Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py: 18%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

144 statements  

1""" 

2Algorithms for finding k-edge-connected components and subgraphs. 

3 

4A k-edge-connected component (k-edge-cc) is a maximal set of nodes in G, such 

5that all pairs of node have an edge-connectivity of at least k. 

6 

7A k-edge-connected subgraph (k-edge-subgraph) is a maximal set of nodes in G, 

8such that the subgraph of G defined by the nodes has an edge-connectivity at 

9least k. 

10""" 

11 

12import itertools as it 

13from functools import partial 

14 

15import networkx as nx 

16from networkx.utils import arbitrary_element, not_implemented_for 

17 

18__all__ = [ 

19 "k_edge_components", 

20 "k_edge_subgraphs", 

21 "bridge_components", 

22 "EdgeComponentAuxGraph", 

23] 

24 

25 

26@not_implemented_for("multigraph") 

27@nx._dispatchable 

28def k_edge_components(G, k): 

29 """Generates nodes in each maximal k-edge-connected component in G. 

30 

31 Parameters 

32 ---------- 

33 G : NetworkX graph 

34 

35 k : Integer 

36 Desired edge connectivity 

37 

38 Returns 

39 ------- 

40 k_edge_components : a generator of k-edge-ccs. Each set of returned nodes 

41 will have k-edge-connectivity in the graph G. 

42 

43 See Also 

44 -------- 

45 :func:`local_edge_connectivity` 

46 :func:`k_edge_subgraphs` : similar to this function, but the subgraph 

47 defined by the nodes must also have k-edge-connectivity. 

48 :func:`k_components` : similar to this function, but uses node-connectivity 

49 instead of edge-connectivity 

50 

51 Raises 

52 ------ 

53 NetworkXNotImplemented 

54 If the input graph is a multigraph. 

55 

56 ValueError: 

57 If k is less than 1 

58 

59 Notes 

60 ----- 

61 Attempts to use the most efficient implementation available based on k. 

62 If k=1, this is simply connected components for directed graphs and 

63 connected components for undirected graphs. 

64 If k=2 on an efficient bridge connected component algorithm from _[1] is 

65 run based on the chain decomposition. 

66 Otherwise, the algorithm from _[2] is used. 

67 

68 Examples 

69 -------- 

70 >>> import itertools as it 

71 >>> from networkx.utils import pairwise 

72 >>> paths = [ 

73 ... (1, 2, 4, 3, 1, 4), 

74 ... (5, 6, 7, 8, 5, 7, 8, 6), 

75 ... ] 

76 >>> G = nx.Graph() 

77 >>> G.add_nodes_from(it.chain(*paths)) 

78 >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) 

79 >>> # note this returns {1, 4} unlike k_edge_subgraphs 

80 >>> sorted(map(sorted, nx.k_edge_components(G, k=3))) 

81 [[1, 4], [2], [3], [5, 6, 7, 8]] 

82 

83 References 

84 ---------- 

85 .. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29 

86 .. [2] Wang, Tianhao, et al. (2015) A simple algorithm for finding all 

87 k-edge-connected components. 

88 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 

89 """ 

90 # Compute k-edge-ccs using the most efficient algorithms available. 

91 if k < 1: 

92 raise ValueError("k cannot be less than 1") 

93 if G.is_directed(): 

94 if k == 1: 

95 return nx.strongly_connected_components(G) 

96 else: 

97 # TODO: investigate https://arxiv.org/abs/1412.6466 for k=2 

98 aux_graph = EdgeComponentAuxGraph.construct(G) 

99 return aux_graph.k_edge_components(k) 

100 else: 

101 if k == 1: 

102 return nx.connected_components(G) 

103 elif k == 2: 

104 return bridge_components(G) 

105 else: 

106 aux_graph = EdgeComponentAuxGraph.construct(G) 

107 return aux_graph.k_edge_components(k) 

108 

109 

110@not_implemented_for("multigraph") 

111@nx._dispatchable 

112def k_edge_subgraphs(G, k): 

113 """Generates nodes in each maximal k-edge-connected subgraph in G. 

114 

115 Parameters 

116 ---------- 

117 G : NetworkX graph 

118 

119 k : Integer 

120 Desired edge connectivity 

121 

122 Returns 

123 ------- 

124 k_edge_subgraphs : a generator of k-edge-subgraphs 

125 Each k-edge-subgraph is a maximal set of nodes that defines a subgraph 

126 of G that is k-edge-connected. 

127 

128 See Also 

129 -------- 

130 :func:`edge_connectivity` 

131 :func:`k_edge_components` : similar to this function, but nodes only 

132 need to have k-edge-connectivity within the graph G and the subgraphs 

133 might not be k-edge-connected. 

134 

135 Raises 

136 ------ 

137 NetworkXNotImplemented 

138 If the input graph is a multigraph. 

139 

140 ValueError: 

141 If k is less than 1 

142 

143 Notes 

144 ----- 

145 Attempts to use the most efficient implementation available based on k. 

146 If k=1, or k=2 and the graph is undirected, then this simply calls 

147 `k_edge_components`. Otherwise the algorithm from _[1] is used. 

148 

149 Examples 

150 -------- 

151 >>> import itertools as it 

152 >>> from networkx.utils import pairwise 

153 >>> paths = [ 

154 ... (1, 2, 4, 3, 1, 4), 

155 ... (5, 6, 7, 8, 5, 7, 8, 6), 

156 ... ] 

157 >>> G = nx.Graph() 

158 >>> G.add_nodes_from(it.chain(*paths)) 

159 >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) 

160 >>> # note this does not return {1, 4} unlike k_edge_components 

161 >>> sorted(map(sorted, nx.k_edge_subgraphs(G, k=3))) 

162 [[1], [2], [3], [4], [5, 6, 7, 8]] 

163 

164 References 

165 ---------- 

166 .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs 

167 from a large graph. ACM International Conference on Extending Database 

168 Technology 2012 480-–491. 

169 https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf 

170 """ 

171 if k < 1: 

172 raise ValueError("k cannot be less than 1") 

173 if G.is_directed(): 

174 if k <= 1: 

175 # For directed graphs , 

176 # When k == 1, k-edge-ccs and k-edge-subgraphs are the same 

177 return k_edge_components(G, k) 

178 else: 

179 return _k_edge_subgraphs_nodes(G, k) 

180 else: 

181 if k <= 2: 

182 # For undirected graphs, 

183 # when k <= 2, k-edge-ccs and k-edge-subgraphs are the same 

184 return k_edge_components(G, k) 

185 else: 

186 return _k_edge_subgraphs_nodes(G, k) 

187 

188 

189def _k_edge_subgraphs_nodes(G, k): 

190 """Helper to get the nodes from the subgraphs. 

191 

192 This allows k_edge_subgraphs to return a generator. 

193 """ 

194 for C in general_k_edge_subgraphs(G, k): 

195 yield set(C.nodes()) 

196 

197 

198@not_implemented_for("directed") 

199@not_implemented_for("multigraph") 

200@nx._dispatchable 

201def bridge_components(G): 

202 """Finds all bridge-connected components G. 

203 

204 Parameters 

205 ---------- 

206 G : NetworkX undirected graph 

207 

208 Returns 

209 ------- 

210 bridge_components : a generator of 2-edge-connected components 

211 

212 

213 See Also 

214 -------- 

215 :func:`k_edge_subgraphs` : this function is a special case for an 

216 undirected graph where k=2. 

217 :func:`biconnected_components` : similar to this function, but is defined 

218 using 2-node-connectivity instead of 2-edge-connectivity. 

219 

220 Raises 

221 ------ 

222 NetworkXNotImplemented 

223 If the input graph is directed or a multigraph. 

224 

225 Notes 

226 ----- 

227 Bridge-connected components are also known as 2-edge-connected components. 

228 

229 Examples 

230 -------- 

231 >>> # The barbell graph with parameter zero has a single bridge 

232 >>> G = nx.barbell_graph(5, 0) 

233 >>> from networkx.algorithms.connectivity.edge_kcomponents import bridge_components 

234 >>> sorted(map(sorted, bridge_components(G))) 

235 [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] 

236 """ 

237 H = G.copy() 

238 H.remove_edges_from(nx.bridges(G)) 

239 yield from nx.connected_components(H) 

240 

241 

242class EdgeComponentAuxGraph: 

243 r"""A simple algorithm to find all k-edge-connected components in a graph. 

244 

245 Constructing the auxiliary graph (which may take some time) allows for the 

246 k-edge-ccs to be found in linear time for arbitrary k. 

247 

248 Notes 

249 ----- 

250 This implementation is based on [1]_. The idea is to construct an auxiliary 

251 graph from which the k-edge-ccs can be extracted in linear time. The 

252 auxiliary graph is constructed in $O(|V|\cdot F)$ operations, where F is the 

253 complexity of max flow. Querying the components takes an additional $O(|V|)$ 

254 operations. This algorithm can be slow for large graphs, but it handles an 

255 arbitrary k and works for both directed and undirected inputs. 

256 

257 The undirected case for k=1 is exactly connected components. 

258 The undirected case for k=2 is exactly bridge connected components. 

259 The directed case for k=1 is exactly strongly connected components. 

260 

261 References 

262 ---------- 

263 .. [1] Wang, Tianhao, et al. (2015) A simple algorithm for finding all 

264 k-edge-connected components. 

265 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264 

266 

267 Examples 

268 -------- 

269 >>> import itertools as it 

270 >>> from networkx.utils import pairwise 

271 >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph 

272 >>> # Build an interesting graph with multiple levels of k-edge-ccs 

273 >>> paths = [ 

274 ... (1, 2, 3, 4, 1, 3, 4, 2), # a 3-edge-cc (a 4 clique) 

275 ... (5, 6, 7, 5), # a 2-edge-cc (a 3 clique) 

276 ... (1, 5), # combine first two ccs into a 1-edge-cc 

277 ... (0,), # add an additional disconnected 1-edge-cc 

278 ... ] 

279 >>> G = nx.Graph() 

280 >>> G.add_nodes_from(it.chain(*paths)) 

281 >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) 

282 >>> # Constructing the AuxGraph takes about O(n ** 4) 

283 >>> aux_graph = EdgeComponentAuxGraph.construct(G) 

284 >>> # Once constructed, querying takes O(n) 

285 >>> sorted(map(sorted, aux_graph.k_edge_components(k=1))) 

286 [[0], [1, 2, 3, 4, 5, 6, 7]] 

287 >>> sorted(map(sorted, aux_graph.k_edge_components(k=2))) 

288 [[0], [1, 2, 3, 4], [5, 6, 7]] 

289 >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) 

290 [[0], [1, 2, 3, 4], [5], [6], [7]] 

291 >>> sorted(map(sorted, aux_graph.k_edge_components(k=4))) 

292 [[0], [1], [2], [3], [4], [5], [6], [7]] 

293 

294 The auxiliary graph is primarily used for k-edge-ccs but it 

295 can also speed up the queries of k-edge-subgraphs by refining the 

296 search space. 

297 

298 >>> import itertools as it 

299 >>> from networkx.utils import pairwise 

300 >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph 

301 >>> paths = [ 

302 ... (1, 2, 4, 3, 1, 4), 

303 ... ] 

304 >>> G = nx.Graph() 

305 >>> G.add_nodes_from(it.chain(*paths)) 

306 >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths])) 

307 >>> aux_graph = EdgeComponentAuxGraph.construct(G) 

308 >>> sorted(map(sorted, aux_graph.k_edge_subgraphs(k=3))) 

309 [[1], [2], [3], [4]] 

310 >>> sorted(map(sorted, aux_graph.k_edge_components(k=3))) 

311 [[1, 4], [2], [3]] 

312 """ 

313 

314 # @not_implemented_for('multigraph') # TODO: fix decor for classmethods 

315 @classmethod 

316 def construct(EdgeComponentAuxGraph, G): 

317 """Builds an auxiliary graph encoding edge-connectivity between nodes. 

318 

319 Notes 

320 ----- 

321 Given G=(V, E), initialize an empty auxiliary graph A. 

322 Choose an arbitrary source node s. Initialize a set N of available 

323 nodes (that can be used as the sink). The algorithm picks an 

324 arbitrary node t from N - {s}, and then computes the minimum st-cut 

325 (S, T) with value w. If G is directed the minimum of the st-cut or 

326 the ts-cut is used instead. Then, the edge (s, t) is added to the 

327 auxiliary graph with weight w. The algorithm is called recursively 

328 first using S as the available nodes and s as the source, and then 

329 using T and t. Recursion stops when the source is the only available 

330 node. 

331 

332 Parameters 

333 ---------- 

334 G : NetworkX graph 

335 """ 

336 # workaround for classmethod decorator 

337 not_implemented_for("multigraph")(lambda G: G)(G) 

338 

339 def _recursive_build(H, A, source, avail): 

340 # Terminate once the flow has been compute to every node. 

341 if {source} == avail: 

342 return 

343 # pick an arbitrary node as the sink 

344 sink = arbitrary_element(avail - {source}) 

345 # find the minimum cut and its weight 

346 value, (S, T) = nx.minimum_cut(H, source, sink) 

347 if H.is_directed(): 

348 # check if the reverse direction has a smaller cut 

349 value_, (T_, S_) = nx.minimum_cut(H, sink, source) 

350 if value_ < value: 

351 value, S, T = value_, S_, T_ 

352 # add edge with weight of cut to the aux graph 

353 A.add_edge(source, sink, weight=value) 

354 # recursively call until all but one node is used 

355 _recursive_build(H, A, source, avail.intersection(S)) 

356 _recursive_build(H, A, sink, avail.intersection(T)) 

357 

358 # Copy input to ensure all edges have unit capacity 

359 H = G.__class__() 

360 H.add_nodes_from(G.nodes()) 

361 H.add_edges_from(G.edges(), capacity=1) 

362 

363 # A is the auxiliary graph to be constructed 

364 # It is a weighted undirected tree 

365 A = nx.Graph() 

366 

367 # Pick an arbitrary node as the source 

368 if H.number_of_nodes() > 0: 

369 source = arbitrary_element(H.nodes()) 

370 # Initialize a set of elements that can be chosen as the sink 

371 avail = set(H.nodes()) 

372 

373 # This constructs A 

374 _recursive_build(H, A, source, avail) 

375 

376 # This class is a container the holds the auxiliary graph A and 

377 # provides access the k_edge_components function. 

378 self = EdgeComponentAuxGraph() 

379 self.A = A 

380 self.H = H 

381 return self 

382 

383 def k_edge_components(self, k): 

384 """Queries the auxiliary graph for k-edge-connected components. 

385 

386 Parameters 

387 ---------- 

388 k : Integer 

389 Desired edge connectivity 

390 

391 Returns 

392 ------- 

393 k_edge_components : a generator of k-edge-ccs 

394 

395 Notes 

396 ----- 

397 Given the auxiliary graph, the k-edge-connected components can be 

398 determined in linear time by removing all edges with weights less than 

399 k from the auxiliary graph. The resulting connected components are the 

400 k-edge-ccs in the original graph. 

401 """ 

402 if k < 1: 

403 raise ValueError("k cannot be less than 1") 

404 A = self.A 

405 # "traverse the auxiliary graph A and delete all edges with weights less 

406 # than k" 

407 aux_weights = nx.get_edge_attributes(A, "weight") 

408 # Create a relevant graph with the auxiliary edges with weights >= k 

409 R = nx.Graph() 

410 R.add_nodes_from(A.nodes()) 

411 R.add_edges_from(e for e, w in aux_weights.items() if w >= k) 

412 

413 # Return the nodes that are k-edge-connected in the original graph 

414 yield from nx.connected_components(R) 

415 

416 def k_edge_subgraphs(self, k): 

417 """Queries the auxiliary graph for k-edge-connected subgraphs. 

418 

419 Parameters 

420 ---------- 

421 k : Integer 

422 Desired edge connectivity 

423 

424 Returns 

425 ------- 

426 k_edge_subgraphs : a generator of k-edge-subgraphs 

427 

428 Notes 

429 ----- 

430 Refines the k-edge-ccs into k-edge-subgraphs. The running time is more 

431 than $O(|V|)$. 

432 

433 For single values of k it is faster to use `nx.k_edge_subgraphs`. 

434 But for multiple values of k, it can be faster to build AuxGraph and 

435 then use this method. 

436 """ 

437 if k < 1: 

438 raise ValueError("k cannot be less than 1") 

439 H = self.H 

440 A = self.A 

441 # "traverse the auxiliary graph A and delete all edges with weights less 

442 # than k" 

443 aux_weights = nx.get_edge_attributes(A, "weight") 

444 # Create a relevant graph with the auxiliary edges with weights >= k 

445 R = nx.Graph() 

446 R.add_nodes_from(A.nodes()) 

447 R.add_edges_from(e for e, w in aux_weights.items() if w >= k) 

448 

449 # Return the components whose subgraphs are k-edge-connected 

450 for cc in nx.connected_components(R): 

451 if len(cc) < k: 

452 # Early return optimization 

453 for node in cc: 

454 yield {node} 

455 else: 

456 # Call subgraph solution to refine the results 

457 C = H.subgraph(cc) 

458 yield from k_edge_subgraphs(C, k) 

459 

460 

461def _low_degree_nodes(G, k, nbunch=None): 

462 """Helper for finding nodes with degree less than k.""" 

463 # Nodes with degree less than k cannot be k-edge-connected. 

464 if G.is_directed(): 

465 # Consider both in and out degree in the directed case 

466 seen = set() 

467 for node, degree in G.out_degree(nbunch): 

468 if degree < k: 

469 seen.add(node) 

470 yield node 

471 for node, degree in G.in_degree(nbunch): 

472 if node not in seen and degree < k: 

473 seen.add(node) 

474 yield node 

475 else: 

476 # Only the degree matters in the undirected case 

477 for node, degree in G.degree(nbunch): 

478 if degree < k: 

479 yield node 

480 

481 

482def _high_degree_components(G, k): 

483 """Helper for filtering components that can't be k-edge-connected. 

484 

485 Removes and generates each node with degree less than k. Then generates 

486 remaining components where all nodes have degree at least k. 

487 """ 

488 # Iteratively remove parts of the graph that are not k-edge-connected 

489 H = G.copy() 

490 singletons = set(_low_degree_nodes(H, k)) 

491 while singletons: 

492 # Only search neighbors of removed nodes 

493 nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons))) 

494 nbunch.difference_update(singletons) 

495 H.remove_nodes_from(singletons) 

496 for node in singletons: 

497 yield {node} 

498 singletons = set(_low_degree_nodes(H, k, nbunch)) 

499 

500 # Note: remaining connected components may not be k-edge-connected 

501 if G.is_directed(): 

502 yield from nx.strongly_connected_components(H) 

503 else: 

504 yield from nx.connected_components(H) 

505 

506 

507@nx._dispatchable(returns_graph=True) 

508def general_k_edge_subgraphs(G, k): 

509 """General algorithm to find all maximal k-edge-connected subgraphs in `G`. 

510 

511 Parameters 

512 ---------- 

513 G : nx.Graph 

514 Graph in which all maximal k-edge-connected subgraphs will be found. 

515 

516 k : int 

517 

518 Yields 

519 ------ 

520 k_edge_subgraphs : Graph instances that are k-edge-subgraphs 

521 Each k-edge-subgraph contains a maximal set of nodes that defines a 

522 subgraph of `G` that is k-edge-connected. 

523 

524 Notes 

525 ----- 

526 Implementation of the basic algorithm from [1]_. The basic idea is to find 

527 a global minimum cut of the graph. If the cut value is at least k, then the 

528 graph is a k-edge-connected subgraph and can be added to the results. 

529 Otherwise, the cut is used to split the graph in two and the procedure is 

530 applied recursively. If the graph is just a single node, then it is also 

531 added to the results. At the end, each result is either guaranteed to be 

532 a single node or a subgraph of G that is k-edge-connected. 

533 

534 This implementation contains optimizations for reducing the number of calls 

535 to max-flow, but there are other optimizations in [1]_ that could be 

536 implemented. 

537 

538 References 

539 ---------- 

540 .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs 

541 from a large graph. ACM International Conference on Extending Database 

542 Technology 2012 480-–491. 

543 https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf 

544 

545 Examples 

546 -------- 

547 >>> from networkx.utils import pairwise 

548 >>> paths = [ 

549 ... (11, 12, 13, 14, 11, 13, 14, 12), # a 4-clique 

550 ... (21, 22, 23, 24, 21, 23, 24, 22), # another 4-clique 

551 ... # connect the cliques with high degree but low connectivity 

552 ... (50, 13), 

553 ... (12, 50, 22), 

554 ... (13, 102, 23), 

555 ... (14, 101, 24), 

556 ... ] 

557 >>> G = nx.Graph(it.chain(*[pairwise(path) for path in paths])) 

558 >>> sorted(len(k_sg) for k_sg in k_edge_subgraphs(G, k=3)) 

559 [1, 1, 1, 4, 4] 

560 """ 

561 if k < 1: 

562 raise ValueError("k cannot be less than 1") 

563 

564 # Node pruning optimization (incorporates early return) 

565 # find_ccs is either connected_components/strongly_connected_components 

566 find_ccs = partial(_high_degree_components, k=k) 

567 

568 # Quick return optimization 

569 if G.number_of_nodes() < k: 

570 for node in G.nodes(): 

571 yield G.subgraph([node]).copy() 

572 return 

573 

574 # Intermediate results 

575 R0 = {G.subgraph(cc).copy() for cc in find_ccs(G)} 

576 # Subdivide CCs in the intermediate results until they are k-conn 

577 while R0: 

578 G1 = R0.pop() 

579 if G1.number_of_nodes() == 1: 

580 yield G1 

581 else: 

582 # Find a global minimum cut 

583 cut_edges = nx.minimum_edge_cut(G1) 

584 cut_value = len(cut_edges) 

585 if cut_value < k: 

586 # G1 is not k-edge-connected, so subdivide it 

587 G1.remove_edges_from(cut_edges) 

588 for cc in find_ccs(G1): 

589 R0.add(G1.subgraph(cc).copy()) 

590 else: 

591 # Otherwise we found a k-edge-connected subgraph 

592 yield G1