Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/generators/expanders.py: 20%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

103 statements  

1"""Provides explicit constructions of expander graphs.""" 

2 

3import itertools 

4 

5import networkx as nx 

6 

7__all__ = [ 

8 "margulis_gabber_galil_graph", 

9 "chordal_cycle_graph", 

10 "paley_graph", 

11 "maybe_regular_expander", 

12 "maybe_regular_expander_graph", 

13 "is_regular_expander", 

14 "random_regular_expander_graph", 

15] 

16 

17 

18# Other discrete torus expanders can be constructed by using the following edge 

19# sets. For more information, see Chapter 4, "Expander Graphs", in 

20# "Pseudorandomness", by Salil Vadhan. 

21# 

22# For a directed expander, add edges from (x, y) to: 

23# 

24# (x, y), 

25# ((x + 1) % n, y), 

26# (x, (y + 1) % n), 

27# (x, (x + y) % n), 

28# (-y % n, x) 

29# 

30# For an undirected expander, add the reverse edges. 

31# 

32# Also appearing in the paper of Gabber and Galil: 

33# 

34# (x, y), 

35# (x, (x + y) % n), 

36# (x, (x + y + 1) % n), 

37# ((x + y) % n, y), 

38# ((x + y + 1) % n, y) 

39# 

40# and: 

41# 

42# (x, y), 

43# ((x + 2*y) % n, y), 

44# ((x + (2*y + 1)) % n, y), 

45# ((x + (2*y + 2)) % n, y), 

46# (x, (y + 2*x) % n), 

47# (x, (y + (2*x + 1)) % n), 

48# (x, (y + (2*x + 2)) % n), 

49# 

50@nx._dispatchable(graphs=None, returns_graph=True) 

51def margulis_gabber_galil_graph(n, create_using=None): 

52 r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. 

53 

54 The undirected MultiGraph is regular with degree `8`. Nodes are integer 

55 pairs. The second-largest eigenvalue of the adjacency matrix of the graph 

56 is at most `5 \sqrt{2}`, regardless of `n`. 

57 

58 Parameters 

59 ---------- 

60 n : int 

61 Determines the number of nodes in the graph: `n^2`. 

62 create_using : NetworkX graph constructor, optional (default MultiGraph) 

63 Graph type to create. If graph instance, then cleared before populated. 

64 

65 Returns 

66 ------- 

67 G : graph 

68 The constructed undirected multigraph. 

69 

70 Raises 

71 ------ 

72 NetworkXError 

73 If the graph is directed or not a multigraph. 

74 

75 """ 

76 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) 

77 if G.is_directed() or not G.is_multigraph(): 

78 msg = "`create_using` must be an undirected multigraph." 

79 raise nx.NetworkXError(msg) 

80 

81 for x, y in itertools.product(range(n), repeat=2): 

82 for u, v in ( 

83 ((x + 2 * y) % n, y), 

84 ((x + (2 * y + 1)) % n, y), 

85 (x, (y + 2 * x) % n), 

86 (x, (y + (2 * x + 1)) % n), 

87 ): 

88 G.add_edge((x, y), (u, v)) 

89 G.graph["name"] = f"margulis_gabber_galil_graph({n})" 

90 return G 

91 

92 

93@nx._dispatchable(graphs=None, returns_graph=True) 

94def chordal_cycle_graph(p, create_using=None): 

95 """Returns the chordal cycle graph on `p` nodes. 

96 

97 The returned graph is a cycle graph on `p` nodes with chords joining each 

98 vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit) 

99 3-regular expander [1]_. 

100 

101 `p` *must* be a prime number. 

102 

103 Parameters 

104 ---------- 

105 p : a prime number 

106 

107 The number of vertices in the graph. This also indicates where the 

108 chordal edges in the cycle will be created. 

109 

110 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

111 Graph type to create. If graph instance, then cleared before populated. 

112 

113 Returns 

114 ------- 

115 G : graph 

116 The constructed undirected multigraph. 

117 

118 Raises 

119 ------ 

120 NetworkXError 

121 

122 If `create_using` indicates directed or not a multigraph. 

123 

124 References 

125 ---------- 

126 

127 .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and 

128 invariant measures", volume 125 of Progress in Mathematics. 

129 Birkhäuser Verlag, Basel, 1994. 

130 

131 """ 

132 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) 

133 if G.is_directed() or not G.is_multigraph(): 

134 msg = "`create_using` must be an undirected multigraph." 

135 raise nx.NetworkXError(msg) 

136 

137 for x in range(p): 

138 left = (x - 1) % p 

139 right = (x + 1) % p 

140 # Here we apply Fermat's Little Theorem to compute the multiplicative 

141 # inverse of x in Z/pZ. By Fermat's Little Theorem, 

142 # 

143 # x^p = x (mod p) 

144 # 

145 # Therefore, 

146 # 

147 # x * x^(p - 2) = 1 (mod p) 

148 # 

149 # The number 0 is a special case: we just let its inverse be itself. 

150 chord = pow(x, p - 2, p) if x > 0 else 0 

151 for y in (left, right, chord): 

152 G.add_edge(x, y) 

153 G.graph["name"] = f"chordal_cycle_graph({p})" 

154 return G 

155 

156 

157@nx._dispatchable(graphs=None, returns_graph=True) 

158def paley_graph(p, create_using=None): 

159 r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes. 

160 

161 The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$ 

162 if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$. 

163 

164 If $p \equiv 1 \pmod 4$, $-1$ is a square in 

165 $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and 

166 only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric. 

167 

168 If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ 

169 and therefore either $x-y$ or $y-x$ is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both. 

170 

171 Note that a more general definition of Paley graphs extends this construction 

172 to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of 

173 $\mathbb{Z}/p\mathbb{Z}$. 

174 This construction requires to compute squares in general finite fields and is 

175 not what is implemented here (i.e `paley_graph(25)` does not return the true 

176 Paley graph associated with $5^2$). 

177 

178 Parameters 

179 ---------- 

180 p : int, an odd prime number. 

181 

182 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

183 Graph type to create. If graph instance, then cleared before populated. 

184 

185 Returns 

186 ------- 

187 G : graph 

188 The constructed directed graph. 

189 

190 Raises 

191 ------ 

192 NetworkXError 

193 If the graph is a multigraph. 

194 

195 References 

196 ---------- 

197 Chapter 13 in B. Bollobas, Random Graphs. Second edition. 

198 Cambridge Studies in Advanced Mathematics, 73. 

199 Cambridge University Press, Cambridge (2001). 

200 """ 

201 G = nx.empty_graph(0, create_using, default=nx.DiGraph) 

202 if G.is_multigraph(): 

203 msg = "`create_using` cannot be a multigraph." 

204 raise nx.NetworkXError(msg) 

205 

206 # Compute the squares in Z/pZ. 

207 # Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ 

208 # when is prime). 

209 square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0} 

210 

211 for x in range(p): 

212 for x2 in square_set: 

213 G.add_edge(x, (x + x2) % p) 

214 G.graph["name"] = f"paley({p})" 

215 return G 

216 

217 

218@nx.utils.decorators.np_random_state("seed") 

219@nx._dispatchable(graphs=None, returns_graph=True) 

220def maybe_regular_expander_graph(n, d, *, create_using=None, max_tries=100, seed=None): 

221 r"""Utility for creating a random regular expander. 

222 

223 Returns a random $d$-regular graph on $n$ nodes which is an expander 

224 graph with very good probability. 

225 

226 Parameters 

227 ---------- 

228 n : int 

229 The number of nodes. 

230 d : int 

231 The degree of each node. 

232 create_using : Graph Instance or Constructor 

233 Indicator of type of graph to return. 

234 If a Graph-type instance, then clear and use it. 

235 If a constructor, call it to create an empty graph. 

236 Use the Graph constructor by default. 

237 max_tries : int. (default: 100) 

238 The number of allowed loops when generating each independent cycle 

239 seed : (default: None) 

240 Seed used to set random number generation state. See :ref`Randomness<randomness>`. 

241 

242 Notes 

243 ----- 

244 The nodes are numbered from $0$ to $n - 1$. 

245 

246 The graph is generated by taking $d / 2$ random independent cycles. 

247 

248 Joel Friedman proved that in this model the resulting 

249 graph is an expander with probability 

250 $1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_ 

251 

252 Examples 

253 -------- 

254 >>> G = nx.maybe_regular_expander_graph(n=200, d=6, seed=8020) 

255 

256 Returns 

257 ------- 

258 G : graph 

259 The constructed undirected graph. 

260 

261 Raises 

262 ------ 

263 NetworkXError 

264 If $d % 2 != 0$ as the degree must be even. 

265 If $n - 1$ is less than $ 2d $ as the graph is complete at most. 

266 If max_tries is reached 

267 

268 See Also 

269 -------- 

270 is_regular_expander 

271 random_regular_expander_graph 

272 

273 References 

274 ---------- 

275 .. [1] Joel Friedman, 

276 A Proof of Alon's Second Eigenvalue Conjecture and Related Problems, 2004 

277 https://arxiv.org/abs/cs/0405020 

278 

279 """ 

280 

281 import numpy as np 

282 

283 if n < 1: 

284 raise nx.NetworkXError("n must be a positive integer") 

285 

286 if not (d >= 2): 

287 raise nx.NetworkXError("d must be greater than or equal to 2") 

288 

289 if not (d % 2 == 0): 

290 raise nx.NetworkXError("d must be even") 

291 

292 if not (n - 1 >= d): 

293 raise nx.NetworkXError( 

294 f"Need n-1>= d to have room for {d // 2} independent cycles with {n} nodes" 

295 ) 

296 

297 G = nx.empty_graph(n, create_using) 

298 

299 if n < 2: 

300 return G 

301 

302 cycles = [] 

303 edges = set() 

304 

305 # Create d / 2 cycles 

306 for i in range(d // 2): 

307 iterations = max_tries 

308 # Make sure the cycles are independent to have a regular graph 

309 while len(edges) != (i + 1) * n: 

310 iterations -= 1 

311 # Faster than random.permutation(n) since there are only 

312 # (n-1)! distinct cycles against n! permutations of size n 

313 cycle = seed.permutation(n - 1).tolist() 

314 cycle.append(n - 1) 

315 

316 new_edges = { 

317 (u, v) 

318 for u, v in nx.utils.pairwise(cycle, cyclic=True) 

319 if (u, v) not in edges and (v, u) not in edges 

320 } 

321 # If the new cycle has no edges in common with previous cycles 

322 # then add it to the list otherwise try again 

323 if len(new_edges) == n: 

324 cycles.append(cycle) 

325 edges.update(new_edges) 

326 

327 if iterations == 0: 

328 msg = "Too many iterations in maybe_regular_expander_graph" 

329 raise nx.NetworkXError(msg) 

330 

331 G.add_edges_from(edges) 

332 

333 return G 

334 

335 

336def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None): 

337 """ 

338 .. deprecated:: 3.6 

339 `maybe_regular_expander` is a deprecated alias 

340 for `maybe_regular_expander_graph`. 

341 Use `maybe_regular_expander_graph` instead. 

342 """ 

343 import warnings 

344 

345 warnings.warn( 

346 "maybe_regular_expander is deprecated, " 

347 "use `maybe_regular_expander_graph` instead.", 

348 category=DeprecationWarning, 

349 stacklevel=2, 

350 ) 

351 return maybe_regular_expander_graph( 

352 n, d, create_using=create_using, max_tries=max_tries, seed=seed 

353 ) 

354 

355 

356@nx.utils.not_implemented_for("directed") 

357@nx.utils.not_implemented_for("multigraph") 

358@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}}) 

359def is_regular_expander(G, *, epsilon=0): 

360 r"""Determines whether the graph G is a regular expander. [1]_ 

361 

362 An expander graph is a sparse graph with strong connectivity properties. 

363 

364 More precisely, this helper checks whether the graph is a 

365 regular $(n, d, \lambda)$-expander with $\lambda$ close to 

366 the Alon-Boppana bound and given by 

367 $\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_ 

368 

369 In the case where $\epsilon = 0$ then if the graph successfully passes the test 

370 it is a Ramanujan graph. [3]_ 

371 

372 A Ramanujan graph has spectral gap almost as large as possible, which makes them 

373 excellent expanders. 

374 

375 Parameters 

376 ---------- 

377 G : NetworkX graph 

378 epsilon : int, float, default=0 

379 

380 Returns 

381 ------- 

382 bool 

383 Whether the given graph is a regular $(n, d, \lambda)$-expander 

384 where $\lambda = 2 \sqrt{d - 1} + \epsilon$. 

385 

386 Examples 

387 -------- 

388 >>> G = nx.random_regular_expander_graph(20, 4) 

389 >>> nx.is_regular_expander(G) 

390 True 

391 

392 See Also 

393 -------- 

394 maybe_regular_expander_graph 

395 random_regular_expander_graph 

396 

397 References 

398 ---------- 

399 .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph 

400 .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound 

401 .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph 

402 

403 """ 

404 

405 import numpy as np 

406 import scipy as sp 

407 

408 if epsilon < 0: 

409 raise nx.NetworkXError("epsilon must be non negative") 

410 

411 if not nx.is_regular(G): 

412 return False 

413 

414 _, d = nx.utils.arbitrary_element(G.degree) 

415 

416 A = nx.adjacency_matrix(G, dtype=float) 

417 lams = sp.sparse.linalg.eigsh(A, which="LM", k=2, return_eigenvectors=False) 

418 

419 # lambda2 is the second biggest eigenvalue 

420 lambda2 = min(lams) 

421 

422 # Use bool() to convert numpy scalar to Python Boolean 

423 return bool(abs(lambda2) < 2 * np.sqrt(d - 1) + epsilon) 

424 

425 

426@nx.utils.decorators.np_random_state("seed") 

427@nx._dispatchable(graphs=None, returns_graph=True) 

428def random_regular_expander_graph( 

429 n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None 

430): 

431 r"""Returns a random regular expander graph on $n$ nodes with degree $d$. 

432 

433 An expander graph is a sparse graph with strong connectivity properties. [1]_ 

434 

435 More precisely the returned graph is a $(n, d, \lambda)$-expander with 

436 $\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_ 

437 

438 In the case where $\epsilon = 0$ it returns a Ramanujan graph. 

439 A Ramanujan graph has spectral gap almost as large as possible, 

440 which makes them excellent expanders. [3]_ 

441 

442 Parameters 

443 ---------- 

444 n : int 

445 The number of nodes. 

446 d : int 

447 The degree of each node. 

448 epsilon : int, float, default=0 

449 max_tries : int, (default: 100) 

450 The number of allowed loops, 

451 also used in the `maybe_regular_expander_graph` utility 

452 seed : (default: None) 

453 Seed used to set random number generation state. See :ref`Randomness<randomness>`. 

454 

455 Raises 

456 ------ 

457 NetworkXError 

458 If max_tries is reached 

459 

460 Examples 

461 -------- 

462 >>> G = nx.random_regular_expander_graph(20, 4) 

463 >>> nx.is_regular_expander(G) 

464 True 

465 

466 Notes 

467 ----- 

468 This loops over `maybe_regular_expander_graph` and can be slow when 

469 $n$ is too big or $\epsilon$ too small. 

470 

471 See Also 

472 -------- 

473 maybe_regular_expander_graph 

474 is_regular_expander 

475 

476 References 

477 ---------- 

478 .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph 

479 .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound 

480 .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph 

481 

482 """ 

483 G = maybe_regular_expander_graph( 

484 n, d, create_using=create_using, max_tries=max_tries, seed=seed 

485 ) 

486 iterations = max_tries 

487 

488 while not is_regular_expander(G, epsilon=epsilon): 

489 iterations -= 1 

490 G = maybe_regular_expander_graph( 

491 n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed 

492 ) 

493 

494 if iterations == 0: 

495 raise nx.NetworkXError( 

496 "Too many iterations in random_regular_expander_graph" 

497 ) 

498 

499 return G