Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/networkx/generators/expanders.py: 20%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

103 statements  

1"""Provides explicit constructions of expander graphs.""" 

2 

3import itertools 

4 

5import networkx as nx 

6 

7__all__ = [ 

8 "margulis_gabber_galil_graph", 

9 "chordal_cycle_graph", 

10 "paley_graph", 

11 "maybe_regular_expander", 

12 "maybe_regular_expander_graph", 

13 "is_regular_expander", 

14 "random_regular_expander_graph", 

15] 

16 

17 

18# Other discrete torus expanders can be constructed by using the following edge 

19# sets. For more information, see Chapter 4, "Expander Graphs", in 

20# "Pseudorandomness", by Salil Vadhan. 

21# 

22# For a directed expander, add edges from (x, y) to: 

23# 

24# (x, y), 

25# ((x + 1) % n, y), 

26# (x, (y + 1) % n), 

27# (x, (x + y) % n), 

28# (-y % n, x) 

29# 

30# For an undirected expander, add the reverse edges. 

31# 

32# Also appearing in the paper of Gabber and Galil: 

33# 

34# (x, y), 

35# (x, (x + y) % n), 

36# (x, (x + y + 1) % n), 

37# ((x + y) % n, y), 

38# ((x + y + 1) % n, y) 

39# 

40# and: 

41# 

42# (x, y), 

43# ((x + 2*y) % n, y), 

44# ((x + (2*y + 1)) % n, y), 

45# ((x + (2*y + 2)) % n, y), 

46# (x, (y + 2*x) % n), 

47# (x, (y + (2*x + 1)) % n), 

48# (x, (y + (2*x + 2)) % n), 

49# 

50@nx._dispatchable(graphs=None, returns_graph=True) 

51def margulis_gabber_galil_graph(n, create_using=None): 

52 r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes. 

53 

54 The undirected MultiGraph is regular with degree `8`. Nodes are integer 

55 pairs. The second-largest eigenvalue of the adjacency matrix of the graph 

56 is at most `5 \sqrt{2}`, regardless of `n`. 

57 

58 Parameters 

59 ---------- 

60 n : int 

61 Determines the number of nodes in the graph: `n^2`. 

62 create_using : NetworkX graph constructor, optional (default MultiGraph) 

63 Graph type to create. If graph instance, then cleared before populated. 

64 

65 Returns 

66 ------- 

67 G : graph 

68 The constructed undirected multigraph. 

69 

70 Raises 

71 ------ 

72 NetworkXError 

73 If the graph is directed or not a multigraph. 

74 

75 """ 

76 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) 

77 if G.is_directed() or not G.is_multigraph(): 

78 msg = "`create_using` must be an undirected multigraph." 

79 raise nx.NetworkXError(msg) 

80 

81 for x, y in itertools.product(range(n), repeat=2): 

82 for u, v in ( 

83 ((x + 2 * y) % n, y), 

84 ((x + (2 * y + 1)) % n, y), 

85 (x, (y + 2 * x) % n), 

86 (x, (y + (2 * x + 1)) % n), 

87 ): 

88 G.add_edge((x, y), (u, v)) 

89 G.graph["name"] = f"margulis_gabber_galil_graph({n})" 

90 return G 

91 

92 

93@nx._dispatchable(graphs=None, returns_graph=True) 

94def chordal_cycle_graph(p, create_using=None): 

95 """Returns the chordal cycle graph on `p` nodes. 

96 

97 The returned graph is a cycle graph on `p` nodes with chords joining each 

98 vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit) 

99 3-regular expander [1]_ when viewed as a simple graph. The default return 

100 type is a MultiGraph, which has 6-regular nodes due to the symmetric nature 

101 of the edge additions. Use ``nx.Graph(nx.chordal_cycle_graph(p))`` to obtain 

102 the 3-regular simple graph. 

103 

104 `p` *must* be a prime number. 

105 

106 Parameters 

107 ---------- 

108 p : a prime number 

109 

110 The number of vertices in the graph. This also indicates where the 

111 chordal edges in the cycle will be created. 

112 

113 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

114 Graph type to create. If graph instance, then cleared before populated. 

115 

116 Returns 

117 ------- 

118 G : graph 

119 The constructed undirected multigraph. 

120 

121 Raises 

122 ------ 

123 NetworkXError 

124 

125 If `create_using` indicates directed or not a multigraph. 

126 

127 References 

128 ---------- 

129 

130 .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and 

131 invariant measures", volume 125 of Progress in Mathematics. 

132 Birkhäuser Verlag, Basel, 1994. 

133 

134 """ 

135 G = nx.empty_graph(0, create_using, default=nx.MultiGraph) 

136 if G.is_directed() or not G.is_multigraph(): 

137 msg = "`create_using` must be an undirected multigraph." 

138 raise nx.NetworkXError(msg) 

139 

140 for x in range(p): 

141 left = (x - 1) % p 

142 right = (x + 1) % p 

143 # Here we apply Fermat's Little Theorem to compute the multiplicative 

144 # inverse of x in Z/pZ. By Fermat's Little Theorem, 

145 # 

146 # x^p = x (mod p) 

147 # 

148 # Therefore, 

149 # 

150 # x * x^(p - 2) = 1 (mod p) 

151 # 

152 # The number 0 is a special case: we just let its inverse be itself. 

153 chord = pow(x, p - 2, p) if x > 0 else 0 

154 for y in (left, right, chord): 

155 G.add_edge(x, y) 

156 G.graph["name"] = f"chordal_cycle_graph({p})" 

157 return G 

158 

159 

160@nx._dispatchable(graphs=None, returns_graph=True) 

161def paley_graph(p, create_using=None): 

162 r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes. 

163 

164 The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$ 

165 if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$. 

166 

167 If $p \equiv 1 \pmod 4$, $-1$ is a square in 

168 $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and 

169 only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric. 

170 

171 If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ 

172 and therefore either $x-y$ or $y-x$ is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both. 

173 

174 Note that a more general definition of Paley graphs extends this construction 

175 to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of 

176 $\mathbb{Z}/p\mathbb{Z}$. 

177 This construction requires to compute squares in general finite fields and is 

178 not what is implemented here (i.e `paley_graph(25)` does not return the true 

179 Paley graph associated with $5^2$). 

180 

181 Parameters 

182 ---------- 

183 p : int, an odd prime number. 

184 

185 create_using : NetworkX graph constructor, optional (default=nx.Graph) 

186 Graph type to create. If graph instance, then cleared before populated. 

187 

188 Returns 

189 ------- 

190 G : graph 

191 The constructed directed graph. 

192 

193 Raises 

194 ------ 

195 NetworkXError 

196 If the graph is a multigraph. 

197 

198 References 

199 ---------- 

200 Chapter 13 in B. Bollobas, Random Graphs. Second edition. 

201 Cambridge Studies in Advanced Mathematics, 73. 

202 Cambridge University Press, Cambridge (2001). 

203 """ 

204 G = nx.empty_graph(0, create_using, default=nx.DiGraph) 

205 if G.is_multigraph(): 

206 msg = "`create_using` cannot be a multigraph." 

207 raise nx.NetworkXError(msg) 

208 

209 # Compute the squares in Z/pZ. 

210 # Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ 

211 # when is prime). 

212 square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0} 

213 

214 for x in range(p): 

215 for x2 in square_set: 

216 G.add_edge(x, (x + x2) % p) 

217 G.graph["name"] = f"paley({p})" 

218 return G 

219 

220 

221@nx.utils.decorators.np_random_state("seed") 

222@nx._dispatchable(graphs=None, returns_graph=True) 

223def maybe_regular_expander_graph(n, d, *, create_using=None, max_tries=100, seed=None): 

224 r"""Utility for creating a random regular expander. 

225 

226 Returns a random $d$-regular graph on $n$ nodes which is an expander 

227 graph with very good probability. 

228 

229 Parameters 

230 ---------- 

231 n : int 

232 The number of nodes. 

233 d : int 

234 The degree of each node. 

235 create_using : Graph Instance or Constructor 

236 Indicator of type of graph to return. 

237 If a Graph-type instance, then clear and use it. 

238 If a constructor, call it to create an empty graph. 

239 Use the Graph constructor by default. 

240 max_tries : int. (default: 100) 

241 The number of allowed loops when generating each independent cycle 

242 seed : (default: None) 

243 Seed used to set random number generation state. See :ref`Randomness<randomness>`. 

244 

245 Notes 

246 ----- 

247 The nodes are numbered from $0$ to $n - 1$. 

248 

249 The graph is generated by taking $d / 2$ random independent cycles. 

250 

251 Joel Friedman proved that in this model the resulting 

252 graph is an expander with probability 

253 $1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_ 

254 

255 Examples 

256 -------- 

257 >>> G = nx.maybe_regular_expander_graph(n=200, d=6, seed=8020) 

258 

259 Returns 

260 ------- 

261 G : graph 

262 The constructed undirected graph. 

263 

264 Raises 

265 ------ 

266 NetworkXError 

267 If $d % 2 != 0$ as the degree must be even. 

268 If $n - 1$ is less than $ 2d $ as the graph is complete at most. 

269 If max_tries is reached 

270 

271 See Also 

272 -------- 

273 is_regular_expander 

274 random_regular_expander_graph 

275 

276 References 

277 ---------- 

278 .. [1] Joel Friedman, 

279 A Proof of Alon's Second Eigenvalue Conjecture and Related Problems, 2004 

280 https://arxiv.org/abs/cs/0405020 

281 

282 """ 

283 

284 import numpy as np 

285 

286 if n < 1: 

287 raise nx.NetworkXError("n must be a positive integer") 

288 

289 if not (d >= 2): 

290 raise nx.NetworkXError("d must be greater than or equal to 2") 

291 

292 if not (d % 2 == 0): 

293 raise nx.NetworkXError("d must be even") 

294 

295 if not (n - 1 >= d): 

296 raise nx.NetworkXError( 

297 f"Need n-1>= d to have room for {d // 2} independent cycles with {n} nodes" 

298 ) 

299 

300 G = nx.empty_graph(n, create_using) 

301 

302 if n < 2: 

303 return G 

304 

305 cycles = [] 

306 edges = set() 

307 

308 # Create d / 2 cycles 

309 for i in range(d // 2): 

310 iterations = max_tries 

311 # Make sure the cycles are independent to have a regular graph 

312 while len(edges) != (i + 1) * n: 

313 iterations -= 1 

314 # Faster than random.permutation(n) since there are only 

315 # (n-1)! distinct cycles against n! permutations of size n 

316 cycle = seed.permutation(n - 1).tolist() 

317 cycle.append(n - 1) 

318 

319 new_edges = { 

320 (u, v) 

321 for u, v in nx.utils.pairwise(cycle, cyclic=True) 

322 if (u, v) not in edges and (v, u) not in edges 

323 } 

324 # If the new cycle has no edges in common with previous cycles 

325 # then add it to the list otherwise try again 

326 if len(new_edges) == n: 

327 cycles.append(cycle) 

328 edges.update(new_edges) 

329 

330 if iterations == 0: 

331 msg = "Too many iterations in maybe_regular_expander_graph" 

332 raise nx.NetworkXError(msg) 

333 

334 G.add_edges_from(edges) 

335 

336 return G 

337 

338 

339def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None): 

340 """ 

341 .. deprecated:: 3.6 

342 `maybe_regular_expander` is a deprecated alias 

343 for `maybe_regular_expander_graph`. 

344 Use `maybe_regular_expander_graph` instead. 

345 """ 

346 import warnings 

347 

348 warnings.warn( 

349 "maybe_regular_expander is deprecated, " 

350 "use `maybe_regular_expander_graph` instead.", 

351 category=DeprecationWarning, 

352 stacklevel=2, 

353 ) 

354 return maybe_regular_expander_graph( 

355 n, d, create_using=create_using, max_tries=max_tries, seed=seed 

356 ) 

357 

358 

359@nx.utils.not_implemented_for("directed") 

360@nx.utils.not_implemented_for("multigraph") 

361@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}}) 

362def is_regular_expander(G, *, epsilon=0): 

363 r"""Determines whether the graph G is a regular expander. [1]_ 

364 

365 An expander graph is a sparse graph with strong connectivity properties. 

366 

367 More precisely, this helper checks whether the graph is a 

368 regular $(n, d, \lambda)$-expander with $\lambda$ close to 

369 the Alon-Boppana bound and given by 

370 $\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_ 

371 

372 In the case where $\epsilon = 0$ then if the graph successfully passes the test 

373 it is a Ramanujan graph. [3]_ 

374 

375 A Ramanujan graph has spectral gap almost as large as possible, which makes them 

376 excellent expanders. 

377 

378 Parameters 

379 ---------- 

380 G : NetworkX graph 

381 epsilon : int, float, default=0 

382 

383 Returns 

384 ------- 

385 bool 

386 Whether the given graph is a regular $(n, d, \lambda)$-expander 

387 where $\lambda = 2 \sqrt{d - 1} + \epsilon$. 

388 

389 Examples 

390 -------- 

391 >>> G = nx.random_regular_expander_graph(20, 4) 

392 >>> nx.is_regular_expander(G) 

393 True 

394 

395 See Also 

396 -------- 

397 maybe_regular_expander_graph 

398 random_regular_expander_graph 

399 

400 References 

401 ---------- 

402 .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph 

403 .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound 

404 .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph 

405 

406 """ 

407 

408 import numpy as np 

409 import scipy as sp 

410 

411 if epsilon < 0: 

412 raise nx.NetworkXError("epsilon must be non negative") 

413 

414 if not nx.is_regular(G): 

415 return False 

416 

417 _, d = nx.utils.arbitrary_element(G.degree) 

418 

419 A = nx.adjacency_matrix(G, dtype=float) 

420 lams = sp.sparse.linalg.eigsh(A, which="LM", k=2, return_eigenvectors=False) 

421 

422 # lambda2 is the second biggest eigenvalue 

423 lambda2 = min(lams) 

424 

425 # Use bool() to convert numpy scalar to Python Boolean 

426 return bool(abs(lambda2) < 2 * np.sqrt(d - 1) + epsilon) 

427 

428 

429@nx.utils.decorators.np_random_state("seed") 

430@nx._dispatchable(graphs=None, returns_graph=True) 

431def random_regular_expander_graph( 

432 n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None 

433): 

434 r"""Returns a random regular expander graph on $n$ nodes with degree $d$. 

435 

436 An expander graph is a sparse graph with strong connectivity properties. [1]_ 

437 

438 More precisely the returned graph is a $(n, d, \lambda)$-expander with 

439 $\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_ 

440 

441 In the case where $\epsilon = 0$ it returns a Ramanujan graph. 

442 A Ramanujan graph has spectral gap almost as large as possible, 

443 which makes them excellent expanders. [3]_ 

444 

445 Parameters 

446 ---------- 

447 n : int 

448 The number of nodes. 

449 d : int 

450 The degree of each node. 

451 epsilon : int, float, default=0 

452 max_tries : int, (default: 100) 

453 The number of allowed loops, 

454 also used in the `maybe_regular_expander_graph` utility 

455 seed : (default: None) 

456 Seed used to set random number generation state. See :ref`Randomness<randomness>`. 

457 

458 Raises 

459 ------ 

460 NetworkXError 

461 If max_tries is reached 

462 

463 Examples 

464 -------- 

465 >>> G = nx.random_regular_expander_graph(20, 4) 

466 >>> nx.is_regular_expander(G) 

467 True 

468 

469 Notes 

470 ----- 

471 This loops over `maybe_regular_expander_graph` and can be slow when 

472 $n$ is too big or $\epsilon$ too small. 

473 

474 See Also 

475 -------- 

476 maybe_regular_expander_graph 

477 is_regular_expander 

478 

479 References 

480 ---------- 

481 .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph 

482 .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound 

483 .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph 

484 

485 """ 

486 G = maybe_regular_expander_graph( 

487 n, d, create_using=create_using, max_tries=max_tries, seed=seed 

488 ) 

489 iterations = max_tries 

490 

491 while not is_regular_expander(G, epsilon=epsilon): 

492 iterations -= 1 

493 G = maybe_regular_expander_graph( 

494 n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed 

495 ) 

496 

497 if iterations == 0: 

498 raise nx.NetworkXError( 

499 "Too many iterations in random_regular_expander_graph" 

500 ) 

501 

502 return G