Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/traversal/edgebfs.py: 14%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

57 statements  

1""" 

2============================= 

3Breadth First Search on Edges 

4============================= 

5 

6Algorithms for a breadth-first traversal of edges in a graph. 

7 

8""" 

9 

10from collections import deque 

11 

12import networkx as nx 

13 

14FORWARD = "forward" 

15REVERSE = "reverse" 

16 

17__all__ = ["edge_bfs"] 

18 

19 

20@nx._dispatchable 

21def edge_bfs(G, source=None, orientation=None): 

22 """A directed, breadth-first-search of edges in `G`, beginning at `source`. 

23 

24 Yield the edges of G in a breadth-first-search order continuing until 

25 all edges are generated. 

26 

27 Parameters 

28 ---------- 

29 G : graph 

30 A directed/undirected graph/multigraph. 

31 

32 source : node, list of nodes 

33 The node from which the traversal begins. If None, then a source 

34 is chosen arbitrarily and repeatedly until all edges from each node in 

35 the graph are searched. 

36 

37 orientation : None | 'original' | 'reverse' | 'ignore' (default: None) 

38 For directed graphs and directed multigraphs, edge traversals need not 

39 respect the original orientation of the edges. 

40 When set to 'reverse' every edge is traversed in the reverse direction. 

41 When set to 'ignore', every edge is treated as undirected. 

42 When set to 'original', every edge is treated as directed. 

43 In all three cases, the yielded edge tuples add a last entry to 

44 indicate the direction in which that edge was traversed. 

45 If orientation is None, the yielded edge has no direction indicated. 

46 The direction is respected, but not reported. 

47 

48 Yields 

49 ------ 

50 edge : directed edge 

51 A directed edge indicating the path taken by the breadth-first-search. 

52 For graphs, `edge` is of the form `(u, v)` where `u` and `v` 

53 are the tail and head of the edge as determined by the traversal. 

54 For multigraphs, `edge` is of the form `(u, v, key)`, where `key` is 

55 the key of the edge. When the graph is directed, then `u` and `v` 

56 are always in the order of the actual directed edge. 

57 If orientation is not None then the edge tuple is extended to include 

58 the direction of traversal ('forward' or 'reverse') on that edge. 

59 

60 Examples 

61 -------- 

62 >>> from pprint import pprint 

63 >>> nodes = [0, 1, 2, 3] 

64 >>> edges = [(0, 1), (1, 0), (1, 0), (2, 0), (2, 1), (3, 1)] 

65 

66 >>> list(nx.edge_bfs(nx.Graph(edges), nodes)) 

67 [(0, 1), (0, 2), (1, 2), (1, 3)] 

68 

69 >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes)) 

70 [(0, 1), (1, 0), (2, 0), (2, 1), (3, 1)] 

71 

72 >>> list(nx.edge_bfs(nx.MultiGraph(edges), nodes)) 

73 [(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (1, 2, 0), (1, 3, 0)] 

74 

75 >>> list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes)) 

76 [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (3, 1, 0)] 

77 

78 >>> list(nx.edge_bfs(nx.DiGraph(edges), nodes, orientation="ignore")) 

79 [(0, 1, 'forward'), (1, 0, 'reverse'), (2, 0, 'reverse'), (2, 1, 'reverse'), (3, 1, 'reverse')] 

80 

81 >>> elist = list(nx.edge_bfs(nx.MultiDiGraph(edges), nodes, orientation="ignore")) 

82 >>> pprint(elist) 

83 [(0, 1, 0, 'forward'), 

84 (1, 0, 0, 'reverse'), 

85 (1, 0, 1, 'reverse'), 

86 (2, 0, 0, 'reverse'), 

87 (2, 1, 0, 'reverse'), 

88 (3, 1, 0, 'reverse')] 

89 

90 Notes 

91 ----- 

92 The goal of this function is to visit edges. It differs from the more 

93 familiar breadth-first-search of nodes, as provided by 

94 :func:`networkx.algorithms.traversal.breadth_first_search.bfs_edges`, in 

95 that it does not stop once every node has been visited. In a directed graph 

96 with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited 

97 if not for the functionality provided by this function. 

98 

99 The naming of this function is very similar to bfs_edges. The difference 

100 is that 'edge_bfs' yields edges even if they extend back to an already 

101 explored node while 'bfs_edges' yields the edges of the tree that results 

102 from a breadth-first-search (BFS) so no edges are reported if they extend 

103 to already explored nodes. That means 'edge_bfs' reports all edges while 

104 'bfs_edges' only report those traversed by a node-based BFS. Yet another 

105 description is that 'bfs_edges' reports the edges traversed during BFS 

106 while 'edge_bfs' reports all edges in the order they are explored. 

107 

108 See Also 

109 -------- 

110 bfs_edges 

111 bfs_tree 

112 edge_dfs 

113 

114 """ 

115 nodes = list(G.nbunch_iter(source)) 

116 if not nodes: 

117 return 

118 

119 directed = G.is_directed() 

120 kwds = {"data": False} 

121 if G.is_multigraph() is True: 

122 kwds["keys"] = True 

123 

124 # set up edge lookup 

125 if orientation is None: 

126 

127 def edges_from(node): 

128 return iter(G.edges(node, **kwds)) 

129 

130 elif not directed or orientation == "original": 

131 

132 def edges_from(node): 

133 for e in G.edges(node, **kwds): 

134 yield e + (FORWARD,) 

135 

136 elif orientation == "reverse": 

137 

138 def edges_from(node): 

139 for e in G.in_edges(node, **kwds): 

140 yield e + (REVERSE,) 

141 

142 elif orientation == "ignore": 

143 

144 def edges_from(node): 

145 for e in G.edges(node, **kwds): 

146 yield e + (FORWARD,) 

147 for e in G.in_edges(node, **kwds): 

148 yield e + (REVERSE,) 

149 

150 else: 

151 raise nx.NetworkXError("invalid orientation argument.") 

152 

153 if directed: 

154 neighbors = G.successors 

155 

156 def edge_id(edge): 

157 # remove direction indicator 

158 return edge[:-1] if orientation is not None else edge 

159 

160 else: 

161 neighbors = G.neighbors 

162 

163 def edge_id(edge): 

164 return (frozenset(edge[:2]),) + edge[2:] 

165 

166 check_reverse = directed and orientation in ("reverse", "ignore") 

167 

168 # start BFS 

169 visited_nodes = set(nodes) 

170 visited_edges = set() 

171 queue = deque([(n, edges_from(n)) for n in nodes]) 

172 while queue: 

173 parent, children_edges = queue.popleft() 

174 for edge in children_edges: 

175 if check_reverse and edge[-1] == REVERSE: 

176 child = edge[0] 

177 else: 

178 child = edge[1] 

179 if child not in visited_nodes: 

180 visited_nodes.add(child) 

181 queue.append((child, edges_from(child))) 

182 edgeid = edge_id(edge) 

183 if edgeid not in visited_edges: 

184 visited_edges.add(edgeid) 

185 yield edge