Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/networkx/generators/line.py: 12%

159 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-10-20 07:00 +0000

1"""Functions for generating line graphs.""" 

2from collections import defaultdict 

3from functools import partial 

4from itertools import combinations 

5 

6import networkx as nx 

7from networkx.utils import arbitrary_element 

8from networkx.utils.decorators import not_implemented_for 

9 

10__all__ = ["line_graph", "inverse_line_graph"] 

11 

12 

13@nx._dispatch 

14def line_graph(G, create_using=None): 

15 r"""Returns the line graph of the graph or digraph `G`. 

16 

17 The line graph of a graph `G` has a node for each edge in `G` and an 

18 edge joining those nodes if the two edges in `G` share a common node. For 

19 directed graphs, nodes are adjacent exactly when the edges they represent 

20 form a directed path of length two. 

21 

22 The nodes of the line graph are 2-tuples of nodes in the original graph (or 

23 3-tuples for multigraphs, with the key of the edge as the third element). 

24 

25 For information about self-loops and more discussion, see the **Notes** 

26 section below. 

27 

28 Parameters 

29 ---------- 

30 G : graph 

31 A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph. 

32 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

33 Graph type to create. If graph instance, then cleared before populated. 

34 

35 Returns 

36 ------- 

37 L : graph 

38 The line graph of G. 

39 

40 Examples 

41 -------- 

42 >>> G = nx.star_graph(3) 

43 >>> L = nx.line_graph(G) 

44 >>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3 

45 [[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]] 

46 

47 Edge attributes from `G` are not copied over as node attributes in `L`, but 

48 attributes can be copied manually: 

49 

50 >>> G = nx.path_graph(4) 

51 >>> G.add_edges_from((u, v, {"tot": u+v}) for u, v in G.edges) 

52 >>> G.edges(data=True) 

53 EdgeDataView([(0, 1, {'tot': 1}), (1, 2, {'tot': 3}), (2, 3, {'tot': 5})]) 

54 >>> H = nx.line_graph(G) 

55 >>> H.add_nodes_from((node, G.edges[node]) for node in H) 

56 >>> H.nodes(data=True) 

57 NodeDataView({(0, 1): {'tot': 1}, (2, 3): {'tot': 5}, (1, 2): {'tot': 3}}) 

58 

59 Notes 

60 ----- 

61 Graph, node, and edge data are not propagated to the new graph. For 

62 undirected graphs, the nodes in G must be sortable, otherwise the 

63 constructed line graph may not be correct. 

64 

65 *Self-loops in undirected graphs* 

66 

67 For an undirected graph `G` without multiple edges, each edge can be 

68 written as a set `\{u, v\}`. Its line graph `L` has the edges of `G` as 

69 its nodes. If `x` and `y` are two nodes in `L`, then `\{x, y\}` is an edge 

70 in `L` if and only if the intersection of `x` and `y` is nonempty. Thus, 

71 the set of all edges is determined by the set of all pairwise intersections 

72 of edges in `G`. 

73 

74 Trivially, every edge in G would have a nonzero intersection with itself, 

75 and so every node in `L` should have a self-loop. This is not so 

76 interesting, and the original context of line graphs was with simple 

77 graphs, which had no self-loops or multiple edges. The line graph was also 

78 meant to be a simple graph and thus, self-loops in `L` are not part of the 

79 standard definition of a line graph. In a pairwise intersection matrix, 

80 this is analogous to excluding the diagonal entries from the line graph 

81 definition. 

82 

83 Self-loops and multiple edges in `G` add nodes to `L` in a natural way, and 

84 do not require any fundamental changes to the definition. It might be 

85 argued that the self-loops we excluded before should now be included. 

86 However, the self-loops are still "trivial" in some sense and thus, are 

87 usually excluded. 

88 

89 *Self-loops in directed graphs* 

90 

91 For a directed graph `G` without multiple edges, each edge can be written 

92 as a tuple `(u, v)`. Its line graph `L` has the edges of `G` as its 

93 nodes. If `x` and `y` are two nodes in `L`, then `(x, y)` is an edge in `L` 

94 if and only if the tail of `x` matches the head of `y`, for example, if `x 

95 = (a, b)` and `y = (b, c)` for some vertices `a`, `b`, and `c` in `G`. 

96 

97 Due to the directed nature of the edges, it is no longer the case that 

98 every edge in `G` should have a self-loop in `L`. Now, the only time 

99 self-loops arise is if a node in `G` itself has a self-loop. So such 

100 self-loops are no longer "trivial" but instead, represent essential 

101 features of the topology of `G`. For this reason, the historical 

102 development of line digraphs is such that self-loops are included. When the 

103 graph `G` has multiple edges, once again only superficial changes are 

104 required to the definition. 

105 

106 References 

107 ---------- 

108 * Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs", 

109 Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161--168. 

110 * Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs", 

111 in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory, 

112 Academic Press Inc., pp. 271--305. 

113 

114 """ 

115 if G.is_directed(): 

116 L = _lg_directed(G, create_using=create_using) 

117 else: 

118 L = _lg_undirected(G, selfloops=False, create_using=create_using) 

119 return L 

120 

121 

122def _lg_directed(G, create_using=None): 

123 """Returns the line graph L of the (multi)digraph G. 

124 

125 Edges in G appear as nodes in L, represented as tuples of the form (u,v) 

126 or (u,v,key) if G is a multidigraph. A node in L corresponding to the edge 

127 (u,v) is connected to every node corresponding to an edge (v,w). 

128 

129 Parameters 

130 ---------- 

131 G : digraph 

132 A directed graph or directed multigraph. 

133 create_using : NetworkX graph constructor, optional 

134 Graph type to create. If graph instance, then cleared before populated. 

135 Default is to use the same graph class as `G`. 

136 

137 """ 

138 L = nx.empty_graph(0, create_using, default=G.__class__) 

139 

140 # Create a graph specific edge function. 

141 get_edges = partial(G.edges, keys=True) if G.is_multigraph() else G.edges 

142 

143 for from_node in get_edges(): 

144 # from_node is: (u,v) or (u,v,key) 

145 L.add_node(from_node) 

146 for to_node in get_edges(from_node[1]): 

147 L.add_edge(from_node, to_node) 

148 

149 return L 

150 

151 

152def _lg_undirected(G, selfloops=False, create_using=None): 

153 """Returns the line graph L of the (multi)graph G. 

154 

155 Edges in G appear as nodes in L, represented as sorted tuples of the form 

156 (u,v), or (u,v,key) if G is a multigraph. A node in L corresponding to 

157 the edge {u,v} is connected to every node corresponding to an edge that 

158 involves u or v. 

159 

160 Parameters 

161 ---------- 

162 G : graph 

163 An undirected graph or multigraph. 

164 selfloops : bool 

165 If `True`, then self-loops are included in the line graph. If `False`, 

166 they are excluded. 

167 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

168 Graph type to create. If graph instance, then cleared before populated. 

169 

170 Notes 

171 ----- 

172 The standard algorithm for line graphs of undirected graphs does not 

173 produce self-loops. 

174 

175 """ 

176 L = nx.empty_graph(0, create_using, default=G.__class__) 

177 

178 # Graph specific functions for edges. 

179 get_edges = partial(G.edges, keys=True) if G.is_multigraph() else G.edges 

180 

181 # Determine if we include self-loops or not. 

182 shift = 0 if selfloops else 1 

183 

184 # Introduce numbering of nodes 

185 node_index = {n: i for i, n in enumerate(G)} 

186 

187 # Lift canonical representation of nodes to edges in line graph 

188 edge_key_function = lambda edge: (node_index[edge[0]], node_index[edge[1]]) 

189 

190 edges = set() 

191 for u in G: 

192 # Label nodes as a sorted tuple of nodes in original graph. 

193 # Decide on representation of {u, v} as (u, v) or (v, u) depending on node_index. 

194 # -> This ensures a canonical representation and avoids comparing values of different types. 

195 nodes = [tuple(sorted(x[:2], key=node_index.get)) + x[2:] for x in get_edges(u)] 

196 

197 if len(nodes) == 1: 

198 # Then the edge will be an isolated node in L. 

199 L.add_node(nodes[0]) 

200 

201 # Add a clique of `nodes` to graph. To prevent double adding edges, 

202 # especially important for multigraphs, we store the edges in 

203 # canonical form in a set. 

204 for i, a in enumerate(nodes): 

205 edges.update( 

206 [ 

207 tuple(sorted((a, b), key=edge_key_function)) 

208 for b in nodes[i + shift :] 

209 ] 

210 ) 

211 

212 L.add_edges_from(edges) 

213 return L 

214 

215 

216@not_implemented_for("directed") 

217@not_implemented_for("multigraph") 

218@nx._dispatch 

219def inverse_line_graph(G): 

220 """Returns the inverse line graph of graph G. 

221 

222 If H is a graph, and G is the line graph of H, such that G = L(H). 

223 Then H is the inverse line graph of G. 

224 

225 Not all graphs are line graphs and these do not have an inverse line graph. 

226 In these cases this function raises a NetworkXError. 

227 

228 Parameters 

229 ---------- 

230 G : graph 

231 A NetworkX Graph 

232 

233 Returns 

234 ------- 

235 H : graph 

236 The inverse line graph of G. 

237 

238 Raises 

239 ------ 

240 NetworkXNotImplemented 

241 If G is directed or a multigraph 

242 

243 NetworkXError 

244 If G is not a line graph 

245 

246 Notes 

247 ----- 

248 This is an implementation of the Roussopoulos algorithm[1]_. 

249 

250 If G consists of multiple components, then the algorithm doesn't work. 

251 You should invert every component separately: 

252 

253 >>> K5 = nx.complete_graph(5) 

254 >>> P4 = nx.Graph([("a", "b"), ("b", "c"), ("c", "d")]) 

255 >>> G = nx.union(K5, P4) 

256 >>> root_graphs = [] 

257 >>> for comp in nx.connected_components(G): 

258 ... root_graphs.append(nx.inverse_line_graph(G.subgraph(comp))) 

259 >>> len(root_graphs) 

260 2 

261 

262 References 

263 ---------- 

264 .. [1] Roussopoulos, N.D. , "A max {m, n} algorithm for determining the graph H from 

265 its line graph G", Information Processing Letters 2, (1973), 108--112, ISSN 0020-0190, 

266 `DOI link <https://doi.org/10.1016/0020-0190(73)90029-X>`_ 

267 

268 """ 

269 if G.number_of_nodes() == 0: 

270 return nx.empty_graph(1) 

271 elif G.number_of_nodes() == 1: 

272 v = arbitrary_element(G) 

273 a = (v, 0) 

274 b = (v, 1) 

275 H = nx.Graph([(a, b)]) 

276 return H 

277 elif G.number_of_nodes() > 1 and G.number_of_edges() == 0: 

278 msg = ( 

279 "inverse_line_graph() doesn't work on an edgeless graph. " 

280 "Please use this function on each component separately." 

281 ) 

282 raise nx.NetworkXError(msg) 

283 

284 if nx.number_of_selfloops(G) != 0: 

285 msg = ( 

286 "A line graph as generated by NetworkX has no selfloops, so G has no " 

287 "inverse line graph. Please remove the selfloops from G and try again." 

288 ) 

289 raise nx.NetworkXError(msg) 

290 

291 starting_cell = _select_starting_cell(G) 

292 P = _find_partition(G, starting_cell) 

293 # count how many times each vertex appears in the partition set 

294 P_count = {u: 0 for u in G.nodes} 

295 for p in P: 

296 for u in p: 

297 P_count[u] += 1 

298 

299 if max(P_count.values()) > 2: 

300 msg = "G is not a line graph (vertex found in more than two partition cells)" 

301 raise nx.NetworkXError(msg) 

302 W = tuple((u,) for u in P_count if P_count[u] == 1) 

303 H = nx.Graph() 

304 H.add_nodes_from(P) 

305 H.add_nodes_from(W) 

306 for a, b in combinations(H.nodes, 2): 

307 if any(a_bit in b for a_bit in a): 

308 H.add_edge(a, b) 

309 return H 

310 

311 

312def _triangles(G, e): 

313 """Return list of all triangles containing edge e""" 

314 u, v = e 

315 if u not in G: 

316 raise nx.NetworkXError(f"Vertex {u} not in graph") 

317 if v not in G[u]: 

318 raise nx.NetworkXError(f"Edge ({u}, {v}) not in graph") 

319 triangle_list = [] 

320 for x in G[u]: 

321 if x in G[v]: 

322 triangle_list.append((u, v, x)) 

323 return triangle_list 

324 

325 

326def _odd_triangle(G, T): 

327 """Test whether T is an odd triangle in G 

328 

329 Parameters 

330 ---------- 

331 G : NetworkX Graph 

332 T : 3-tuple of vertices forming triangle in G 

333 

334 Returns 

335 ------- 

336 True is T is an odd triangle 

337 False otherwise 

338 

339 Raises 

340 ------ 

341 NetworkXError 

342 T is not a triangle in G 

343 

344 Notes 

345 ----- 

346 An odd triangle is one in which there exists another vertex in G which is 

347 adjacent to either exactly one or exactly all three of the vertices in the 

348 triangle. 

349 

350 """ 

351 for u in T: 

352 if u not in G.nodes(): 

353 raise nx.NetworkXError(f"Vertex {u} not in graph") 

354 for e in list(combinations(T, 2)): 

355 if e[0] not in G[e[1]]: 

356 raise nx.NetworkXError(f"Edge ({e[0]}, {e[1]}) not in graph") 

357 

358 T_neighbors = defaultdict(int) 

359 for t in T: 

360 for v in G[t]: 

361 if v not in T: 

362 T_neighbors[v] += 1 

363 return any(T_neighbors[v] in [1, 3] for v in T_neighbors) 

364 

365 

366def _find_partition(G, starting_cell): 

367 """Find a partition of the vertices of G into cells of complete graphs 

368 

369 Parameters 

370 ---------- 

371 G : NetworkX Graph 

372 starting_cell : tuple of vertices in G which form a cell 

373 

374 Returns 

375 ------- 

376 List of tuples of vertices of G 

377 

378 Raises 

379 ------ 

380 NetworkXError 

381 If a cell is not a complete subgraph then G is not a line graph 

382 """ 

383 G_partition = G.copy() 

384 P = [starting_cell] # partition set 

385 G_partition.remove_edges_from(list(combinations(starting_cell, 2))) 

386 # keep list of partitioned nodes which might have an edge in G_partition 

387 partitioned_vertices = list(starting_cell) 

388 while G_partition.number_of_edges() > 0: 

389 # there are still edges left and so more cells to be made 

390 u = partitioned_vertices.pop() 

391 deg_u = len(G_partition[u]) 

392 if deg_u != 0: 

393 # if u still has edges then we need to find its other cell 

394 # this other cell must be a complete subgraph or else G is 

395 # not a line graph 

396 new_cell = [u] + list(G_partition[u]) 

397 for u in new_cell: 

398 for v in new_cell: 

399 if (u != v) and (v not in G_partition[u]): 

400 msg = ( 

401 "G is not a line graph " 

402 "(partition cell not a complete subgraph)" 

403 ) 

404 raise nx.NetworkXError(msg) 

405 P.append(tuple(new_cell)) 

406 G_partition.remove_edges_from(list(combinations(new_cell, 2))) 

407 partitioned_vertices += new_cell 

408 return P 

409 

410 

411def _select_starting_cell(G, starting_edge=None): 

412 """Select a cell to initiate _find_partition 

413 

414 Parameters 

415 ---------- 

416 G : NetworkX Graph 

417 starting_edge: an edge to build the starting cell from 

418 

419 Returns 

420 ------- 

421 Tuple of vertices in G 

422 

423 Raises 

424 ------ 

425 NetworkXError 

426 If it is determined that G is not a line graph 

427 

428 Notes 

429 ----- 

430 If starting edge not specified then pick an arbitrary edge - doesn't 

431 matter which. However, this function may call itself requiring a 

432 specific starting edge. Note that the r, s notation for counting 

433 triangles is the same as in the Roussopoulos paper cited above. 

434 """ 

435 if starting_edge is None: 

436 e = arbitrary_element(G.edges()) 

437 else: 

438 e = starting_edge 

439 if e[0] not in G.nodes(): 

440 raise nx.NetworkXError(f"Vertex {e[0]} not in graph") 

441 if e[1] not in G[e[0]]: 

442 msg = f"starting_edge ({e[0]}, {e[1]}) is not in the Graph" 

443 raise nx.NetworkXError(msg) 

444 e_triangles = _triangles(G, e) 

445 r = len(e_triangles) 

446 if r == 0: 

447 # there are no triangles containing e, so the starting cell is just e 

448 starting_cell = e 

449 elif r == 1: 

450 # there is exactly one triangle, T, containing e. If other 2 edges 

451 # of T belong only to this triangle then T is starting cell 

452 T = e_triangles[0] 

453 a, b, c = T 

454 # ab was original edge so check the other 2 edges 

455 ac_edges = len(_triangles(G, (a, c))) 

456 bc_edges = len(_triangles(G, (b, c))) 

457 if ac_edges == 1: 

458 if bc_edges == 1: 

459 starting_cell = T 

460 else: 

461 return _select_starting_cell(G, starting_edge=(b, c)) 

462 else: 

463 return _select_starting_cell(G, starting_edge=(a, c)) 

464 else: 

465 # r >= 2 so we need to count the number of odd triangles, s 

466 s = 0 

467 odd_triangles = [] 

468 for T in e_triangles: 

469 if _odd_triangle(G, T): 

470 s += 1 

471 odd_triangles.append(T) 

472 if r == 2 and s == 0: 

473 # in this case either triangle works, so just use T 

474 starting_cell = T 

475 elif r - 1 <= s <= r: 

476 # check if odd triangles containing e form complete subgraph 

477 triangle_nodes = set() 

478 for T in odd_triangles: 

479 for x in T: 

480 triangle_nodes.add(x) 

481 

482 for u in triangle_nodes: 

483 for v in triangle_nodes: 

484 if u != v and (v not in G[u]): 

485 msg = ( 

486 "G is not a line graph (odd triangles " 

487 "do not form complete subgraph)" 

488 ) 

489 raise nx.NetworkXError(msg) 

490 # otherwise then we can use this as the starting cell 

491 starting_cell = tuple(triangle_nodes) 

492 

493 else: 

494 msg = ( 

495 "G is not a line graph (incorrect number of " 

496 "odd triangles around starting edge)" 

497 ) 

498 raise nx.NetworkXError(msg) 

499 return starting_cell