Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/simple_paths.py: 9%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

275 statements  

1from heapq import heappop, heappush 

2from itertools import count 

3 

4import networkx as nx 

5from networkx.algorithms.shortest_paths.weighted import _weight_function 

6from networkx.utils import not_implemented_for, pairwise 

7 

8__all__ = [ 

9 "all_simple_paths", 

10 "is_simple_path", 

11 "shortest_simple_paths", 

12 "all_simple_edge_paths", 

13] 

14 

15 

16@nx._dispatchable 

17def is_simple_path(G, nodes): 

18 """Returns True if and only if `nodes` form a simple path in `G`. 

19 

20 A *simple path* in a graph is a nonempty sequence of nodes in which 

21 no node appears more than once in the sequence, and each adjacent 

22 pair of nodes in the sequence is adjacent in the graph. 

23 

24 Parameters 

25 ---------- 

26 G : graph 

27 A NetworkX graph. 

28 nodes : list 

29 A list of one or more nodes in the graph `G`. 

30 

31 Returns 

32 ------- 

33 bool 

34 Whether the given list of nodes represents a simple path in `G`. 

35 

36 Notes 

37 ----- 

38 An empty list of nodes is not a path but a list of one node is a 

39 path. Here's an explanation why. 

40 

41 This function operates on *node paths*. One could also consider 

42 *edge paths*. There is a bijection between node paths and edge 

43 paths. 

44 

45 The *length of a path* is the number of edges in the path, so a list 

46 of nodes of length *n* corresponds to a path of length *n* - 1. 

47 Thus the smallest edge path would be a list of zero edges, the empty 

48 path. This corresponds to a list of one node. 

49 

50 To convert between a node path and an edge path, you can use code 

51 like the following:: 

52 

53 >>> from networkx.utils import pairwise 

54 >>> nodes = [0, 1, 2, 3] 

55 >>> edges = list(pairwise(nodes)) 

56 >>> edges 

57 [(0, 1), (1, 2), (2, 3)] 

58 >>> nodes = [edges[0][0]] + [v for u, v in edges] 

59 >>> nodes 

60 [0, 1, 2, 3] 

61 

62 Examples 

63 -------- 

64 >>> G = nx.cycle_graph(4) 

65 >>> nx.is_simple_path(G, [2, 3, 0]) 

66 True 

67 >>> nx.is_simple_path(G, [0, 2]) 

68 False 

69 

70 """ 

71 # The empty list is not a valid path. Could also return 

72 # NetworkXPointlessConcept here. 

73 if len(nodes) == 0: 

74 return False 

75 

76 # If the list is a single node, just check that the node is actually 

77 # in the graph. 

78 if len(nodes) == 1: 

79 return nodes[0] in G 

80 

81 # check that all nodes in the list are in the graph, if at least one 

82 # is not in the graph, then this is not a simple path 

83 if not all(n in G for n in nodes): 

84 return False 

85 

86 # If the list contains repeated nodes, then it's not a simple path 

87 if len(set(nodes)) != len(nodes): 

88 return False 

89 

90 # Test that each adjacent pair of nodes is adjacent. 

91 return all(v in G[u] for u, v in pairwise(nodes)) 

92 

93 

94@nx._dispatchable 

95def all_simple_paths(G, source, target, cutoff=None): 

96 """Generate all simple paths in the graph G from source to target. 

97 

98 A simple path is a path with no repeated nodes. 

99 

100 Parameters 

101 ---------- 

102 G : NetworkX graph 

103 

104 source : node 

105 Starting node for path 

106 

107 target : nodes 

108 Single node or iterable of nodes at which to end path 

109 

110 cutoff : integer, optional 

111 Depth to stop the search. Only paths with length <= `cutoff` are returned. 

112 where the mathematical "length of a path" is `len(path) -1` (number of edges). 

113 

114 Returns 

115 ------- 

116 path_generator: generator 

117 A generator that produces lists of simple paths. If there are no paths 

118 between the source and target within the given cutoff the generator 

119 produces no output. If it is possible to traverse the same sequence of 

120 nodes in multiple ways, namely through parallel edges, then it will be 

121 returned multiple times (once for each viable edge combination). 

122 

123 Examples 

124 -------- 

125 This iterator generates lists of nodes:: 

126 

127 >>> G = nx.complete_graph(4) 

128 >>> for path in nx.all_simple_paths(G, source=0, target=3): 

129 ... print(path) 

130 ... 

131 [0, 1, 2, 3] 

132 [0, 1, 3] 

133 [0, 2, 1, 3] 

134 [0, 2, 3] 

135 [0, 3] 

136 

137 You can generate only those paths that are shorter than a certain 

138 length by using the `cutoff` keyword argument:: 

139 

140 >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2) 

141 >>> print(list(paths)) 

142 [[0, 1, 3], [0, 2, 3], [0, 3]] 

143 

144 To get each path as the corresponding list of edges, you can use the 

145 :func:`networkx.utils.pairwise` helper function:: 

146 

147 >>> paths = nx.all_simple_paths(G, source=0, target=3) 

148 >>> for path in map(nx.utils.pairwise, paths): 

149 ... print(list(path)) 

150 [(0, 1), (1, 2), (2, 3)] 

151 [(0, 1), (1, 3)] 

152 [(0, 2), (2, 1), (1, 3)] 

153 [(0, 2), (2, 3)] 

154 [(0, 3)] 

155 

156 Pass an iterable of nodes as target to generate all paths ending in any of several nodes:: 

157 

158 >>> G = nx.complete_graph(4) 

159 >>> for path in nx.all_simple_paths(G, source=0, target=[3, 2]): 

160 ... print(path) 

161 ... 

162 [0, 1, 2] 

163 [0, 1, 2, 3] 

164 [0, 1, 3] 

165 [0, 1, 3, 2] 

166 [0, 2] 

167 [0, 2, 1, 3] 

168 [0, 2, 3] 

169 [0, 3] 

170 [0, 3, 1, 2] 

171 [0, 3, 2] 

172 

173 The singleton path from ``source`` to itself is considered a simple path and is 

174 included in the results: 

175 

176 >>> G = nx.empty_graph(5) 

177 >>> list(nx.all_simple_paths(G, source=0, target=0)) 

178 [[0]] 

179 

180 >>> G = nx.path_graph(3) 

181 >>> list(nx.all_simple_paths(G, source=0, target={0, 1, 2})) 

182 [[0], [0, 1], [0, 1, 2]] 

183 

184 Iterate over each path from the root nodes to the leaf nodes in a 

185 directed acyclic graph using a functional programming approach:: 

186 

187 >>> from itertools import chain 

188 >>> from itertools import product 

189 >>> from itertools import starmap 

190 >>> from functools import partial 

191 >>> 

192 >>> chaini = chain.from_iterable 

193 >>> 

194 >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)]) 

195 >>> roots = (v for v, d in G.in_degree() if d == 0) 

196 >>> leaves = (v for v, d in G.out_degree() if d == 0) 

197 >>> all_paths = partial(nx.all_simple_paths, G) 

198 >>> list(chaini(starmap(all_paths, product(roots, leaves)))) 

199 [[0, 1, 2], [0, 3, 2]] 

200 

201 The same list computed using an iterative approach:: 

202 

203 >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)]) 

204 >>> roots = (v for v, d in G.in_degree() if d == 0) 

205 >>> leaves = (v for v, d in G.out_degree() if d == 0) 

206 >>> all_paths = [] 

207 >>> for root in roots: 

208 ... for leaf in leaves: 

209 ... paths = nx.all_simple_paths(G, root, leaf) 

210 ... all_paths.extend(paths) 

211 >>> all_paths 

212 [[0, 1, 2], [0, 3, 2]] 

213 

214 Iterate over each path from the root nodes to the leaf nodes in a 

215 directed acyclic graph passing all leaves together to avoid unnecessary 

216 compute:: 

217 

218 >>> G = nx.DiGraph([(0, 1), (2, 1), (1, 3), (1, 4)]) 

219 >>> roots = (v for v, d in G.in_degree() if d == 0) 

220 >>> leaves = [v for v, d in G.out_degree() if d == 0] 

221 >>> all_paths = [] 

222 >>> for root in roots: 

223 ... paths = nx.all_simple_paths(G, root, leaves) 

224 ... all_paths.extend(paths) 

225 >>> all_paths 

226 [[0, 1, 3], [0, 1, 4], [2, 1, 3], [2, 1, 4]] 

227 

228 If parallel edges offer multiple ways to traverse a given sequence of 

229 nodes, this sequence of nodes will be returned multiple times: 

230 

231 >>> G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 2)]) 

232 >>> list(nx.all_simple_paths(G, 0, 2)) 

233 [[0, 1, 2], [0, 1, 2]] 

234 

235 Notes 

236 ----- 

237 This algorithm uses a modified depth-first search to generate the 

238 paths [1]_. A single path can be found in $O(V+E)$ time but the 

239 number of simple paths in a graph can be very large, e.g. $O(n!)$ in 

240 the complete graph of order $n$. 

241 

242 This function does not check that a path exists between `source` and 

243 `target`. For large graphs, this may result in very long runtimes. 

244 Consider using `has_path` to check that a path exists between `source` and 

245 `target` before calling this function on large graphs. 

246 

247 References 

248 ---------- 

249 .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", 

250 Addison Wesley Professional, 3rd ed., 2001. 

251 

252 See Also 

253 -------- 

254 all_shortest_paths, shortest_path, has_path 

255 

256 """ 

257 for edge_path in all_simple_edge_paths(G, source, target, cutoff): 

258 yield [source] + [edge[1] for edge in edge_path] 

259 

260 

261@nx._dispatchable 

262def all_simple_edge_paths(G, source, target, cutoff=None): 

263 """Generate lists of edges for all simple paths in G from source to target. 

264 

265 A simple path is a path with no repeated nodes. 

266 

267 Parameters 

268 ---------- 

269 G : NetworkX graph 

270 

271 source : node 

272 Starting node for path 

273 

274 target : nodes 

275 Single node or iterable of nodes at which to end path 

276 

277 cutoff : integer, optional 

278 Depth to stop the search. Only paths with length <= `cutoff` are returned. 

279 Note that the length of an edge path is the number of edges. 

280 

281 Returns 

282 ------- 

283 path_generator: generator 

284 A generator that produces lists of simple paths. If there are no paths 

285 between the source and target within the given cutoff the generator 

286 produces no output. 

287 For multigraphs, the list of edges have elements of the form `(u,v,k)`. 

288 Where `k` corresponds to the edge key. 

289 

290 Examples 

291 -------- 

292 

293 Print the simple path edges of a Graph:: 

294 

295 >>> g = nx.Graph([(1, 2), (2, 4), (1, 3), (3, 4)]) 

296 >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 4)): 

297 ... print(path) 

298 [(1, 2), (2, 4)] 

299 [(1, 3), (3, 4)] 

300 

301 Print the simple path edges of a MultiGraph. Returned edges come with 

302 their associated keys:: 

303 

304 >>> mg = nx.MultiGraph() 

305 >>> mg.add_edge(1, 2, key="k0") 

306 'k0' 

307 >>> mg.add_edge(1, 2, key="k1") 

308 'k1' 

309 >>> mg.add_edge(2, 3, key="k0") 

310 'k0' 

311 >>> for path in sorted(nx.all_simple_edge_paths(mg, 1, 3)): 

312 ... print(path) 

313 [(1, 2, 'k0'), (2, 3, 'k0')] 

314 [(1, 2, 'k1'), (2, 3, 'k0')] 

315 

316 When ``source`` is one of the targets, the empty path starting and ending at 

317 ``source`` without traversing any edge is considered a valid simple edge path 

318 and is included in the results: 

319 

320 >>> G = nx.Graph() 

321 >>> G.add_node(0) 

322 >>> paths = list(nx.all_simple_edge_paths(G, 0, 0)) 

323 >>> for path in paths: 

324 ... print(path) 

325 [] 

326 >>> len(paths) 

327 1 

328 

329 You can use the `cutoff` parameter to only generate paths that are 

330 shorter than a certain length: 

331 

332 >>> g = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 5), (1, 4), (1, 5)]) 

333 >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 5)): 

334 ... print(path) 

335 [(1, 2), (2, 3), (3, 4), (4, 5)] 

336 [(1, 4), (4, 5)] 

337 [(1, 5)] 

338 >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 5, cutoff=1)): 

339 ... print(path) 

340 [(1, 5)] 

341 >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 5, cutoff=2)): 

342 ... print(path) 

343 [(1, 4), (4, 5)] 

344 [(1, 5)] 

345 

346 Notes 

347 ----- 

348 This algorithm uses a modified depth-first search to generate the 

349 paths [1]_. A single path can be found in $O(V+E)$ time but the 

350 number of simple paths in a graph can be very large, e.g. $O(n!)$ in 

351 the complete graph of order $n$. 

352 

353 References 

354 ---------- 

355 .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", 

356 Addison Wesley Professional, 3rd ed., 2001. 

357 

358 See Also 

359 -------- 

360 all_shortest_paths, shortest_path, all_simple_paths 

361 

362 """ 

363 if source not in G: 

364 raise nx.NodeNotFound(f"source node {source} not in graph") 

365 

366 if target in G: 

367 targets = {target} 

368 else: 

369 try: 

370 targets = set(target) 

371 except TypeError as err: 

372 raise nx.NodeNotFound(f"target node {target} not in graph") from err 

373 

374 cutoff = cutoff if cutoff is not None else len(G) - 1 

375 

376 if cutoff >= 0 and targets: 

377 yield from _all_simple_edge_paths(G, source, targets, cutoff) 

378 

379 

380def _all_simple_edge_paths(G, source, targets, cutoff): 

381 # We simulate recursion with a stack, keeping the current path being explored 

382 # and the outgoing edge iterators at each point in the stack. 

383 # To avoid unnecessary checks, the loop is structured in a way such that a path 

384 # is considered for yielding only after a new node/edge is added. 

385 # We bootstrap the search by adding a dummy iterator to the stack that only yields 

386 # a dummy edge to source (so that the trivial path has a chance of being included). 

387 

388 get_edges = ( 

389 (lambda node: G.edges(node, keys=True)) 

390 if G.is_multigraph() 

391 else (lambda node: G.edges(node)) 

392 ) 

393 

394 # The current_path is a dictionary that maps nodes in the path to the edge that was 

395 # used to enter that node (instead of a list of edges) because we want both a fast 

396 # membership test for nodes in the path and the preservation of insertion order. 

397 current_path = {None: None} 

398 stack = [iter([(None, source)])] 

399 

400 while stack: 

401 # 1. Try to extend the current path. 

402 next_edge = next((e for e in stack[-1] if e[1] not in current_path), None) 

403 if next_edge is None: 

404 # All edges of the last node in the current path have been explored. 

405 stack.pop() 

406 current_path.popitem() 

407 continue 

408 previous_node, next_node, *_ = next_edge 

409 

410 # 2. Check if we've reached a target. 

411 if next_node in targets: 

412 yield (list(current_path.values()) + [next_edge])[2:] # remove dummy edge 

413 

414 # 3. Only expand the search through the next node if it makes sense. 

415 if len(current_path) - 1 < cutoff and ( 

416 targets - current_path.keys() - {next_node} 

417 ): 

418 current_path[next_node] = next_edge 

419 stack.append(iter(get_edges(next_node))) 

420 

421 

422@not_implemented_for("multigraph") 

423@nx._dispatchable(edge_attrs="weight") 

424def shortest_simple_paths(G, source, target, weight=None): 

425 """Generate all simple paths in the graph G from source to target, 

426 starting from shortest ones. 

427 

428 A simple path is a path with no repeated nodes. 

429 

430 If a weighted shortest path search is to be used, no negative weights 

431 are allowed. 

432 

433 Parameters 

434 ---------- 

435 G : NetworkX graph 

436 

437 source : node 

438 Starting node for path 

439 

440 target : node 

441 Ending node for path 

442 

443 weight : string or function 

444 If it is a string, it is the name of the edge attribute to be 

445 used as a weight. 

446 

447 If it is a function, the weight of an edge is the value returned 

448 by the function. The function must accept exactly three positional 

449 arguments: the two endpoints of an edge and the dictionary of edge 

450 attributes for that edge. The function must return a number or None. 

451 The weight function can be used to hide edges by returning None. 

452 So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` 

453 will find the shortest red path. 

454 

455 If None all edges are considered to have unit weight. Default 

456 value None. 

457 

458 Returns 

459 ------- 

460 path_generator: generator 

461 A generator that produces lists of simple paths, in order from 

462 shortest to longest. 

463 

464 Raises 

465 ------ 

466 NetworkXNoPath 

467 If no path exists between source and target. 

468 

469 NetworkXError 

470 If source or target nodes are not in the input graph. 

471 

472 NetworkXNotImplemented 

473 If the input graph is a Multi[Di]Graph. 

474 

475 Examples 

476 -------- 

477 

478 >>> G = nx.cycle_graph(7) 

479 >>> paths = list(nx.shortest_simple_paths(G, 0, 3)) 

480 >>> print(paths) 

481 [[0, 1, 2, 3], [0, 6, 5, 4, 3]] 

482 

483 You can use this function to efficiently compute the k shortest/best 

484 paths between two nodes. 

485 

486 >>> from itertools import islice 

487 >>> def k_shortest_paths(G, source, target, k, weight=None): 

488 ... return list( 

489 ... islice(nx.shortest_simple_paths(G, source, target, weight=weight), k) 

490 ... ) 

491 >>> for path in k_shortest_paths(G, 0, 3, 2): 

492 ... print(path) 

493 [0, 1, 2, 3] 

494 [0, 6, 5, 4, 3] 

495 

496 Notes 

497 ----- 

498 This procedure is based on algorithm by Jin Y. Yen [1]_. Finding 

499 the first $K$ paths requires $O(KN^3)$ operations. 

500 

501 See Also 

502 -------- 

503 all_shortest_paths 

504 shortest_path 

505 all_simple_paths 

506 

507 References 

508 ---------- 

509 .. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a 

510 Network", Management Science, Vol. 17, No. 11, Theory Series 

511 (Jul., 1971), pp. 712-716. 

512 

513 """ 

514 if source not in G: 

515 raise nx.NodeNotFound(f"source node {source} not in graph") 

516 

517 if target not in G: 

518 raise nx.NodeNotFound(f"target node {target} not in graph") 

519 

520 if weight is None: 

521 length_func = len 

522 shortest_path_func = _bidirectional_shortest_path 

523 else: 

524 wt = _weight_function(G, weight) 

525 

526 def length_func(path): 

527 return sum( 

528 wt(u, v, G.get_edge_data(u, v)) for (u, v) in zip(path, path[1:]) 

529 ) 

530 

531 shortest_path_func = _bidirectional_dijkstra 

532 

533 listA = [] 

534 listB = PathBuffer() 

535 prev_path = None 

536 while True: 

537 if not prev_path: 

538 length, path = shortest_path_func(G, source, target, weight=weight) 

539 listB.push(length, path) 

540 else: 

541 ignore_nodes = set() 

542 ignore_edges = set() 

543 for i in range(1, len(prev_path)): 

544 root = prev_path[:i] 

545 root_length = length_func(root) 

546 for path in listA: 

547 if path[:i] == root: 

548 ignore_edges.add((path[i - 1], path[i])) 

549 try: 

550 length, spur = shortest_path_func( 

551 G, 

552 root[-1], 

553 target, 

554 ignore_nodes=ignore_nodes, 

555 ignore_edges=ignore_edges, 

556 weight=weight, 

557 ) 

558 path = root[:-1] + spur 

559 listB.push(root_length + length, path) 

560 except nx.NetworkXNoPath: 

561 pass 

562 ignore_nodes.add(root[-1]) 

563 

564 if listB: 

565 path = listB.pop() 

566 yield path 

567 listA.append(path) 

568 prev_path = path 

569 else: 

570 break 

571 

572 

573class PathBuffer: 

574 def __init__(self): 

575 self.paths = set() 

576 self.sortedpaths = [] 

577 self.counter = count() 

578 

579 def __len__(self): 

580 return len(self.sortedpaths) 

581 

582 def push(self, cost, path): 

583 hashable_path = tuple(path) 

584 if hashable_path not in self.paths: 

585 heappush(self.sortedpaths, (cost, next(self.counter), path)) 

586 self.paths.add(hashable_path) 

587 

588 def pop(self): 

589 (cost, num, path) = heappop(self.sortedpaths) 

590 hashable_path = tuple(path) 

591 self.paths.remove(hashable_path) 

592 return path 

593 

594 

595def _bidirectional_shortest_path( 

596 G, source, target, ignore_nodes=None, ignore_edges=None, weight=None 

597): 

598 """Returns the shortest path between source and target ignoring 

599 nodes and edges in the containers ignore_nodes and ignore_edges. 

600 

601 This is a custom modification of the standard bidirectional shortest 

602 path implementation at networkx.algorithms.unweighted 

603 

604 Parameters 

605 ---------- 

606 G : NetworkX graph 

607 

608 source : node 

609 starting node for path 

610 

611 target : node 

612 ending node for path 

613 

614 ignore_nodes : container of nodes 

615 nodes to ignore, optional 

616 

617 ignore_edges : container of edges 

618 edges to ignore, optional 

619 

620 weight : None 

621 This function accepts a weight argument for convenience of 

622 shortest_simple_paths function. It will be ignored. 

623 

624 Returns 

625 ------- 

626 path: list 

627 List of nodes in a path from source to target. 

628 

629 Raises 

630 ------ 

631 NetworkXNoPath 

632 If no path exists between source and target. 

633 

634 See Also 

635 -------- 

636 shortest_path 

637 

638 """ 

639 # call helper to do the real work 

640 results = _bidirectional_pred_succ(G, source, target, ignore_nodes, ignore_edges) 

641 pred, succ, w = results 

642 

643 # build path from pred+w+succ 

644 path = [] 

645 # from w to target 

646 while w is not None: 

647 path.append(w) 

648 w = succ[w] 

649 # from source to w 

650 w = pred[path[0]] 

651 while w is not None: 

652 path.insert(0, w) 

653 w = pred[w] 

654 

655 return len(path), path 

656 

657 

658def _bidirectional_pred_succ(G, source, target, ignore_nodes=None, ignore_edges=None): 

659 """Bidirectional shortest path helper. 

660 Returns (pred,succ,w) where 

661 pred is a dictionary of predecessors from w to the source, and 

662 succ is a dictionary of successors from w to the target. 

663 """ 

664 # does BFS from both source and target and meets in the middle 

665 if ignore_nodes and (source in ignore_nodes or target in ignore_nodes): 

666 raise nx.NetworkXNoPath(f"No path between {source} and {target}.") 

667 if target == source: 

668 return ({target: None}, {source: None}, source) 

669 

670 # handle either directed or undirected 

671 if G.is_directed(): 

672 Gpred = G.predecessors 

673 Gsucc = G.successors 

674 else: 

675 Gpred = G.neighbors 

676 Gsucc = G.neighbors 

677 

678 # support optional nodes filter 

679 if ignore_nodes: 

680 

681 def filter_iter(nodes): 

682 def iterate(v): 

683 for w in nodes(v): 

684 if w not in ignore_nodes: 

685 yield w 

686 

687 return iterate 

688 

689 Gpred = filter_iter(Gpred) 

690 Gsucc = filter_iter(Gsucc) 

691 

692 # support optional edges filter 

693 if ignore_edges: 

694 if G.is_directed(): 

695 

696 def filter_pred_iter(pred_iter): 

697 def iterate(v): 

698 for w in pred_iter(v): 

699 if (w, v) not in ignore_edges: 

700 yield w 

701 

702 return iterate 

703 

704 def filter_succ_iter(succ_iter): 

705 def iterate(v): 

706 for w in succ_iter(v): 

707 if (v, w) not in ignore_edges: 

708 yield w 

709 

710 return iterate 

711 

712 Gpred = filter_pred_iter(Gpred) 

713 Gsucc = filter_succ_iter(Gsucc) 

714 

715 else: 

716 

717 def filter_iter(nodes): 

718 def iterate(v): 

719 for w in nodes(v): 

720 if (v, w) not in ignore_edges and (w, v) not in ignore_edges: 

721 yield w 

722 

723 return iterate 

724 

725 Gpred = filter_iter(Gpred) 

726 Gsucc = filter_iter(Gsucc) 

727 

728 # predecessor and successors in search 

729 pred = {source: None} 

730 succ = {target: None} 

731 

732 # initialize fringes, start with forward 

733 forward_fringe = [source] 

734 reverse_fringe = [target] 

735 

736 while forward_fringe and reverse_fringe: 

737 if len(forward_fringe) <= len(reverse_fringe): 

738 this_level = forward_fringe 

739 forward_fringe = [] 

740 for v in this_level: 

741 for w in Gsucc(v): 

742 if w not in pred: 

743 forward_fringe.append(w) 

744 pred[w] = v 

745 if w in succ: 

746 # found path 

747 return pred, succ, w 

748 else: 

749 this_level = reverse_fringe 

750 reverse_fringe = [] 

751 for v in this_level: 

752 for w in Gpred(v): 

753 if w not in succ: 

754 succ[w] = v 

755 reverse_fringe.append(w) 

756 if w in pred: 

757 # found path 

758 return pred, succ, w 

759 

760 raise nx.NetworkXNoPath(f"No path between {source} and {target}.") 

761 

762 

763def _bidirectional_dijkstra( 

764 G, source, target, weight="weight", ignore_nodes=None, ignore_edges=None 

765): 

766 """Dijkstra's algorithm for shortest paths using bidirectional search. 

767 

768 This function returns the shortest path between source and target 

769 ignoring nodes and edges in the containers ignore_nodes and 

770 ignore_edges. 

771 

772 This is a custom modification of the standard Dijkstra bidirectional 

773 shortest path implementation at networkx.algorithms.weighted 

774 

775 Parameters 

776 ---------- 

777 G : NetworkX graph 

778 

779 source : node 

780 Starting node. 

781 

782 target : node 

783 Ending node. 

784 

785 weight: string, function, optional (default='weight') 

786 Edge data key or weight function corresponding to the edge weight 

787 If this is a function, the weight of an edge is the value 

788 returned by the function. The function must accept exactly three 

789 positional arguments: the two endpoints of an edge and the 

790 dictionary of edge attributes for that edge. The function must 

791 return a number or None to indicate a hidden edge. 

792 

793 ignore_nodes : container of nodes 

794 nodes to ignore, optional 

795 

796 ignore_edges : container of edges 

797 edges to ignore, optional 

798 

799 Returns 

800 ------- 

801 length : number 

802 Shortest path length. 

803 

804 Returns a tuple of two dictionaries keyed by node. 

805 The first dictionary stores distance from the source. 

806 The second stores the path from the source to that node. 

807 

808 Raises 

809 ------ 

810 NetworkXNoPath 

811 If no path exists between source and target. 

812 

813 Notes 

814 ----- 

815 Edge weight attributes must be numerical. 

816 Distances are calculated as sums of weighted edges traversed. 

817 

818 The weight function can be used to hide edges by returning None. 

819 So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` 

820 will find the shortest red path. 

821 

822 In practice bidirectional Dijkstra is much more than twice as fast as 

823 ordinary Dijkstra. 

824 

825 Ordinary Dijkstra expands nodes in a sphere-like manner from the 

826 source. The radius of this sphere will eventually be the length 

827 of the shortest path. Bidirectional Dijkstra will expand nodes 

828 from both the source and the target, making two spheres of half 

829 this radius. Volume of the first sphere is pi*r*r while the 

830 others are 2*pi*r/2*r/2, making up half the volume. 

831 

832 This algorithm is not guaranteed to work if edge weights 

833 are negative or are floating point numbers 

834 (overflows and roundoff errors can cause problems). 

835 

836 See Also 

837 -------- 

838 shortest_path 

839 shortest_path_length 

840 """ 

841 if ignore_nodes and (source in ignore_nodes or target in ignore_nodes): 

842 raise nx.NetworkXNoPath(f"No path between {source} and {target}.") 

843 if source == target: 

844 if source not in G: 

845 raise nx.NodeNotFound(f"Node {source} not in graph") 

846 return (0, [source]) 

847 

848 # handle either directed or undirected 

849 if G.is_directed(): 

850 Gpred = G.predecessors 

851 Gsucc = G.successors 

852 else: 

853 Gpred = G.neighbors 

854 Gsucc = G.neighbors 

855 

856 # support optional nodes filter 

857 if ignore_nodes: 

858 

859 def filter_iter(nodes): 

860 def iterate(v): 

861 for w in nodes(v): 

862 if w not in ignore_nodes: 

863 yield w 

864 

865 return iterate 

866 

867 Gpred = filter_iter(Gpred) 

868 Gsucc = filter_iter(Gsucc) 

869 

870 # support optional edges filter 

871 if ignore_edges: 

872 if G.is_directed(): 

873 

874 def filter_pred_iter(pred_iter): 

875 def iterate(v): 

876 for w in pred_iter(v): 

877 if (w, v) not in ignore_edges: 

878 yield w 

879 

880 return iterate 

881 

882 def filter_succ_iter(succ_iter): 

883 def iterate(v): 

884 for w in succ_iter(v): 

885 if (v, w) not in ignore_edges: 

886 yield w 

887 

888 return iterate 

889 

890 Gpred = filter_pred_iter(Gpred) 

891 Gsucc = filter_succ_iter(Gsucc) 

892 

893 else: 

894 

895 def filter_iter(nodes): 

896 def iterate(v): 

897 for w in nodes(v): 

898 if (v, w) not in ignore_edges and (w, v) not in ignore_edges: 

899 yield w 

900 

901 return iterate 

902 

903 Gpred = filter_iter(Gpred) 

904 Gsucc = filter_iter(Gsucc) 

905 

906 wt = _weight_function(G, weight) 

907 # Init: Forward Backward 

908 dists = [{}, {}] # dictionary of final distances 

909 paths = [{source: [source]}, {target: [target]}] # dictionary of paths 

910 fringe = [[], []] # heap of (distance, node) tuples for 

911 # extracting next node to expand 

912 seen = [{source: 0}, {target: 0}] # dictionary of distances to 

913 # nodes seen 

914 c = count() 

915 # initialize fringe heap 

916 heappush(fringe[0], (0, next(c), source)) 

917 heappush(fringe[1], (0, next(c), target)) 

918 # neighs for extracting correct neighbor information 

919 neighs = [Gsucc, Gpred] 

920 # variables to hold shortest discovered path 

921 # finaldist = 1e30000 

922 finalpath = [] 

923 dir = 1 

924 while fringe[0] and fringe[1]: 

925 # choose direction 

926 # dir == 0 is forward direction and dir == 1 is back 

927 dir = 1 - dir 

928 # extract closest to expand 

929 (dist, _, v) = heappop(fringe[dir]) 

930 if v in dists[dir]: 

931 # Shortest path to v has already been found 

932 continue 

933 # update distance 

934 dists[dir][v] = dist # equal to seen[dir][v] 

935 if v in dists[1 - dir]: 

936 # if we have scanned v in both directions we are done 

937 # we have now discovered the shortest path 

938 return (finaldist, finalpath) 

939 

940 for w in neighs[dir](v): 

941 if dir == 0: # forward 

942 minweight = wt(v, w, G.get_edge_data(v, w)) 

943 else: # back, must remember to change v,w->w,v 

944 minweight = wt(w, v, G.get_edge_data(w, v)) 

945 if minweight is None: 

946 continue 

947 vwLength = dists[dir][v] + minweight 

948 

949 if w in dists[dir]: 

950 if vwLength < dists[dir][w]: 

951 raise ValueError("Contradictory paths found: negative weights?") 

952 elif w not in seen[dir] or vwLength < seen[dir][w]: 

953 # relaxing 

954 seen[dir][w] = vwLength 

955 heappush(fringe[dir], (vwLength, next(c), w)) 

956 paths[dir][w] = paths[dir][v] + [w] 

957 if w in seen[0] and w in seen[1]: 

958 # see if this path is better than the already 

959 # discovered shortest path 

960 totaldist = seen[0][w] + seen[1][w] 

961 if finalpath == [] or finaldist > totaldist: 

962 finaldist = totaldist 

963 revpath = paths[1][w][:] 

964 revpath.reverse() 

965 finalpath = paths[0][w] + revpath[1:] 

966 raise nx.NetworkXNoPath(f"No path between {source} and {target}.")