Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/tree/mst.py: 15%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

346 statements  

1""" 

2Algorithms for calculating min/max spanning trees/forests. 

3 

4""" 

5 

6from dataclasses import dataclass, field 

7from enum import Enum 

8from heapq import heappop, heappush 

9from itertools import count 

10from math import isnan 

11from operator import itemgetter 

12from queue import PriorityQueue 

13 

14import networkx as nx 

15from networkx.utils import UnionFind, not_implemented_for, py_random_state 

16 

17__all__ = [ 

18 "minimum_spanning_edges", 

19 "maximum_spanning_edges", 

20 "minimum_spanning_tree", 

21 "maximum_spanning_tree", 

22 "number_of_spanning_trees", 

23 "random_spanning_tree", 

24 "partition_spanning_tree", 

25 "EdgePartition", 

26 "SpanningTreeIterator", 

27] 

28 

29 

30class EdgePartition(Enum): 

31 """ 

32 An enum to store the state of an edge partition. The enum is written to the 

33 edges of a graph before being pasted to `kruskal_mst_edges`. Options are: 

34 

35 - EdgePartition.OPEN 

36 - EdgePartition.INCLUDED 

37 - EdgePartition.EXCLUDED 

38 """ 

39 

40 OPEN = 0 

41 INCLUDED = 1 

42 EXCLUDED = 2 

43 

44 

45@not_implemented_for("multigraph") 

46@nx._dispatchable(edge_attrs="weight", preserve_edge_attrs="data") 

47def boruvka_mst_edges( 

48 G, minimum=True, weight="weight", keys=False, data=True, ignore_nan=False 

49): 

50 """Iterate over edges of a Borůvka's algorithm min/max spanning tree. 

51 

52 Parameters 

53 ---------- 

54 G : NetworkX Graph 

55 The edges of `G` must have distinct weights, 

56 otherwise the edges may not form a tree. 

57 

58 minimum : bool (default: True) 

59 Find the minimum (True) or maximum (False) spanning tree. 

60 

61 weight : string (default: 'weight') 

62 The name of the edge attribute holding the edge weights. 

63 

64 keys : bool (default: True) 

65 This argument is ignored since this function is not 

66 implemented for multigraphs; it exists only for consistency 

67 with the other minimum spanning tree functions. 

68 

69 data : bool (default: True) 

70 Flag for whether to yield edge attribute dicts. 

71 If True, yield edges `(u, v, d)`, where `d` is the attribute dict. 

72 If False, yield edges `(u, v)`. 

73 

74 ignore_nan : bool (default: False) 

75 If a NaN is found as an edge weight normally an exception is raised. 

76 If `ignore_nan is True` then that edge is ignored instead. 

77 

78 """ 

79 # Initialize a forest, assuming initially that it is the discrete 

80 # partition of the nodes of the graph. 

81 forest = UnionFind(G) 

82 

83 def best_edge(component): 

84 """Returns the optimum (minimum or maximum) edge on the edge 

85 boundary of the given set of nodes. 

86 

87 A return value of ``None`` indicates an empty boundary. 

88 

89 """ 

90 sign = 1 if minimum else -1 

91 minwt = float("inf") 

92 boundary = None 

93 for e in nx.edge_boundary(G, component, data=True): 

94 wt = e[-1].get(weight, 1) * sign 

95 if isnan(wt): 

96 if ignore_nan: 

97 continue 

98 msg = f"NaN found as an edge weight. Edge {e}" 

99 raise ValueError(msg) 

100 if wt < minwt: 

101 minwt = wt 

102 boundary = e 

103 return boundary 

104 

105 # Determine the optimum edge in the edge boundary of each component 

106 # in the forest. 

107 best_edges = (best_edge(component) for component in forest.to_sets()) 

108 best_edges = [edge for edge in best_edges if edge is not None] 

109 # If each entry was ``None``, that means the graph was disconnected, 

110 # so we are done generating the forest. 

111 while best_edges: 

112 # Determine the optimum edge in the edge boundary of each 

113 # component in the forest. 

114 # 

115 # This must be a sequence, not an iterator. In this list, the 

116 # same edge may appear twice, in different orientations (but 

117 # that's okay, since a union operation will be called on the 

118 # endpoints the first time it is seen, but not the second time). 

119 # 

120 # Any ``None`` indicates that the edge boundary for that 

121 # component was empty, so that part of the forest has been 

122 # completed. 

123 # 

124 # TODO This can be parallelized, both in the outer loop over 

125 # each component in the forest and in the computation of the 

126 # minimum. (Same goes for the identical lines outside the loop.) 

127 best_edges = (best_edge(component) for component in forest.to_sets()) 

128 best_edges = [edge for edge in best_edges if edge is not None] 

129 # Join trees in the forest using the best edges, and yield that 

130 # edge, since it is part of the spanning tree. 

131 # 

132 # TODO This loop can be parallelized, to an extent (the union 

133 # operation must be atomic). 

134 for u, v, d in best_edges: 

135 if forest[u] != forest[v]: 

136 if data: 

137 yield u, v, d 

138 else: 

139 yield u, v 

140 forest.union(u, v) 

141 

142 

143@nx._dispatchable( 

144 edge_attrs={"weight": None, "partition": None}, preserve_edge_attrs="data" 

145) 

146def kruskal_mst_edges( 

147 G, minimum, weight="weight", keys=True, data=True, ignore_nan=False, partition=None 

148): 

149 """ 

150 Iterate over edge of a Kruskal's algorithm min/max spanning tree. 

151 

152 Parameters 

153 ---------- 

154 G : NetworkX Graph 

155 The graph holding the tree of interest. 

156 

157 minimum : bool (default: True) 

158 Find the minimum (True) or maximum (False) spanning tree. 

159 

160 weight : string (default: 'weight') 

161 The name of the edge attribute holding the edge weights. 

162 

163 keys : bool (default: True) 

164 If `G` is a multigraph, `keys` controls whether edge keys ar yielded. 

165 Otherwise `keys` is ignored. 

166 

167 data : bool (default: True) 

168 Flag for whether to yield edge attribute dicts. 

169 If True, yield edges `(u, v, d)`, where `d` is the attribute dict. 

170 If False, yield edges `(u, v)`. 

171 

172 ignore_nan : bool (default: False) 

173 If a NaN is found as an edge weight normally an exception is raised. 

174 If `ignore_nan is True` then that edge is ignored instead. 

175 

176 partition : string (default: None) 

177 The name of the edge attribute holding the partition data, if it exists. 

178 Partition data is written to the edges using the `EdgePartition` enum. 

179 If a partition exists, all included edges and none of the excluded edges 

180 will appear in the final tree. Open edges may or may not be used. 

181 

182 Yields 

183 ------ 

184 edge tuple 

185 The edges as discovered by Kruskal's method. Each edge can 

186 take the following forms: `(u, v)`, `(u, v, d)` or `(u, v, k, d)` 

187 depending on the `key` and `data` parameters 

188 """ 

189 subtrees = UnionFind() 

190 if G.is_multigraph(): 

191 edges = G.edges(keys=True, data=True) 

192 else: 

193 edges = G.edges(data=True) 

194 

195 # Sort the edges of the graph with respect to the partition data. 

196 # Edges are returned in the following order: 

197 

198 # * Included edges 

199 # * Open edges from smallest to largest weight 

200 # * Excluded edges 

201 included_edges = [] 

202 open_edges = [] 

203 for e in edges: 

204 d = e[-1] 

205 wt = d.get(weight, 1) 

206 if isnan(wt): 

207 if ignore_nan: 

208 continue 

209 raise ValueError(f"NaN found as an edge weight. Edge {e}") 

210 

211 edge = (wt,) + e 

212 if d.get(partition) == EdgePartition.INCLUDED: 

213 included_edges.append(edge) 

214 elif d.get(partition) == EdgePartition.EXCLUDED: 

215 continue 

216 else: 

217 open_edges.append(edge) 

218 

219 if minimum: 

220 sorted_open_edges = sorted(open_edges, key=itemgetter(0)) 

221 else: 

222 sorted_open_edges = sorted(open_edges, key=itemgetter(0), reverse=True) 

223 

224 # Condense the lists into one 

225 included_edges.extend(sorted_open_edges) 

226 sorted_edges = included_edges 

227 del open_edges, sorted_open_edges, included_edges 

228 

229 edges_needed = len(G) - 1 

230 edges_added = 0 

231 

232 # Multigraphs need to handle edge keys in addition to edge data. 

233 if G.is_multigraph(): 

234 for wt, u, v, k, d in sorted_edges: 

235 if subtrees[u] != subtrees[v]: 

236 if keys: 

237 if data: 

238 yield u, v, k, d 

239 else: 

240 yield u, v, k 

241 else: 

242 if data: 

243 yield u, v, d 

244 else: 

245 yield u, v 

246 subtrees.union(u, v) 

247 edges_added += 1 

248 if edges_added == edges_needed: 

249 return 

250 else: 

251 for wt, u, v, d in sorted_edges: 

252 if subtrees[u] != subtrees[v]: 

253 if data: 

254 yield u, v, d 

255 else: 

256 yield u, v 

257 subtrees.union(u, v) 

258 edges_added += 1 

259 if edges_added == edges_needed: 

260 return 

261 

262 

263@nx._dispatchable(edge_attrs="weight", preserve_edge_attrs="data") 

264def prim_mst_edges(G, minimum, weight="weight", keys=True, data=True, ignore_nan=False): 

265 """Iterate over edges of Prim's algorithm min/max spanning tree. 

266 

267 Parameters 

268 ---------- 

269 G : NetworkX Graph 

270 The graph holding the tree of interest. 

271 

272 minimum : bool (default: True) 

273 Find the minimum (True) or maximum (False) spanning tree. 

274 

275 weight : string (default: 'weight') 

276 The name of the edge attribute holding the edge weights. 

277 

278 keys : bool (default: True) 

279 If `G` is a multigraph, `keys` controls whether edge keys ar yielded. 

280 Otherwise `keys` is ignored. 

281 

282 data : bool (default: True) 

283 Flag for whether to yield edge attribute dicts. 

284 If True, yield edges `(u, v, d)`, where `d` is the attribute dict. 

285 If False, yield edges `(u, v)`. 

286 

287 ignore_nan : bool (default: False) 

288 If a NaN is found as an edge weight normally an exception is raised. 

289 If `ignore_nan is True` then that edge is ignored instead. 

290 

291 """ 

292 is_multigraph = G.is_multigraph() 

293 

294 nodes = set(G) 

295 c = count() 

296 

297 sign = 1 if minimum else -1 

298 

299 while nodes: 

300 u = nodes.pop() 

301 frontier = [] 

302 visited = {u} 

303 if is_multigraph: 

304 for v, keydict in G.adj[u].items(): 

305 for k, d in keydict.items(): 

306 wt = d.get(weight, 1) * sign 

307 if isnan(wt): 

308 if ignore_nan: 

309 continue 

310 msg = f"NaN found as an edge weight. Edge {(u, v, k, d)}" 

311 raise ValueError(msg) 

312 heappush(frontier, (wt, next(c), u, v, k, d)) 

313 else: 

314 for v, d in G.adj[u].items(): 

315 wt = d.get(weight, 1) * sign 

316 if isnan(wt): 

317 if ignore_nan: 

318 continue 

319 msg = f"NaN found as an edge weight. Edge {(u, v, d)}" 

320 raise ValueError(msg) 

321 heappush(frontier, (wt, next(c), u, v, d)) 

322 while nodes and frontier: 

323 if is_multigraph: 

324 W, _, u, v, k, d = heappop(frontier) 

325 else: 

326 W, _, u, v, d = heappop(frontier) 

327 if v in visited or v not in nodes: 

328 continue 

329 # Multigraphs need to handle edge keys in addition to edge data. 

330 if is_multigraph and keys: 

331 if data: 

332 yield u, v, k, d 

333 else: 

334 yield u, v, k 

335 else: 

336 if data: 

337 yield u, v, d 

338 else: 

339 yield u, v 

340 # update frontier 

341 visited.add(v) 

342 nodes.discard(v) 

343 if is_multigraph: 

344 for w, keydict in G.adj[v].items(): 

345 if w in visited: 

346 continue 

347 for k2, d2 in keydict.items(): 

348 new_weight = d2.get(weight, 1) * sign 

349 if isnan(new_weight): 

350 if ignore_nan: 

351 continue 

352 msg = f"NaN found as an edge weight. Edge {(v, w, k2, d2)}" 

353 raise ValueError(msg) 

354 heappush(frontier, (new_weight, next(c), v, w, k2, d2)) 

355 else: 

356 for w, d2 in G.adj[v].items(): 

357 if w in visited: 

358 continue 

359 new_weight = d2.get(weight, 1) * sign 

360 if isnan(new_weight): 

361 if ignore_nan: 

362 continue 

363 msg = f"NaN found as an edge weight. Edge {(v, w, d2)}" 

364 raise ValueError(msg) 

365 heappush(frontier, (new_weight, next(c), v, w, d2)) 

366 

367 

368ALGORITHMS = { 

369 "boruvka": boruvka_mst_edges, 

370 "borůvka": boruvka_mst_edges, 

371 "kruskal": kruskal_mst_edges, 

372 "prim": prim_mst_edges, 

373} 

374 

375 

376@not_implemented_for("directed") 

377@nx._dispatchable(edge_attrs="weight", preserve_edge_attrs="data") 

378def minimum_spanning_edges( 

379 G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False 

380): 

381 """Generate edges in a minimum spanning forest of an undirected 

382 weighted graph. 

383 

384 A minimum spanning tree is a subgraph of the graph (a tree) 

385 with the minimum sum of edge weights. A spanning forest is a 

386 union of the spanning trees for each connected component of the graph. 

387 

388 Parameters 

389 ---------- 

390 G : undirected Graph 

391 An undirected graph. If `G` is connected, then the algorithm finds a 

392 spanning tree. Otherwise, a spanning forest is found. 

393 

394 algorithm : string 

395 The algorithm to use when finding a minimum spanning tree. Valid 

396 choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. 

397 

398 weight : string 

399 Edge data key to use for weight (default 'weight'). 

400 

401 keys : bool 

402 Whether to yield edge key in multigraphs in addition to the edge. 

403 If `G` is not a multigraph, this is ignored. 

404 

405 data : bool, optional 

406 If True yield the edge data along with the edge. 

407 

408 ignore_nan : bool (default: False) 

409 If a NaN is found as an edge weight normally an exception is raised. 

410 If `ignore_nan is True` then that edge is ignored instead. 

411 

412 Returns 

413 ------- 

414 edges : iterator 

415 An iterator over edges in a maximum spanning tree of `G`. 

416 Edges connecting nodes `u` and `v` are represented as tuples: 

417 `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` 

418 

419 If `G` is a multigraph, `keys` indicates whether the edge key `k` will 

420 be reported in the third position in the edge tuple. `data` indicates 

421 whether the edge datadict `d` will appear at the end of the edge tuple. 

422 

423 If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True 

424 or `(u, v)` if `data` is False. 

425 

426 Examples 

427 -------- 

428 >>> from networkx.algorithms import tree 

429 

430 Find minimum spanning edges by Kruskal's algorithm 

431 

432 >>> G = nx.cycle_graph(4) 

433 >>> G.add_edge(0, 3, weight=2) 

434 >>> mst = tree.minimum_spanning_edges(G, algorithm="kruskal", data=False) 

435 >>> edgelist = list(mst) 

436 >>> sorted(sorted(e) for e in edgelist) 

437 [[0, 1], [1, 2], [2, 3]] 

438 

439 Find minimum spanning edges by Prim's algorithm 

440 

441 >>> G = nx.cycle_graph(4) 

442 >>> G.add_edge(0, 3, weight=2) 

443 >>> mst = tree.minimum_spanning_edges(G, algorithm="prim", data=False) 

444 >>> edgelist = list(mst) 

445 >>> sorted(sorted(e) for e in edgelist) 

446 [[0, 1], [1, 2], [2, 3]] 

447 

448 Notes 

449 ----- 

450 For Borůvka's algorithm, each edge must have a weight attribute, and 

451 each edge weight must be distinct. 

452 

453 For the other algorithms, if the graph edges do not have a weight 

454 attribute a default weight of 1 will be used. 

455 

456 Modified code from David Eppstein, April 2006 

457 http://www.ics.uci.edu/~eppstein/PADS/ 

458 

459 """ 

460 try: 

461 algo = ALGORITHMS[algorithm] 

462 except KeyError as err: 

463 msg = f"{algorithm} is not a valid choice for an algorithm." 

464 raise ValueError(msg) from err 

465 

466 return algo( 

467 G, minimum=True, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan 

468 ) 

469 

470 

471@not_implemented_for("directed") 

472@nx._dispatchable(edge_attrs="weight", preserve_edge_attrs="data") 

473def maximum_spanning_edges( 

474 G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False 

475): 

476 """Generate edges in a maximum spanning forest of an undirected 

477 weighted graph. 

478 

479 A maximum spanning tree is a subgraph of the graph (a tree) 

480 with the maximum possible sum of edge weights. A spanning forest is a 

481 union of the spanning trees for each connected component of the graph. 

482 

483 Parameters 

484 ---------- 

485 G : undirected Graph 

486 An undirected graph. If `G` is connected, then the algorithm finds a 

487 spanning tree. Otherwise, a spanning forest is found. 

488 

489 algorithm : string 

490 The algorithm to use when finding a maximum spanning tree. Valid 

491 choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. 

492 

493 weight : string 

494 Edge data key to use for weight (default 'weight'). 

495 

496 keys : bool 

497 Whether to yield edge key in multigraphs in addition to the edge. 

498 If `G` is not a multigraph, this is ignored. 

499 

500 data : bool, optional 

501 If True yield the edge data along with the edge. 

502 

503 ignore_nan : bool (default: False) 

504 If a NaN is found as an edge weight normally an exception is raised. 

505 If `ignore_nan is True` then that edge is ignored instead. 

506 

507 Returns 

508 ------- 

509 edges : iterator 

510 An iterator over edges in a maximum spanning tree of `G`. 

511 Edges connecting nodes `u` and `v` are represented as tuples: 

512 `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` 

513 

514 If `G` is a multigraph, `keys` indicates whether the edge key `k` will 

515 be reported in the third position in the edge tuple. `data` indicates 

516 whether the edge datadict `d` will appear at the end of the edge tuple. 

517 

518 If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True 

519 or `(u, v)` if `data` is False. 

520 

521 Examples 

522 -------- 

523 >>> from networkx.algorithms import tree 

524 

525 Find maximum spanning edges by Kruskal's algorithm 

526 

527 >>> G = nx.cycle_graph(4) 

528 >>> G.add_edge(0, 3, weight=2) 

529 >>> mst = tree.maximum_spanning_edges(G, algorithm="kruskal", data=False) 

530 >>> edgelist = list(mst) 

531 >>> sorted(sorted(e) for e in edgelist) 

532 [[0, 1], [0, 3], [1, 2]] 

533 

534 Find maximum spanning edges by Prim's algorithm 

535 

536 >>> G = nx.cycle_graph(4) 

537 >>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3 

538 >>> mst = tree.maximum_spanning_edges(G, algorithm="prim", data=False) 

539 >>> edgelist = list(mst) 

540 >>> sorted(sorted(e) for e in edgelist) 

541 [[0, 1], [0, 3], [2, 3]] 

542 

543 Notes 

544 ----- 

545 For Borůvka's algorithm, each edge must have a weight attribute, and 

546 each edge weight must be distinct. 

547 

548 For the other algorithms, if the graph edges do not have a weight 

549 attribute a default weight of 1 will be used. 

550 

551 Modified code from David Eppstein, April 2006 

552 http://www.ics.uci.edu/~eppstein/PADS/ 

553 """ 

554 try: 

555 algo = ALGORITHMS[algorithm] 

556 except KeyError as err: 

557 msg = f"{algorithm} is not a valid choice for an algorithm." 

558 raise ValueError(msg) from err 

559 

560 return algo( 

561 G, minimum=False, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan 

562 ) 

563 

564 

565@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) 

566def minimum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): 

567 """Returns a minimum spanning tree or forest on an undirected graph `G`. 

568 

569 Parameters 

570 ---------- 

571 G : undirected graph 

572 An undirected graph. If `G` is connected, then the algorithm finds a 

573 spanning tree. Otherwise, a spanning forest is found. 

574 

575 weight : str 

576 Data key to use for edge weights. 

577 

578 algorithm : string 

579 The algorithm to use when finding a minimum spanning tree. Valid 

580 choices are 'kruskal', 'prim', or 'boruvka'. The default is 

581 'kruskal'. 

582 

583 ignore_nan : bool (default: False) 

584 If a NaN is found as an edge weight normally an exception is raised. 

585 If `ignore_nan is True` then that edge is ignored instead. 

586 

587 Returns 

588 ------- 

589 G : NetworkX Graph 

590 A minimum spanning tree or forest. 

591 

592 Examples 

593 -------- 

594 >>> G = nx.cycle_graph(4) 

595 >>> G.add_edge(0, 3, weight=2) 

596 >>> T = nx.minimum_spanning_tree(G) 

597 >>> sorted(T.edges(data=True)) 

598 [(0, 1, {}), (1, 2, {}), (2, 3, {})] 

599 

600 

601 Notes 

602 ----- 

603 For Borůvka's algorithm, each edge must have a weight attribute, and 

604 each edge weight must be distinct. 

605 

606 For the other algorithms, if the graph edges do not have a weight 

607 attribute a default weight of 1 will be used. 

608 

609 There may be more than one tree with the same minimum or maximum weight. 

610 See :mod:`networkx.tree.recognition` for more detailed definitions. 

611 

612 Isolated nodes with self-loops are in the tree as edgeless isolated nodes. 

613 

614 """ 

615 edges = minimum_spanning_edges( 

616 G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan 

617 ) 

618 T = G.__class__() # Same graph class as G 

619 T.graph.update(G.graph) 

620 T.add_nodes_from(G.nodes.items()) 

621 T.add_edges_from(edges) 

622 return T 

623 

624 

625@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) 

626def partition_spanning_tree( 

627 G, minimum=True, weight="weight", partition="partition", ignore_nan=False 

628): 

629 """ 

630 Find a spanning tree while respecting a partition of edges. 

631 

632 Edges can be flagged as either `INCLUDED` which are required to be in the 

633 returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`. 

634 

635 This is used in the SpanningTreeIterator to create new partitions following 

636 the algorithm of Sörensen and Janssens [1]_. 

637 

638 Parameters 

639 ---------- 

640 G : undirected graph 

641 An undirected graph. 

642 

643 minimum : bool (default: True) 

644 Determines whether the returned tree is the minimum spanning tree of 

645 the partition of the maximum one. 

646 

647 weight : str 

648 Data key to use for edge weights. 

649 

650 partition : str 

651 The key for the edge attribute containing the partition 

652 data on the graph. Edges can be included, excluded or open using the 

653 `EdgePartition` enum. 

654 

655 ignore_nan : bool (default: False) 

656 If a NaN is found as an edge weight normally an exception is raised. 

657 If `ignore_nan is True` then that edge is ignored instead. 

658 

659 

660 Returns 

661 ------- 

662 G : NetworkX Graph 

663 A minimum spanning tree using all of the included edges in the graph and 

664 none of the excluded edges. 

665 

666 References 

667 ---------- 

668 .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning 

669 trees in order of increasing cost, Pesquisa Operacional, 2005-08, 

670 Vol. 25 (2), p. 219-229, 

671 https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en 

672 """ 

673 edges = kruskal_mst_edges( 

674 G, 

675 minimum, 

676 weight, 

677 keys=True, 

678 data=True, 

679 ignore_nan=ignore_nan, 

680 partition=partition, 

681 ) 

682 T = G.__class__() # Same graph class as G 

683 T.graph.update(G.graph) 

684 T.add_nodes_from(G.nodes.items()) 

685 T.add_edges_from(edges) 

686 return T 

687 

688 

689@nx._dispatchable(preserve_all_attrs=True, returns_graph=True) 

690def maximum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): 

691 """Returns a maximum spanning tree or forest on an undirected graph `G`. 

692 

693 Parameters 

694 ---------- 

695 G : undirected graph 

696 An undirected graph. If `G` is connected, then the algorithm finds a 

697 spanning tree. Otherwise, a spanning forest is found. 

698 

699 weight : str 

700 Data key to use for edge weights. 

701 

702 algorithm : string 

703 The algorithm to use when finding a maximum spanning tree. Valid 

704 choices are 'kruskal', 'prim', or 'boruvka'. The default is 

705 'kruskal'. 

706 

707 ignore_nan : bool (default: False) 

708 If a NaN is found as an edge weight normally an exception is raised. 

709 If `ignore_nan is True` then that edge is ignored instead. 

710 

711 

712 Returns 

713 ------- 

714 G : NetworkX Graph 

715 A maximum spanning tree or forest. 

716 

717 

718 Examples 

719 -------- 

720 >>> G = nx.cycle_graph(4) 

721 >>> G.add_edge(0, 3, weight=2) 

722 >>> T = nx.maximum_spanning_tree(G) 

723 >>> sorted(T.edges(data=True)) 

724 [(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})] 

725 

726 

727 Notes 

728 ----- 

729 For Borůvka's algorithm, each edge must have a weight attribute, and 

730 each edge weight must be distinct. 

731 

732 For the other algorithms, if the graph edges do not have a weight 

733 attribute a default weight of 1 will be used. 

734 

735 There may be more than one tree with the same minimum or maximum weight. 

736 See :mod:`networkx.tree.recognition` for more detailed definitions. 

737 

738 Isolated nodes with self-loops are in the tree as edgeless isolated nodes. 

739 

740 """ 

741 edges = maximum_spanning_edges( 

742 G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan 

743 ) 

744 edges = list(edges) 

745 T = G.__class__() # Same graph class as G 

746 T.graph.update(G.graph) 

747 T.add_nodes_from(G.nodes.items()) 

748 T.add_edges_from(edges) 

749 return T 

750 

751 

752@py_random_state(3) 

753@nx._dispatchable(preserve_edge_attrs=True, returns_graph=True) 

754def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None): 

755 """ 

756 Sample a random spanning tree using the edges weights of `G`. 

757 

758 This function supports two different methods for determining the 

759 probability of the graph. If ``multiplicative=True``, the probability 

760 is based on the product of edge weights, and if ``multiplicative=False`` 

761 it is based on the sum of the edge weight. However, since it is 

762 easier to determine the total weight of all spanning trees for the 

763 multiplicative version, that is significantly faster and should be used if 

764 possible. Additionally, setting `weight` to `None` will cause a spanning tree 

765 to be selected with uniform probability. 

766 

767 The function uses algorithm A8 in [1]_ . 

768 

769 Parameters 

770 ---------- 

771 G : nx.Graph 

772 An undirected version of the original graph. 

773 

774 weight : string 

775 The edge key for the edge attribute holding edge weight. 

776 

777 multiplicative : bool, default=True 

778 If `True`, the probability of each tree is the product of its edge weight 

779 over the sum of the product of all the spanning trees in the graph. If 

780 `False`, the probability is the sum of its edge weight over the sum of 

781 the sum of weights for all spanning trees in the graph. 

782 

783 seed : integer, random_state, or None (default) 

784 Indicator of random number generation state. 

785 See :ref:`Randomness<randomness>`. 

786 

787 Returns 

788 ------- 

789 nx.Graph 

790 A spanning tree using the distribution defined by the weight of the tree. 

791 

792 References 

793 ---------- 

794 .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of 

795 Algorithms, 11 (1990), pp. 185–207 

796 """ 

797 

798 def find_node(merged_nodes, node): 

799 """ 

800 We can think of clusters of contracted nodes as having one 

801 representative in the graph. Each node which is not in merged_nodes 

802 is still its own representative. Since a representative can be later 

803 contracted, we need to recursively search though the dict to find 

804 the final representative, but once we know it we can use path 

805 compression to speed up the access of the representative for next time. 

806 

807 This cannot be replaced by the standard NetworkX union_find since that 

808 data structure will merge nodes with less representing nodes into the 

809 one with more representing nodes but this function requires we merge 

810 them using the order that contract_edges contracts using. 

811 

812 Parameters 

813 ---------- 

814 merged_nodes : dict 

815 The dict storing the mapping from node to representative 

816 node 

817 The node whose representative we seek 

818 

819 Returns 

820 ------- 

821 The representative of the `node` 

822 """ 

823 if node not in merged_nodes: 

824 return node 

825 else: 

826 rep = find_node(merged_nodes, merged_nodes[node]) 

827 merged_nodes[node] = rep 

828 return rep 

829 

830 def prepare_graph(): 

831 """ 

832 For the graph `G`, remove all edges not in the set `V` and then 

833 contract all edges in the set `U`. 

834 

835 Returns 

836 ------- 

837 A copy of `G` which has had all edges not in `V` removed and all edges 

838 in `U` contracted. 

839 """ 

840 

841 # The result is a MultiGraph version of G so that parallel edges are 

842 # allowed during edge contraction 

843 result = nx.MultiGraph(incoming_graph_data=G) 

844 

845 # Remove all edges not in V 

846 edges_to_remove = set(result.edges()).difference(V) 

847 result.remove_edges_from(edges_to_remove) 

848 

849 # Contract all edges in U 

850 # 

851 # Imagine that you have two edges to contract and they share an 

852 # endpoint like this: 

853 # [0] ----- [1] ----- [2] 

854 # If we contract (0, 1) first, the contraction function will always 

855 # delete the second node it is passed so the resulting graph would be 

856 # [0] ----- [2] 

857 # and edge (1, 2) no longer exists but (0, 2) would need to be contracted 

858 # in its place now. That is why I use the below dict as a merge-find 

859 # data structure with path compression to track how the nodes are merged. 

860 merged_nodes = {} 

861 

862 for u, v in U: 

863 u_rep = find_node(merged_nodes, u) 

864 v_rep = find_node(merged_nodes, v) 

865 # We cannot contract a node with itself 

866 if u_rep == v_rep: 

867 continue 

868 nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False) 

869 merged_nodes[v_rep] = u_rep 

870 

871 return merged_nodes, result 

872 

873 def spanning_tree_total_weight(G, weight): 

874 """ 

875 Find the sum of weights of the spanning trees of `G` using the 

876 appropriate `method`. 

877 

878 This is easy if the chosen method is 'multiplicative', since we can 

879 use Kirchhoff's Tree Matrix Theorem directly. However, with the 

880 'additive' method, this process is slightly more complex and less 

881 computationally efficient as we have to find the number of spanning 

882 trees which contain each possible edge in the graph. 

883 

884 Parameters 

885 ---------- 

886 G : NetworkX Graph 

887 The graph to find the total weight of all spanning trees on. 

888 

889 weight : string 

890 The key for the weight edge attribute of the graph. 

891 

892 Returns 

893 ------- 

894 float 

895 The sum of either the multiplicative or additive weight for all 

896 spanning trees in the graph. 

897 """ 

898 if multiplicative: 

899 return number_of_spanning_trees(G, weight=weight) 

900 else: 

901 # There are two cases for the total spanning tree additive weight. 

902 # 1. There is one edge in the graph. Then the only spanning tree is 

903 # that edge itself, which will have a total weight of that edge 

904 # itself. 

905 if G.number_of_edges() == 1: 

906 return G.edges(data=weight).__iter__().__next__()[2] 

907 # 2. There are no edges or two or more edges in the graph. Then, we find the 

908 # total weight of the spanning trees using the formula in the 

909 # reference paper: take the weight of each edge and multiply it by 

910 # the number of spanning trees which include that edge. This 

911 # can be accomplished by contracting the edge and finding the 

912 # multiplicative total spanning tree weight if the weight of each edge 

913 # is assumed to be 1, which is conveniently built into networkx already, 

914 # by calling number_of_spanning_trees with weight=None. 

915 # Note that with no edges the returned value is just zero. 

916 else: 

917 total = 0 

918 for u, v, w in G.edges(data=weight): 

919 total += w * nx.number_of_spanning_trees( 

920 nx.contracted_edge(G, edge=(u, v), self_loops=False), 

921 weight=None, 

922 ) 

923 return total 

924 

925 if G.number_of_nodes() < 2: 

926 # no edges in the spanning tree 

927 return nx.empty_graph(G.nodes) 

928 

929 U = set() 

930 st_cached_value = 0 

931 V = set(G.edges()) 

932 shuffled_edges = list(G.edges()) 

933 seed.shuffle(shuffled_edges) 

934 

935 for u, v in shuffled_edges: 

936 e_weight = G[u][v][weight] if weight is not None else 1 

937 node_map, prepared_G = prepare_graph() 

938 G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight) 

939 # Add the edge to U so that we can compute the total tree weight 

940 # assuming we include that edge 

941 # Now, if (u, v) cannot exist in G because it is fully contracted out 

942 # of existence, then it by definition cannot influence G_e's Kirchhoff 

943 # value. But, we also cannot pick it. 

944 rep_edge = (find_node(node_map, u), find_node(node_map, v)) 

945 # Check to see if the 'representative edge' for the current edge is 

946 # in prepared_G. If so, then we can pick it. 

947 if rep_edge in prepared_G.edges: 

948 prepared_G_e = nx.contracted_edge( 

949 prepared_G, edge=rep_edge, self_loops=False 

950 ) 

951 G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight) 

952 if multiplicative: 

953 threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight 

954 else: 

955 numerator = (st_cached_value + e_weight) * nx.number_of_spanning_trees( 

956 prepared_G_e 

957 ) + G_e_total_tree_weight 

958 denominator = ( 

959 st_cached_value * nx.number_of_spanning_trees(prepared_G) 

960 + G_total_tree_weight 

961 ) 

962 threshold = numerator / denominator 

963 else: 

964 threshold = 0.0 

965 z = seed.uniform(0.0, 1.0) 

966 if z > threshold: 

967 # Remove the edge from V since we did not pick it. 

968 V.remove((u, v)) 

969 else: 

970 # Add the edge to U since we picked it. 

971 st_cached_value += e_weight 

972 U.add((u, v)) 

973 # If we decide to keep an edge, it may complete the spanning tree. 

974 if len(U) == G.number_of_nodes() - 1: 

975 spanning_tree = nx.Graph() 

976 spanning_tree.add_edges_from(U) 

977 return spanning_tree 

978 raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!") 

979 

980 

981class SpanningTreeIterator: 

982 """ 

983 Iterate over all spanning trees of a graph in either increasing or 

984 decreasing cost. 

985 

986 Notes 

987 ----- 

988 This iterator uses the partition scheme from [1]_ (included edges, 

989 excluded edges and open edges) as well as a modified Kruskal's Algorithm 

990 to generate minimum spanning trees which respect the partition of edges. 

991 For spanning trees with the same weight, ties are broken arbitrarily. 

992 

993 References 

994 ---------- 

995 .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning 

996 trees in order of increasing cost, Pesquisa Operacional, 2005-08, 

997 Vol. 25 (2), p. 219-229, 

998 https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en 

999 """ 

1000 

1001 @dataclass(order=True) 

1002 class Partition: 

1003 """ 

1004 This dataclass represents a partition and stores a dict with the edge 

1005 data and the weight of the minimum spanning tree of the partition dict. 

1006 """ 

1007 

1008 mst_weight: float 

1009 partition_dict: dict = field(compare=False) 

1010 

1011 def __copy__(self): 

1012 return SpanningTreeIterator.Partition( 

1013 self.mst_weight, self.partition_dict.copy() 

1014 ) 

1015 

1016 def __init__(self, G, weight="weight", minimum=True, ignore_nan=False): 

1017 """ 

1018 Initialize the iterator 

1019 

1020 Parameters 

1021 ---------- 

1022 G : nx.Graph 

1023 The directed graph which we need to iterate trees over 

1024 

1025 weight : String, default = "weight" 

1026 The edge attribute used to store the weight of the edge 

1027 

1028 minimum : bool, default = True 

1029 Return the trees in increasing order while true and decreasing order 

1030 while false. 

1031 

1032 ignore_nan : bool, default = False 

1033 If a NaN is found as an edge weight normally an exception is raised. 

1034 If `ignore_nan is True` then that edge is ignored instead. 

1035 """ 

1036 self.G = G.copy() 

1037 self.G.__networkx_cache__ = None # Disable caching 

1038 self.weight = weight 

1039 self.minimum = minimum 

1040 self.ignore_nan = ignore_nan 

1041 # Randomly create a key for an edge attribute to hold the partition data 

1042 self.partition_key = ( 

1043 "SpanningTreeIterators super secret partition attribute name" 

1044 ) 

1045 

1046 def __iter__(self): 

1047 """ 

1048 Returns 

1049 ------- 

1050 SpanningTreeIterator 

1051 The iterator object for this graph 

1052 """ 

1053 self.partition_queue = PriorityQueue() 

1054 self._clear_partition(self.G) 

1055 mst_weight = partition_spanning_tree( 

1056 self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan 

1057 ).size(weight=self.weight) 

1058 

1059 self.partition_queue.put( 

1060 self.Partition(mst_weight if self.minimum else -mst_weight, {}) 

1061 ) 

1062 

1063 return self 

1064 

1065 def __next__(self): 

1066 """ 

1067 Returns 

1068 ------- 

1069 (multi)Graph 

1070 The spanning tree of next greatest weight, which ties broken 

1071 arbitrarily. 

1072 """ 

1073 if self.partition_queue.empty(): 

1074 del self.G, self.partition_queue 

1075 raise StopIteration 

1076 

1077 partition = self.partition_queue.get() 

1078 self._write_partition(partition) 

1079 next_tree = partition_spanning_tree( 

1080 self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan 

1081 ) 

1082 self._partition(partition, next_tree) 

1083 

1084 self._clear_partition(next_tree) 

1085 return next_tree 

1086 

1087 def _partition(self, partition, partition_tree): 

1088 """ 

1089 Create new partitions based of the minimum spanning tree of the 

1090 current minimum partition. 

1091 

1092 Parameters 

1093 ---------- 

1094 partition : Partition 

1095 The Partition instance used to generate the current minimum spanning 

1096 tree. 

1097 partition_tree : nx.Graph 

1098 The minimum spanning tree of the input partition. 

1099 """ 

1100 # create two new partitions with the data from the input partition dict 

1101 p1 = self.Partition(0, partition.partition_dict.copy()) 

1102 p2 = self.Partition(0, partition.partition_dict.copy()) 

1103 for e in partition_tree.edges: 

1104 # determine if the edge was open or included 

1105 if e not in partition.partition_dict: 

1106 # This is an open edge 

1107 p1.partition_dict[e] = EdgePartition.EXCLUDED 

1108 p2.partition_dict[e] = EdgePartition.INCLUDED 

1109 

1110 self._write_partition(p1) 

1111 p1_mst = partition_spanning_tree( 

1112 self.G, 

1113 self.minimum, 

1114 self.weight, 

1115 self.partition_key, 

1116 self.ignore_nan, 

1117 ) 

1118 p1_mst_weight = p1_mst.size(weight=self.weight) 

1119 if nx.is_connected(p1_mst): 

1120 p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight 

1121 self.partition_queue.put(p1.__copy__()) 

1122 p1.partition_dict = p2.partition_dict.copy() 

1123 

1124 def _write_partition(self, partition): 

1125 """ 

1126 Writes the desired partition into the graph to calculate the minimum 

1127 spanning tree. 

1128 

1129 Parameters 

1130 ---------- 

1131 partition : Partition 

1132 A Partition dataclass describing a partition on the edges of the 

1133 graph. 

1134 """ 

1135 

1136 partition_dict = partition.partition_dict 

1137 partition_key = self.partition_key 

1138 G = self.G 

1139 

1140 edges = ( 

1141 G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True) 

1142 ) 

1143 for *e, d in edges: 

1144 d[partition_key] = partition_dict.get(tuple(e), EdgePartition.OPEN) 

1145 

1146 def _clear_partition(self, G): 

1147 """ 

1148 Removes partition data from the graph 

1149 """ 

1150 partition_key = self.partition_key 

1151 edges = ( 

1152 G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True) 

1153 ) 

1154 for *e, d in edges: 

1155 if partition_key in d: 

1156 del d[partition_key] 

1157 

1158 

1159@nx._dispatchable(edge_attrs="weight") 

1160def number_of_spanning_trees(G, *, root=None, weight=None): 

1161 """Returns the number of spanning trees in `G`. 

1162 

1163 A spanning tree for an undirected graph is a tree that connects 

1164 all nodes in the graph. For a directed graph, the analog of a 

1165 spanning tree is called a (spanning) arborescence. The arborescence 

1166 includes a unique directed path from the `root` node to each other node. 

1167 The graph must be weakly connected, and the root must be a node 

1168 that includes all nodes as successors [3]_. Note that to avoid 

1169 discussing sink-roots and reverse-arborescences, we have reversed 

1170 the edge orientation from [3]_ and use the in-degree laplacian. 

1171 

1172 This function (when `weight` is `None`) returns the number of 

1173 spanning trees for an undirected graph and the number of 

1174 arborescences from a single root node for a directed graph. 

1175 When `weight` is the name of an edge attribute which holds the 

1176 weight value of each edge, the function returns the sum over 

1177 all trees of the multiplicative weight of each tree. That is, 

1178 the weight of the tree is the product of its edge weights. 

1179 

1180 Kirchoff's Tree Matrix Theorem states that any cofactor of the 

1181 Laplacian matrix of a graph is the number of spanning trees in the 

1182 graph. (Here we use cofactors for a diagonal entry so that the 

1183 cofactor becomes the determinant of the matrix with one row 

1184 and its matching column removed.) For a weighted Laplacian matrix, 

1185 the cofactor is the sum across all spanning trees of the 

1186 multiplicative weight of each tree. That is, the weight of each 

1187 tree is the product of its edge weights. The theorem is also 

1188 known as Kirchhoff's theorem [1]_ and the Matrix-Tree theorem [2]_. 

1189 

1190 For directed graphs, a similar theorem (Tutte's Theorem) holds with 

1191 the cofactor chosen to be the one with row and column removed that 

1192 correspond to the root. The cofactor is the number of arborescences 

1193 with the specified node as root. And the weighted version gives the 

1194 sum of the arborescence weights with root `root`. The arborescence 

1195 weight is the product of its edge weights. 

1196 

1197 Parameters 

1198 ---------- 

1199 G : NetworkX graph 

1200 

1201 root : node 

1202 A node in the directed graph `G` that has all nodes as descendants. 

1203 (This is ignored for undirected graphs.) 

1204 

1205 weight : string or None, optional (default=None) 

1206 The name of the edge attribute holding the edge weight. 

1207 If `None`, then each edge is assumed to have a weight of 1. 

1208 

1209 Returns 

1210 ------- 

1211 Number 

1212 Undirected graphs: 

1213 The number of spanning trees of the graph `G`. 

1214 Or the sum of all spanning tree weights of the graph `G` 

1215 where the weight of a tree is the product of its edge weights. 

1216 Directed graphs: 

1217 The number of arborescences of `G` rooted at node `root`. 

1218 Or the sum of all arborescence weights of the graph `G` with 

1219 specified root where the weight of an arborescence is the product 

1220 of its edge weights. 

1221 

1222 Raises 

1223 ------ 

1224 NetworkXPointlessConcept 

1225 If `G` does not contain any nodes. 

1226 

1227 NetworkXError 

1228 If the graph `G` is directed and the root node 

1229 is not specified or is not in G. 

1230 

1231 Examples 

1232 -------- 

1233 >>> G = nx.complete_graph(5) 

1234 >>> round(nx.number_of_spanning_trees(G)) 

1235 125 

1236 

1237 >>> G = nx.Graph() 

1238 >>> G.add_edge(1, 2, weight=2) 

1239 >>> G.add_edge(1, 3, weight=1) 

1240 >>> G.add_edge(2, 3, weight=1) 

1241 >>> round(nx.number_of_spanning_trees(G, weight="weight")) 

1242 5 

1243 

1244 Notes 

1245 ----- 

1246 Self-loops are excluded. Multi-edges are contracted in one edge 

1247 equal to the sum of the weights. 

1248 

1249 References 

1250 ---------- 

1251 .. [1] Wikipedia 

1252 "Kirchhoff's theorem." 

1253 https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem 

1254 .. [2] Kirchhoff, G. R. 

1255 Über die Auflösung der Gleichungen, auf welche man 

1256 bei der Untersuchung der linearen Vertheilung 

1257 Galvanischer Ströme geführt wird 

1258 Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847. 

1259 .. [3] Margoliash, J. 

1260 "Matrix-Tree Theorem for Directed Graphs" 

1261 https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf 

1262 """ 

1263 import numpy as np 

1264 

1265 if len(G) == 0: 

1266 raise nx.NetworkXPointlessConcept("Graph G must contain at least one node.") 

1267 

1268 # undirected G 

1269 if not nx.is_directed(G): 

1270 if not nx.is_connected(G): 

1271 return 0 

1272 G_laplacian = nx.laplacian_matrix(G, weight=weight).toarray() 

1273 return float(np.linalg.det(G_laplacian[1:, 1:])) 

1274 

1275 # directed G 

1276 if root is None: 

1277 raise nx.NetworkXError("Input `root` must be provided when G is directed") 

1278 if root not in G: 

1279 raise nx.NetworkXError("The node root is not in the graph G.") 

1280 if not nx.is_weakly_connected(G): 

1281 return 0 

1282 

1283 # Compute directed Laplacian matrix 

1284 nodelist = [root] + [n for n in G if n != root] 

1285 A = nx.adjacency_matrix(G, nodelist=nodelist, weight=weight) 

1286 D = np.diag(A.sum(axis=0)) 

1287 G_laplacian = D - A 

1288 

1289 # Compute number of spanning trees 

1290 return float(np.linalg.det(G_laplacian[1:, 1:]))