 An undirected graph 

250 

251 nswap : integer (optional, default=1) 

252 Number of double-edge swaps to perform 

253 

254 _window_threshold : integer 

255 

256 The window size below which connectedness of the graph will be checked 

257 after each swap. 

258 

259 The "window" in this function is a dynamically updated integer that 

260 represents the number of swap attempts to make before checking if the 

261 graph remains connected. It is an optimization used to decrease the 

262 running time of the algorithm in exchange for increased complexity of 

263 implementation. 

264 

265 If the window size is below this threshold, then the algorithm checks 

266 after each swap if the graph remains connected by checking if there is a 

267 path joining the two nodes whose edge was just removed. If the window 

268 size is above this threshold, then the algorithm performs do all the 

269 swaps in the window and only then check if the graph is still connected. 

270 

271 seed : integer, random_state, or None (default) 

272 Indicator of random number generation state. 

273 See :ref:`Randomness<randomness>`. 

274 

275 Returns 

276 ------- 

277 int 

278 The number of successful swaps 

279 

280 Raises 

281 ------ 

282 

283 NetworkXError 

284 

285 If the input graph is not connected, or if the graph has fewer than four 

286 nodes. 

287 

288 Notes 

289 ----- 

290 

291 The initial graph `G` must be connected, and the resulting graph is 

292 connected. The graph `G` is modified in place. 

293 

294 References 

295 ---------- 

296 .. [1] C. Gkantsidis and M. Mihail and E. Zegura, 

297 The Markov chain simulation method for generating connected 

298 power law random graphs, 2003. 

299 http://citeseer.ist.psu.edu/gkantsidis03markov.html 

300 """ 

301 if not nx.is_connected(G): 

302 raise nx.NetworkXError("Graph not connected") 

303 if len(G) < 4: 

304 raise nx.NetworkXError("Graph has fewer than four nodes.") 

305 n = 0 

306 swapcount = 0 

307 deg = G.degree() 

308 # Label key for nodes 

309 dk = [n for n, d in G.degree()] 

310 cdf = nx.utils.cumulative_distribution([d for n, d in G.degree()]) 

311 discrete_sequence = nx.utils.discrete_sequence 

312 window = 1 

313 while n < nswap: 

314 wcount = 0 

315 swapped = [] 

316 # If the window is small, we just check each time whether the graph is 

317 # connected by checking if the nodes that were just separated are still 

318 # connected. 

319 if window < _window_threshold: 

320 # This Boolean keeps track of whether there was a failure or not. 

321 fail = False 

322 while wcount < window and n < nswap: 

323 # Pick two random edges without creating the edge list. Choose 

324 # source nodes from the discrete degree distribution. 

325 (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) 

326 # If the source nodes are the same, skip this pair. 

327 if ui == xi: 

328 continue 

329 # Convert an index to a node label. 

330 u = dk[ui] 

331 x = dk[xi] 

332 # Choose targets uniformly from neighbors. 

333 v = seed.choice(list(G.neighbors(u))) 

334 y = seed.choice(list(G.neighbors(x))) 

335 # If the target nodes are the same, skip this pair. 

336 if v == y: 

337 continue 

338 if x not in G[u] and y not in G[v]: 

339 G.remove_edge(u, v) 

340 G.remove_edge(x, y) 

341 G.add_edge(u, x) 

342 G.add_edge(v, y) 

343 swapped.append((u, v, x, y)) 

344 swapcount += 1 

345 n += 1 

346 # If G remains connected... 

347 if nx.has_path(G, u, v): 

348 wcount += 1 

349 # Otherwise, undo the changes. 

350 else: 

351 G.add_edge(u, v) 

352 G.add_edge(x, y) 

353 G.remove_edge(u, x) 

354 G.remove_edge(v, y) 

355 swapcount -= 1 

356 fail = True 

357 # If one of the swaps failed, reduce the window size. 

358 if fail: 

359 window = math.ceil(window / 2) 

360 else: 

361 window += 1 

362 # If the window is large, then there is a good chance that a bunch of 

363 # swaps will work. It's quicker to do all those swaps first and then 

364 # check if the graph remains connected. 

365 else: 

366 while wcount < window and n < nswap: 

367 # Pick two random edges without creating the edge list. Choose 

368 # source nodes from the discrete degree distribution. 

369 (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) 

370 # If the source nodes are the same, skip this pair. 

371 if ui == xi: 

372 continue 

373 # Convert an index to a node label. 

374 u = dk[ui] 

375 x = dk[xi] 

376 # Choose targets uniformly from neighbors. 

377 v = seed.choice(list(G.neighbors(u))) 

378 y = seed.choice(list(G.neighbors(x))) 

379 # If the target nodes are the same, skip this pair. 

380 if v == y: 

381 continue 

382 if x not in G[u] and y not in G[v]: 

383 G.remove_edge(u, v) 

384 G.remove_edge(x, y) 

385 G.add_edge(u, x) 

386 G.add_edge(v, y) 

387 swapped.append((u, v, x, y)) 

388 swapcount += 1 

389 n += 1 

390 wcount += 1 

391 # If the graph remains connected, increase the window size. 

392 if nx.is_connected(G): 

393 window += 1 

394 # Otherwise, undo the changes from the previous window and decrease 

395 # the window size. 

396 else: 

397 while swapped: 

398 (u, v, x, y) = swapped.pop() 

399 G.add_edge(u, v) 

400 G.add_edge(x, y) 

401 G.remove_edge(u, x) 

402 G.remove_edge(v, y) 

403 swapcount -= 1 

404 window = math.ceil(window / 2) 

405 return swapcount