Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/centrality/current_flow_betweenness.py: 17%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

87 statements  

1"""Current-flow betweenness centrality measures.""" 

2 

3import networkx as nx 

4from networkx.algorithms.centrality.flow_matrix import ( 

5 CGInverseLaplacian, 

6 FullInverseLaplacian, 

7 SuperLUInverseLaplacian, 

8 flow_matrix_row, 

9) 

10from networkx.utils import ( 

11 not_implemented_for, 

12 py_random_state, 

13 reverse_cuthill_mckee_ordering, 

14) 

15 

16__all__ = [ 

17 "current_flow_betweenness_centrality", 

18 "approximate_current_flow_betweenness_centrality", 

19 "edge_current_flow_betweenness_centrality", 

20] 

21 

22 

23@not_implemented_for("directed") 

24@py_random_state("seed") 

25@nx._dispatchable(edge_attrs="weight") 

26def approximate_current_flow_betweenness_centrality( 

27 G, 

28 normalized=True, 

29 weight=None, 

30 dtype=float, 

31 solver="full", 

32 epsilon=0.5, 

33 kmax=10000, 

34 seed=None, 

35 *, 

36 sample_weight=1, 

37): 

38 r"""Compute the approximate current-flow betweenness centrality for nodes. 

39 

40 Approximates the current-flow betweenness centrality within absolute 

41 error of epsilon with high probability [1]_. 

42 

43 

44 Parameters 

45 ---------- 

46 G : graph 

47 A NetworkX graph 

48 

49 normalized : bool, optional (default=True) 

50 If True the betweenness values are normalized by 2/[(n-1)(n-2)] where 

51 n is the number of nodes in G. 

52 

53 weight : string or None, optional (default=None) 

54 Key for edge data used as the edge weight. 

55 If None, then use 1 as each edge weight. 

56 The weight reflects the capacity or the strength of the 

57 edge. 

58 

59 dtype : data type (float) 

60 Default data type for internal matrices. 

61 Set to np.float32 for lower memory consumption. 

62 

63 solver : string (default='full') 

64 Type of linear solver to use for computing the flow matrix. 

65 Options are "full" (uses most memory), "lu" (recommended), and 

66 "cg" (uses least memory). 

67 

68 epsilon: float 

69 Absolute error tolerance. Note that smaller values of `epsilon` lead to 

70 higher numbers of sample pairs (``k``) and thus more computation time. The number 

71 of sample pairs is approximately ``(c/epsilon)^2 * log(n)`` where ``n`` is the 

72 number of nodes. 

73 

74 kmax: int 

75 Maximum number of sample node pairs to use for approximation. 

76 

77 sample_weight : float (default=1) 

78 Multiplicative factor for the number of sample node pairs used in approximation. 

79 Higher values may improve accuracy at the expense of increased computation time. 

80 

81 seed : integer, random_state, or None (default) 

82 Indicator of random number generation state. 

83 See :ref:`Randomness<randomness>`. 

84 

85 Returns 

86 ------- 

87 nodes : dictionary 

88 Dictionary of nodes with betweenness centrality as the value. 

89 

90 See Also 

91 -------- 

92 current_flow_betweenness_centrality 

93 

94 Notes 

95 ----- 

96 The running time is $O((1/\epsilon^2)m{\sqrt k} \log n)$ 

97 and the space required is $O(m)$ for $n$ nodes and $m$ edges. 

98 

99 If the edges have a 'weight' attribute they will be used as 

100 weights in this algorithm. Unspecified weights are set to 1. 

101 

102 References 

103 ---------- 

104 .. [1] Ulrik Brandes and Daniel Fleischer: 

105 Centrality Measures Based on Current Flow. 

106 Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). 

107 LNCS 3404, pp. 533-544. Springer-Verlag, 2005. 

108 https://doi.org/10.1007/978-3-540-31856-9_44 

109 """ 

110 import numpy as np 

111 

112 if not nx.is_connected(G): 

113 raise nx.NetworkXError("Graph not connected.") 

114 

115 n = G.number_of_nodes() 

116 

117 # For small graphs (n < 3), betweenness centrality is always 0 for all nodes 

118 # since no node can be "between" any pair of other nodes 

119 if n < 3: 

120 return dict.fromkeys(G, 0.0) 

121 

122 if epsilon <= 0: 

123 raise nx.NetworkXError(f"Epsilon must be positive. Got {epsilon=}.") 

124 

125 if sample_weight <= 0: 

126 raise nx.NetworkXError(f"Sample weight must be positive. Got {sample_weight=}.") 

127 

128 nb = (n - 1.0) * (n - 2.0) # normalization factor 

129 cstar = n * (n - 1) / nb 

130 k = int(sample_weight * np.ceil((cstar / epsilon) ** 2 * np.log(n))) 

131 if k > kmax: 

132 msg = f"Number random pairs k>kmax ({k}>{kmax}) " 

133 raise nx.NetworkXError(msg, "Increase kmax or epsilon") 

134 

135 solvername = { 

136 "full": FullInverseLaplacian, 

137 "lu": SuperLUInverseLaplacian, 

138 "cg": CGInverseLaplacian, 

139 } 

140 ordering = list(reverse_cuthill_mckee_ordering(G)) 

141 # make a copy with integer labels according to rcm ordering 

142 # this could be done without a copy if we really wanted to 

143 H = nx.relabel_nodes(G, dict(zip(ordering, range(n)))) 

144 L = nx.laplacian_matrix(H, nodelist=range(n), weight=weight).asformat("csc") 

145 L = L.astype(dtype) 

146 C = solvername[solver](L, dtype=dtype) # initialize solver 

147 betweenness = dict.fromkeys(H, 0.0) 

148 cstar2k = cstar / (2 * k) 

149 for _ in range(k): 

150 s, t = pair = seed.sample(range(n), 2) 

151 b = np.zeros(n, dtype=dtype) 

152 b[s] = 1 

153 b[t] = -1 

154 p = C.solve(b) 

155 for v in H: 

156 if v in pair: 

157 continue 

158 for nbr in H[v]: 

159 w = H[v][nbr].get(weight, 1.0) 

160 betweenness[v] += float(w * np.abs(p[v] - p[nbr]) * cstar2k) 

161 if normalized: 

162 factor = 1.0 

163 else: 

164 factor = nb / 2.0 

165 # remap to original node names and "unnormalize" if required 

166 return {ordering[k]: v * factor for k, v in betweenness.items()} 

167 

168 

169@not_implemented_for("directed") 

170@nx._dispatchable(edge_attrs="weight") 

171def current_flow_betweenness_centrality( 

172 G, normalized=True, weight=None, dtype=float, solver="full" 

173): 

174 r"""Compute current-flow betweenness centrality for nodes. 

175 

176 Current-flow betweenness centrality uses an electrical current 

177 model for information spreading in contrast to betweenness 

178 centrality which uses shortest paths. 

179 

180 Current-flow betweenness centrality is also known as 

181 random-walk betweenness centrality [2]_. 

182 

183 Parameters 

184 ---------- 

185 G : graph 

186 A NetworkX graph 

187 

188 normalized : bool, optional (default=True) 

189 If True the betweenness values are normalized by 2/[(n-1)(n-2)] where 

190 n is the number of nodes in G. 

191 

192 weight : string or None, optional (default=None) 

193 Key for edge data used as the edge weight. 

194 If None, then use 1 as each edge weight. 

195 The weight reflects the capacity or the strength of the 

196 edge. 

197 

198 dtype : data type (float) 

199 Default data type for internal matrices. 

200 Set to np.float32 for lower memory consumption. 

201 

202 solver : string (default='full') 

203 Type of linear solver to use for computing the flow matrix. 

204 Options are "full" (uses most memory), "lu" (recommended), and 

205 "cg" (uses least memory). 

206 

207 Returns 

208 ------- 

209 nodes : dictionary 

210 Dictionary of nodes with betweenness centrality as the value. 

211 

212 See Also 

213 -------- 

214 approximate_current_flow_betweenness_centrality 

215 betweenness_centrality 

216 edge_betweenness_centrality 

217 edge_current_flow_betweenness_centrality 

218 

219 Notes 

220 ----- 

221 Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$ 

222 time [1]_, where $I(n-1)$ is the time needed to compute the 

223 inverse Laplacian. For a full matrix this is $O(n^3)$ but using 

224 sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the 

225 Laplacian matrix condition number. 

226 

227 The space required is $O(nw)$ where $w$ is the width of the sparse 

228 Laplacian matrix. Worse case is $w=n$ for $O(n^2)$. 

229 

230 If the edges have a 'weight' attribute they will be used as 

231 weights in this algorithm. Unspecified weights are set to 1. 

232 

233 References 

234 ---------- 

235 .. [1] Centrality Measures Based on Current Flow. 

236 Ulrik Brandes and Daniel Fleischer, 

237 Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). 

238 LNCS 3404, pp. 533-544. Springer-Verlag, 2005. 

239 https://doi.org/10.1007/978-3-540-31856-9_44 

240 

241 .. [2] A measure of betweenness centrality based on random walks, 

242 M. E. J. Newman, Social Networks 27, 39-54 (2005). 

243 """ 

244 if not nx.is_connected(G): 

245 raise nx.NetworkXError("Graph not connected.") 

246 N = G.number_of_nodes() 

247 ordering = list(reverse_cuthill_mckee_ordering(G)) 

248 # make a copy with integer labels according to rcm ordering 

249 # this could be done without a copy if we really wanted to 

250 H = nx.relabel_nodes(G, dict(zip(ordering, range(N)))) 

251 betweenness = dict.fromkeys(H, 0.0) # b[n]=0 for n in H 

252 for row, (s, t) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver): 

253 pos = dict(zip(row.argsort()[::-1], range(N))) 

254 for i in range(N): 

255 betweenness[s] += (i - pos[i]) * row.item(i) 

256 betweenness[t] += (N - i - 1 - pos[i]) * row.item(i) 

257 if normalized: 

258 nb = (N - 1.0) * (N - 2.0) # normalization factor 

259 else: 

260 nb = 2.0 

261 return {ordering[n]: (b - n) * 2.0 / nb for n, b in betweenness.items()} 

262 

263 

264@not_implemented_for("directed") 

265@nx._dispatchable(edge_attrs="weight") 

266def edge_current_flow_betweenness_centrality( 

267 G, normalized=True, weight=None, dtype=float, solver="full" 

268): 

269 r"""Compute current-flow betweenness centrality for edges. 

270 

271 Current-flow betweenness centrality uses an electrical current 

272 model for information spreading in contrast to betweenness 

273 centrality which uses shortest paths. 

274 

275 Current-flow betweenness centrality is also known as 

276 random-walk betweenness centrality [2]_. 

277 

278 Parameters 

279 ---------- 

280 G : graph 

281 A NetworkX graph 

282 

283 normalized : bool, optional (default=True) 

284 If True the betweenness values are normalized by 2/[(n-1)(n-2)] where 

285 n is the number of nodes in G. 

286 

287 weight : string or None, optional (default=None) 

288 Key for edge data used as the edge weight. 

289 If None, then use 1 as each edge weight. 

290 The weight reflects the capacity or the strength of the 

291 edge. 

292 

293 dtype : data type (default=float) 

294 Default data type for internal matrices. 

295 Set to np.float32 for lower memory consumption. 

296 

297 solver : string (default='full') 

298 Type of linear solver to use for computing the flow matrix. 

299 Options are "full" (uses most memory), "lu" (recommended), and 

300 "cg" (uses least memory). 

301 

302 Returns 

303 ------- 

304 nodes : dictionary 

305 Dictionary of edge tuples with betweenness centrality as the value. 

306 

307 Raises 

308 ------ 

309 NetworkXError 

310 The algorithm does not support DiGraphs. 

311 If the input graph is an instance of DiGraph class, NetworkXError 

312 is raised. 

313 

314 See Also 

315 -------- 

316 betweenness_centrality 

317 edge_betweenness_centrality 

318 current_flow_betweenness_centrality 

319 

320 Notes 

321 ----- 

322 Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$ 

323 time [1]_, where $I(n-1)$ is the time needed to compute the 

324 inverse Laplacian. For a full matrix this is $O(n^3)$ but using 

325 sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the 

326 Laplacian matrix condition number. 

327 

328 The space required is $O(nw)$ where $w$ is the width of the sparse 

329 Laplacian matrix. Worse case is $w=n$ for $O(n^2)$. 

330 

331 If the edges have a 'weight' attribute they will be used as 

332 weights in this algorithm. Unspecified weights are set to 1. 

333 

334 References 

335 ---------- 

336 .. [1] Centrality Measures Based on Current Flow. 

337 Ulrik Brandes and Daniel Fleischer, 

338 Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). 

339 LNCS 3404, pp. 533-544. Springer-Verlag, 2005. 

340 https://doi.org/10.1007/978-3-540-31856-9_44 

341 

342 .. [2] A measure of betweenness centrality based on random walks, 

343 M. E. J. Newman, Social Networks 27, 39-54 (2005). 

344 """ 

345 if not nx.is_connected(G): 

346 raise nx.NetworkXError("Graph not connected.") 

347 N = G.number_of_nodes() 

348 ordering = list(reverse_cuthill_mckee_ordering(G)) 

349 # make a copy with integer labels according to rcm ordering 

350 # this could be done without a copy if we really wanted to 

351 H = nx.relabel_nodes(G, dict(zip(ordering, range(N)))) 

352 edges = (tuple(sorted((u, v))) for u, v in H.edges()) 

353 betweenness = dict.fromkeys(edges, 0.0) 

354 if normalized: 

355 nb = (N - 1.0) * (N - 2.0) # normalization factor 

356 else: 

357 nb = 2.0 

358 for row, (e) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver): 

359 pos = dict(zip(row.argsort()[::-1], range(1, N + 1))) 

360 for i in range(N): 

361 betweenness[e] += (i + 1 - pos[i]) * row.item(i) 

362 betweenness[e] += (N - i - pos[i]) * row.item(i) 

363 betweenness[e] /= nb 

364 return {(ordering[s], ordering[t]): b for (s, t), b in betweenness.items()}