Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/classes/multidigraph.py: 58%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

120 statements  

1"""Base class for MultiDiGraph.""" 

2 

3from copy import deepcopy 

4from functools import cached_property 

5 

6import networkx as nx 

7from networkx import convert 

8from networkx.classes.coreviews import MultiAdjacencyView 

9from networkx.classes.digraph import DiGraph 

10from networkx.classes.multigraph import MultiGraph 

11from networkx.classes.reportviews import ( 

12 DiMultiDegreeView, 

13 InMultiDegreeView, 

14 InMultiEdgeView, 

15 OutMultiDegreeView, 

16 OutMultiEdgeView, 

17) 

18from networkx.exception import NetworkXError 

19 

20__all__ = ["MultiDiGraph"] 

21 

22 

23class MultiDiGraph(MultiGraph, DiGraph): 

24 """A directed graph class that can store multiedges. 

25 

26 Multiedges are multiple edges between two nodes. Each edge 

27 can hold optional data or attributes. 

28 

29 A MultiDiGraph holds directed edges. Self loops are allowed. 

30 

31 Nodes can be arbitrary (hashable) Python objects with optional 

32 key/value attributes. By convention `None` is not used as a node. 

33 

34 Edges are represented as links between nodes with optional 

35 key/value attributes. 

36 

37 Parameters 

38 ---------- 

39 incoming_graph_data : input graph (optional, default: None) 

40 Data to initialize graph. If None (default) an empty 

41 graph is created. The data can be any format that is supported 

42 by the to_networkx_graph() function, currently including edge list, 

43 dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy 

44 sparse matrix, or PyGraphviz graph. 

45 

46 multigraph_input : bool or None (default None) 

47 Note: Only used when `incoming_graph_data` is a dict. 

48 If True, `incoming_graph_data` is assumed to be a 

49 dict-of-dict-of-dict-of-dict structure keyed by 

50 node to neighbor to edge keys to edge data for multi-edges. 

51 A NetworkXError is raised if this is not the case. 

52 If False, :func:`to_networkx_graph` is used to try to determine 

53 the dict's graph data structure as either a dict-of-dict-of-dict 

54 keyed by node to neighbor to edge data, or a dict-of-iterable 

55 keyed by node to neighbors. 

56 If None, the treatment for True is tried, but if it fails, 

57 the treatment for False is tried. 

58 

59 attr : keyword arguments, optional (default= no attributes) 

60 Attributes to add to graph as key=value pairs. 

61 

62 See Also 

63 -------- 

64 Graph 

65 DiGraph 

66 MultiGraph 

67 

68 Examples 

69 -------- 

70 Create an empty graph structure (a "null graph") with no nodes and 

71 no edges. 

72 

73 >>> G = nx.MultiDiGraph() 

74 

75 G can be grown in several ways. 

76 

77 **Nodes:** 

78 

79 Add one node at a time: 

80 

81 >>> G.add_node(1) 

82 

83 Add the nodes from any container (a list, dict, set or 

84 even the lines from a file or the nodes from another graph). 

85 

86 >>> G.add_nodes_from([2, 3]) 

87 >>> G.add_nodes_from(range(100, 110)) 

88 >>> H = nx.path_graph(10) 

89 >>> G.add_nodes_from(H) 

90 

91 In addition to strings and integers any hashable Python object 

92 (except None) can represent a node, e.g. a customized node object, 

93 or even another Graph. 

94 

95 >>> G.add_node(H) 

96 

97 **Edges:** 

98 

99 G can also be grown by adding edges. 

100 

101 Add one edge, 

102 

103 >>> key = G.add_edge(1, 2) 

104 

105 a list of edges, 

106 

107 >>> keys = G.add_edges_from([(1, 2), (1, 3)]) 

108 

109 or a collection of edges, 

110 

111 >>> keys = G.add_edges_from(H.edges) 

112 

113 If some edges connect nodes not yet in the graph, the nodes 

114 are added automatically. If an edge already exists, an additional 

115 edge is created and stored using a key to identify the edge. 

116 By default the key is the lowest unused integer. 

117 

118 >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))]) 

119 >>> G[4] 

120 AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}) 

121 

122 **Attributes:** 

123 

124 Each graph, node, and edge can hold key/value attribute pairs 

125 in an associated attribute dictionary (the keys must be hashable). 

126 By default these are empty, but can be added or changed using 

127 add_edge, add_node or direct manipulation of the attribute 

128 dictionaries named graph, node and edge respectively. 

129 

130 >>> G = nx.MultiDiGraph(day="Friday") 

131 >>> G.graph 

132 {'day': 'Friday'} 

133 

134 Add node attributes using add_node(), add_nodes_from() or G.nodes 

135 

136 >>> G.add_node(1, time="5pm") 

137 >>> G.add_nodes_from([3], time="2pm") 

138 >>> G.nodes[1] 

139 {'time': '5pm'} 

140 >>> G.nodes[1]["room"] = 714 

141 >>> del G.nodes[1]["room"] # remove attribute 

142 >>> list(G.nodes(data=True)) 

143 [(1, {'time': '5pm'}), (3, {'time': '2pm'})] 

144 

145 Add edge attributes using add_edge(), add_edges_from(), subscript 

146 notation, or G.edges. 

147 

148 >>> key = G.add_edge(1, 2, weight=4.7) 

149 >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red") 

150 >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) 

151 >>> G[1][2][0]["weight"] = 4.7 

152 >>> G.edges[1, 2, 0]["weight"] = 4 

153 

154 Warning: we protect the graph data structure by making `G.edges[1, 

155 2, 0]` a read-only dict-like structure. However, you can assign to 

156 attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets 

157 to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4` 

158 (for multigraphs the edge key is required: `MG.edges[u, v, 

159 key][name] = value`). 

160 

161 **Shortcuts:** 

162 

163 Many common graph features allow python syntax to speed reporting. 

164 

165 >>> 1 in G # check if node in graph 

166 True 

167 >>> [n for n in G if n < 3] # iterate through nodes 

168 [1, 2] 

169 >>> len(G) # number of nodes in graph 

170 5 

171 >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes 

172 AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) 

173 

174 Often the best way to traverse all edges of a graph is via the neighbors. 

175 The neighbors are available as an adjacency-view `G.adj` object or via 

176 the method `G.adjacency()`. 

177 

178 >>> for n, nbrsdict in G.adjacency(): 

179 ... for nbr, keydict in nbrsdict.items(): 

180 ... for key, eattr in keydict.items(): 

181 ... if "weight" in eattr: 

182 ... # Do something useful with the edges 

183 ... pass 

184 

185 But the edges() method is often more convenient: 

186 

187 >>> for u, v, keys, weight in G.edges(data="weight", keys=True): 

188 ... if weight is not None: 

189 ... # Do something useful with the edges 

190 ... pass 

191 

192 **Reporting:** 

193 

194 Simple graph information is obtained using methods and object-attributes. 

195 Reporting usually provides views instead of containers to reduce memory 

196 usage. The views update as the graph is updated similarly to dict-views. 

197 The objects `nodes`, `edges` and `adj` provide access to data attributes 

198 via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration 

199 (e.g. `nodes.items()`, `nodes.data('color')`, 

200 `nodes.data('color', default='blue')` and similarly for `edges`) 

201 Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. 

202 

203 For details on these and other miscellaneous methods, see below. 

204 

205 **Subclasses (Advanced):** 

206 

207 The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. 

208 The outer dict (node_dict) holds adjacency information keyed by node. 

209 The next dict (adjlist_dict) represents the adjacency information 

210 and holds edge_key dicts keyed by neighbor. The edge_key dict holds 

211 each edge_attr dict keyed by edge key. The inner dict 

212 (edge_attr_dict) represents the edge data and holds edge attribute 

213 values keyed by attribute names. 

214 

215 Each of these four dicts in the dict-of-dict-of-dict-of-dict 

216 structure can be replaced by a user defined dict-like object. 

217 In general, the dict-like features should be maintained but 

218 extra features can be added. To replace one of the dicts create 

219 a new graph class by changing the class(!) variable holding the 

220 factory for that dict-like structure. The variable names are 

221 node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, 

222 adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory 

223 and graph_attr_dict_factory. 

224 

225 node_dict_factory : function, (default: dict) 

226 Factory function to be used to create the dict containing node 

227 attributes, keyed by node id. 

228 It should require no arguments and return a dict-like object 

229 

230 node_attr_dict_factory: function, (default: dict) 

231 Factory function to be used to create the node attribute 

232 dict which holds attribute values keyed by attribute name. 

233 It should require no arguments and return a dict-like object 

234 

235 adjlist_outer_dict_factory : function, (default: dict) 

236 Factory function to be used to create the outer-most dict 

237 in the data structure that holds adjacency info keyed by node. 

238 It should require no arguments and return a dict-like object. 

239 

240 adjlist_inner_dict_factory : function, (default: dict) 

241 Factory function to be used to create the adjacency list 

242 dict which holds multiedge key dicts keyed by neighbor. 

243 It should require no arguments and return a dict-like object. 

244 

245 edge_key_dict_factory : function, (default: dict) 

246 Factory function to be used to create the edge key dict 

247 which holds edge data keyed by edge key. 

248 It should require no arguments and return a dict-like object. 

249 

250 edge_attr_dict_factory : function, (default: dict) 

251 Factory function to be used to create the edge attribute 

252 dict which holds attribute values keyed by attribute name. 

253 It should require no arguments and return a dict-like object. 

254 

255 graph_attr_dict_factory : function, (default: dict) 

256 Factory function to be used to create the graph attribute 

257 dict which holds attribute values keyed by attribute name. 

258 It should require no arguments and return a dict-like object. 

259 

260 Typically, if your extension doesn't impact the data structure all 

261 methods will inherited without issue except: `to_directed/to_undirected`. 

262 By default these methods create a DiGraph/Graph class and you probably 

263 want them to create your extension of a DiGraph/Graph. To facilitate 

264 this we define two class variables that you can set in your subclass. 

265 

266 to_directed_class : callable, (default: DiGraph or MultiDiGraph) 

267 Class to create a new graph structure in the `to_directed` method. 

268 If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. 

269 

270 to_undirected_class : callable, (default: Graph or MultiGraph) 

271 Class to create a new graph structure in the `to_undirected` method. 

272 If `None`, a NetworkX class (Graph or MultiGraph) is used. 

273 

274 **Subclassing Example** 

275 

276 Create a low memory graph class that effectively disallows edge 

277 attributes by using a single attribute dict for all edges. 

278 This reduces the memory used, but you lose edge attributes. 

279 

280 >>> class ThinGraph(nx.Graph): 

281 ... all_edge_dict = {"weight": 1} 

282 ... 

283 ... def single_edge_dict(self): 

284 ... return self.all_edge_dict 

285 ... 

286 ... edge_attr_dict_factory = single_edge_dict 

287 >>> G = ThinGraph() 

288 >>> G.add_edge(2, 1) 

289 >>> G[2][1] 

290 {'weight': 1} 

291 >>> G.add_edge(2, 2) 

292 >>> G[2][1] is G[2][2] 

293 True 

294 """ 

295 

296 # node_dict_factory = dict # already assigned in Graph 

297 # adjlist_outer_dict_factory = dict 

298 # adjlist_inner_dict_factory = dict 

299 edge_key_dict_factory = dict 

300 # edge_attr_dict_factory = dict 

301 

302 def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr): 

303 """Initialize a graph with edges, name, or graph attributes. 

304 

305 Parameters 

306 ---------- 

307 incoming_graph_data : input graph 

308 Data to initialize graph. If incoming_graph_data=None (default) 

309 an empty graph is created. The data can be an edge list, or any 

310 NetworkX graph object. If the corresponding optional Python 

311 packages are installed the data can also be a 2D NumPy array, a 

312 SciPy sparse array, or a PyGraphviz graph. 

313 

314 multigraph_input : bool or None (default None) 

315 Note: Only used when `incoming_graph_data` is a dict. 

316 If True, `incoming_graph_data` is assumed to be a 

317 dict-of-dict-of-dict-of-dict structure keyed by 

318 node to neighbor to edge keys to edge data for multi-edges. 

319 A NetworkXError is raised if this is not the case. 

320 If False, :func:`to_networkx_graph` is used to try to determine 

321 the dict's graph data structure as either a dict-of-dict-of-dict 

322 keyed by node to neighbor to edge data, or a dict-of-iterable 

323 keyed by node to neighbors. 

324 If None, the treatment for True is tried, but if it fails, 

325 the treatment for False is tried. 

326 

327 attr : keyword arguments, optional (default= no attributes) 

328 Attributes to add to graph as key=value pairs. 

329 

330 See Also 

331 -------- 

332 convert 

333 

334 Examples 

335 -------- 

336 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc 

337 >>> G = nx.Graph(name="my graph") 

338 >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges 

339 >>> G = nx.Graph(e) 

340 

341 Arbitrary graph attribute pairs (key=value) may be assigned 

342 

343 >>> G = nx.Graph(e, day="Friday") 

344 >>> G.graph 

345 {'day': 'Friday'} 

346 

347 """ 

348 # multigraph_input can be None/True/False. So check "is not False" 

349 if isinstance(incoming_graph_data, dict) and multigraph_input is not False: 

350 DiGraph.__init__(self) 

351 try: 

352 convert.from_dict_of_dicts( 

353 incoming_graph_data, create_using=self, multigraph_input=True 

354 ) 

355 self.graph.update(attr) 

356 except Exception as err: 

357 if multigraph_input is True: 

358 raise nx.NetworkXError( 

359 f"converting multigraph_input raised:\n{type(err)}: {err}" 

360 ) 

361 DiGraph.__init__(self, incoming_graph_data, **attr) 

362 else: 

363 DiGraph.__init__(self, incoming_graph_data, **attr) 

364 

365 @cached_property 

366 def adj(self): 

367 """Graph adjacency object holding the neighbors of each node. 

368 

369 This object is a read-only dict-like structure with node keys 

370 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

371 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

372 the color of the edge `(3, 2, 0)` to `"blue"`. 

373 

374 Iterating over G.adj behaves like a dict. Useful idioms include 

375 `for nbr, datadict in G.adj[n].items():`. 

376 

377 The neighbor information is also provided by subscripting the graph. 

378 So `for nbr, foovalue in G[node].data('foo', default=1):` works. 

379 

380 For directed graphs, `G.adj` holds outgoing (successor) info. 

381 """ 

382 return MultiAdjacencyView(self._succ) 

383 

384 @cached_property 

385 def succ(self): 

386 """Graph adjacency object holding the successors of each node. 

387 

388 This object is a read-only dict-like structure with node keys 

389 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

390 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

391 the color of the edge `(3, 2, 0)` to `"blue"`. 

392 

393 Iterating over G.adj behaves like a dict. Useful idioms include 

394 `for nbr, datadict in G.adj[n].items():`. 

395 

396 The neighbor information is also provided by subscripting the graph. 

397 So `for nbr, foovalue in G[node].data('foo', default=1):` works. 

398 

399 For directed graphs, `G.succ` is identical to `G.adj`. 

400 """ 

401 return MultiAdjacencyView(self._succ) 

402 

403 @cached_property 

404 def pred(self): 

405 """Graph adjacency object holding the predecessors of each node. 

406 

407 This object is a read-only dict-like structure with node keys 

408 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

409 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

410 the color of the edge `(3, 2, 0)` to `"blue"`. 

411 

412 Iterating over G.adj behaves like a dict. Useful idioms include 

413 `for nbr, datadict in G.adj[n].items():`. 

414 """ 

415 return MultiAdjacencyView(self._pred) 

416 

417 def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): 

418 """Add an edge between u and v. 

419 

420 The nodes u and v will be automatically added if they are 

421 not already in the graph. 

422 

423 Edge attributes can be specified with keywords or by directly 

424 accessing the edge's attribute dictionary. See examples below. 

425 

426 Parameters 

427 ---------- 

428 u_for_edge, v_for_edge : nodes 

429 Nodes can be, for example, strings or numbers. 

430 Nodes must be hashable (and not None) Python objects. 

431 key : hashable identifier, optional (default=lowest unused integer) 

432 Used to distinguish multiedges between a pair of nodes. 

433 attr : keyword arguments, optional 

434 Edge data (or labels or objects) can be assigned using 

435 keyword arguments. 

436 

437 Returns 

438 ------- 

439 The edge key assigned to the edge. 

440 

441 See Also 

442 -------- 

443 add_edges_from : add a collection of edges 

444 

445 Notes 

446 ----- 

447 To replace/update edge data, use the optional key argument 

448 to identify a unique edge. Otherwise a new edge will be created. 

449 

450 NetworkX algorithms designed for weighted graphs cannot use 

451 multigraphs directly because it is not clear how to handle 

452 multiedge weights. Convert to Graph using edge attribute 

453 'weight' to enable weighted graph algorithms. 

454 

455 Default keys are generated using the method `new_edge_key()`. 

456 This method can be overridden by subclassing the base class and 

457 providing a custom `new_edge_key()` method. 

458 

459 Examples 

460 -------- 

461 The following all add the edge e=(1, 2) to graph G: 

462 

463 >>> G = nx.MultiDiGraph() 

464 >>> e = (1, 2) 

465 >>> key = G.add_edge(1, 2) # explicit two-node form 

466 >>> G.add_edge(*e) # single edge as tuple of two nodes 

467 1 

468 >>> G.add_edges_from([(1, 2)]) # add edges from iterable container 

469 [2] 

470 

471 Associate data to edges using keywords: 

472 

473 >>> key = G.add_edge(1, 2, weight=3) 

474 >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 

475 >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) 

476 

477 For non-string attribute keys, use subscript notation. 

478 

479 >>> ekey = G.add_edge(1, 2) 

480 >>> G[1][2][0].update({0: 5}) 

481 >>> G.edges[1, 2, 0].update({0: 5}) 

482 """ 

483 u, v = u_for_edge, v_for_edge 

484 # add nodes 

485 if u not in self._succ: 

486 if u is None: 

487 raise ValueError("None cannot be a node") 

488 self._succ[u] = self.adjlist_inner_dict_factory() 

489 self._pred[u] = self.adjlist_inner_dict_factory() 

490 self._node[u] = self.node_attr_dict_factory() 

491 if v not in self._succ: 

492 if v is None: 

493 raise ValueError("None cannot be a node") 

494 self._succ[v] = self.adjlist_inner_dict_factory() 

495 self._pred[v] = self.adjlist_inner_dict_factory() 

496 self._node[v] = self.node_attr_dict_factory() 

497 if key is None: 

498 key = self.new_edge_key(u, v) 

499 if v in self._succ[u]: 

500 keydict = self._adj[u][v] 

501 datadict = keydict.get(key, self.edge_attr_dict_factory()) 

502 datadict.update(attr) 

503 keydict[key] = datadict 

504 else: 

505 # selfloops work this way without special treatment 

506 datadict = self.edge_attr_dict_factory() 

507 datadict.update(attr) 

508 keydict = self.edge_key_dict_factory() 

509 keydict[key] = datadict 

510 self._succ[u][v] = keydict 

511 self._pred[v][u] = keydict 

512 nx._clear_cache(self) 

513 return key 

514 

515 def remove_edge(self, u, v, key=None): 

516 """Remove an edge between u and v. 

517 

518 Parameters 

519 ---------- 

520 u, v : nodes 

521 Remove an edge between nodes u and v. 

522 key : hashable identifier, optional (default=None) 

523 Used to distinguish multiple edges between a pair of nodes. 

524 If None, remove a single edge between u and v. If there are 

525 multiple edges, removes the last edge added in terms of 

526 insertion order. 

527 

528 Raises 

529 ------ 

530 NetworkXError 

531 If there is not an edge between u and v, or 

532 if there is no edge with the specified key. 

533 

534 See Also 

535 -------- 

536 remove_edges_from : remove a collection of edges 

537 

538 Examples 

539 -------- 

540 >>> G = nx.MultiDiGraph() 

541 >>> nx.add_path(G, [0, 1, 2, 3]) 

542 >>> G.remove_edge(0, 1) 

543 >>> e = (1, 2) 

544 >>> G.remove_edge(*e) # unpacks e from an edge tuple 

545 

546 For multiple edges 

547 

548 >>> G = nx.MultiDiGraph() 

549 >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned 

550 [0, 1, 2] 

551 

552 When ``key=None`` (the default), edges are removed in the opposite 

553 order that they were added: 

554 

555 >>> G.remove_edge(1, 2) 

556 >>> G.edges(keys=True) 

557 OutMultiEdgeView([(1, 2, 0), (1, 2, 1)]) 

558 

559 For edges with keys 

560 

561 >>> G = nx.MultiDiGraph() 

562 >>> G.add_edge(1, 2, key="first") 

563 'first' 

564 >>> G.add_edge(1, 2, key="second") 

565 'second' 

566 >>> G.remove_edge(1, 2, key="first") 

567 >>> G.edges(keys=True) 

568 OutMultiEdgeView([(1, 2, 'second')]) 

569 

570 """ 

571 try: 

572 d = self._adj[u][v] 

573 except KeyError as err: 

574 raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err 

575 # remove the edge with specified data 

576 if key is None: 

577 d.popitem() 

578 else: 

579 try: 

580 del d[key] 

581 except KeyError as err: 

582 msg = f"The edge {u}-{v} with key {key} is not in the graph." 

583 raise NetworkXError(msg) from err 

584 if len(d) == 0: 

585 # remove the key entries if last edge 

586 del self._succ[u][v] 

587 del self._pred[v][u] 

588 nx._clear_cache(self) 

589 

590 @cached_property 

591 def edges(self): 

592 """An OutMultiEdgeView of the Graph as G.edges or G.edges(). 

593 

594 edges(self, nbunch=None, data=False, keys=False, default=None) 

595 

596 The OutMultiEdgeView provides set-like operations on the edge-tuples 

597 as well as edge attribute lookup. When called, it also provides 

598 an EdgeDataView object which allows control of access to edge 

599 attributes (but does not provide set-like operations). 

600 Hence, ``G.edges[u, v, k]['color']`` provides the value of the color 

601 attribute for the edge from ``u`` to ``v`` with key ``k`` while 

602 ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):`` 

603 iterates through all the edges yielding the color attribute with 

604 default `'red'` if no color attribute exists. 

605 

606 Edges are returned as tuples with optional data and keys 

607 in the order (node, neighbor, key, data). If ``keys=True`` is not 

608 provided, the tuples will just be (node, neighbor, data), but 

609 multiple tuples with the same node and neighbor will be 

610 generated when multiple edges between two nodes exist. 

611 

612 Parameters 

613 ---------- 

614 nbunch : single node, container, or all nodes (default= all nodes) 

615 The view will only report edges from these nodes. 

616 data : string or bool, optional (default=False) 

617 The edge attribute returned in 3-tuple (u, v, ddict[data]). 

618 If True, return edge attribute dict in 3-tuple (u, v, ddict). 

619 If False, return 2-tuple (u, v). 

620 keys : bool, optional (default=False) 

621 If True, return edge keys with each edge, creating (u, v, k, 

622 d) tuples when data is also requested (the default) and (u, 

623 v, k) tuples when data is not requested. 

624 default : value, optional (default=None) 

625 Value used for edges that don't have the requested attribute. 

626 Only relevant if data is not True or False. 

627 

628 Returns 

629 ------- 

630 edges : OutMultiEdgeView 

631 A view of edge attributes, usually it iterates over (u, v) 

632 (u, v, k) or (u, v, k, d) tuples of edges, but can also be 

633 used for attribute lookup as ``edges[u, v, k]['foo']``. 

634 

635 Notes 

636 ----- 

637 Nodes in nbunch that are not in the graph will be (quietly) ignored. 

638 For directed graphs this returns the out-edges. 

639 

640 Examples 

641 -------- 

642 >>> G = nx.MultiDiGraph() 

643 >>> nx.add_path(G, [0, 1, 2]) 

644 >>> key = G.add_edge(2, 3, weight=5) 

645 >>> key2 = G.add_edge(1, 2) # second edge between these nodes 

646 >>> [e for e in G.edges()] 

647 [(0, 1), (1, 2), (1, 2), (2, 3)] 

648 >>> list(G.edges(data=True)) # default data is {} (empty dict) 

649 [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})] 

650 >>> list(G.edges(data="weight", default=1)) 

651 [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)] 

652 >>> list(G.edges(keys=True)) # default keys are integers 

653 [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)] 

654 >>> list(G.edges(data=True, keys=True)) 

655 [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})] 

656 >>> list(G.edges(data="weight", default=1, keys=True)) 

657 [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)] 

658 >>> list(G.edges([0, 2])) 

659 [(0, 1), (2, 3)] 

660 >>> list(G.edges(0)) 

661 [(0, 1)] 

662 >>> list(G.edges(1)) 

663 [(1, 2), (1, 2)] 

664 

665 See Also 

666 -------- 

667 in_edges, out_edges 

668 """ 

669 return OutMultiEdgeView(self) 

670 

671 # alias out_edges to edges 

672 @cached_property 

673 def out_edges(self): 

674 return OutMultiEdgeView(self) 

675 

676 out_edges.__doc__ = edges.__doc__ 

677 

678 @cached_property 

679 def in_edges(self): 

680 """A view of the in edges of the graph as G.in_edges or G.in_edges(). 

681 

682 in_edges(self, nbunch=None, data=False, keys=False, default=None) 

683 

684 Parameters 

685 ---------- 

686 nbunch : single node, container, or all nodes (default= all nodes) 

687 The view will only report edges incident to these nodes. 

688 data : string or bool, optional (default=False) 

689 The edge attribute returned in 3-tuple (u, v, ddict[data]). 

690 If True, return edge attribute dict in 3-tuple (u, v, ddict). 

691 If False, return 2-tuple (u, v). 

692 keys : bool, optional (default=False) 

693 If True, return edge keys with each edge, creating 3-tuples 

694 (u, v, k) or with data, 4-tuples (u, v, k, d). 

695 default : value, optional (default=None) 

696 Value used for edges that don't have the requested attribute. 

697 Only relevant if data is not True or False. 

698 

699 Returns 

700 ------- 

701 in_edges : InMultiEdgeView or InMultiEdgeDataView 

702 A view of edge attributes, usually it iterates over (u, v) 

703 or (u, v, k) or (u, v, k, d) tuples of edges, but can also be 

704 used for attribute lookup as `edges[u, v, k]['foo']`. 

705 

706 See Also 

707 -------- 

708 edges 

709 """ 

710 return InMultiEdgeView(self) 

711 

712 @cached_property 

713 def degree(self): 

714 """A DegreeView for the Graph as G.degree or G.degree(). 

715 

716 The node degree is the number of edges adjacent to the node. 

717 The weighted node degree is the sum of the edge weights for 

718 edges incident to that node. 

719 

720 This object provides an iterator for (node, degree) as well as 

721 lookup for the degree for a single node. 

722 

723 Parameters 

724 ---------- 

725 nbunch : single node, container, or all nodes (default= all nodes) 

726 The view will only report edges incident to these nodes. 

727 

728 weight : string or None, optional (default=None) 

729 The name of an edge attribute that holds the numerical value used 

730 as a weight. If None, then each edge has weight 1. 

731 The degree is the sum of the edge weights adjacent to the node. 

732 

733 Returns 

734 ------- 

735 DiMultiDegreeView or int 

736 If multiple nodes are requested (the default), returns a `DiMultiDegreeView` 

737 mapping nodes to their degree. 

738 If a single node is requested, returns the degree of the node as an integer. 

739 

740 See Also 

741 -------- 

742 out_degree, in_degree 

743 

744 Examples 

745 -------- 

746 >>> G = nx.MultiDiGraph() 

747 >>> nx.add_path(G, [0, 1, 2, 3]) 

748 >>> G.degree(0) # node 0 with degree 1 

749 1 

750 >>> list(G.degree([0, 1, 2])) 

751 [(0, 1), (1, 2), (2, 2)] 

752 >>> G.add_edge(0, 1) # parallel edge 

753 1 

754 >>> list(G.degree([0, 1, 2])) # parallel edges are counted 

755 [(0, 2), (1, 3), (2, 2)] 

756 

757 """ 

758 return DiMultiDegreeView(self) 

759 

760 @cached_property 

761 def in_degree(self): 

762 """A DegreeView for (node, in_degree) or in_degree for single node. 

763 

764 The node in-degree is the number of edges pointing into the node. 

765 The weighted node degree is the sum of the edge weights for 

766 edges incident to that node. 

767 

768 This object provides an iterator for (node, degree) as well as 

769 lookup for the degree for a single node. 

770 

771 Parameters 

772 ---------- 

773 nbunch : single node, container, or all nodes (default= all nodes) 

774 The view will only report edges incident to these nodes. 

775 

776 weight : string or None, optional (default=None) 

777 The edge attribute that holds the numerical value used 

778 as a weight. If None, then each edge has weight 1. 

779 The degree is the sum of the edge weights adjacent to the node. 

780 

781 Returns 

782 ------- 

783 If a single node is requested 

784 deg : int 

785 Degree of the node 

786 

787 OR if multiple nodes are requested 

788 nd_iter : iterator 

789 The iterator returns two-tuples of (node, in-degree). 

790 

791 See Also 

792 -------- 

793 degree, out_degree 

794 

795 Examples 

796 -------- 

797 >>> G = nx.MultiDiGraph() 

798 >>> nx.add_path(G, [0, 1, 2, 3]) 

799 >>> G.in_degree(0) # node 0 with degree 0 

800 0 

801 >>> list(G.in_degree([0, 1, 2])) 

802 [(0, 0), (1, 1), (2, 1)] 

803 >>> G.add_edge(0, 1) # parallel edge 

804 1 

805 >>> list(G.in_degree([0, 1, 2])) # parallel edges counted 

806 [(0, 0), (1, 2), (2, 1)] 

807 

808 """ 

809 return InMultiDegreeView(self) 

810 

811 @cached_property 

812 def out_degree(self): 

813 """Returns an iterator for (node, out-degree) or out-degree for single node. 

814 

815 out_degree(self, nbunch=None, weight=None) 

816 

817 The node out-degree is the number of edges pointing out of the node. 

818 This function returns the out-degree for a single node or an iterator 

819 for a bunch of nodes or if nothing is passed as argument. 

820 

821 Parameters 

822 ---------- 

823 nbunch : single node, container, or all nodes (default= all nodes) 

824 The view will only report edges incident to these nodes. 

825 

826 weight : string or None, optional (default=None) 

827 The edge attribute that holds the numerical value used 

828 as a weight. If None, then each edge has weight 1. 

829 The degree is the sum of the edge weights. 

830 

831 Returns 

832 ------- 

833 If a single node is requested 

834 deg : int 

835 Degree of the node 

836 

837 OR if multiple nodes are requested 

838 nd_iter : iterator 

839 The iterator returns two-tuples of (node, out-degree). 

840 

841 See Also 

842 -------- 

843 degree, in_degree 

844 

845 Examples 

846 -------- 

847 >>> G = nx.MultiDiGraph() 

848 >>> nx.add_path(G, [0, 1, 2, 3]) 

849 >>> G.out_degree(0) # node 0 with degree 1 

850 1 

851 >>> list(G.out_degree([0, 1, 2])) 

852 [(0, 1), (1, 1), (2, 1)] 

853 >>> G.add_edge(0, 1) # parallel edge 

854 1 

855 >>> list(G.out_degree([0, 1, 2])) # counts parallel edges 

856 [(0, 2), (1, 1), (2, 1)] 

857 

858 """ 

859 return OutMultiDegreeView(self) 

860 

861 def is_multigraph(self): 

862 """Returns True if graph is a multigraph, False otherwise.""" 

863 return True 

864 

865 def is_directed(self): 

866 """Returns True if graph is directed, False otherwise.""" 

867 return True 

868 

869 def to_undirected(self, reciprocal=False, as_view=False): 

870 """Returns an undirected representation of the digraph. 

871 

872 Parameters 

873 ---------- 

874 reciprocal : bool (optional) 

875 If True only keep edges that appear in both directions 

876 in the original digraph. 

877 as_view : bool (optional, default=False) 

878 If True return an undirected view of the original directed graph. 

879 

880 Returns 

881 ------- 

882 G : MultiGraph 

883 An undirected graph with the same name and nodes and 

884 with edge (u, v, data) if either (u, v, data) or (v, u, data) 

885 is in the digraph. If both edges exist in digraph and 

886 their edge data is different, only one edge is created 

887 with an arbitrary choice of which edge data to use. 

888 You must check and correct for this manually if desired. 

889 

890 See Also 

891 -------- 

892 MultiGraph, copy, add_edge, add_edges_from 

893 

894 Notes 

895 ----- 

896 This returns a "deepcopy" of the edge, node, and 

897 graph attributes which attempts to completely copy 

898 all of the data and references. 

899 

900 This is in contrast to the similar D=MultiDiGraph(G) which 

901 returns a shallow copy of the data. 

902 

903 See the Python copy module for more information on shallow 

904 and deep copies, https://docs.python.org/3/library/copy.html. 

905 

906 Warning: If you have subclassed MultiDiGraph to use dict-like 

907 objects in the data structure, those changes do not transfer 

908 to the MultiGraph created by this method. 

909 

910 Examples 

911 -------- 

912 >>> G = nx.path_graph(2) # or MultiGraph, etc 

913 >>> H = G.to_directed() 

914 >>> list(H.edges) 

915 [(0, 1), (1, 0)] 

916 >>> G2 = H.to_undirected() 

917 >>> list(G2.edges) 

918 [(0, 1)] 

919 """ 

920 graph_class = self.to_undirected_class() 

921 if as_view is True: 

922 return nx.graphviews.generic_graph_view(self, graph_class) 

923 # deepcopy when not a view 

924 G = graph_class() 

925 G.graph.update(deepcopy(self.graph)) 

926 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) 

927 if reciprocal is True: 

928 G.add_edges_from( 

929 (u, v, key, deepcopy(data)) 

930 for u, nbrs in self._adj.items() 

931 for v, keydict in nbrs.items() 

932 for key, data in keydict.items() 

933 if v in self._pred[u] and key in self._pred[u][v] 

934 ) 

935 else: 

936 G.add_edges_from( 

937 (u, v, key, deepcopy(data)) 

938 for u, nbrs in self._adj.items() 

939 for v, keydict in nbrs.items() 

940 for key, data in keydict.items() 

941 ) 

942 return G 

943 

944 def reverse(self, copy=True): 

945 """Returns the reverse of the graph. 

946 

947 The reverse is a graph with the same nodes and edges 

948 but with the directions of the edges reversed. 

949 

950 Parameters 

951 ---------- 

952 copy : bool optional (default=True) 

953 If True, return a new DiGraph holding the reversed edges. 

954 If False, the reverse graph is created using a view of 

955 the original graph. 

956 """ 

957 if copy: 

958 H = self.__class__() 

959 H.graph.update(deepcopy(self.graph)) 

960 H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) 

961 H.add_edges_from( 

962 (v, u, k, deepcopy(d)) 

963 for u, v, k, d in self.edges(keys=True, data=True) 

964 ) 

965 return H 

966 return nx.reverse_view(self)