Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/algorithms/approximation/distance_measures.py: 26%

31 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-10-20 07:00 +0000

1"""Distance measures approximated metrics.""" 

2 

3import networkx as nx 

4from networkx.utils.decorators import py_random_state 

5 

6__all__ = ["diameter"] 

7 

8 

9@py_random_state(1) 

10@nx._dispatch(name="approximate_diameter") 

11def diameter(G, seed=None): 

12 """Returns a lower bound on the diameter of the graph G. 

13 

14 The function computes a lower bound on the diameter (i.e., the maximum eccentricity) 

15 of a directed or undirected graph G. The procedure used varies depending on the graph 

16 being directed or not. 

17 

18 If G is an `undirected` graph, then the function uses the `2-sweep` algorithm [1]_. 

19 The main idea is to pick the farthest node from a random node and return its eccentricity. 

20 

21 Otherwise, if G is a `directed` graph, the function uses the `2-dSweep` algorithm [2]_, 

22 The procedure starts by selecting a random source node $s$ from which it performs a 

23 forward and a backward BFS. Let $a_1$ and $a_2$ be the farthest nodes in the forward and 

24 backward cases, respectively. Then, it computes the backward eccentricity of $a_1$ using 

25 a backward BFS and the forward eccentricity of $a_2$ using a forward BFS. 

26 Finally, it returns the best lower bound between the two. 

27 

28 In both cases, the time complexity is linear with respect to the size of G. 

29 

30 Parameters 

31 ---------- 

32 G : NetworkX graph 

33 

34 seed : integer, random_state, or None (default) 

35 Indicator of random number generation state. 

36 See :ref:`Randomness<randomness>`. 

37 

38 Returns 

39 ------- 

40 d : integer 

41 Lower Bound on the Diameter of G 

42 

43 Raises 

44 ------ 

45 NetworkXError 

46 If the graph is empty or 

47 If the graph is undirected and not connected or 

48 If the graph is directed and not strongly connected. 

49 

50 See Also 

51 -------- 

52 networkx.algorithms.distance_measures.diameter 

53 

54 References 

55 ---------- 

56 .. [1] Magnien, Clémence, Matthieu Latapy, and Michel Habib. 

57 *Fast computation of empirically tight bounds for the diameter of massive graphs.* 

58 Journal of Experimental Algorithmics (JEA), 2009. 

59 https://arxiv.org/pdf/0904.2728.pdf 

60 .. [2] Crescenzi, Pierluigi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. 

61 *On computing the diameter of real-world directed (weighted) graphs.* 

62 International Symposium on Experimental Algorithms. Springer, Berlin, Heidelberg, 2012. 

63 https://courses.cs.ut.ee/MTAT.03.238/2014_fall/uploads/Main/diameter.pdf 

64 """ 

65 # if G is empty 

66 if not G: 

67 raise nx.NetworkXError("Expected non-empty NetworkX graph!") 

68 # if there's only a node 

69 if G.number_of_nodes() == 1: 

70 return 0 

71 # if G is directed 

72 if G.is_directed(): 

73 return _two_sweep_directed(G, seed) 

74 # else if G is undirected 

75 return _two_sweep_undirected(G, seed) 

76 

77 

78def _two_sweep_undirected(G, seed): 

79 """Helper function for finding a lower bound on the diameter 

80 for undirected Graphs. 

81 

82 The idea is to pick the farthest node from a random node 

83 and return its eccentricity. 

84 

85 ``G`` is a NetworkX undirected graph. 

86 

87 .. note:: 

88 

89 ``seed`` is a random.Random or numpy.random.RandomState instance 

90 """ 

91 # select a random source node 

92 source = seed.choice(list(G)) 

93 # get the distances to the other nodes 

94 distances = nx.shortest_path_length(G, source) 

95 # if some nodes have not been visited, then the graph is not connected 

96 if len(distances) != len(G): 

97 raise nx.NetworkXError("Graph not connected.") 

98 # take a node that is (one of) the farthest nodes from the source 

99 *_, node = distances 

100 # return the eccentricity of the node 

101 return nx.eccentricity(G, node) 

102 

103 

104def _two_sweep_directed(G, seed): 

105 """Helper function for finding a lower bound on the diameter 

106 for directed Graphs. 

107 

108 It implements 2-dSweep, the directed version of the 2-sweep algorithm. 

109 The algorithm follows the following steps. 

110 1. Select a source node $s$ at random. 

111 2. Perform a forward BFS from $s$ to select a node $a_1$ at the maximum 

112 distance from the source, and compute $LB_1$, the backward eccentricity of $a_1$. 

113 3. Perform a backward BFS from $s$ to select a node $a_2$ at the maximum 

114 distance from the source, and compute $LB_2$, the forward eccentricity of $a_2$. 

115 4. Return the maximum between $LB_1$ and $LB_2$. 

116 

117 ``G`` is a NetworkX directed graph. 

118 

119 .. note:: 

120 

121 ``seed`` is a random.Random or numpy.random.RandomState instance 

122 """ 

123 # get a new digraph G' with the edges reversed in the opposite direction 

124 G_reversed = G.reverse() 

125 # select a random source node 

126 source = seed.choice(list(G)) 

127 # compute forward distances from source 

128 forward_distances = nx.shortest_path_length(G, source) 

129 # compute backward distances from source 

130 backward_distances = nx.shortest_path_length(G_reversed, source) 

131 # if either the source can't reach every node or not every node 

132 # can reach the source, then the graph is not strongly connected 

133 n = len(G) 

134 if len(forward_distances) != n or len(backward_distances) != n: 

135 raise nx.NetworkXError("DiGraph not strongly connected.") 

136 # take a node a_1 at the maximum distance from the source in G 

137 *_, a_1 = forward_distances 

138 # take a node a_2 at the maximum distance from the source in G_reversed 

139 *_, a_2 = backward_distances 

140 # return the max between the backward eccentricity of a_1 and the forward eccentricity of a_2 

141 return max(nx.eccentricity(G_reversed, a_1), nx.eccentricity(G, a_2))