Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/algorithms/centrality/betweenness_subset.py: 20%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

60 statements  

1"""Betweenness centrality measures for subsets of nodes.""" 

2 

3import networkx as nx 

4from networkx.algorithms.centrality.betweenness import ( 

5 _add_edge_keys, 

6 _rescale, 

7) 

8from networkx.algorithms.centrality.betweenness import ( 

9 _single_source_dijkstra_path_basic as dijkstra, 

10) 

11from networkx.algorithms.centrality.betweenness import ( 

12 _single_source_shortest_path_basic as shortest_path, 

13) 

14 

15__all__ = [ 

16 "betweenness_centrality_subset", 

17 "edge_betweenness_centrality_subset", 

18] 

19 

20 

21@nx._dispatchable(edge_attrs="weight") 

22def betweenness_centrality_subset(G, sources, targets, normalized=False, weight=None): 

23 r"""Compute betweenness centrality for a subset of nodes. 

24 

25 .. math:: 

26 

27 c_B(v) = \frac{1}{P} \sum_{s \in S, t \in T} \frac{\sigma(s, t | v)}{\sigma(s, t)} 

28 

29 where $S$ is the set of sources, $T$ is the set of targets, 

30 $\sigma(s, t)$ is the number of shortest $(s, t)$-paths, 

31 and $\sigma(s, t | v)$ is the number of those paths 

32 passing through some node $v$ other than $s$ and $t$. 

33 If $s = t$, $\sigma(s, t) = 1$, 

34 and if $v \in \{s, t\}$, $\sigma(s, t | v) = 0$ [2]_. 

35 $P$ is a normalization factor representing the number of pairs of nodes 

36 that have counted shortest paths. Its value depends on the values of `normalized` 

37 and `endpoints`, and on whether the graph is directed (see Notes). It can 

38 be set to ``1`` with ``normalized=False``. 

39 

40 Parameters 

41 ---------- 

42 G : graph 

43 A NetworkX graph. 

44 

45 sources: list of nodes 

46 Nodes to use as sources for shortest paths in betweenness. 

47 

48 targets: list of nodes 

49 Nodes to use as targets for shortest paths in betweenness. 

50 

51 normalized : bool, optional (default=False) 

52 If `True`, the betweenness values are rescaled by dividing by the number of 

53 possible $(s, t)$-pairs in the graph. 

54 

55 weight : None or string, optional (default=None) 

56 If `None`, all edge weights are 1. 

57 Otherwise holds the name of the edge attribute used as weight. 

58 Weights are used to calculate weighted shortest paths, so they are 

59 interpreted as distances. 

60 

61 Returns 

62 ------- 

63 nodes : dict 

64 Dictionary of nodes with betweenness centrality as the value. 

65 

66 See Also 

67 -------- 

68 betweenness_centrality 

69 edge_betweenness_centrality 

70 edge_betweenness_centrality_subset 

71 load_centrality 

72 

73 Notes 

74 ----- 

75 The basic algorithm is from [1]_. 

76 

77 For weighted graphs the edge weights must be greater than zero. 

78 Zero edge weights can produce an infinite number of equal length 

79 paths between pairs of nodes. 

80 

81 The normalization might seem a little strange but it is 

82 designed to make betweenness_centrality(G) be the same as 

83 betweenness_centrality_subset(G, sources=G, targets=G, normalized=True). 

84 

85 The total number of paths between source and target is counted 

86 differently for directed and undirected graphs. Directed paths 

87 are easy to count. Undirected paths are tricky: should a path 

88 from ``u`` to ``v`` count as 1 undirected path or as 2 directed paths? 

89 We are only counting the paths in one direction. They are 

90 undirected paths but we are counting them in a directed way. 

91 To count them as undirected paths, each should count as half a path. 

92 

93 References 

94 ---------- 

95 .. [1] Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. 

96 Journal of Mathematical Sociology 25(2):163-177, 2001. 

97 https://doi.org/10.1080/0022250X.2001.9990249 

98 .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness 

99 Centrality and their Generic Computation. 

100 Social Networks 30(2):136-145, 2008. 

101 https://doi.org/10.1016/j.socnet.2007.11.001 

102 """ 

103 b = dict.fromkeys(G, 0.0) # b[v]=0 for v in G 

104 for s in sources: 

105 # single source shortest paths 

106 if weight is None: # use BFS 

107 S, P, sigma, _ = shortest_path(G, s) 

108 else: # use Dijkstra's algorithm 

109 S, P, sigma, _ = dijkstra(G, s, weight) 

110 b = _accumulate_subset(b, S, P, sigma, s, targets) 

111 b = _rescale( 

112 b, len(G), normalized=normalized, directed=G.is_directed(), endpoints=False 

113 ) 

114 return b 

115 

116 

117@nx._dispatchable(edge_attrs="weight") 

118def edge_betweenness_centrality_subset( 

119 G, sources, targets, normalized=False, weight=None 

120): 

121 r"""Compute betweenness centrality for edges for a subset of nodes. 

122 

123 .. math:: 

124 

125 c_B(e) = \frac{1}{P} \sum_{s \in S, t \in T} \frac{\sigma(s, t | e)}{\sigma(s, t)} 

126 

127 where $S$ is the set of sources, $T$ is the set of targets, 

128 $\sigma(s, t)$ is the number of shortest $(s, t)$-paths, 

129 and $\sigma(s, t | e)$ is the number of those paths 

130 passing through edge $e$ [1]_. 

131 $P$ is a normalization factor representing the number of pairs of nodes 

132 that have counted shortest paths. Its value depends on the values of `normalized` 

133 and `endpoints`, and on whether the graph is directed (see Notes). It can 

134 be set to ``1`` with ``normalized=False``. 

135 

136 Parameters 

137 ---------- 

138 G : graph 

139 A networkx graph. 

140 

141 sources: list of nodes 

142 Nodes to use as sources for shortest paths in betweenness. 

143 

144 targets: list of nodes 

145 Nodes to use as targets for shortest paths in betweenness. 

146 

147 normalized : bool, optional (default=False) 

148 If `True`, the betweenness values are rescaled by dividing by the number of 

149 possible $(s, t)$-pairs in the graph. 

150 

151 weight : None or string, optional (default=None) 

152 If `None`, all edge weights are 1. 

153 Otherwise holds the name of the edge attribute used as weight. 

154 Weights are used to calculate weighted shortest paths, so they are 

155 interpreted as distances. 

156 

157 Returns 

158 ------- 

159 edges : dict 

160 Dictionary of edges with betweenness centrality as the value. 

161 

162 See Also 

163 -------- 

164 betweenness_centrality 

165 betweenness_centrality_subset 

166 edge_betweenness_centrality 

167 edge_load 

168 

169 Notes 

170 ----- 

171 The basic algorithm is from [1]_. 

172 

173 For weighted graphs the edge weights must be greater than zero. 

174 Zero edge weights can produce an infinite number of equal length 

175 paths between pairs of nodes. 

176 

177 The normalization might seem a little strange but it is the same 

178 as in edge_betweenness_centrality() and is designed to make 

179 edge_betweenness_centrality(G) be the same as 

180 edge_betweenness_centrality_subset(G, sources=G, targets=G, normalized=True). 

181 

182 References 

183 ---------- 

184 .. [1] Ulrik Brandes: On Variants of Shortest-Path Betweenness 

185 Centrality and their Generic Computation. 

186 Social Networks 30(2):136-145, 2008. 

187 https://doi.org/10.1016/j.socnet.2007.11.001 

188 """ 

189 b = dict.fromkeys(G, 0.0) # b[v]=0 for v in G 

190 b.update(dict.fromkeys(G.edges(), 0.0)) # b[e] for e in G.edges() 

191 for s in sources: 

192 # single source shortest paths 

193 if weight is None: # use BFS 

194 S, P, sigma, _ = shortest_path(G, s) 

195 else: # use Dijkstra's algorithm 

196 S, P, sigma, _ = dijkstra(G, s, weight) 

197 b = _accumulate_edges_subset(b, S, P, sigma, s, targets) 

198 for n in G: # remove nodes to only return edges 

199 del b[n] 

200 b = _rescale(b, len(G), normalized=normalized, directed=G.is_directed()) 

201 if G.is_multigraph(): 

202 b = _add_edge_keys(G, b, weight=weight) 

203 return b 

204 

205 

206def _accumulate_subset(betweenness, S, P, sigma, s, targets): 

207 delta = dict.fromkeys(S, 0.0) 

208 target_set = set(targets) - {s} 

209 while S: 

210 w = S.pop() 

211 if w in target_set: 

212 coeff = (delta[w] + 1.0) / sigma[w] 

213 else: 

214 coeff = delta[w] / sigma[w] 

215 for v in P[w]: 

216 delta[v] += sigma[v] * coeff 

217 if w != s: 

218 betweenness[w] += delta[w] 

219 return betweenness 

220 

221 

222def _accumulate_edges_subset(betweenness, S, P, sigma, s, targets): 

223 """edge_betweenness_centrality_subset helper.""" 

224 delta = dict.fromkeys(S, 0) 

225 target_set = set(targets) 

226 while S: 

227 w = S.pop() 

228 for v in P[w]: 

229 if w in target_set: 

230 c = (sigma[v] / sigma[w]) * (1.0 + delta[w]) 

231 else: 

232 c = delta[w] / len(P[w]) 

233 if (v, w) not in betweenness: 

234 betweenness[(w, v)] += c 

235 else: 

236 betweenness[(v, w)] += c 

237 delta[v] += c 

238 if w != s: 

239 betweenness[w] += delta[w] 

240 return betweenness