Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/classes/multidigraph.py: 60%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

124 statements  

1"""Base class for MultiDiGraph.""" 

2 

3from copy import deepcopy 

4from functools import cached_property 

5 

6import networkx as nx 

7from networkx import convert 

8from networkx.classes.coreviews import MultiAdjacencyView 

9from networkx.classes.digraph import DiGraph 

10from networkx.classes.multigraph import MultiGraph 

11from networkx.classes.reportviews import ( 

12 DiMultiDegreeView, 

13 InMultiDegreeView, 

14 InMultiEdgeView, 

15 OutMultiDegreeView, 

16 OutMultiEdgeView, 

17) 

18from networkx.exception import NetworkXError 

19 

20__all__ = ["MultiDiGraph"] 

21 

22 

23class MultiDiGraph(MultiGraph, DiGraph): 

24 """A directed graph class that can store multiedges. 

25 

26 Multiedges are multiple edges between two nodes. Each edge 

27 can hold optional data or attributes. 

28 

29 A MultiDiGraph holds directed edges. Self loops are allowed. 

30 

31 Nodes can be arbitrary (hashable) Python objects with optional 

32 key/value attributes. By convention `None` is not used as a node. 

33 

34 Edges are represented as links between nodes with optional 

35 key/value attributes. 

36 

37 Parameters 

38 ---------- 

39 incoming_graph_data : input graph (optional, default: None) 

40 Data to initialize graph. If None (default) an empty 

41 graph is created. The data can be any format that is supported 

42 by the to_networkx_graph() function, currently including edge list, 

43 dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy 

44 sparse matrix, or PyGraphviz graph. 

45 

46 multigraph_input : bool or None (default None) 

47 Note: Only used when `incoming_graph_data` is a dict. 

48 If True, `incoming_graph_data` is assumed to be a 

49 dict-of-dict-of-dict-of-dict structure keyed by 

50 node to neighbor to edge keys to edge data for multi-edges. 

51 A NetworkXError is raised if this is not the case. 

52 If False, :func:`to_networkx_graph` is used to try to determine 

53 the dict's graph data structure as either a dict-of-dict-of-dict 

54 keyed by node to neighbor to edge data, or a dict-of-iterable 

55 keyed by node to neighbors. 

56 If None, the treatment for True is tried, but if it fails, 

57 the treatment for False is tried. 

58 

59 attr : keyword arguments, optional (default= no attributes) 

60 Attributes to add to graph as key=value pairs. 

61 

62 See Also 

63 -------- 

64 Graph 

65 DiGraph 

66 MultiGraph 

67 

68 Examples 

69 -------- 

70 Create an empty graph structure (a "null graph") with no nodes and 

71 no edges. 

72 

73 >>> G = nx.MultiDiGraph() 

74 

75 G can be grown in several ways. 

76 

77 **Nodes:** 

78 

79 Add one node at a time: 

80 

81 >>> G.add_node(1) 

82 

83 Add the nodes from any container (a list, dict, set or 

84 even the lines from a file or the nodes from another graph). 

85 

86 >>> G.add_nodes_from([2, 3]) 

87 >>> G.add_nodes_from(range(100, 110)) 

88 >>> H = nx.path_graph(10) 

89 >>> G.add_nodes_from(H) 

90 

91 In addition to strings and integers any hashable Python object 

92 (except None) can represent a node, e.g. a customized node object, 

93 or even another Graph. 

94 

95 >>> G.add_node(H) 

96 

97 **Edges:** 

98 

99 G can also be grown by adding edges. 

100 

101 Add one edge, 

102 

103 >>> key = G.add_edge(1, 2) 

104 

105 a list of edges, 

106 

107 >>> keys = G.add_edges_from([(1, 2), (1, 3)]) 

108 

109 or a collection of edges, 

110 

111 >>> keys = G.add_edges_from(H.edges) 

112 

113 If some edges connect nodes not yet in the graph, the nodes 

114 are added automatically. If an edge already exists, an additional 

115 edge is created and stored using a key to identify the edge. 

116 By default the key is the lowest unused integer. 

117 

118 >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))]) 

119 >>> G[4] 

120 AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}) 

121 

122 **Attributes:** 

123 

124 Each graph, node, and edge can hold key/value attribute pairs 

125 in an associated attribute dictionary (the keys must be hashable). 

126 By default these are empty, but can be added or changed using 

127 add_edge, add_node or direct manipulation of the attribute 

128 dictionaries named graph, node and edge respectively. 

129 

130 >>> G = nx.MultiDiGraph(day="Friday") 

131 >>> G.graph 

132 {'day': 'Friday'} 

133 

134 Add node attributes using add_node(), add_nodes_from() or G.nodes 

135 

136 >>> G.add_node(1, time="5pm") 

137 >>> G.add_nodes_from([3], time="2pm") 

138 >>> G.nodes[1] 

139 {'time': '5pm'} 

140 >>> G.nodes[1]["room"] = 714 

141 >>> del G.nodes[1]["room"] # remove attribute 

142 >>> list(G.nodes(data=True)) 

143 [(1, {'time': '5pm'}), (3, {'time': '2pm'})] 

144 

145 Add edge attributes using add_edge(), add_edges_from(), subscript 

146 notation, or G.edges. 

147 

148 >>> key = G.add_edge(1, 2, weight=4.7) 

149 >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red") 

150 >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) 

151 >>> G[1][2][0]["weight"] = 4.7 

152 >>> G.edges[1, 2, 0]["weight"] = 4 

153 

154 Warning: we protect the graph data structure by making `G.edges[1, 

155 2, 0]` a read-only dict-like structure. However, you can assign to 

156 attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets 

157 to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4` 

158 (for multigraphs the edge key is required: `MG.edges[u, v, 

159 key][name] = value`). 

160 

161 **Shortcuts:** 

162 

163 Many common graph features allow python syntax to speed reporting. 

164 

165 >>> 1 in G # check if node in graph 

166 True 

167 >>> [n for n in G if n < 3] # iterate through nodes 

168 [1, 2] 

169 >>> len(G) # number of nodes in graph 

170 5 

171 >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes 

172 AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) 

173 

174 Often the best way to traverse all edges of a graph is via the neighbors. 

175 The neighbors are available as an adjacency-view `G.adj` object or via 

176 the method `G.adjacency()`. 

177 

178 >>> for n, nbrsdict in G.adjacency(): 

179 ... for nbr, keydict in nbrsdict.items(): 

180 ... for key, eattr in keydict.items(): 

181 ... if "weight" in eattr: 

182 ... # Do something useful with the edges 

183 ... pass 

184 

185 But the edges() method is often more convenient: 

186 

187 >>> for u, v, keys, weight in G.edges(data="weight", keys=True): 

188 ... if weight is not None: 

189 ... # Do something useful with the edges 

190 ... pass 

191 

192 **Reporting:** 

193 

194 Simple graph information is obtained using methods and object-attributes. 

195 Reporting usually provides views instead of containers to reduce memory 

196 usage. The views update as the graph is updated similarly to dict-views. 

197 The objects `nodes`, `edges` and `adj` provide access to data attributes 

198 via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration 

199 (e.g. `nodes.items()`, `nodes.data('color')`, 

200 `nodes.data('color', default='blue')` and similarly for `edges`) 

201 Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. 

202 

203 For details on these and other miscellaneous methods, see below. 

204 

205 **Subclasses (Advanced):** 

206 

207 The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. 

208 The outer dict (node_dict) holds adjacency information keyed by node. 

209 The next dict (adjlist_dict) represents the adjacency information 

210 and holds edge_key dicts keyed by neighbor. The edge_key dict holds 

211 each edge_attr dict keyed by edge key. The inner dict 

212 (edge_attr_dict) represents the edge data and holds edge attribute 

213 values keyed by attribute names. 

214 

215 Each of these four dicts in the dict-of-dict-of-dict-of-dict 

216 structure can be replaced by a user defined dict-like object. 

217 In general, the dict-like features should be maintained but 

218 extra features can be added. To replace one of the dicts create 

219 a new graph class by changing the class(!) variable holding the 

220 factory for that dict-like structure. The variable names are 

221 node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, 

222 adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory 

223 and graph_attr_dict_factory. 

224 

225 node_dict_factory : function, (default: dict) 

226 Factory function to be used to create the dict containing node 

227 attributes, keyed by node id. 

228 It should require no arguments and return a dict-like object 

229 

230 node_attr_dict_factory: function, (default: dict) 

231 Factory function to be used to create the node attribute 

232 dict which holds attribute values keyed by attribute name. 

233 It should require no arguments and return a dict-like object 

234 

235 adjlist_outer_dict_factory : function, (default: dict) 

236 Factory function to be used to create the outer-most dict 

237 in the data structure that holds adjacency info keyed by node. 

238 It should require no arguments and return a dict-like object. 

239 

240 adjlist_inner_dict_factory : function, (default: dict) 

241 Factory function to be used to create the adjacency list 

242 dict which holds multiedge key dicts keyed by neighbor. 

243 It should require no arguments and return a dict-like object. 

244 

245 edge_key_dict_factory : function, (default: dict) 

246 Factory function to be used to create the edge key dict 

247 which holds edge data keyed by edge key. 

248 It should require no arguments and return a dict-like object. 

249 

250 edge_attr_dict_factory : function, (default: dict) 

251 Factory function to be used to create the edge attribute 

252 dict which holds attribute values keyed by attribute name. 

253 It should require no arguments and return a dict-like object. 

254 

255 graph_attr_dict_factory : function, (default: dict) 

256 Factory function to be used to create the graph attribute 

257 dict which holds attribute values keyed by attribute name. 

258 It should require no arguments and return a dict-like object. 

259 

260 Typically, if your extension doesn't impact the data structure all 

261 methods will inherited without issue except: `to_directed/to_undirected`. 

262 By default these methods create a DiGraph/Graph class and you probably 

263 want them to create your extension of a DiGraph/Graph. To facilitate 

264 this we define two class variables that you can set in your subclass. 

265 

266 to_directed_class : callable, (default: DiGraph or MultiDiGraph) 

267 Class to create a new graph structure in the `to_directed` method. 

268 If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. 

269 

270 to_undirected_class : callable, (default: Graph or MultiGraph) 

271 Class to create a new graph structure in the `to_undirected` method. 

272 If `None`, a NetworkX class (Graph or MultiGraph) is used. 

273 

274 **Subclassing Example** 

275 

276 Create a low memory graph class that effectively disallows edge 

277 attributes by using a single attribute dict for all edges. 

278 This reduces the memory used, but you lose edge attributes. 

279 

280 >>> class ThinGraph(nx.Graph): 

281 ... all_edge_dict = {"weight": 1} 

282 ... 

283 ... def single_edge_dict(self): 

284 ... return self.all_edge_dict 

285 ... 

286 ... edge_attr_dict_factory = single_edge_dict 

287 >>> G = ThinGraph() 

288 >>> G.add_edge(2, 1) 

289 >>> G[2][1] 

290 {'weight': 1} 

291 >>> G.add_edge(2, 2) 

292 >>> G[2][1] is G[2][2] 

293 True 

294 """ 

295 

296 # node_dict_factory = dict # already assigned in Graph 

297 # adjlist_outer_dict_factory = dict 

298 # adjlist_inner_dict_factory = dict 

299 edge_key_dict_factory = dict 

300 # edge_attr_dict_factory = dict 

301 

302 # This __new__ method just does what Python itself does automatically. 

303 # We include it here as part of the dispatchable/backend interface. 

304 # If your goal is to understand how the graph classes work, you can ignore 

305 # this method, even when subclassing the base classes. If you are subclassing 

306 # in order to provide a backend that allows class instantiation, this method 

307 # can be overridden to return your own backend graph class. 

308 @nx._dispatchable(name="multidigraph__new__", graphs=None, returns_graph=True) 

309 def __new__(cls, incoming_graph_data=None, multigraph_input=None, **attr): 

310 return object.__new__(cls) 

311 

312 def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr): 

313 """Initialize a graph with edges, name, or graph attributes. 

314 

315 Parameters 

316 ---------- 

317 incoming_graph_data : input graph 

318 Data to initialize graph. If incoming_graph_data=None (default) 

319 an empty graph is created. The data can be an edge list, or any 

320 NetworkX graph object. If the corresponding optional Python 

321 packages are installed the data can also be a 2D NumPy array, a 

322 SciPy sparse array, or a PyGraphviz graph. 

323 

324 multigraph_input : bool or None (default None) 

325 Note: Only used when `incoming_graph_data` is a dict. 

326 If True, `incoming_graph_data` is assumed to be a 

327 dict-of-dict-of-dict-of-dict structure keyed by 

328 node to neighbor to edge keys to edge data for multi-edges. 

329 A NetworkXError is raised if this is not the case. 

330 If False, :func:`to_networkx_graph` is used to try to determine 

331 the dict's graph data structure as either a dict-of-dict-of-dict 

332 keyed by node to neighbor to edge data, or a dict-of-iterable 

333 keyed by node to neighbors. 

334 If None, the treatment for True is tried, but if it fails, 

335 the treatment for False is tried. 

336 

337 attr : keyword arguments, optional (default= no attributes) 

338 Attributes to add to graph as key=value pairs. 

339 

340 See Also 

341 -------- 

342 convert 

343 

344 Examples 

345 -------- 

346 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc 

347 >>> G = nx.Graph(name="my graph") 

348 >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges 

349 >>> G = nx.Graph(e) 

350 

351 Arbitrary graph attribute pairs (key=value) may be assigned 

352 

353 >>> G = nx.Graph(e, day="Friday") 

354 >>> G.graph 

355 {'day': 'Friday'} 

356 

357 """ 

358 attr.pop("backend", None) # Ignore explicit `backend="networkx"` 

359 # multigraph_input can be None/True/False. So check "is not False" 

360 if isinstance(incoming_graph_data, dict) and multigraph_input is not False: 

361 DiGraph.__init__(self) 

362 try: 

363 convert.from_dict_of_dicts( 

364 incoming_graph_data, create_using=self, multigraph_input=True 

365 ) 

366 self.graph.update(attr) 

367 except Exception as err: 

368 if multigraph_input is True: 

369 raise nx.NetworkXError( 

370 f"converting multigraph_input raised:\n{type(err)}: {err}" 

371 ) 

372 DiGraph.__init__(self, incoming_graph_data, **attr) 

373 else: 

374 DiGraph.__init__(self, incoming_graph_data, **attr) 

375 

376 @cached_property 

377 def adj(self): 

378 """Graph adjacency object holding the neighbors of each node. 

379 

380 This object is a read-only dict-like structure with node keys 

381 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

382 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

383 the color of the edge `(3, 2, 0)` to `"blue"`. 

384 

385 Iterating over G.adj behaves like a dict. Useful idioms include 

386 `for nbr, datadict in G.adj[n].items():`. 

387 

388 The neighbor information is also provided by subscripting the graph. 

389 So `for nbr, foovalue in G[node].data('foo', default=1):` works. 

390 

391 For directed graphs, `G.adj` holds outgoing (successor) info. 

392 """ 

393 return MultiAdjacencyView(self._succ) 

394 

395 @cached_property 

396 def succ(self): 

397 """Graph adjacency object holding the successors of each node. 

398 

399 This object is a read-only dict-like structure with node keys 

400 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

401 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

402 the color of the edge `(3, 2, 0)` to `"blue"`. 

403 

404 Iterating over G.adj behaves like a dict. Useful idioms include 

405 `for nbr, datadict in G.adj[n].items():`. 

406 

407 The neighbor information is also provided by subscripting the graph. 

408 So `for nbr, foovalue in G[node].data('foo', default=1):` works. 

409 

410 For directed graphs, `G.succ` is identical to `G.adj`. 

411 """ 

412 return MultiAdjacencyView(self._succ) 

413 

414 @cached_property 

415 def pred(self): 

416 """Graph adjacency object holding the predecessors of each node. 

417 

418 This object is a read-only dict-like structure with node keys 

419 and neighbor-dict values. The neighbor-dict is keyed by neighbor 

420 to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets 

421 the color of the edge `(3, 2, 0)` to `"blue"`. 

422 

423 Iterating over G.adj behaves like a dict. Useful idioms include 

424 `for nbr, datadict in G.adj[n].items():`. 

425 """ 

426 return MultiAdjacencyView(self._pred) 

427 

428 def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): 

429 """Add an edge between u and v. 

430 

431 The nodes u and v will be automatically added if they are 

432 not already in the graph. 

433 

434 Edge attributes can be specified with keywords or by directly 

435 accessing the edge's attribute dictionary. See examples below. 

436 

437 Parameters 

438 ---------- 

439 u_for_edge, v_for_edge : nodes 

440 Nodes can be, for example, strings or numbers. 

441 Nodes must be hashable (and not None) Python objects. 

442 key : hashable identifier, optional (default=lowest unused integer) 

443 Used to distinguish multiedges between a pair of nodes. 

444 attr : keyword arguments, optional 

445 Edge data (or labels or objects) can be assigned using 

446 keyword arguments. 

447 

448 Returns 

449 ------- 

450 The edge key assigned to the edge. 

451 

452 See Also 

453 -------- 

454 add_edges_from : add a collection of edges 

455 

456 Notes 

457 ----- 

458 To replace/update edge data, use the optional key argument 

459 to identify a unique edge. Otherwise a new edge will be created. 

460 

461 NetworkX algorithms designed for weighted graphs cannot use 

462 multigraphs directly because it is not clear how to handle 

463 multiedge weights. Convert to Graph using edge attribute 

464 'weight' to enable weighted graph algorithms. 

465 

466 Default keys are generated using the method `new_edge_key()`. 

467 This method can be overridden by subclassing the base class and 

468 providing a custom `new_edge_key()` method. 

469 

470 Examples 

471 -------- 

472 The following all add the edge e=(1, 2) to graph G: 

473 

474 >>> G = nx.MultiDiGraph() 

475 >>> e = (1, 2) 

476 >>> key = G.add_edge(1, 2) # explicit two-node form 

477 >>> G.add_edge(*e) # single edge as tuple of two nodes 

478 1 

479 >>> G.add_edges_from([(1, 2)]) # add edges from iterable container 

480 [2] 

481 

482 Associate data to edges using keywords: 

483 

484 >>> key = G.add_edge(1, 2, weight=3) 

485 >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 

486 >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) 

487 

488 For non-string attribute keys, use subscript notation. 

489 

490 >>> ekey = G.add_edge(1, 2) 

491 >>> G[1][2][0].update({0: 5}) 

492 >>> G.edges[1, 2, 0].update({0: 5}) 

493 """ 

494 u, v = u_for_edge, v_for_edge 

495 # add nodes 

496 if u not in self._succ: 

497 if u is None: 

498 raise ValueError("None cannot be a node") 

499 self._succ[u] = self.adjlist_inner_dict_factory() 

500 self._pred[u] = self.adjlist_inner_dict_factory() 

501 self._node[u] = self.node_attr_dict_factory() 

502 if v not in self._succ: 

503 if v is None: 

504 raise ValueError("None cannot be a node") 

505 self._succ[v] = self.adjlist_inner_dict_factory() 

506 self._pred[v] = self.adjlist_inner_dict_factory() 

507 self._node[v] = self.node_attr_dict_factory() 

508 if key is None: 

509 key = self.new_edge_key(u, v) 

510 if v in self._succ[u]: 

511 keydict = self._adj[u][v] 

512 datadict = keydict.get(key, self.edge_attr_dict_factory()) 

513 datadict.update(attr) 

514 keydict[key] = datadict 

515 else: 

516 # selfloops work this way without special treatment 

517 datadict = self.edge_attr_dict_factory() 

518 datadict.update(attr) 

519 keydict = self.edge_key_dict_factory() 

520 keydict[key] = datadict 

521 self._succ[u][v] = keydict 

522 self._pred[v][u] = keydict 

523 nx._clear_cache(self) 

524 return key 

525 

526 def remove_edge(self, u, v, key=None): 

527 """Remove an edge between u and v. 

528 

529 Parameters 

530 ---------- 

531 u, v : nodes 

532 Remove an edge between nodes u and v. 

533 key : hashable identifier, optional (default=None) 

534 Used to distinguish multiple edges between a pair of nodes. 

535 If None, remove a single edge between u and v. If there are 

536 multiple edges, removes the last edge added in terms of 

537 insertion order. 

538 

539 Raises 

540 ------ 

541 NetworkXError 

542 If there is not an edge between u and v, or 

543 if there is no edge with the specified key. 

544 

545 See Also 

546 -------- 

547 remove_edges_from : remove a collection of edges 

548 

549 Examples 

550 -------- 

551 >>> G = nx.MultiDiGraph() 

552 >>> nx.add_path(G, [0, 1, 2, 3]) 

553 >>> G.remove_edge(0, 1) 

554 >>> e = (1, 2) 

555 >>> G.remove_edge(*e) # unpacks e from an edge tuple 

556 

557 For multiple edges 

558 

559 >>> G = nx.MultiDiGraph() 

560 >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned 

561 [0, 1, 2] 

562 

563 When ``key=None`` (the default), edges are removed in the opposite 

564 order that they were added: 

565 

566 >>> G.remove_edge(1, 2) 

567 >>> G.edges(keys=True) 

568 OutMultiEdgeView([(1, 2, 0), (1, 2, 1)]) 

569 

570 For edges with keys 

571 

572 >>> G = nx.MultiDiGraph() 

573 >>> G.add_edge(1, 2, key="first") 

574 'first' 

575 >>> G.add_edge(1, 2, key="second") 

576 'second' 

577 >>> G.remove_edge(1, 2, key="first") 

578 >>> G.edges(keys=True) 

579 OutMultiEdgeView([(1, 2, 'second')]) 

580 

581 """ 

582 try: 

583 d = self._adj[u][v] 

584 except KeyError as err: 

585 raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err 

586 # remove the edge with specified data 

587 if key is None: 

588 d.popitem() 

589 else: 

590 try: 

591 del d[key] 

592 except KeyError as err: 

593 msg = f"The edge {u}-{v} with key {key} is not in the graph." 

594 raise NetworkXError(msg) from err 

595 if len(d) == 0: 

596 # remove the key entries if last edge 

597 del self._succ[u][v] 

598 del self._pred[v][u] 

599 nx._clear_cache(self) 

600 

601 @cached_property 

602 def edges(self): 

603 """An OutMultiEdgeView of the Graph as G.edges or G.edges(). 

604 

605 edges(self, nbunch=None, data=False, keys=False, default=None) 

606 

607 The OutMultiEdgeView provides set-like operations on the edge-tuples 

608 as well as edge attribute lookup. When called, it also provides 

609 an EdgeDataView object which allows control of access to edge 

610 attributes (but does not provide set-like operations). 

611 Hence, ``G.edges[u, v, k]['color']`` provides the value of the color 

612 attribute for the edge from ``u`` to ``v`` with key ``k`` while 

613 ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):`` 

614 iterates through all the edges yielding the color attribute with 

615 default `'red'` if no color attribute exists. 

616 

617 Edges are returned as tuples with optional data and keys 

618 in the order (node, neighbor, key, data). If ``keys=True`` is not 

619 provided, the tuples will just be (node, neighbor, data), but 

620 multiple tuples with the same node and neighbor will be 

621 generated when multiple edges between two nodes exist. 

622 

623 Parameters 

624 ---------- 

625 nbunch : single node, container, or all nodes (default= all nodes) 

626 The view will only report edges from these nodes. 

627 data : string or bool, optional (default=False) 

628 The edge attribute returned in 3-tuple (u, v, ddict[data]). 

629 If True, return edge attribute dict in 3-tuple (u, v, ddict). 

630 If False, return 2-tuple (u, v). 

631 keys : bool, optional (default=False) 

632 If True, return edge keys with each edge, creating (u, v, k, 

633 d) tuples when data is also requested (the default) and (u, 

634 v, k) tuples when data is not requested. 

635 default : value, optional (default=None) 

636 Value used for edges that don't have the requested attribute. 

637 Only relevant if data is not True or False. 

638 

639 Returns 

640 ------- 

641 edges : OutMultiEdgeView 

642 A view of edge attributes, usually it iterates over (u, v) 

643 (u, v, k) or (u, v, k, d) tuples of edges, but can also be 

644 used for attribute lookup as ``edges[u, v, k]['foo']``. 

645 

646 Notes 

647 ----- 

648 Nodes in nbunch that are not in the graph will be (quietly) ignored. 

649 For directed graphs this returns the out-edges. 

650 

651 Examples 

652 -------- 

653 >>> G = nx.MultiDiGraph() 

654 >>> nx.add_path(G, [0, 1, 2]) 

655 >>> key = G.add_edge(2, 3, weight=5) 

656 >>> key2 = G.add_edge(1, 2) # second edge between these nodes 

657 >>> [e for e in G.edges()] 

658 [(0, 1), (1, 2), (1, 2), (2, 3)] 

659 >>> list(G.edges(data=True)) # default data is {} (empty dict) 

660 [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})] 

661 >>> list(G.edges(data="weight", default=1)) 

662 [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)] 

663 >>> list(G.edges(keys=True)) # default keys are integers 

664 [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)] 

665 >>> list(G.edges(data=True, keys=True)) 

666 [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})] 

667 >>> list(G.edges(data="weight", default=1, keys=True)) 

668 [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)] 

669 >>> list(G.edges([0, 2])) 

670 [(0, 1), (2, 3)] 

671 >>> list(G.edges(0)) 

672 [(0, 1)] 

673 >>> list(G.edges(1)) 

674 [(1, 2), (1, 2)] 

675 

676 See Also 

677 -------- 

678 in_edges, out_edges 

679 """ 

680 return OutMultiEdgeView(self) 

681 

682 # alias out_edges to edges 

683 @cached_property 

684 def out_edges(self): 

685 return OutMultiEdgeView(self) 

686 

687 out_edges.__doc__ = edges.__doc__ 

688 

689 @cached_property 

690 def in_edges(self): 

691 """A view of the in edges of the graph as G.in_edges or G.in_edges(). 

692 

693 in_edges(self, nbunch=None, data=False, keys=False, default=None) 

694 

695 Parameters 

696 ---------- 

697 nbunch : single node, container, or all nodes (default= all nodes) 

698 The view will only report edges incident to these nodes. 

699 data : string or bool, optional (default=False) 

700 The edge attribute returned in 3-tuple (u, v, ddict[data]). 

701 If True, return edge attribute dict in 3-tuple (u, v, ddict). 

702 If False, return 2-tuple (u, v). 

703 keys : bool, optional (default=False) 

704 If True, return edge keys with each edge, creating 3-tuples 

705 (u, v, k) or with data, 4-tuples (u, v, k, d). 

706 default : value, optional (default=None) 

707 Value used for edges that don't have the requested attribute. 

708 Only relevant if data is not True or False. 

709 

710 Returns 

711 ------- 

712 in_edges : InMultiEdgeView or InMultiEdgeDataView 

713 A view of edge attributes, usually it iterates over (u, v) 

714 or (u, v, k) or (u, v, k, d) tuples of edges, but can also be 

715 used for attribute lookup as `edges[u, v, k]['foo']`. 

716 

717 See Also 

718 -------- 

719 edges 

720 """ 

721 return InMultiEdgeView(self) 

722 

723 @cached_property 

724 def degree(self): 

725 """A DegreeView for the Graph as G.degree or G.degree(). 

726 

727 The node degree is the number of edges adjacent to the node. 

728 The weighted node degree is the sum of the edge weights for 

729 edges incident to that node. 

730 

731 This object provides an iterator for (node, degree) as well as 

732 lookup for the degree for a single node. 

733 

734 Parameters 

735 ---------- 

736 nbunch : single node, container, or all nodes (default= all nodes) 

737 The view will only report edges incident to these nodes. 

738 

739 weight : string or None, optional (default=None) 

740 The name of an edge attribute that holds the numerical value used 

741 as a weight. If None, then each edge has weight 1. 

742 The degree is the sum of the edge weights adjacent to the node. 

743 

744 Returns 

745 ------- 

746 DiMultiDegreeView or int 

747 If multiple nodes are requested (the default), returns a `DiMultiDegreeView` 

748 mapping nodes to their degree. 

749 If a single node is requested, returns the degree of the node as an integer. 

750 

751 See Also 

752 -------- 

753 out_degree, in_degree 

754 

755 Examples 

756 -------- 

757 >>> G = nx.MultiDiGraph() 

758 >>> nx.add_path(G, [0, 1, 2, 3]) 

759 >>> G.degree(0) # node 0 with degree 1 

760 1 

761 >>> list(G.degree([0, 1, 2])) 

762 [(0, 1), (1, 2), (2, 2)] 

763 >>> G.add_edge(0, 1) # parallel edge 

764 1 

765 >>> list(G.degree([0, 1, 2])) # parallel edges are counted 

766 [(0, 2), (1, 3), (2, 2)] 

767 

768 """ 

769 return DiMultiDegreeView(self) 

770 

771 @cached_property 

772 def in_degree(self): 

773 """A DegreeView for (node, in_degree) or in_degree for single node. 

774 

775 The node in-degree is the number of edges pointing into the node. 

776 The weighted node degree is the sum of the edge weights for 

777 edges incident to that node. 

778 

779 This object provides an iterator for (node, degree) as well as 

780 lookup for the degree for a single node. 

781 

782 Parameters 

783 ---------- 

784 nbunch : single node, container, or all nodes (default= all nodes) 

785 The view will only report edges incident to these nodes. 

786 

787 weight : string or None, optional (default=None) 

788 The edge attribute that holds the numerical value used 

789 as a weight. If None, then each edge has weight 1. 

790 The degree is the sum of the edge weights adjacent to the node. 

791 

792 Returns 

793 ------- 

794 If a single node is requested 

795 deg : int 

796 Degree of the node 

797 

798 OR if multiple nodes are requested 

799 nd_iter : iterator 

800 The iterator returns two-tuples of (node, in-degree). 

801 

802 See Also 

803 -------- 

804 degree, out_degree 

805 

806 Examples 

807 -------- 

808 >>> G = nx.MultiDiGraph() 

809 >>> nx.add_path(G, [0, 1, 2, 3]) 

810 >>> G.in_degree(0) # node 0 with degree 0 

811 0 

812 >>> list(G.in_degree([0, 1, 2])) 

813 [(0, 0), (1, 1), (2, 1)] 

814 >>> G.add_edge(0, 1) # parallel edge 

815 1 

816 >>> list(G.in_degree([0, 1, 2])) # parallel edges counted 

817 [(0, 0), (1, 2), (2, 1)] 

818 

819 """ 

820 return InMultiDegreeView(self) 

821 

822 @cached_property 

823 def out_degree(self): 

824 """Returns an iterator for (node, out-degree) or out-degree for single node. 

825 

826 out_degree(self, nbunch=None, weight=None) 

827 

828 The node out-degree is the number of edges pointing out of the node. 

829 This function returns the out-degree for a single node or an iterator 

830 for a bunch of nodes or if nothing is passed as argument. 

831 

832 Parameters 

833 ---------- 

834 nbunch : single node, container, or all nodes (default= all nodes) 

835 The view will only report edges incident to these nodes. 

836 

837 weight : string or None, optional (default=None) 

838 The edge attribute that holds the numerical value used 

839 as a weight. If None, then each edge has weight 1. 

840 The degree is the sum of the edge weights. 

841 

842 Returns 

843 ------- 

844 If a single node is requested 

845 deg : int 

846 Degree of the node 

847 

848 OR if multiple nodes are requested 

849 nd_iter : iterator 

850 The iterator returns two-tuples of (node, out-degree). 

851 

852 See Also 

853 -------- 

854 degree, in_degree 

855 

856 Examples 

857 -------- 

858 >>> G = nx.MultiDiGraph() 

859 >>> nx.add_path(G, [0, 1, 2, 3]) 

860 >>> G.out_degree(0) # node 0 with degree 1 

861 1 

862 >>> list(G.out_degree([0, 1, 2])) 

863 [(0, 1), (1, 1), (2, 1)] 

864 >>> G.add_edge(0, 1) # parallel edge 

865 1 

866 >>> list(G.out_degree([0, 1, 2])) # counts parallel edges 

867 [(0, 2), (1, 1), (2, 1)] 

868 

869 """ 

870 return OutMultiDegreeView(self) 

871 

872 def is_multigraph(self): 

873 """Returns True if graph is a multigraph, False otherwise.""" 

874 return True 

875 

876 def is_directed(self): 

877 """Returns True if graph is directed, False otherwise.""" 

878 return True 

879 

880 def to_undirected(self, reciprocal=False, as_view=False): 

881 """Returns an undirected representation of the digraph. 

882 

883 Parameters 

884 ---------- 

885 reciprocal : bool (optional) 

886 If True only keep edges that appear in both directions 

887 in the original digraph. 

888 as_view : bool (optional, default=False) 

889 If True return an undirected view of the original directed graph. 

890 

891 Returns 

892 ------- 

893 G : MultiGraph 

894 An undirected graph with the same name and nodes and 

895 with edge (u, v, data) if either (u, v, data) or (v, u, data) 

896 is in the digraph. If both edges exist in digraph and 

897 their edge data is different, only one edge is created 

898 with an arbitrary choice of which edge data to use. 

899 You must check and correct for this manually if desired. 

900 

901 See Also 

902 -------- 

903 MultiGraph, copy, add_edge, add_edges_from 

904 

905 Notes 

906 ----- 

907 This returns a "deepcopy" of the edge, node, and 

908 graph attributes which attempts to completely copy 

909 all of the data and references. 

910 

911 This is in contrast to the similar D=MultiDiGraph(G) which 

912 returns a shallow copy of the data. 

913 

914 See the Python copy module for more information on shallow 

915 and deep copies, https://docs.python.org/3/library/copy.html. 

916 

917 Warning: If you have subclassed MultiDiGraph to use dict-like 

918 objects in the data structure, those changes do not transfer 

919 to the MultiGraph created by this method. 

920 

921 Examples 

922 -------- 

923 >>> G = nx.path_graph(2) # or MultiGraph, etc 

924 >>> H = G.to_directed() 

925 >>> list(H.edges) 

926 [(0, 1), (1, 0)] 

927 >>> G2 = H.to_undirected() 

928 >>> list(G2.edges) 

929 [(0, 1)] 

930 """ 

931 graph_class = self.to_undirected_class() 

932 if as_view is True: 

933 return nx.graphviews.generic_graph_view(self, graph_class) 

934 # deepcopy when not a view 

935 G = graph_class() 

936 G.graph.update(deepcopy(self.graph)) 

937 G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) 

938 if reciprocal is True: 

939 G.add_edges_from( 

940 (u, v, key, deepcopy(data)) 

941 for u, nbrs in self._adj.items() 

942 for v, keydict in nbrs.items() 

943 for key, data in keydict.items() 

944 if v in self._pred[u] and key in self._pred[u][v] 

945 ) 

946 else: 

947 G.add_edges_from( 

948 (u, v, key, deepcopy(data)) 

949 for u, nbrs in self._adj.items() 

950 for v, keydict in nbrs.items() 

951 for key, data in keydict.items() 

952 ) 

953 return G 

954 

955 def reverse(self, copy=True): 

956 """Returns the reverse of the graph. 

957 

958 The reverse is a graph with the same nodes and edges 

959 but with the directions of the edges reversed. 

960 

961 Parameters 

962 ---------- 

963 copy : bool optional (default=True) 

964 If True, return a new DiGraph holding the reversed edges. 

965 If False, the reverse graph is created using a view of 

966 the original graph. 

967 """ 

968 if copy: 

969 H = self.__class__() 

970 H.graph.update(deepcopy(self.graph)) 

971 H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) 

972 H.add_edges_from( 

973 (v, u, k, deepcopy(d)) 

974 for u, v, k, d in self.edges(keys=True, data=True) 

975 ) 

976 return H 

977 return nx.reverse_view(self)