Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/cluster.py: 16%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

197 statements  

1"""Algorithms to characterize the number of triangles in a graph.""" 

2 

3from collections import Counter 

4from itertools import chain, combinations 

5 

6import networkx as nx 

7from networkx.utils import not_implemented_for 

8 

9__all__ = [ 

10 "triangles", 

11 "all_triangles", 

12 "average_clustering", 

13 "clustering", 

14 "transitivity", 

15 "square_clustering", 

16 "generalized_degree", 

17] 

18 

19 

20@not_implemented_for("directed") 

21@nx._dispatchable 

22def triangles(G, nodes=None): 

23 """Compute the number of triangles. 

24 

25 Finds the number of triangles that include a node as one vertex. 

26 

27 Parameters 

28 ---------- 

29 G : graph 

30 A networkx graph 

31 

32 nodes : node, iterable of nodes, or None (default=None) 

33 If a singleton node, return the number of triangles for that node. 

34 If an iterable, compute the number of triangles for each of those nodes. 

35 If `None` (the default) compute the number of triangles for all nodes in `G`. 

36 

37 Returns 

38 ------- 

39 out : dict or int 

40 If `nodes` is a container of nodes, returns number of triangles keyed by node (dict). 

41 If `nodes` is a specific node, returns number of triangles for the node (int). 

42 

43 Examples 

44 -------- 

45 >>> G = nx.complete_graph(5) 

46 >>> print(nx.triangles(G, 0)) 

47 6 

48 >>> print(nx.triangles(G)) 

49 {0: 6, 1: 6, 2: 6, 3: 6, 4: 6} 

50 >>> print(list(nx.triangles(G, [0, 1]).values())) 

51 [6, 6] 

52 

53 The total number of unique triangles in `G` can be determined by summing 

54 the number of triangles for each node and dividing by 3 (because a given 

55 triangle gets counted three times, once for each of its nodes). 

56 

57 >>> sum(nx.triangles(G).values()) // 3 

58 10 

59 

60 Notes 

61 ----- 

62 Self loops are ignored. 

63 

64 """ 

65 if nodes is not None: 

66 # If `nodes` represents a single node, return only its number of triangles 

67 if nodes in G: 

68 return next(_triangles_and_degree_iter(G, nodes))[2] // 2 

69 

70 # if `nodes` is a container of nodes, then return a 

71 # dictionary mapping node to number of triangles. 

72 return {v: t // 2 for v, d, t, _ in _triangles_and_degree_iter(G, nodes)} 

73 

74 # if nodes is None, then compute triangles for the complete graph 

75 

76 # dict used to avoid visiting the same nodes twice 

77 # this allows calculating/counting each triangle only once 

78 later_nbrs = {} 

79 

80 # iterate over the nodes in a graph 

81 for node, neighbors in G.adjacency(): 

82 later_nbrs[node] = {n for n in neighbors if n not in later_nbrs and n != node} 

83 

84 # instantiate Counter for each node to include isolated nodes 

85 # add 1 to the count if a nodes neighbor's neighbor is also a neighbor 

86 triangle_counts = Counter(dict.fromkeys(G, 0)) 

87 for node1, neighbors in later_nbrs.items(): 

88 for node2 in neighbors: 

89 third_nodes = neighbors & later_nbrs[node2] 

90 m = len(third_nodes) 

91 triangle_counts[node1] += m 

92 triangle_counts[node2] += m 

93 triangle_counts.update(third_nodes) 

94 

95 return dict(triangle_counts) 

96 

97 

98@not_implemented_for("multigraph") 

99def _triangles_and_degree_iter(G, nodes=None): 

100 """Return an iterator of (node, degree, triangles, generalized degree). 

101 

102 This double counts triangles so you may want to divide by 2. 

103 See degree(), triangles() and generalized_degree() for definitions 

104 and details. 

105 

106 """ 

107 if nodes is None: 

108 nodes_nbrs = G.adj.items() 

109 else: 

110 nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes)) 

111 

112 for v, v_nbrs in nodes_nbrs: 

113 vs = set(v_nbrs) - {v} 

114 gen_degree = Counter(len(vs & (set(G[w]) - {w})) for w in vs) 

115 ntriangles = sum(k * val for k, val in gen_degree.items()) 

116 yield (v, len(vs), ntriangles, gen_degree) 

117 

118 

119@not_implemented_for("multigraph") 

120def _weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"): 

121 """Return an iterator of (node, degree, weighted_triangles). 

122 

123 Used for weighted clustering. 

124 Note: this returns the geometric average weight of edges in the triangle. 

125 Also, each triangle is counted twice (each direction). 

126 So you may want to divide by 2. 

127 

128 """ 

129 import numpy as np 

130 

131 if weight is None or G.number_of_edges() == 0: 

132 max_weight = 1 

133 else: 

134 max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True)) 

135 if nodes is None: 

136 nodes_nbrs = G.adj.items() 

137 else: 

138 nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes)) 

139 

140 def wt(u, v): 

141 return G[u][v].get(weight, 1) / max_weight 

142 

143 for i, nbrs in nodes_nbrs: 

144 inbrs = set(nbrs) - {i} 

145 weighted_triangles = 0 

146 seen = set() 

147 for j in inbrs: 

148 seen.add(j) 

149 # This avoids counting twice -- we double at the end. 

150 jnbrs = set(G[j]) - seen 

151 # Only compute the edge weight once, before the inner inner 

152 # loop. 

153 wij = wt(i, j) 

154 weighted_triangles += np.cbrt( 

155 [(wij * wt(j, k) * wt(k, i)) for k in inbrs & jnbrs] 

156 ).sum() 

157 yield (i, len(inbrs), 2 * float(weighted_triangles)) 

158 

159 

160@not_implemented_for("multigraph") 

161def _directed_triangles_and_degree_iter(G, nodes=None): 

162 """Return an iterator of 

163 (node, total_degree, reciprocal_degree, directed_triangles). 

164 

165 Used for directed clustering. 

166 Note that unlike `_triangles_and_degree_iter()`, this function counts 

167 directed triangles so does not count triangles twice. 

168 

169 """ 

170 nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes)) 

171 

172 for i, preds, succs in nodes_nbrs: 

173 ipreds = set(preds) - {i} 

174 isuccs = set(succs) - {i} 

175 

176 directed_triangles = 0 

177 for j in chain(ipreds, isuccs): 

178 jpreds = set(G._pred[j]) - {j} 

179 jsuccs = set(G._succ[j]) - {j} 

180 directed_triangles += sum( 

181 1 

182 for k in chain( 

183 (ipreds & jpreds), 

184 (ipreds & jsuccs), 

185 (isuccs & jpreds), 

186 (isuccs & jsuccs), 

187 ) 

188 ) 

189 dtotal = len(ipreds) + len(isuccs) 

190 dbidirectional = len(ipreds & isuccs) 

191 yield (i, dtotal, dbidirectional, directed_triangles) 

192 

193 

194@not_implemented_for("multigraph") 

195def _directed_weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"): 

196 """Return an iterator of 

197 (node, total_degree, reciprocal_degree, directed_weighted_triangles). 

198 

199 Used for directed weighted clustering. 

200 Note that unlike `_weighted_triangles_and_degree_iter()`, this function counts 

201 directed triangles so does not count triangles twice. 

202 

203 """ 

204 import numpy as np 

205 

206 if weight is None or G.number_of_edges() == 0: 

207 max_weight = 1 

208 else: 

209 max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True)) 

210 

211 nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes)) 

212 

213 def wt(u, v): 

214 return G[u][v].get(weight, 1) / max_weight 

215 

216 for i, preds, succs in nodes_nbrs: 

217 ipreds = set(preds) - {i} 

218 isuccs = set(succs) - {i} 

219 

220 directed_triangles = 0 

221 for j in ipreds: 

222 jpreds = set(G._pred[j]) - {j} 

223 jsuccs = set(G._succ[j]) - {j} 

224 directed_triangles += np.cbrt( 

225 [(wt(j, i) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds] 

226 ).sum() 

227 directed_triangles += np.cbrt( 

228 [(wt(j, i) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs] 

229 ).sum() 

230 directed_triangles += np.cbrt( 

231 [(wt(j, i) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds] 

232 ).sum() 

233 directed_triangles += np.cbrt( 

234 [(wt(j, i) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs] 

235 ).sum() 

236 

237 for j in isuccs: 

238 jpreds = set(G._pred[j]) - {j} 

239 jsuccs = set(G._succ[j]) - {j} 

240 directed_triangles += np.cbrt( 

241 [(wt(i, j) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds] 

242 ).sum() 

243 directed_triangles += np.cbrt( 

244 [(wt(i, j) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs] 

245 ).sum() 

246 directed_triangles += np.cbrt( 

247 [(wt(i, j) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds] 

248 ).sum() 

249 directed_triangles += np.cbrt( 

250 [(wt(i, j) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs] 

251 ).sum() 

252 

253 dtotal = len(ipreds) + len(isuccs) 

254 dbidirectional = len(ipreds & isuccs) 

255 yield (i, dtotal, dbidirectional, float(directed_triangles)) 

256 

257 

258@not_implemented_for("directed") 

259@nx._dispatchable 

260def all_triangles(G, nbunch=None): 

261 """ 

262 Yields all unique triangles in an undirected graph. 

263 

264 A triangle is a set of three distinct nodes where each node is connected to 

265 the other two. 

266 

267 Parameters 

268 ---------- 

269 G : NetworkX graph 

270 An undirected graph. 

271 

272 nbunch : node, iterable of nodes, or None (default=None) 

273 If a node or iterable of nodes, only triangles involving at least one 

274 node in `nbunch` are yielded. 

275 If ``None``, yields all unique triangles in the graph. 

276 

277 Yields 

278 ------ 

279 tuple 

280 A tuple of three nodes forming a triangle ``(u, v, w)``. 

281 

282 Examples 

283 -------- 

284 >>> G = nx.complete_graph(4) 

285 >>> sorted([sorted(t) for t in all_triangles(G)]) 

286 [[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]] 

287 

288 Notes 

289 ----- 

290 This algorithm ensures each triangle is yielded once using an internal node ordering. 

291 In multigraphs, triangles are identified by their unique set of nodes, 

292 ignoring multiple edges between the same nodes. Self-loops are ignored. 

293 Runs in ``O(m * d)`` time in the worst case, where ``m`` the number of edges 

294 and ``d`` the maximum degree. 

295 

296 See Also 

297 -------- 

298 :func:`~networkx.algorithms.triads.all_triads` : related function for directed graphs 

299 """ 

300 if nbunch is None: 

301 nbunch = relevant_nodes = G 

302 else: 

303 nbunch = dict.fromkeys(G.nbunch_iter(nbunch)) 

304 relevant_nodes = chain( 

305 nbunch, 

306 (nbr for node in nbunch for nbr in G.neighbors(node) if nbr not in nbunch), 

307 ) 

308 

309 node_to_id = {node: i for i, node in enumerate(relevant_nodes)} 

310 

311 for u in nbunch: 

312 u_id = node_to_id[u] 

313 u_nbrs = G._adj[u].keys() 

314 for v in u_nbrs: 

315 v_id = node_to_id.get(v, -1) 

316 if v_id <= u_id: 

317 continue 

318 v_nbrs = G._adj[v].keys() 

319 for w in v_nbrs & u_nbrs: 

320 if node_to_id.get(w, -1) > v_id: 

321 yield u, v, w 

322 

323 

324@nx._dispatchable(edge_attrs="weight") 

325def average_clustering(G, nodes=None, weight=None, count_zeros=True): 

326 r"""Compute the average clustering coefficient for the graph G. 

327 

328 The clustering coefficient for the graph is the average, 

329 

330 .. math:: 

331 

332 C = \frac{1}{n}\sum_{v \in G} c_v, 

333 

334 where :math:`n` is the number of nodes in `G`. 

335 

336 Parameters 

337 ---------- 

338 G : graph 

339 

340 nodes : container of nodes, optional (default=all nodes in G) 

341 Compute average clustering for nodes in this container. 

342 

343 weight : string or None, optional (default=None) 

344 The edge attribute that holds the numerical value used as a weight. 

345 If None, then each edge has weight 1. 

346 

347 count_zeros : bool 

348 If False include only the nodes with nonzero clustering in the average. 

349 

350 Returns 

351 ------- 

352 avg : float 

353 Average clustering 

354 

355 Examples 

356 -------- 

357 >>> G = nx.complete_graph(5) 

358 >>> print(nx.average_clustering(G)) 

359 1.0 

360 

361 Notes 

362 ----- 

363 This is a space saving routine; it might be faster 

364 to use the clustering function to get a list and then take the average. 

365 

366 Self loops are ignored. 

367 

368 References 

369 ---------- 

370 .. [1] Generalizations of the clustering coefficient to weighted 

371 complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, 

372 K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). 

373 http://jponnela.com/web_documents/a9.pdf 

374 .. [2] Marcus Kaiser, Mean clustering coefficients: the role of isolated 

375 nodes and leafs on clustering measures for small-world networks. 

376 https://arxiv.org/abs/0802.2512 

377 """ 

378 c = clustering(G, nodes, weight=weight).values() 

379 if not count_zeros: 

380 c = [v for v in c if abs(v) > 0] 

381 return sum(c) / len(c) 

382 

383 

384@nx._dispatchable(edge_attrs="weight") 

385def clustering(G, nodes=None, weight=None): 

386 r"""Compute the clustering coefficient for nodes. 

387 

388 For unweighted graphs, the clustering of a node :math:`u` 

389 is the fraction of possible triangles through that node that exist, 

390 

391 .. math:: 

392 

393 c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)}, 

394 

395 where :math:`T(u)` is the number of triangles through node :math:`u` and 

396 :math:`deg(u)` is the degree of :math:`u`. 

397 

398 For weighted graphs, there are several ways to define clustering [1]_. 

399 the one used here is defined 

400 as the geometric average of the subgraph edge weights [2]_, 

401 

402 .. math:: 

403 

404 c_u = \frac{1}{deg(u)(deg(u)-1))} 

405 \sum_{vw} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}. 

406 

407 The edge weights :math:`\hat{w}_{uv}` are normalized by the maximum weight 

408 in the network :math:`\hat{w}_{uv} = w_{uv}/\max(w)`. 

409 

410 The value of :math:`c_u` is assigned to 0 if :math:`deg(u) < 2`. 

411 

412 Additionally, this weighted definition has been generalized to support negative edge weights [3]_. 

413 

414 For directed graphs, the clustering is similarly defined as the fraction 

415 of all possible directed triangles or geometric average of the subgraph 

416 edge weights for unweighted and weighted directed graph respectively [4]_. 

417 

418 .. math:: 

419 

420 c_u = \frac{T(u)}{2(deg^{tot}(u)(deg^{tot}(u)-1) - 2deg^{\leftrightarrow}(u))}, 

421 

422 where :math:`T(u)` is the number of directed triangles through node 

423 :math:`u`, :math:`deg^{tot}(u)` is the sum of in degree and out degree of 

424 :math:`u` and :math:`deg^{\leftrightarrow}(u)` is the reciprocal degree of 

425 :math:`u`. 

426 

427 

428 Parameters 

429 ---------- 

430 G : graph 

431 

432 nodes : node, iterable of nodes, or None (default=None) 

433 If a singleton node, return the number of triangles for that node. 

434 If an iterable, compute the number of triangles for each of those nodes. 

435 If `None` (the default) compute the number of triangles for all nodes in `G`. 

436 

437 weight : string or None, optional (default=None) 

438 The edge attribute that holds the numerical value used as a weight. 

439 If None, then each edge has weight 1. 

440 

441 Returns 

442 ------- 

443 out : float, or dictionary 

444 Clustering coefficient at specified nodes 

445 

446 Examples 

447 -------- 

448 >>> G = nx.complete_graph(5) 

449 >>> print(nx.clustering(G, 0)) 

450 1.0 

451 >>> print(nx.clustering(G)) 

452 {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} 

453 

454 Notes 

455 ----- 

456 Self loops are ignored. 

457 

458 References 

459 ---------- 

460 .. [1] Generalizations of the clustering coefficient to weighted 

461 complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, 

462 K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). 

463 http://jponnela.com/web_documents/a9.pdf 

464 .. [2] Intensity and coherence of motifs in weighted complex 

465 networks by J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski, 

466 Physical Review E, 71(6), 065103 (2005). 

467 .. [3] Generalization of Clustering Coefficients to Signed Correlation Networks 

468 by G. Costantini and M. Perugini, PloS one, 9(2), e88669 (2014). 

469 .. [4] Clustering in complex directed networks by G. Fagiolo, 

470 Physical Review E, 76(2), 026107 (2007). 

471 """ 

472 if G.is_directed(): 

473 if weight is not None: 

474 td_iter = _directed_weighted_triangles_and_degree_iter(G, nodes, weight) 

475 clusterc = { 

476 v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2) 

477 for v, dt, db, t in td_iter 

478 } 

479 else: 

480 td_iter = _directed_triangles_and_degree_iter(G, nodes) 

481 clusterc = { 

482 v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2) 

483 for v, dt, db, t in td_iter 

484 } 

485 else: 

486 # The formula 2*T/(d*(d-1)) from docs is t/(d*(d-1)) here b/c t==2*T 

487 if weight is not None: 

488 td_iter = _weighted_triangles_and_degree_iter(G, nodes, weight) 

489 clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t in td_iter} 

490 else: 

491 td_iter = _triangles_and_degree_iter(G, nodes) 

492 clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t, _ in td_iter} 

493 if nodes in G: 

494 # Return the value of the sole entry in the dictionary. 

495 return clusterc[nodes] 

496 return clusterc 

497 

498 

499@nx._dispatchable 

500def transitivity(G): 

501 r"""Compute graph transitivity, the fraction of all possible triangles 

502 present in G. 

503 

504 Possible triangles are identified by the number of "triads" 

505 (two edges with a shared vertex). 

506 

507 The transitivity is 

508 

509 .. math:: 

510 

511 T = 3\frac{\#triangles}{\#triads}. 

512 

513 Parameters 

514 ---------- 

515 G : graph 

516 

517 Returns 

518 ------- 

519 out : float 

520 Transitivity 

521 

522 Notes 

523 ----- 

524 Self loops are ignored. 

525 

526 Examples 

527 -------- 

528 >>> G = nx.complete_graph(5) 

529 >>> print(nx.transitivity(G)) 

530 1.0 

531 """ 

532 triangles_contri = [ 

533 (t, d * (d - 1)) for v, d, t, _ in _triangles_and_degree_iter(G) 

534 ] 

535 # If the graph is empty 

536 if len(triangles_contri) == 0: 

537 return 0 

538 triangles, contri = map(sum, zip(*triangles_contri)) 

539 return 0 if triangles == 0 else triangles / contri 

540 

541 

542@nx._dispatchable 

543def square_clustering(G, nodes=None): 

544 r"""Compute the squares clustering coefficient for nodes. 

545 

546 For each node return the fraction of possible squares that exist at 

547 the node [1]_ 

548 

549 .. math:: 

550 C_4(v) = \frac{ \sum_{u=1}^{k_v} 

551 \sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v} 

552 \sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]}, 

553 

554 where :math:`q_v(u,w)` are the number of common neighbors of :math:`u` and 

555 :math:`w` other than :math:`v` (ie squares), and :math:`a_v(u,w) = (k_u - 

556 (1+q_v(u,w)+\theta_{uv})) + (k_w - (1+q_v(u,w)+\theta_{uw}))`, where 

557 :math:`\theta_{uw} = 1` if :math:`u` and :math:`w` are connected and 0 

558 otherwise. [2]_ 

559 

560 Parameters 

561 ---------- 

562 G : graph 

563 

564 nodes : container of nodes, optional (default=all nodes in G) 

565 Compute clustering for nodes in this container. 

566 

567 Returns 

568 ------- 

569 c4 : dictionary 

570 A dictionary keyed by node with the square clustering coefficient value. 

571 

572 Examples 

573 -------- 

574 >>> G = nx.complete_graph(5) 

575 >>> print(nx.square_clustering(G, 0)) 

576 1.0 

577 >>> print(nx.square_clustering(G)) 

578 {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} 

579 

580 Notes 

581 ----- 

582 Self loops are ignored. 

583 

584 While :math:`C_3(v)` (triangle clustering) gives the probability that 

585 two neighbors of node v are connected with each other, :math:`C_4(v)` is 

586 the probability that two neighbors of node v share a common 

587 neighbor different from v. This algorithm can be applied to both 

588 bipartite and unipartite networks. 

589 

590 References 

591 ---------- 

592 .. [1] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 

593 Cycles and clustering in bipartite networks. 

594 Physical Review E (72) 056127. 

595 .. [2] Zhang, Peng et al. Clustering Coefficient and Community Structure of 

596 Bipartite Networks. Physica A: Statistical Mechanics and its Applications 387.27 (2008): 6869–6875. 

597 https://arxiv.org/abs/0710.0117v1 

598 """ 

599 if nodes is None: 

600 node_iter = G 

601 else: 

602 node_iter = G.nbunch_iter(nodes) 

603 clustering = {} 

604 _G_adj = G._adj 

605 

606 class GAdj(dict): 

607 """Calculate (and cache) node neighbor sets excluding self-loops.""" 

608 

609 def __missing__(self, v): 

610 v_neighbors = self[v] = set(_G_adj[v]) 

611 v_neighbors.discard(v) # Ignore self-loops 

612 return v_neighbors 

613 

614 G_adj = GAdj() # Values are sets of neighbors (no self-loops) 

615 

616 for v in node_iter: 

617 v_neighbors = G_adj[v] 

618 v_degrees_m1 = len(v_neighbors) - 1 # degrees[v] - 1 (used below) 

619 if v_degrees_m1 <= 0: 

620 # Can't form a square without at least two neighbors 

621 clustering[v] = 0 

622 continue 

623 

624 # Count squares with nodes u-v-w-x from the current node v. 

625 # Terms of the denominator: potential = uw_degrees - uw_count - triangles - squares 

626 # uw_degrees: degrees[u] + degrees[w] for each u-w combo 

627 uw_degrees = 0 

628 # uw_count: 1 for each u and 1 for each w for all combos (degrees * (degrees - 1)) 

629 uw_count = len(v_neighbors) * v_degrees_m1 

630 # triangles: 1 for each edge where u-w or w-u are connected (i.e. triangles) 

631 triangles = 0 

632 # squares: the number of squares (also the numerator) 

633 squares = 0 

634 

635 # Iterate over all neighbors 

636 for u in v_neighbors: 

637 u_neighbors = G_adj[u] 

638 uw_degrees += len(u_neighbors) * v_degrees_m1 

639 # P2 from https://arxiv.org/abs/2007.11111 

640 p2 = len(u_neighbors & v_neighbors) 

641 # triangles is C_3, sigma_4 from https://arxiv.org/abs/2007.11111 

642 # This double-counts triangles compared to `triangles` function 

643 triangles += p2 

644 # squares is C_4, sigma_12 from https://arxiv.org/abs/2007.11111 

645 # Include this term, b/c a neighbor u can also be a neighbor of neighbor x 

646 squares += p2 * (p2 - 1) # Will divide by 2 later 

647 

648 # And iterate over all neighbors of neighbors. 

649 # These nodes x may be the corners opposite v in squares u-v-w-x. 

650 two_hop_neighbors = set.union(*(G_adj[u] for u in v_neighbors)) 

651 two_hop_neighbors -= v_neighbors # Neighbors already counted above 

652 two_hop_neighbors.discard(v) 

653 for x in two_hop_neighbors: 

654 p2 = len(v_neighbors & G_adj[x]) 

655 squares += p2 * (p2 - 1) # Will divide by 2 later 

656 

657 squares //= 2 

658 potential = uw_degrees - uw_count - triangles - squares 

659 if potential > 0: 

660 clustering[v] = squares / potential 

661 else: 

662 clustering[v] = 0 

663 if nodes in G: 

664 # Return the value of the sole entry in the dictionary. 

665 return clustering[nodes] 

666 return clustering 

667 

668 

669@not_implemented_for("directed") 

670@nx._dispatchable 

671def generalized_degree(G, nodes=None): 

672 r"""Compute the generalized degree for nodes. 

673 

674 For each node, the generalized degree shows how many edges of given 

675 triangle multiplicity the node is connected to. The triangle multiplicity 

676 of an edge is the number of triangles an edge participates in. The 

677 generalized degree of node :math:`i` can be written as a vector 

678 :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc, k_i^{(N-2)})` where 

679 :math:`k_i^{(j)}` is the number of edges attached to node :math:`i` that 

680 participate in :math:`j` triangles. 

681 

682 Parameters 

683 ---------- 

684 G : graph 

685 

686 nodes : container of nodes, optional (default=all nodes in G) 

687 Compute the generalized degree for nodes in this container. 

688 

689 Returns 

690 ------- 

691 out : Counter, or dictionary of Counters 

692 Generalized degree of specified nodes. The Counter is keyed by edge 

693 triangle multiplicity. 

694 

695 Examples 

696 -------- 

697 >>> G = nx.complete_graph(5) 

698 >>> print(nx.generalized_degree(G, 0)) 

699 Counter({3: 4}) 

700 >>> print(nx.generalized_degree(G)) 

701 {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), 4: Counter({3: 4})} 

702 

703 To recover the number of triangles attached to a node: 

704 

705 >>> k1 = nx.generalized_degree(G, 0) 

706 >>> sum([k * v for k, v in k1.items()]) / 2 == nx.triangles(G, 0) 

707 True 

708 

709 Notes 

710 ----- 

711 Self loops are ignored. 

712 

713 In a network of N nodes, the highest triangle multiplicity an edge can have 

714 is N-2. 

715 

716 The return value does not include a `zero` entry if no edges of a 

717 particular triangle multiplicity are present. 

718 

719 The number of triangles node :math:`i` is attached to can be recovered from 

720 the generalized degree :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc, 

721 k_i^{(N-2)})` by :math:`(k_i^{(1)}+2k_i^{(2)}+\dotsc +(N-2)k_i^{(N-2)})/2`. 

722 

723 References 

724 ---------- 

725 .. [1] Networks with arbitrary edge multiplicities by V. Zlatić, 

726 D. Garlaschelli and G. Caldarelli, EPL (Europhysics Letters), 

727 Volume 97, Number 2 (2012). 

728 https://iopscience.iop.org/article/10.1209/0295-5075/97/28005 

729 """ 

730 if nodes in G: 

731 return next(_triangles_and_degree_iter(G, nodes))[3] 

732 return {v: gd for v, d, t, gd in _triangles_and_degree_iter(G, nodes)}