Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/traversal/edgedfs.py: 12%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

59 statements  

1""" 

2=========================== 

3Depth First Search on Edges 

4=========================== 

5 

6Algorithms for a depth-first traversal of edges in a graph. 

7 

8""" 

9 

10import networkx as nx 

11 

12FORWARD = "forward" 

13REVERSE = "reverse" 

14 

15__all__ = ["edge_dfs"] 

16 

17 

18@nx._dispatchable 

19def edge_dfs(G, source=None, orientation=None): 

20 """A directed, depth-first-search of edges in `G`, beginning at `source`. 

21 

22 Yield the edges of G in a depth-first-search order continuing until 

23 all edges are generated. 

24 

25 Parameters 

26 ---------- 

27 G : graph 

28 A directed/undirected graph/multigraph. 

29 

30 source : node, list of nodes 

31 The node from which the traversal begins. If None, then a source 

32 is chosen arbitrarily and repeatedly until all edges from each node in 

33 the graph are searched. 

34 

35 orientation : None | 'original' | 'reverse' | 'ignore' (default: None) 

36 For directed graphs and directed multigraphs, edge traversals need not 

37 respect the original orientation of the edges. 

38 When set to 'reverse' every edge is traversed in the reverse direction. 

39 When set to 'ignore', every edge is treated as undirected. 

40 When set to 'original', every edge is treated as directed. 

41 In all three cases, the yielded edge tuples add a last entry to 

42 indicate the direction in which that edge was traversed. 

43 If orientation is None, the yielded edge has no direction indicated. 

44 The direction is respected, but not reported. 

45 

46 Yields 

47 ------ 

48 edge : directed edge 

49 A directed edge indicating the path taken by the depth-first traversal. 

50 For graphs, `edge` is of the form `(u, v)` where `u` and `v` 

51 are the tail and head of the edge as determined by the traversal. 

52 For multigraphs, `edge` is of the form `(u, v, key)`, where `key` is 

53 the key of the edge. When the graph is directed, then `u` and `v` 

54 are always in the order of the actual directed edge. 

55 If orientation is not None then the edge tuple is extended to include 

56 the direction of traversal ('forward' or 'reverse') on that edge. 

57 

58 Examples 

59 -------- 

60 >>> from pprint import pprint 

61 >>> nodes = [0, 1, 2, 3] 

62 >>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] 

63 

64 >>> list(nx.edge_dfs(nx.Graph(edges), nodes)) 

65 [(0, 1), (1, 2), (1, 3)] 

66 

67 >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes)) 

68 [(0, 1), (1, 0), (2, 1), (3, 1)] 

69 

70 >>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes)) 

71 [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)] 

72 

73 >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes)) 

74 [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)] 

75 

76 >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation="ignore")) 

77 [(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')] 

78 

79 >>> elist = list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation="ignore")) 

80 >>> pprint(elist) 

81 [(0, 1, 0, 'forward'), 

82 (1, 0, 0, 'forward'), 

83 (1, 0, 1, 'reverse'), 

84 (2, 1, 0, 'reverse'), 

85 (3, 1, 0, 'reverse')] 

86 

87 Notes 

88 ----- 

89 The goal of this function is to visit edges. It differs from the more 

90 familiar depth-first traversal of nodes, as provided by 

91 :func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges`, in 

92 that it does not stop once every node has been visited. In a directed graph 

93 with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited 

94 if not for the functionality provided by this function. 

95 

96 See Also 

97 -------- 

98 :func:`~networkx.algorithms.traversal.depth_first_search.dfs_edges` 

99 

100 """ 

101 nodes = list(G.nbunch_iter(source)) 

102 if not nodes: 

103 return 

104 

105 directed = G.is_directed() 

106 kwds = {"data": False} 

107 if G.is_multigraph() is True: 

108 kwds["keys"] = True 

109 

110 # set up edge lookup 

111 if orientation is None: 

112 

113 def edges_from(node): 

114 return iter(G.edges(node, **kwds)) 

115 

116 elif not directed or orientation == "original": 

117 

118 def edges_from(node): 

119 for e in G.edges(node, **kwds): 

120 yield e + (FORWARD,) 

121 

122 elif orientation == "reverse": 

123 

124 def edges_from(node): 

125 for e in G.in_edges(node, **kwds): 

126 yield e + (REVERSE,) 

127 

128 elif orientation == "ignore": 

129 

130 def edges_from(node): 

131 for e in G.edges(node, **kwds): 

132 yield e + (FORWARD,) 

133 for e in G.in_edges(node, **kwds): 

134 yield e + (REVERSE,) 

135 

136 else: 

137 raise nx.NetworkXError("invalid orientation argument.") 

138 

139 # set up formation of edge_id to easily look up if edge already returned 

140 if directed: 

141 

142 def edge_id(edge): 

143 # remove direction indicator 

144 return edge[:-1] if orientation is not None else edge 

145 

146 else: 

147 

148 def edge_id(edge): 

149 # single id for undirected requires frozenset on nodes 

150 return (frozenset(edge[:2]),) + edge[2:] 

151 

152 # Basic setup 

153 check_reverse = directed and orientation in ("reverse", "ignore") 

154 

155 visited_edges = set() 

156 visited_nodes = set() 

157 edges = {} 

158 

159 # start DFS 

160 for start_node in nodes: 

161 stack = [start_node] 

162 while stack: 

163 current_node = stack[-1] 

164 if current_node not in visited_nodes: 

165 edges[current_node] = edges_from(current_node) 

166 visited_nodes.add(current_node) 

167 

168 try: 

169 edge = next(edges[current_node]) 

170 except StopIteration: 

171 # No more edges from the current node. 

172 stack.pop() 

173 else: 

174 edgeid = edge_id(edge) 

175 if edgeid not in visited_edges: 

176 visited_edges.add(edgeid) 

177 # Mark the traversed "to" node as to-be-explored. 

178 if check_reverse and edge[-1] == REVERSE: 

179 stack.append(edge[0]) 

180 else: 

181 stack.append(edge[1]) 

182 yield edge