Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/generators/cographs.py: 46%
13 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-20 07:00 +0000
1r"""Generators for cographs
3A cograph is a graph containing no path on four vertices.
4Cographs or $P_4$-free graphs can be obtained from a single vertex
5by disjoint union and complementation operations.
7References
8----------
9.. [0] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
10 "Complement reducible graphs",
11 Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
12 ISSN 0166-218X.
13"""
14import networkx as nx
15from networkx.utils import py_random_state
17__all__ = ["random_cograph"]
20@py_random_state(1)
21@nx._dispatch(graphs=None)
22def random_cograph(n, seed=None):
23 r"""Returns a random cograph with $2 ^ n$ nodes.
25 A cograph is a graph containing no path on four vertices.
26 Cographs or $P_4$-free graphs can be obtained from a single vertex
27 by disjoint union and complementation operations.
29 This generator starts off from a single vertex and performs disjoint
30 union and full join operations on itself.
31 The decision on which operation will take place is random.
33 Parameters
34 ----------
35 n : int
36 The order of the cograph.
37 seed : integer, random_state, or None (default)
38 Indicator of random number generation state.
39 See :ref:`Randomness<randomness>`.
41 Returns
42 -------
43 G : A random graph containing no path on four vertices.
45 See Also
46 --------
47 full_join
48 union
50 References
51 ----------
52 .. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
53 "Complement reducible graphs",
54 Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
55 ISSN 0166-218X.
56 """
57 R = nx.empty_graph(1)
59 for i in range(n):
60 RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))
62 if seed.randint(0, 1) == 0:
63 R = nx.full_join(R, RR)
64 else:
65 R = nx.disjoint_union(R, RR)
67 return R