1"""
2This is only meant to add docs to objects defined in C-extension modules.
3The purpose is to allow easier editing of the docstrings without
4requiring a re-compile.
5
6NOTE: Many of the methods of ndarray have corresponding functions.
7 If you update these docstrings, please keep also the ones in
8 core/fromnumeric.py, core/defmatrix.py up-to-date.
9
10"""
11
12from numpy.core.function_base import add_newdoc
13from numpy.core.overrides import array_function_like_doc
14
15###############################################################################
16#
17# flatiter
18#
19# flatiter needs a toplevel description
20#
21###############################################################################
22
23add_newdoc('numpy.core', 'flatiter',
24 """
25 Flat iterator object to iterate over arrays.
26
27 A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
28 It allows iterating over the array as if it were a 1-D array,
29 either in a for-loop or by calling its `next` method.
30
31 Iteration is done in row-major, C-style order (the last
32 index varying the fastest). The iterator can also be indexed using
33 basic slicing or advanced indexing.
34
35 See Also
36 --------
37 ndarray.flat : Return a flat iterator over an array.
38 ndarray.flatten : Returns a flattened copy of an array.
39
40 Notes
41 -----
42 A `flatiter` iterator can not be constructed directly from Python code
43 by calling the `flatiter` constructor.
44
45 Examples
46 --------
47 >>> x = np.arange(6).reshape(2, 3)
48 >>> fl = x.flat
49 >>> type(fl)
50 <class 'numpy.flatiter'>
51 >>> for item in fl:
52 ... print(item)
53 ...
54 0
55 1
56 2
57 3
58 4
59 5
60
61 >>> fl[2:4]
62 array([2, 3])
63
64 """)
65
66# flatiter attributes
67
68add_newdoc('numpy.core', 'flatiter', ('base',
69 """
70 A reference to the array that is iterated over.
71
72 Examples
73 --------
74 >>> x = np.arange(5)
75 >>> fl = x.flat
76 >>> fl.base is x
77 True
78
79 """))
80
81
82
83add_newdoc('numpy.core', 'flatiter', ('coords',
84 """
85 An N-dimensional tuple of current coordinates.
86
87 Examples
88 --------
89 >>> x = np.arange(6).reshape(2, 3)
90 >>> fl = x.flat
91 >>> fl.coords
92 (0, 0)
93 >>> next(fl)
94 0
95 >>> fl.coords
96 (0, 1)
97
98 """))
99
100
101
102add_newdoc('numpy.core', 'flatiter', ('index',
103 """
104 Current flat index into the array.
105
106 Examples
107 --------
108 >>> x = np.arange(6).reshape(2, 3)
109 >>> fl = x.flat
110 >>> fl.index
111 0
112 >>> next(fl)
113 0
114 >>> fl.index
115 1
116
117 """))
118
119# flatiter functions
120
121add_newdoc('numpy.core', 'flatiter', ('__array__',
122 """__array__(type=None) Get array from iterator
123
124 """))
125
126
127add_newdoc('numpy.core', 'flatiter', ('copy',
128 """
129 copy()
130
131 Get a copy of the iterator as a 1-D array.
132
133 Examples
134 --------
135 >>> x = np.arange(6).reshape(2, 3)
136 >>> x
137 array([[0, 1, 2],
138 [3, 4, 5]])
139 >>> fl = x.flat
140 >>> fl.copy()
141 array([0, 1, 2, 3, 4, 5])
142
143 """))
144
145
146###############################################################################
147#
148# nditer
149#
150###############################################################################
151
152add_newdoc('numpy.core', 'nditer',
153 """
154 nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0)
155
156 Efficient multi-dimensional iterator object to iterate over arrays.
157 To get started using this object, see the
158 :ref:`introductory guide to array iteration <arrays.nditer>`.
159
160 Parameters
161 ----------
162 op : ndarray or sequence of array_like
163 The array(s) to iterate over.
164
165 flags : sequence of str, optional
166 Flags to control the behavior of the iterator.
167
168 * ``buffered`` enables buffering when required.
169 * ``c_index`` causes a C-order index to be tracked.
170 * ``f_index`` causes a Fortran-order index to be tracked.
171 * ``multi_index`` causes a multi-index, or a tuple of indices
172 with one per iteration dimension, to be tracked.
173 * ``common_dtype`` causes all the operands to be converted to
174 a common data type, with copying or buffering as necessary.
175 * ``copy_if_overlap`` causes the iterator to determine if read
176 operands have overlap with write operands, and make temporary
177 copies as necessary to avoid overlap. False positives (needless
178 copying) are possible in some cases.
179 * ``delay_bufalloc`` delays allocation of the buffers until
180 a reset() call is made. Allows ``allocate`` operands to
181 be initialized before their values are copied into the buffers.
182 * ``external_loop`` causes the ``values`` given to be
183 one-dimensional arrays with multiple values instead of
184 zero-dimensional arrays.
185 * ``grow_inner`` allows the ``value`` array sizes to be made
186 larger than the buffer size when both ``buffered`` and
187 ``external_loop`` is used.
188 * ``ranged`` allows the iterator to be restricted to a sub-range
189 of the iterindex values.
190 * ``refs_ok`` enables iteration of reference types, such as
191 object arrays.
192 * ``reduce_ok`` enables iteration of ``readwrite`` operands
193 which are broadcasted, also known as reduction operands.
194 * ``zerosize_ok`` allows `itersize` to be zero.
195 op_flags : list of list of str, optional
196 This is a list of flags for each operand. At minimum, one of
197 ``readonly``, ``readwrite``, or ``writeonly`` must be specified.
198
199 * ``readonly`` indicates the operand will only be read from.
200 * ``readwrite`` indicates the operand will be read from and written to.
201 * ``writeonly`` indicates the operand will only be written to.
202 * ``no_broadcast`` prevents the operand from being broadcasted.
203 * ``contig`` forces the operand data to be contiguous.
204 * ``aligned`` forces the operand data to be aligned.
205 * ``nbo`` forces the operand data to be in native byte order.
206 * ``copy`` allows a temporary read-only copy if required.
207 * ``updateifcopy`` allows a temporary read-write copy if required.
208 * ``allocate`` causes the array to be allocated if it is None
209 in the ``op`` parameter.
210 * ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
211 * ``arraymask`` indicates that this operand is the mask to use
212 for selecting elements when writing to operands with the
213 'writemasked' flag set. The iterator does not enforce this,
214 but when writing from a buffer back to the array, it only
215 copies those elements indicated by this mask.
216 * ``writemasked`` indicates that only elements where the chosen
217 ``arraymask`` operand is True will be written to.
218 * ``overlap_assume_elementwise`` can be used to mark operands that are
219 accessed only in the iterator order, to allow less conservative
220 copying when ``copy_if_overlap`` is present.
221 op_dtypes : dtype or tuple of dtype(s), optional
222 The required data type(s) of the operands. If copying or buffering
223 is enabled, the data will be converted to/from their original types.
224 order : {'C', 'F', 'A', 'K'}, optional
225 Controls the iteration order. 'C' means C order, 'F' means
226 Fortran order, 'A' means 'F' order if all the arrays are Fortran
227 contiguous, 'C' order otherwise, and 'K' means as close to the
228 order the array elements appear in memory as possible. This also
229 affects the element memory order of ``allocate`` operands, as they
230 are allocated to be compatible with iteration order.
231 Default is 'K'.
232 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
233 Controls what kind of data casting may occur when making a copy
234 or buffering. Setting this to 'unsafe' is not recommended,
235 as it can adversely affect accumulations.
236
237 * 'no' means the data types should not be cast at all.
238 * 'equiv' means only byte-order changes are allowed.
239 * 'safe' means only casts which can preserve values are allowed.
240 * 'same_kind' means only safe casts or casts within a kind,
241 like float64 to float32, are allowed.
242 * 'unsafe' means any data conversions may be done.
243 op_axes : list of list of ints, optional
244 If provided, is a list of ints or None for each operands.
245 The list of axes for an operand is a mapping from the dimensions
246 of the iterator to the dimensions of the operand. A value of
247 -1 can be placed for entries, causing that dimension to be
248 treated as `newaxis`.
249 itershape : tuple of ints, optional
250 The desired shape of the iterator. This allows ``allocate`` operands
251 with a dimension mapped by op_axes not corresponding to a dimension
252 of a different operand to get a value not equal to 1 for that
253 dimension.
254 buffersize : int, optional
255 When buffering is enabled, controls the size of the temporary
256 buffers. Set to 0 for the default value.
257
258 Attributes
259 ----------
260 dtypes : tuple of dtype(s)
261 The data types of the values provided in `value`. This may be
262 different from the operand data types if buffering is enabled.
263 Valid only before the iterator is closed.
264 finished : bool
265 Whether the iteration over the operands is finished or not.
266 has_delayed_bufalloc : bool
267 If True, the iterator was created with the ``delay_bufalloc`` flag,
268 and no reset() function was called on it yet.
269 has_index : bool
270 If True, the iterator was created with either the ``c_index`` or
271 the ``f_index`` flag, and the property `index` can be used to
272 retrieve it.
273 has_multi_index : bool
274 If True, the iterator was created with the ``multi_index`` flag,
275 and the property `multi_index` can be used to retrieve it.
276 index
277 When the ``c_index`` or ``f_index`` flag was used, this property
278 provides access to the index. Raises a ValueError if accessed
279 and ``has_index`` is False.
280 iterationneedsapi : bool
281 Whether iteration requires access to the Python API, for example
282 if one of the operands is an object array.
283 iterindex : int
284 An index which matches the order of iteration.
285 itersize : int
286 Size of the iterator.
287 itviews
288 Structured view(s) of `operands` in memory, matching the reordered
289 and optimized iterator access pattern. Valid only before the iterator
290 is closed.
291 multi_index
292 When the ``multi_index`` flag was used, this property
293 provides access to the index. Raises a ValueError if accessed
294 accessed and ``has_multi_index`` is False.
295 ndim : int
296 The dimensions of the iterator.
297 nop : int
298 The number of iterator operands.
299 operands : tuple of operand(s)
300 The array(s) to be iterated over. Valid only before the iterator is
301 closed.
302 shape : tuple of ints
303 Shape tuple, the shape of the iterator.
304 value
305 Value of ``operands`` at current iteration. Normally, this is a
306 tuple of array scalars, but if the flag ``external_loop`` is used,
307 it is a tuple of one dimensional arrays.
308
309 Notes
310 -----
311 `nditer` supersedes `flatiter`. The iterator implementation behind
312 `nditer` is also exposed by the NumPy C API.
313
314 The Python exposure supplies two iteration interfaces, one which follows
315 the Python iterator protocol, and another which mirrors the C-style
316 do-while pattern. The native Python approach is better in most cases, but
317 if you need the coordinates or index of an iterator, use the C-style pattern.
318
319 Examples
320 --------
321 Here is how we might write an ``iter_add`` function, using the
322 Python iterator protocol:
323
324 >>> def iter_add_py(x, y, out=None):
325 ... addop = np.add
326 ... it = np.nditer([x, y, out], [],
327 ... [['readonly'], ['readonly'], ['writeonly','allocate']])
328 ... with it:
329 ... for (a, b, c) in it:
330 ... addop(a, b, out=c)
331 ... return it.operands[2]
332
333 Here is the same function, but following the C-style pattern:
334
335 >>> def iter_add(x, y, out=None):
336 ... addop = np.add
337 ... it = np.nditer([x, y, out], [],
338 ... [['readonly'], ['readonly'], ['writeonly','allocate']])
339 ... with it:
340 ... while not it.finished:
341 ... addop(it[0], it[1], out=it[2])
342 ... it.iternext()
343 ... return it.operands[2]
344
345 Here is an example outer product function:
346
347 >>> def outer_it(x, y, out=None):
348 ... mulop = np.multiply
349 ... it = np.nditer([x, y, out], ['external_loop'],
350 ... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
351 ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
352 ... [-1] * x.ndim + list(range(y.ndim)),
353 ... None])
354 ... with it:
355 ... for (a, b, c) in it:
356 ... mulop(a, b, out=c)
357 ... return it.operands[2]
358
359 >>> a = np.arange(2)+1
360 >>> b = np.arange(3)+1
361 >>> outer_it(a,b)
362 array([[1, 2, 3],
363 [2, 4, 6]])
364
365 Here is an example function which operates like a "lambda" ufunc:
366
367 >>> def luf(lamdaexpr, *args, **kwargs):
368 ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
369 ... nargs = len(args)
370 ... op = (kwargs.get('out',None),) + args
371 ... it = np.nditer(op, ['buffered','external_loop'],
372 ... [['writeonly','allocate','no_broadcast']] +
373 ... [['readonly','nbo','aligned']]*nargs,
374 ... order=kwargs.get('order','K'),
375 ... casting=kwargs.get('casting','safe'),
376 ... buffersize=kwargs.get('buffersize',0))
377 ... while not it.finished:
378 ... it[0] = lamdaexpr(*it[1:])
379 ... it.iternext()
380 ... return it.operands[0]
381
382 >>> a = np.arange(5)
383 >>> b = np.ones(5)
384 >>> luf(lambda i,j:i*i + j/2, a, b)
385 array([ 0.5, 1.5, 4.5, 9.5, 16.5])
386
387 If operand flags ``"writeonly"`` or ``"readwrite"`` are used the
388 operands may be views into the original data with the
389 `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
390 context manager or the `nditer.close` method must be called before
391 using the result. The temporary data will be written back to the
392 original data when the `__exit__` function is called but not before:
393
394 >>> a = np.arange(6, dtype='i4')[::-2]
395 >>> with np.nditer(a, [],
396 ... [['writeonly', 'updateifcopy']],
397 ... casting='unsafe',
398 ... op_dtypes=[np.dtype('f4')]) as i:
399 ... x = i.operands[0]
400 ... x[:] = [-1, -2, -3]
401 ... # a still unchanged here
402 >>> a, x
403 (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
404
405 It is important to note that once the iterator is exited, dangling
406 references (like `x` in the example) may or may not share data with
407 the original data `a`. If writeback semantics were active, i.e. if
408 `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
409 will sever the connection between `x` and `a`, writing to `x` will
410 no longer write to `a`. If writeback semantics are not active, then
411 `x.data` will still point at some part of `a.data`, and writing to
412 one will affect the other.
413
414 Context management and the `close` method appeared in version 1.15.0.
415
416 """)
417
418# nditer methods
419
420add_newdoc('numpy.core', 'nditer', ('copy',
421 """
422 copy()
423
424 Get a copy of the iterator in its current state.
425
426 Examples
427 --------
428 >>> x = np.arange(10)
429 >>> y = x + 1
430 >>> it = np.nditer([x, y])
431 >>> next(it)
432 (array(0), array(1))
433 >>> it2 = it.copy()
434 >>> next(it2)
435 (array(1), array(2))
436
437 """))
438
439add_newdoc('numpy.core', 'nditer', ('operands',
440 """
441 operands[`Slice`]
442
443 The array(s) to be iterated over. Valid only before the iterator is closed.
444 """))
445
446add_newdoc('numpy.core', 'nditer', ('debug_print',
447 """
448 debug_print()
449
450 Print the current state of the `nditer` instance and debug info to stdout.
451
452 """))
453
454add_newdoc('numpy.core', 'nditer', ('enable_external_loop',
455 """
456 enable_external_loop()
457
458 When the "external_loop" was not used during construction, but
459 is desired, this modifies the iterator to behave as if the flag
460 was specified.
461
462 """))
463
464add_newdoc('numpy.core', 'nditer', ('iternext',
465 """
466 iternext()
467
468 Check whether iterations are left, and perform a single internal iteration
469 without returning the result. Used in the C-style pattern do-while
470 pattern. For an example, see `nditer`.
471
472 Returns
473 -------
474 iternext : bool
475 Whether or not there are iterations left.
476
477 """))
478
479add_newdoc('numpy.core', 'nditer', ('remove_axis',
480 """
481 remove_axis(i, /)
482
483 Removes axis `i` from the iterator. Requires that the flag "multi_index"
484 be enabled.
485
486 """))
487
488add_newdoc('numpy.core', 'nditer', ('remove_multi_index',
489 """
490 remove_multi_index()
491
492 When the "multi_index" flag was specified, this removes it, allowing
493 the internal iteration structure to be optimized further.
494
495 """))
496
497add_newdoc('numpy.core', 'nditer', ('reset',
498 """
499 reset()
500
501 Reset the iterator to its initial state.
502
503 """))
504
505add_newdoc('numpy.core', 'nested_iters',
506 """
507 nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \
508 order="K", casting="safe", buffersize=0)
509
510 Create nditers for use in nested loops
511
512 Create a tuple of `nditer` objects which iterate in nested loops over
513 different axes of the op argument. The first iterator is used in the
514 outermost loop, the last in the innermost loop. Advancing one will change
515 the subsequent iterators to point at its new element.
516
517 Parameters
518 ----------
519 op : ndarray or sequence of array_like
520 The array(s) to iterate over.
521
522 axes : list of list of int
523 Each item is used as an "op_axes" argument to an nditer
524
525 flags, op_flags, op_dtypes, order, casting, buffersize (optional)
526 See `nditer` parameters of the same name
527
528 Returns
529 -------
530 iters : tuple of nditer
531 An nditer for each item in `axes`, outermost first
532
533 See Also
534 --------
535 nditer
536
537 Examples
538 --------
539
540 Basic usage. Note how y is the "flattened" version of
541 [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified
542 the first iter's axes as [1]
543
544 >>> a = np.arange(12).reshape(2, 3, 2)
545 >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
546 >>> for x in i:
547 ... print(i.multi_index)
548 ... for y in j:
549 ... print('', j.multi_index, y)
550 (0,)
551 (0, 0) 0
552 (0, 1) 1
553 (1, 0) 6
554 (1, 1) 7
555 (1,)
556 (0, 0) 2
557 (0, 1) 3
558 (1, 0) 8
559 (1, 1) 9
560 (2,)
561 (0, 0) 4
562 (0, 1) 5
563 (1, 0) 10
564 (1, 1) 11
565
566 """)
567
568add_newdoc('numpy.core', 'nditer', ('close',
569 """
570 close()
571
572 Resolve all writeback semantics in writeable operands.
573
574 .. versionadded:: 1.15.0
575
576 See Also
577 --------
578
579 :ref:`nditer-context-manager`
580
581 """))
582
583
584###############################################################################
585#
586# broadcast
587#
588###############################################################################
589
590add_newdoc('numpy.core', 'broadcast',
591 """
592 Produce an object that mimics broadcasting.
593
594 Parameters
595 ----------
596 in1, in2, ... : array_like
597 Input parameters.
598
599 Returns
600 -------
601 b : broadcast object
602 Broadcast the input parameters against one another, and
603 return an object that encapsulates the result.
604 Amongst others, it has ``shape`` and ``nd`` properties, and
605 may be used as an iterator.
606
607 See Also
608 --------
609 broadcast_arrays
610 broadcast_to
611 broadcast_shapes
612
613 Examples
614 --------
615
616 Manually adding two vectors, using broadcasting:
617
618 >>> x = np.array([[1], [2], [3]])
619 >>> y = np.array([4, 5, 6])
620 >>> b = np.broadcast(x, y)
621
622 >>> out = np.empty(b.shape)
623 >>> out.flat = [u+v for (u,v) in b]
624 >>> out
625 array([[5., 6., 7.],
626 [6., 7., 8.],
627 [7., 8., 9.]])
628
629 Compare against built-in broadcasting:
630
631 >>> x + y
632 array([[5, 6, 7],
633 [6, 7, 8],
634 [7, 8, 9]])
635
636 """)
637
638# attributes
639
640add_newdoc('numpy.core', 'broadcast', ('index',
641 """
642 current index in broadcasted result
643
644 Examples
645 --------
646 >>> x = np.array([[1], [2], [3]])
647 >>> y = np.array([4, 5, 6])
648 >>> b = np.broadcast(x, y)
649 >>> b.index
650 0
651 >>> next(b), next(b), next(b)
652 ((1, 4), (1, 5), (1, 6))
653 >>> b.index
654 3
655
656 """))
657
658add_newdoc('numpy.core', 'broadcast', ('iters',
659 """
660 tuple of iterators along ``self``'s "components."
661
662 Returns a tuple of `numpy.flatiter` objects, one for each "component"
663 of ``self``.
664
665 See Also
666 --------
667 numpy.flatiter
668
669 Examples
670 --------
671 >>> x = np.array([1, 2, 3])
672 >>> y = np.array([[4], [5], [6]])
673 >>> b = np.broadcast(x, y)
674 >>> row, col = b.iters
675 >>> next(row), next(col)
676 (1, 4)
677
678 """))
679
680add_newdoc('numpy.core', 'broadcast', ('ndim',
681 """
682 Number of dimensions of broadcasted result. Alias for `nd`.
683
684 .. versionadded:: 1.12.0
685
686 Examples
687 --------
688 >>> x = np.array([1, 2, 3])
689 >>> y = np.array([[4], [5], [6]])
690 >>> b = np.broadcast(x, y)
691 >>> b.ndim
692 2
693
694 """))
695
696add_newdoc('numpy.core', 'broadcast', ('nd',
697 """
698 Number of dimensions of broadcasted result. For code intended for NumPy
699 1.12.0 and later the more consistent `ndim` is preferred.
700
701 Examples
702 --------
703 >>> x = np.array([1, 2, 3])
704 >>> y = np.array([[4], [5], [6]])
705 >>> b = np.broadcast(x, y)
706 >>> b.nd
707 2
708
709 """))
710
711add_newdoc('numpy.core', 'broadcast', ('numiter',
712 """
713 Number of iterators possessed by the broadcasted result.
714
715 Examples
716 --------
717 >>> x = np.array([1, 2, 3])
718 >>> y = np.array([[4], [5], [6]])
719 >>> b = np.broadcast(x, y)
720 >>> b.numiter
721 2
722
723 """))
724
725add_newdoc('numpy.core', 'broadcast', ('shape',
726 """
727 Shape of broadcasted result.
728
729 Examples
730 --------
731 >>> x = np.array([1, 2, 3])
732 >>> y = np.array([[4], [5], [6]])
733 >>> b = np.broadcast(x, y)
734 >>> b.shape
735 (3, 3)
736
737 """))
738
739add_newdoc('numpy.core', 'broadcast', ('size',
740 """
741 Total size of broadcasted result.
742
743 Examples
744 --------
745 >>> x = np.array([1, 2, 3])
746 >>> y = np.array([[4], [5], [6]])
747 >>> b = np.broadcast(x, y)
748 >>> b.size
749 9
750
751 """))
752
753add_newdoc('numpy.core', 'broadcast', ('reset',
754 """
755 reset()
756
757 Reset the broadcasted result's iterator(s).
758
759 Parameters
760 ----------
761 None
762
763 Returns
764 -------
765 None
766
767 Examples
768 --------
769 >>> x = np.array([1, 2, 3])
770 >>> y = np.array([[4], [5], [6]])
771 >>> b = np.broadcast(x, y)
772 >>> b.index
773 0
774 >>> next(b), next(b), next(b)
775 ((1, 4), (2, 4), (3, 4))
776 >>> b.index
777 3
778 >>> b.reset()
779 >>> b.index
780 0
781
782 """))
783
784###############################################################################
785#
786# numpy functions
787#
788###############################################################################
789
790add_newdoc('numpy.core.multiarray', 'array',
791 """
792 array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,
793 like=None)
794
795 Create an array.
796
797 Parameters
798 ----------
799 object : array_like
800 An array, any object exposing the array interface, an object whose
801 __array__ method returns an array, or any (nested) sequence.
802 If object is a scalar, a 0-dimensional array containing object is
803 returned.
804 dtype : data-type, optional
805 The desired data-type for the array. If not given, then the type will
806 be determined as the minimum type required to hold the objects in the
807 sequence.
808 copy : bool, optional
809 If true (default), then the object is copied. Otherwise, a copy will
810 only be made if __array__ returns a copy, if obj is a nested sequence,
811 or if a copy is needed to satisfy any of the other requirements
812 (`dtype`, `order`, etc.).
813 order : {'K', 'A', 'C', 'F'}, optional
814 Specify the memory layout of the array. If object is not an array, the
815 newly created array will be in C order (row major) unless 'F' is
816 specified, in which case it will be in Fortran order (column major).
817 If object is an array the following holds.
818
819 ===== ========= ===================================================
820 order no copy copy=True
821 ===== ========= ===================================================
822 'K' unchanged F & C order preserved, otherwise most similar order
823 'A' unchanged F order if input is F and not C, otherwise C order
824 'C' C order C order
825 'F' F order F order
826 ===== ========= ===================================================
827
828 When ``copy=False`` and a copy is made for other reasons, the result is
829 the same as if ``copy=True``, with some exceptions for 'A', see the
830 Notes section. The default order is 'K'.
831 subok : bool, optional
832 If True, then sub-classes will be passed-through, otherwise
833 the returned array will be forced to be a base-class array (default).
834 ndmin : int, optional
835 Specifies the minimum number of dimensions that the resulting
836 array should have. Ones will be prepended to the shape as
837 needed to meet this requirement.
838 ${ARRAY_FUNCTION_LIKE}
839
840 .. versionadded:: 1.20.0
841
842 Returns
843 -------
844 out : ndarray
845 An array object satisfying the specified requirements.
846
847 See Also
848 --------
849 empty_like : Return an empty array with shape and type of input.
850 ones_like : Return an array of ones with shape and type of input.
851 zeros_like : Return an array of zeros with shape and type of input.
852 full_like : Return a new array with shape of input filled with value.
853 empty : Return a new uninitialized array.
854 ones : Return a new array setting values to one.
855 zeros : Return a new array setting values to zero.
856 full : Return a new array of given shape filled with value.
857
858
859 Notes
860 -----
861 When order is 'A' and `object` is an array in neither 'C' nor 'F' order,
862 and a copy is forced by a change in dtype, then the order of the result is
863 not necessarily 'C' as expected. This is likely a bug.
864
865 Examples
866 --------
867 >>> np.array([1, 2, 3])
868 array([1, 2, 3])
869
870 Upcasting:
871
872 >>> np.array([1, 2, 3.0])
873 array([ 1., 2., 3.])
874
875 More than one dimension:
876
877 >>> np.array([[1, 2], [3, 4]])
878 array([[1, 2],
879 [3, 4]])
880
881 Minimum dimensions 2:
882
883 >>> np.array([1, 2, 3], ndmin=2)
884 array([[1, 2, 3]])
885
886 Type provided:
887
888 >>> np.array([1, 2, 3], dtype=complex)
889 array([ 1.+0.j, 2.+0.j, 3.+0.j])
890
891 Data-type consisting of more than one element:
892
893 >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
894 >>> x['a']
895 array([1, 3])
896
897 Creating an array from sub-classes:
898
899 >>> np.array(np.mat('1 2; 3 4'))
900 array([[1, 2],
901 [3, 4]])
902
903 >>> np.array(np.mat('1 2; 3 4'), subok=True)
904 matrix([[1, 2],
905 [3, 4]])
906
907 """.replace(
908 "${ARRAY_FUNCTION_LIKE}",
909 array_function_like_doc,
910 ))
911
912add_newdoc('numpy.core.multiarray', 'asarray',
913 """
914 asarray(a, dtype=None, order=None, *, like=None)
915
916 Convert the input to an array.
917
918 Parameters
919 ----------
920 a : array_like
921 Input data, in any form that can be converted to an array. This
922 includes lists, lists of tuples, tuples, tuples of tuples, tuples
923 of lists and ndarrays.
924 dtype : data-type, optional
925 By default, the data-type is inferred from the input data.
926 order : {'C', 'F', 'A', 'K'}, optional
927 Memory layout. 'A' and 'K' depend on the order of input array a.
928 'C' row-major (C-style),
929 'F' column-major (Fortran-style) memory representation.
930 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
931 'K' (keep) preserve input order
932 Defaults to 'K'.
933 ${ARRAY_FUNCTION_LIKE}
934
935 .. versionadded:: 1.20.0
936
937 Returns
938 -------
939 out : ndarray
940 Array interpretation of `a`. No copy is performed if the input
941 is already an ndarray with matching dtype and order. If `a` is a
942 subclass of ndarray, a base class ndarray is returned.
943
944 See Also
945 --------
946 asanyarray : Similar function which passes through subclasses.
947 ascontiguousarray : Convert input to a contiguous array.
948 asfarray : Convert input to a floating point ndarray.
949 asfortranarray : Convert input to an ndarray with column-major
950 memory order.
951 asarray_chkfinite : Similar function which checks input for NaNs and Infs.
952 fromiter : Create an array from an iterator.
953 fromfunction : Construct an array by executing a function on grid
954 positions.
955
956 Examples
957 --------
958 Convert a list into an array:
959
960 >>> a = [1, 2]
961 >>> np.asarray(a)
962 array([1, 2])
963
964 Existing arrays are not copied:
965
966 >>> a = np.array([1, 2])
967 >>> np.asarray(a) is a
968 True
969
970 If `dtype` is set, array is copied only if dtype does not match:
971
972 >>> a = np.array([1, 2], dtype=np.float32)
973 >>> np.asarray(a, dtype=np.float32) is a
974 True
975 >>> np.asarray(a, dtype=np.float64) is a
976 False
977
978 Contrary to `asanyarray`, ndarray subclasses are not passed through:
979
980 >>> issubclass(np.recarray, np.ndarray)
981 True
982 >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
983 >>> np.asarray(a) is a
984 False
985 >>> np.asanyarray(a) is a
986 True
987
988 """.replace(
989 "${ARRAY_FUNCTION_LIKE}",
990 array_function_like_doc,
991 ))
992
993add_newdoc('numpy.core.multiarray', 'asanyarray',
994 """
995 asanyarray(a, dtype=None, order=None, *, like=None)
996
997 Convert the input to an ndarray, but pass ndarray subclasses through.
998
999 Parameters
1000 ----------
1001 a : array_like
1002 Input data, in any form that can be converted to an array. This
1003 includes scalars, lists, lists of tuples, tuples, tuples of tuples,
1004 tuples of lists, and ndarrays.
1005 dtype : data-type, optional
1006 By default, the data-type is inferred from the input data.
1007 order : {'C', 'F', 'A', 'K'}, optional
1008 Memory layout. 'A' and 'K' depend on the order of input array a.
1009 'C' row-major (C-style),
1010 'F' column-major (Fortran-style) memory representation.
1011 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
1012 'K' (keep) preserve input order
1013 Defaults to 'C'.
1014 ${ARRAY_FUNCTION_LIKE}
1015
1016 .. versionadded:: 1.20.0
1017
1018 Returns
1019 -------
1020 out : ndarray or an ndarray subclass
1021 Array interpretation of `a`. If `a` is an ndarray or a subclass
1022 of ndarray, it is returned as-is and no copy is performed.
1023
1024 See Also
1025 --------
1026 asarray : Similar function which always returns ndarrays.
1027 ascontiguousarray : Convert input to a contiguous array.
1028 asfarray : Convert input to a floating point ndarray.
1029 asfortranarray : Convert input to an ndarray with column-major
1030 memory order.
1031 asarray_chkfinite : Similar function which checks input for NaNs and
1032 Infs.
1033 fromiter : Create an array from an iterator.
1034 fromfunction : Construct an array by executing a function on grid
1035 positions.
1036
1037 Examples
1038 --------
1039 Convert a list into an array:
1040
1041 >>> a = [1, 2]
1042 >>> np.asanyarray(a)
1043 array([1, 2])
1044
1045 Instances of `ndarray` subclasses are passed through as-is:
1046
1047 >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
1048 >>> np.asanyarray(a) is a
1049 True
1050
1051 """.replace(
1052 "${ARRAY_FUNCTION_LIKE}",
1053 array_function_like_doc,
1054 ))
1055
1056add_newdoc('numpy.core.multiarray', 'ascontiguousarray',
1057 """
1058 ascontiguousarray(a, dtype=None, *, like=None)
1059
1060 Return a contiguous array (ndim >= 1) in memory (C order).
1061
1062 Parameters
1063 ----------
1064 a : array_like
1065 Input array.
1066 dtype : str or dtype object, optional
1067 Data-type of returned array.
1068 ${ARRAY_FUNCTION_LIKE}
1069
1070 .. versionadded:: 1.20.0
1071
1072 Returns
1073 -------
1074 out : ndarray
1075 Contiguous array of same shape and content as `a`, with type `dtype`
1076 if specified.
1077
1078 See Also
1079 --------
1080 asfortranarray : Convert input to an ndarray with column-major
1081 memory order.
1082 require : Return an ndarray that satisfies requirements.
1083 ndarray.flags : Information about the memory layout of the array.
1084
1085 Examples
1086 --------
1087 Starting with a Fortran-contiguous array:
1088
1089 >>> x = np.ones((2, 3), order='F')
1090 >>> x.flags['F_CONTIGUOUS']
1091 True
1092
1093 Calling ``ascontiguousarray`` makes a C-contiguous copy:
1094
1095 >>> y = np.ascontiguousarray(x)
1096 >>> y.flags['C_CONTIGUOUS']
1097 True
1098 >>> np.may_share_memory(x, y)
1099 False
1100
1101 Now, starting with a C-contiguous array:
1102
1103 >>> x = np.ones((2, 3), order='C')
1104 >>> x.flags['C_CONTIGUOUS']
1105 True
1106
1107 Then, calling ``ascontiguousarray`` returns the same object:
1108
1109 >>> y = np.ascontiguousarray(x)
1110 >>> x is y
1111 True
1112
1113 Note: This function returns an array with at least one-dimension (1-d)
1114 so it will not preserve 0-d arrays.
1115
1116 """.replace(
1117 "${ARRAY_FUNCTION_LIKE}",
1118 array_function_like_doc,
1119 ))
1120
1121add_newdoc('numpy.core.multiarray', 'asfortranarray',
1122 """
1123 asfortranarray(a, dtype=None, *, like=None)
1124
1125 Return an array (ndim >= 1) laid out in Fortran order in memory.
1126
1127 Parameters
1128 ----------
1129 a : array_like
1130 Input array.
1131 dtype : str or dtype object, optional
1132 By default, the data-type is inferred from the input data.
1133 ${ARRAY_FUNCTION_LIKE}
1134
1135 .. versionadded:: 1.20.0
1136
1137 Returns
1138 -------
1139 out : ndarray
1140 The input `a` in Fortran, or column-major, order.
1141
1142 See Also
1143 --------
1144 ascontiguousarray : Convert input to a contiguous (C order) array.
1145 asanyarray : Convert input to an ndarray with either row or
1146 column-major memory order.
1147 require : Return an ndarray that satisfies requirements.
1148 ndarray.flags : Information about the memory layout of the array.
1149
1150 Examples
1151 --------
1152 Starting with a C-contiguous array:
1153
1154 >>> x = np.ones((2, 3), order='C')
1155 >>> x.flags['C_CONTIGUOUS']
1156 True
1157
1158 Calling ``asfortranarray`` makes a Fortran-contiguous copy:
1159
1160 >>> y = np.asfortranarray(x)
1161 >>> y.flags['F_CONTIGUOUS']
1162 True
1163 >>> np.may_share_memory(x, y)
1164 False
1165
1166 Now, starting with a Fortran-contiguous array:
1167
1168 >>> x = np.ones((2, 3), order='F')
1169 >>> x.flags['F_CONTIGUOUS']
1170 True
1171
1172 Then, calling ``asfortranarray`` returns the same object:
1173
1174 >>> y = np.asfortranarray(x)
1175 >>> x is y
1176 True
1177
1178 Note: This function returns an array with at least one-dimension (1-d)
1179 so it will not preserve 0-d arrays.
1180
1181 """.replace(
1182 "${ARRAY_FUNCTION_LIKE}",
1183 array_function_like_doc,
1184 ))
1185
1186add_newdoc('numpy.core.multiarray', 'empty',
1187 """
1188 empty(shape, dtype=float, order='C', *, like=None)
1189
1190 Return a new array of given shape and type, without initializing entries.
1191
1192 Parameters
1193 ----------
1194 shape : int or tuple of int
1195 Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
1196 dtype : data-type, optional
1197 Desired output data-type for the array, e.g, `numpy.int8`. Default is
1198 `numpy.float64`.
1199 order : {'C', 'F'}, optional, default: 'C'
1200 Whether to store multi-dimensional data in row-major
1201 (C-style) or column-major (Fortran-style) order in
1202 memory.
1203 ${ARRAY_FUNCTION_LIKE}
1204
1205 .. versionadded:: 1.20.0
1206
1207 Returns
1208 -------
1209 out : ndarray
1210 Array of uninitialized (arbitrary) data of the given shape, dtype, and
1211 order. Object arrays will be initialized to None.
1212
1213 See Also
1214 --------
1215 empty_like : Return an empty array with shape and type of input.
1216 ones : Return a new array setting values to one.
1217 zeros : Return a new array setting values to zero.
1218 full : Return a new array of given shape filled with value.
1219
1220
1221 Notes
1222 -----
1223 `empty`, unlike `zeros`, does not set the array values to zero,
1224 and may therefore be marginally faster. On the other hand, it requires
1225 the user to manually set all the values in the array, and should be
1226 used with caution.
1227
1228 Examples
1229 --------
1230 >>> np.empty([2, 2])
1231 array([[ -9.74499359e+001, 6.69583040e-309],
1232 [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized
1233
1234 >>> np.empty([2, 2], dtype=int)
1235 array([[-1073741821, -1067949133],
1236 [ 496041986, 19249760]]) #uninitialized
1237
1238 """.replace(
1239 "${ARRAY_FUNCTION_LIKE}",
1240 array_function_like_doc,
1241 ))
1242
1243add_newdoc('numpy.core.multiarray', 'scalar',
1244 """
1245 scalar(dtype, obj)
1246
1247 Return a new scalar array of the given type initialized with obj.
1248
1249 This function is meant mainly for pickle support. `dtype` must be a
1250 valid data-type descriptor. If `dtype` corresponds to an object
1251 descriptor, then `obj` can be any object, otherwise `obj` must be a
1252 string. If `obj` is not given, it will be interpreted as None for object
1253 type and as zeros for all other types.
1254
1255 """)
1256
1257add_newdoc('numpy.core.multiarray', 'zeros',
1258 """
1259 zeros(shape, dtype=float, order='C', *, like=None)
1260
1261 Return a new array of given shape and type, filled with zeros.
1262
1263 Parameters
1264 ----------
1265 shape : int or tuple of ints
1266 Shape of the new array, e.g., ``(2, 3)`` or ``2``.
1267 dtype : data-type, optional
1268 The desired data-type for the array, e.g., `numpy.int8`. Default is
1269 `numpy.float64`.
1270 order : {'C', 'F'}, optional, default: 'C'
1271 Whether to store multi-dimensional data in row-major
1272 (C-style) or column-major (Fortran-style) order in
1273 memory.
1274 ${ARRAY_FUNCTION_LIKE}
1275
1276 .. versionadded:: 1.20.0
1277
1278 Returns
1279 -------
1280 out : ndarray
1281 Array of zeros with the given shape, dtype, and order.
1282
1283 See Also
1284 --------
1285 zeros_like : Return an array of zeros with shape and type of input.
1286 empty : Return a new uninitialized array.
1287 ones : Return a new array setting values to one.
1288 full : Return a new array of given shape filled with value.
1289
1290 Examples
1291 --------
1292 >>> np.zeros(5)
1293 array([ 0., 0., 0., 0., 0.])
1294
1295 >>> np.zeros((5,), dtype=int)
1296 array([0, 0, 0, 0, 0])
1297
1298 >>> np.zeros((2, 1))
1299 array([[ 0.],
1300 [ 0.]])
1301
1302 >>> s = (2,2)
1303 >>> np.zeros(s)
1304 array([[ 0., 0.],
1305 [ 0., 0.]])
1306
1307 >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
1308 array([(0, 0), (0, 0)],
1309 dtype=[('x', '<i4'), ('y', '<i4')])
1310
1311 """.replace(
1312 "${ARRAY_FUNCTION_LIKE}",
1313 array_function_like_doc,
1314 ))
1315
1316add_newdoc('numpy.core.multiarray', 'set_typeDict',
1317 """set_typeDict(dict)
1318
1319 Set the internal dictionary that can look up an array type using a
1320 registered code.
1321
1322 """)
1323
1324add_newdoc('numpy.core.multiarray', 'fromstring',
1325 """
1326 fromstring(string, dtype=float, count=-1, *, sep, like=None)
1327
1328 A new 1-D array initialized from text data in a string.
1329
1330 Parameters
1331 ----------
1332 string : str
1333 A string containing the data.
1334 dtype : data-type, optional
1335 The data type of the array; default: float. For binary input data,
1336 the data must be in exactly this format. Most builtin numeric types are
1337 supported and extension types may be supported.
1338
1339 .. versionadded:: 1.18.0
1340 Complex dtypes.
1341
1342 count : int, optional
1343 Read this number of `dtype` elements from the data. If this is
1344 negative (the default), the count will be determined from the
1345 length of the data.
1346 sep : str, optional
1347 The string separating numbers in the data; extra whitespace between
1348 elements is also ignored.
1349
1350 .. deprecated:: 1.14
1351 Passing ``sep=''``, the default, is deprecated since it will
1352 trigger the deprecated binary mode of this function. This mode
1353 interprets `string` as binary bytes, rather than ASCII text with
1354 decimal numbers, an operation which is better spelt
1355 ``frombuffer(string, dtype, count)``. If `string` contains unicode
1356 text, the binary mode of `fromstring` will first encode it into
1357 bytes using utf-8, which will not produce sane results.
1358
1359 ${ARRAY_FUNCTION_LIKE}
1360
1361 .. versionadded:: 1.20.0
1362
1363 Returns
1364 -------
1365 arr : ndarray
1366 The constructed array.
1367
1368 Raises
1369 ------
1370 ValueError
1371 If the string is not the correct size to satisfy the requested
1372 `dtype` and `count`.
1373
1374 See Also
1375 --------
1376 frombuffer, fromfile, fromiter
1377
1378 Examples
1379 --------
1380 >>> np.fromstring('1 2', dtype=int, sep=' ')
1381 array([1, 2])
1382 >>> np.fromstring('1, 2', dtype=int, sep=',')
1383 array([1, 2])
1384
1385 """.replace(
1386 "${ARRAY_FUNCTION_LIKE}",
1387 array_function_like_doc,
1388 ))
1389
1390add_newdoc('numpy.core.multiarray', 'compare_chararrays',
1391 """
1392 compare_chararrays(a1, a2, cmp, rstrip)
1393
1394 Performs element-wise comparison of two string arrays using the
1395 comparison operator specified by `cmp_op`.
1396
1397 Parameters
1398 ----------
1399 a1, a2 : array_like
1400 Arrays to be compared.
1401 cmp : {"<", "<=", "==", ">=", ">", "!="}
1402 Type of comparison.
1403 rstrip : Boolean
1404 If True, the spaces at the end of Strings are removed before the comparison.
1405
1406 Returns
1407 -------
1408 out : ndarray
1409 The output array of type Boolean with the same shape as a and b.
1410
1411 Raises
1412 ------
1413 ValueError
1414 If `cmp_op` is not valid.
1415 TypeError
1416 If at least one of `a` or `b` is a non-string array
1417
1418 Examples
1419 --------
1420 >>> a = np.array(["a", "b", "cde"])
1421 >>> b = np.array(["a", "a", "dec"])
1422 >>> np.compare_chararrays(a, b, ">", True)
1423 array([False, True, False])
1424
1425 """)
1426
1427add_newdoc('numpy.core.multiarray', 'fromiter',
1428 """
1429 fromiter(iter, dtype, count=-1, *, like=None)
1430
1431 Create a new 1-dimensional array from an iterable object.
1432
1433 Parameters
1434 ----------
1435 iter : iterable object
1436 An iterable object providing data for the array.
1437 dtype : data-type
1438 The data-type of the returned array.
1439
1440 .. versionchanged:: 1.23
1441 Object and subarray dtypes are now supported (note that the final
1442 result is not 1-D for a subarray dtype).
1443
1444 count : int, optional
1445 The number of items to read from *iterable*. The default is -1,
1446 which means all data is read.
1447 ${ARRAY_FUNCTION_LIKE}
1448
1449 .. versionadded:: 1.20.0
1450
1451 Returns
1452 -------
1453 out : ndarray
1454 The output array.
1455
1456 Notes
1457 -----
1458 Specify `count` to improve performance. It allows ``fromiter`` to
1459 pre-allocate the output array, instead of resizing it on demand.
1460
1461 Examples
1462 --------
1463 >>> iterable = (x*x for x in range(5))
1464 >>> np.fromiter(iterable, float)
1465 array([ 0., 1., 4., 9., 16.])
1466
1467 A carefully constructed subarray dtype will lead to higher dimensional
1468 results:
1469
1470 >>> iterable = ((x+1, x+2) for x in range(5))
1471 >>> np.fromiter(iterable, dtype=np.dtype((int, 2)))
1472 array([[1, 2],
1473 [2, 3],
1474 [3, 4],
1475 [4, 5],
1476 [5, 6]])
1477
1478
1479 """.replace(
1480 "${ARRAY_FUNCTION_LIKE}",
1481 array_function_like_doc,
1482 ))
1483
1484add_newdoc('numpy.core.multiarray', 'fromfile',
1485 """
1486 fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)
1487
1488 Construct an array from data in a text or binary file.
1489
1490 A highly efficient way of reading binary data with a known data-type,
1491 as well as parsing simply formatted text files. Data written using the
1492 `tofile` method can be read using this function.
1493
1494 Parameters
1495 ----------
1496 file : file or str or Path
1497 Open file object or filename.
1498
1499 .. versionchanged:: 1.17.0
1500 `pathlib.Path` objects are now accepted.
1501
1502 dtype : data-type
1503 Data type of the returned array.
1504 For binary files, it is used to determine the size and byte-order
1505 of the items in the file.
1506 Most builtin numeric types are supported and extension types may be supported.
1507
1508 .. versionadded:: 1.18.0
1509 Complex dtypes.
1510
1511 count : int
1512 Number of items to read. ``-1`` means all items (i.e., the complete
1513 file).
1514 sep : str
1515 Separator between items if file is a text file.
1516 Empty ("") separator means the file should be treated as binary.
1517 Spaces (" ") in the separator match zero or more whitespace characters.
1518 A separator consisting only of spaces must match at least one
1519 whitespace.
1520 offset : int
1521 The offset (in bytes) from the file's current position. Defaults to 0.
1522 Only permitted for binary files.
1523
1524 .. versionadded:: 1.17.0
1525 ${ARRAY_FUNCTION_LIKE}
1526
1527 .. versionadded:: 1.20.0
1528
1529 See also
1530 --------
1531 load, save
1532 ndarray.tofile
1533 loadtxt : More flexible way of loading data from a text file.
1534
1535 Notes
1536 -----
1537 Do not rely on the combination of `tofile` and `fromfile` for
1538 data storage, as the binary files generated are not platform
1539 independent. In particular, no byte-order or data-type information is
1540 saved. Data can be stored in the platform independent ``.npy`` format
1541 using `save` and `load` instead.
1542
1543 Examples
1544 --------
1545 Construct an ndarray:
1546
1547 >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
1548 ... ('temp', float)])
1549 >>> x = np.zeros((1,), dtype=dt)
1550 >>> x['time']['min'] = 10; x['temp'] = 98.25
1551 >>> x
1552 array([((10, 0), 98.25)],
1553 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
1554
1555 Save the raw data to disk:
1556
1557 >>> import tempfile
1558 >>> fname = tempfile.mkstemp()[1]
1559 >>> x.tofile(fname)
1560
1561 Read the raw data from disk:
1562
1563 >>> np.fromfile(fname, dtype=dt)
1564 array([((10, 0), 98.25)],
1565 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
1566
1567 The recommended way to store and load data:
1568
1569 >>> np.save(fname, x)
1570 >>> np.load(fname + '.npy')
1571 array([((10, 0), 98.25)],
1572 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
1573
1574 """.replace(
1575 "${ARRAY_FUNCTION_LIKE}",
1576 array_function_like_doc,
1577 ))
1578
1579add_newdoc('numpy.core.multiarray', 'frombuffer',
1580 """
1581 frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)
1582
1583 Interpret a buffer as a 1-dimensional array.
1584
1585 Parameters
1586 ----------
1587 buffer : buffer_like
1588 An object that exposes the buffer interface.
1589 dtype : data-type, optional
1590 Data-type of the returned array; default: float.
1591 count : int, optional
1592 Number of items to read. ``-1`` means all data in the buffer.
1593 offset : int, optional
1594 Start reading the buffer from this offset (in bytes); default: 0.
1595 ${ARRAY_FUNCTION_LIKE}
1596
1597 .. versionadded:: 1.20.0
1598
1599 Returns
1600 -------
1601 out : ndarray
1602
1603 See also
1604 --------
1605 ndarray.tobytes
1606 Inverse of this operation, construct Python bytes from the raw data
1607 bytes in the array.
1608
1609 Notes
1610 -----
1611 If the buffer has data that is not in machine byte-order, this should
1612 be specified as part of the data-type, e.g.::
1613
1614 >>> dt = np.dtype(int)
1615 >>> dt = dt.newbyteorder('>')
1616 >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP
1617
1618 The data of the resulting array will not be byteswapped, but will be
1619 interpreted correctly.
1620
1621 This function creates a view into the original object. This should be safe
1622 in general, but it may make sense to copy the result when the original
1623 object is mutable or untrusted.
1624
1625 Examples
1626 --------
1627 >>> s = b'hello world'
1628 >>> np.frombuffer(s, dtype='S1', count=5, offset=6)
1629 array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
1630
1631 >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
1632 array([1, 2], dtype=uint8)
1633 >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
1634 array([1, 2, 3], dtype=uint8)
1635
1636 """.replace(
1637 "${ARRAY_FUNCTION_LIKE}",
1638 array_function_like_doc,
1639 ))
1640
1641add_newdoc('numpy.core.multiarray', 'from_dlpack',
1642 """
1643 from_dlpack(x, /)
1644
1645 Create a NumPy array from an object implementing the ``__dlpack__``
1646 protocol. Generally, the returned NumPy array is a read-only view
1647 of the input object. See [1]_ and [2]_ for more details.
1648
1649 Parameters
1650 ----------
1651 x : object
1652 A Python object that implements the ``__dlpack__`` and
1653 ``__dlpack_device__`` methods.
1654
1655 Returns
1656 -------
1657 out : ndarray
1658
1659 References
1660 ----------
1661 .. [1] Array API documentation,
1662 https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack
1663
1664 .. [2] Python specification for DLPack,
1665 https://dmlc.github.io/dlpack/latest/python_spec.html
1666
1667 Examples
1668 --------
1669 >>> import torch
1670 >>> x = torch.arange(10)
1671 >>> # create a view of the torch tensor "x" in NumPy
1672 >>> y = np.from_dlpack(x)
1673 """)
1674
1675add_newdoc('numpy.core', 'fastCopyAndTranspose',
1676 """
1677 fastCopyAndTranspose(a)
1678
1679 .. deprecated:: 1.24
1680
1681 fastCopyAndTranspose is deprecated and will be removed. Use the copy and
1682 transpose methods instead, e.g. ``arr.T.copy()``
1683 """)
1684
1685add_newdoc('numpy.core.multiarray', 'correlate',
1686 """cross_correlate(a,v, mode=0)""")
1687
1688add_newdoc('numpy.core.multiarray', 'arange',
1689 """
1690 arange([start,] stop[, step,], dtype=None, *, like=None)
1691
1692 Return evenly spaced values within a given interval.
1693
1694 ``arange`` can be called with a varying number of positional arguments:
1695
1696 * ``arange(stop)``: Values are generated within the half-open interval
1697 ``[0, stop)`` (in other words, the interval including `start` but
1698 excluding `stop`).
1699 * ``arange(start, stop)``: Values are generated within the half-open
1700 interval ``[start, stop)``.
1701 * ``arange(start, stop, step)`` Values are generated within the half-open
1702 interval ``[start, stop)``, with spacing between values given by
1703 ``step``.
1704
1705 For integer arguments the function is roughly equivalent to the Python
1706 built-in :py:class:`range`, but returns an ndarray rather than a ``range``
1707 instance.
1708
1709 When using a non-integer step, such as 0.1, it is often better to use
1710 `numpy.linspace`.
1711
1712 See the Warning sections below for more information.
1713
1714 Parameters
1715 ----------
1716 start : integer or real, optional
1717 Start of interval. The interval includes this value. The default
1718 start value is 0.
1719 stop : integer or real
1720 End of interval. The interval does not include this value, except
1721 in some cases where `step` is not an integer and floating point
1722 round-off affects the length of `out`.
1723 step : integer or real, optional
1724 Spacing between values. For any output `out`, this is the distance
1725 between two adjacent values, ``out[i+1] - out[i]``. The default
1726 step size is 1. If `step` is specified as a position argument,
1727 `start` must also be given.
1728 dtype : dtype, optional
1729 The type of the output array. If `dtype` is not given, infer the data
1730 type from the other input arguments.
1731 ${ARRAY_FUNCTION_LIKE}
1732
1733 .. versionadded:: 1.20.0
1734
1735 Returns
1736 -------
1737 arange : ndarray
1738 Array of evenly spaced values.
1739
1740 For floating point arguments, the length of the result is
1741 ``ceil((stop - start)/step)``. Because of floating point overflow,
1742 this rule may result in the last element of `out` being greater
1743 than `stop`.
1744
1745 Warnings
1746 --------
1747 The length of the output might not be numerically stable.
1748
1749 Another stability issue is due to the internal implementation of
1750 `numpy.arange`.
1751 The actual step value used to populate the array is
1752 ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss
1753 can occur here, due to casting or due to using floating points when
1754 `start` is much larger than `step`. This can lead to unexpected
1755 behaviour. For example::
1756
1757 >>> np.arange(0, 5, 0.5, dtype=int)
1758 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
1759 >>> np.arange(-3, 3, 0.5, dtype=int)
1760 array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
1761
1762 In such cases, the use of `numpy.linspace` should be preferred.
1763
1764 The built-in :py:class:`range` generates :std:doc:`Python built-in integers
1765 that have arbitrary size <python:c-api/long>`, while `numpy.arange`
1766 produces `numpy.int32` or `numpy.int64` numbers. This may result in
1767 incorrect results for large integer values::
1768
1769 >>> power = 40
1770 >>> modulo = 10000
1771 >>> x1 = [(n ** power) % modulo for n in range(8)]
1772 >>> x2 = [(n ** power) % modulo for n in np.arange(8)]
1773 >>> print(x1)
1774 [0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct
1775 >>> print(x2)
1776 [0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect
1777
1778 See Also
1779 --------
1780 numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
1781 numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
1782 numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
1783 :ref:`how-to-partition`
1784
1785 Examples
1786 --------
1787 >>> np.arange(3)
1788 array([0, 1, 2])
1789 >>> np.arange(3.0)
1790 array([ 0., 1., 2.])
1791 >>> np.arange(3,7)
1792 array([3, 4, 5, 6])
1793 >>> np.arange(3,7,2)
1794 array([3, 5])
1795
1796 """.replace(
1797 "${ARRAY_FUNCTION_LIKE}",
1798 array_function_like_doc,
1799 ))
1800
1801add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
1802 """_get_ndarray_c_version()
1803
1804 Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number.
1805
1806 """)
1807
1808add_newdoc('numpy.core.multiarray', '_reconstruct',
1809 """_reconstruct(subtype, shape, dtype)
1810
1811 Construct an empty array. Used by Pickles.
1812
1813 """)
1814
1815
1816add_newdoc('numpy.core.multiarray', 'set_string_function',
1817 """
1818 set_string_function(f, repr=1)
1819
1820 Internal method to set a function to be used when pretty printing arrays.
1821
1822 """)
1823
1824add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
1825 """
1826 set_numeric_ops(op1=func1, op2=func2, ...)
1827
1828 Set numerical operators for array objects.
1829
1830 .. deprecated:: 1.16
1831
1832 For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`.
1833 For ndarray subclasses, define the ``__array_ufunc__`` method and
1834 override the relevant ufunc.
1835
1836 Parameters
1837 ----------
1838 op1, op2, ... : callable
1839 Each ``op = func`` pair describes an operator to be replaced.
1840 For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
1841 addition by modulus 5 addition.
1842
1843 Returns
1844 -------
1845 saved_ops : list of callables
1846 A list of all operators, stored before making replacements.
1847
1848 Notes
1849 -----
1850 .. warning::
1851 Use with care! Incorrect usage may lead to memory errors.
1852
1853 A function replacing an operator cannot make use of that operator.
1854 For example, when replacing add, you may not use ``+``. Instead,
1855 directly call ufuncs.
1856
1857 Examples
1858 --------
1859 >>> def add_mod5(x, y):
1860 ... return np.add(x, y) % 5
1861 ...
1862 >>> old_funcs = np.set_numeric_ops(add=add_mod5)
1863
1864 >>> x = np.arange(12).reshape((3, 4))
1865 >>> x + x
1866 array([[0, 2, 4, 1],
1867 [3, 0, 2, 4],
1868 [1, 3, 0, 2]])
1869
1870 >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
1871
1872 """)
1873
1874add_newdoc('numpy.core.multiarray', 'promote_types',
1875 """
1876 promote_types(type1, type2)
1877
1878 Returns the data type with the smallest size and smallest scalar
1879 kind to which both ``type1`` and ``type2`` may be safely cast.
1880 The returned data type is always considered "canonical", this mainly
1881 means that the promoted dtype will always be in native byte order.
1882
1883 This function is symmetric, but rarely associative.
1884
1885 Parameters
1886 ----------
1887 type1 : dtype or dtype specifier
1888 First data type.
1889 type2 : dtype or dtype specifier
1890 Second data type.
1891
1892 Returns
1893 -------
1894 out : dtype
1895 The promoted data type.
1896
1897 Notes
1898 -----
1899 Please see `numpy.result_type` for additional information about promotion.
1900
1901 .. versionadded:: 1.6.0
1902
1903 Starting in NumPy 1.9, promote_types function now returns a valid string
1904 length when given an integer or float dtype as one argument and a string
1905 dtype as another argument. Previously it always returned the input string
1906 dtype, even if it wasn't long enough to store the max integer/float value
1907 converted to a string.
1908
1909 .. versionchanged:: 1.23.0
1910
1911 NumPy now supports promotion for more structured dtypes. It will now
1912 remove unnecessary padding from a structure dtype and promote included
1913 fields individually.
1914
1915 See Also
1916 --------
1917 result_type, dtype, can_cast
1918
1919 Examples
1920 --------
1921 >>> np.promote_types('f4', 'f8')
1922 dtype('float64')
1923
1924 >>> np.promote_types('i8', 'f4')
1925 dtype('float64')
1926
1927 >>> np.promote_types('>i8', '<c8')
1928 dtype('complex128')
1929
1930 >>> np.promote_types('i4', 'S8')
1931 dtype('S11')
1932
1933 An example of a non-associative case:
1934
1935 >>> p = np.promote_types
1936 >>> p('S', p('i1', 'u1'))
1937 dtype('S6')
1938 >>> p(p('S', 'i1'), 'u1')
1939 dtype('S4')
1940
1941 """)
1942
1943add_newdoc('numpy.core.multiarray', 'c_einsum',
1944 """
1945 c_einsum(subscripts, *operands, out=None, dtype=None, order='K',
1946 casting='safe')
1947
1948 *This documentation shadows that of the native python implementation of the `einsum` function,
1949 except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.*
1950
1951 Evaluates the Einstein summation convention on the operands.
1952
1953 Using the Einstein summation convention, many common multi-dimensional,
1954 linear algebraic array operations can be represented in a simple fashion.
1955 In *implicit* mode `einsum` computes these values.
1956
1957 In *explicit* mode, `einsum` provides further flexibility to compute
1958 other array operations that might not be considered classical Einstein
1959 summation operations, by disabling, or forcing summation over specified
1960 subscript labels.
1961
1962 See the notes and examples for clarification.
1963
1964 Parameters
1965 ----------
1966 subscripts : str
1967 Specifies the subscripts for summation as comma separated list of
1968 subscript labels. An implicit (classical Einstein summation)
1969 calculation is performed unless the explicit indicator '->' is
1970 included as well as subscript labels of the precise output form.
1971 operands : list of array_like
1972 These are the arrays for the operation.
1973 out : ndarray, optional
1974 If provided, the calculation is done into this array.
1975 dtype : {data-type, None}, optional
1976 If provided, forces the calculation to use the data type specified.
1977 Note that you may have to also give a more liberal `casting`
1978 parameter to allow the conversions. Default is None.
1979 order : {'C', 'F', 'A', 'K'}, optional
1980 Controls the memory layout of the output. 'C' means it should
1981 be C contiguous. 'F' means it should be Fortran contiguous,
1982 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
1983 'K' means it should be as close to the layout of the inputs as
1984 is possible, including arbitrarily permuted axes.
1985 Default is 'K'.
1986 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
1987 Controls what kind of data casting may occur. Setting this to
1988 'unsafe' is not recommended, as it can adversely affect accumulations.
1989
1990 * 'no' means the data types should not be cast at all.
1991 * 'equiv' means only byte-order changes are allowed.
1992 * 'safe' means only casts which can preserve values are allowed.
1993 * 'same_kind' means only safe casts or casts within a kind,
1994 like float64 to float32, are allowed.
1995 * 'unsafe' means any data conversions may be done.
1996
1997 Default is 'safe'.
1998 optimize : {False, True, 'greedy', 'optimal'}, optional
1999 Controls if intermediate optimization should occur. No optimization
2000 will occur if False and True will default to the 'greedy' algorithm.
2001 Also accepts an explicit contraction list from the ``np.einsum_path``
2002 function. See ``np.einsum_path`` for more details. Defaults to False.
2003
2004 Returns
2005 -------
2006 output : ndarray
2007 The calculation based on the Einstein summation convention.
2008
2009 See Also
2010 --------
2011 einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
2012
2013 Notes
2014 -----
2015 .. versionadded:: 1.6.0
2016
2017 The Einstein summation convention can be used to compute
2018 many multi-dimensional, linear algebraic array operations. `einsum`
2019 provides a succinct way of representing these.
2020
2021 A non-exhaustive list of these operations,
2022 which can be computed by `einsum`, is shown below along with examples:
2023
2024 * Trace of an array, :py:func:`numpy.trace`.
2025 * Return a diagonal, :py:func:`numpy.diag`.
2026 * Array axis summations, :py:func:`numpy.sum`.
2027 * Transpositions and permutations, :py:func:`numpy.transpose`.
2028 * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
2029 * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
2030 * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
2031 * Tensor contractions, :py:func:`numpy.tensordot`.
2032 * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
2033
2034 The subscripts string is a comma-separated list of subscript labels,
2035 where each label refers to a dimension of the corresponding operand.
2036 Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
2037 is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
2038 appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
2039 view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
2040 describes traditional matrix multiplication and is equivalent to
2041 :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
2042 operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
2043 to :py:func:`np.trace(a) <numpy.trace>`.
2044
2045 In *implicit mode*, the chosen subscripts are important
2046 since the axes of the output are reordered alphabetically. This
2047 means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
2048 ``np.einsum('ji', a)`` takes its transpose. Additionally,
2049 ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
2050 ``np.einsum('ij,jh', a, b)`` returns the transpose of the
2051 multiplication since subscript 'h' precedes subscript 'i'.
2052
2053 In *explicit mode* the output can be directly controlled by
2054 specifying output subscript labels. This requires the
2055 identifier '->' as well as the list of output subscript labels.
2056 This feature increases the flexibility of the function since
2057 summing can be disabled or forced when required. The call
2058 ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
2059 and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
2060 The difference is that `einsum` does not allow broadcasting by default.
2061 Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
2062 order of the output subscript labels and therefore returns matrix
2063 multiplication, unlike the example above in implicit mode.
2064
2065 To enable and control broadcasting, use an ellipsis. Default
2066 NumPy-style broadcasting is done by adding an ellipsis
2067 to the left of each term, like ``np.einsum('...ii->...i', a)``.
2068 To take the trace along the first and last axes,
2069 you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
2070 product with the left-most indices instead of rightmost, one can do
2071 ``np.einsum('ij...,jk...->ik...', a, b)``.
2072
2073 When there is only one operand, no axes are summed, and no output
2074 parameter is provided, a view into the operand is returned instead
2075 of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
2076 produces a view (changed in version 1.10.0).
2077
2078 `einsum` also provides an alternative way to provide the subscripts
2079 and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
2080 If the output shape is not provided in this format `einsum` will be
2081 calculated in implicit mode, otherwise it will be performed explicitly.
2082 The examples below have corresponding `einsum` calls with the two
2083 parameter methods.
2084
2085 .. versionadded:: 1.10.0
2086
2087 Views returned from einsum are now writeable whenever the input array
2088 is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
2089 have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
2090 and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
2091 of a 2D array.
2092
2093 Examples
2094 --------
2095 >>> a = np.arange(25).reshape(5,5)
2096 >>> b = np.arange(5)
2097 >>> c = np.arange(6).reshape(2,3)
2098
2099 Trace of a matrix:
2100
2101 >>> np.einsum('ii', a)
2102 60
2103 >>> np.einsum(a, [0,0])
2104 60
2105 >>> np.trace(a)
2106 60
2107
2108 Extract the diagonal (requires explicit form):
2109
2110 >>> np.einsum('ii->i', a)
2111 array([ 0, 6, 12, 18, 24])
2112 >>> np.einsum(a, [0,0], [0])
2113 array([ 0, 6, 12, 18, 24])
2114 >>> np.diag(a)
2115 array([ 0, 6, 12, 18, 24])
2116
2117 Sum over an axis (requires explicit form):
2118
2119 >>> np.einsum('ij->i', a)
2120 array([ 10, 35, 60, 85, 110])
2121 >>> np.einsum(a, [0,1], [0])
2122 array([ 10, 35, 60, 85, 110])
2123 >>> np.sum(a, axis=1)
2124 array([ 10, 35, 60, 85, 110])
2125
2126 For higher dimensional arrays summing a single axis can be done with ellipsis:
2127
2128 >>> np.einsum('...j->...', a)
2129 array([ 10, 35, 60, 85, 110])
2130 >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
2131 array([ 10, 35, 60, 85, 110])
2132
2133 Compute a matrix transpose, or reorder any number of axes:
2134
2135 >>> np.einsum('ji', c)
2136 array([[0, 3],
2137 [1, 4],
2138 [2, 5]])
2139 >>> np.einsum('ij->ji', c)
2140 array([[0, 3],
2141 [1, 4],
2142 [2, 5]])
2143 >>> np.einsum(c, [1,0])
2144 array([[0, 3],
2145 [1, 4],
2146 [2, 5]])
2147 >>> np.transpose(c)
2148 array([[0, 3],
2149 [1, 4],
2150 [2, 5]])
2151
2152 Vector inner products:
2153
2154 >>> np.einsum('i,i', b, b)
2155 30
2156 >>> np.einsum(b, [0], b, [0])
2157 30
2158 >>> np.inner(b,b)
2159 30
2160
2161 Matrix vector multiplication:
2162
2163 >>> np.einsum('ij,j', a, b)
2164 array([ 30, 80, 130, 180, 230])
2165 >>> np.einsum(a, [0,1], b, [1])
2166 array([ 30, 80, 130, 180, 230])
2167 >>> np.dot(a, b)
2168 array([ 30, 80, 130, 180, 230])
2169 >>> np.einsum('...j,j', a, b)
2170 array([ 30, 80, 130, 180, 230])
2171
2172 Broadcasting and scalar multiplication:
2173
2174 >>> np.einsum('..., ...', 3, c)
2175 array([[ 0, 3, 6],
2176 [ 9, 12, 15]])
2177 >>> np.einsum(',ij', 3, c)
2178 array([[ 0, 3, 6],
2179 [ 9, 12, 15]])
2180 >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
2181 array([[ 0, 3, 6],
2182 [ 9, 12, 15]])
2183 >>> np.multiply(3, c)
2184 array([[ 0, 3, 6],
2185 [ 9, 12, 15]])
2186
2187 Vector outer product:
2188
2189 >>> np.einsum('i,j', np.arange(2)+1, b)
2190 array([[0, 1, 2, 3, 4],
2191 [0, 2, 4, 6, 8]])
2192 >>> np.einsum(np.arange(2)+1, [0], b, [1])
2193 array([[0, 1, 2, 3, 4],
2194 [0, 2, 4, 6, 8]])
2195 >>> np.outer(np.arange(2)+1, b)
2196 array([[0, 1, 2, 3, 4],
2197 [0, 2, 4, 6, 8]])
2198
2199 Tensor contraction:
2200
2201 >>> a = np.arange(60.).reshape(3,4,5)
2202 >>> b = np.arange(24.).reshape(4,3,2)
2203 >>> np.einsum('ijk,jil->kl', a, b)
2204 array([[ 4400., 4730.],
2205 [ 4532., 4874.],
2206 [ 4664., 5018.],
2207 [ 4796., 5162.],
2208 [ 4928., 5306.]])
2209 >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
2210 array([[ 4400., 4730.],
2211 [ 4532., 4874.],
2212 [ 4664., 5018.],
2213 [ 4796., 5162.],
2214 [ 4928., 5306.]])
2215 >>> np.tensordot(a,b, axes=([1,0],[0,1]))
2216 array([[ 4400., 4730.],
2217 [ 4532., 4874.],
2218 [ 4664., 5018.],
2219 [ 4796., 5162.],
2220 [ 4928., 5306.]])
2221
2222 Writeable returned arrays (since version 1.10.0):
2223
2224 >>> a = np.zeros((3, 3))
2225 >>> np.einsum('ii->i', a)[:] = 1
2226 >>> a
2227 array([[ 1., 0., 0.],
2228 [ 0., 1., 0.],
2229 [ 0., 0., 1.]])
2230
2231 Example of ellipsis use:
2232
2233 >>> a = np.arange(6).reshape((3,2))
2234 >>> b = np.arange(12).reshape((4,3))
2235 >>> np.einsum('ki,jk->ij', a, b)
2236 array([[10, 28, 46, 64],
2237 [13, 40, 67, 94]])
2238 >>> np.einsum('ki,...k->i...', a, b)
2239 array([[10, 28, 46, 64],
2240 [13, 40, 67, 94]])
2241 >>> np.einsum('k...,jk', a, b)
2242 array([[10, 28, 46, 64],
2243 [13, 40, 67, 94]])
2244
2245 """)
2246
2247
2248##############################################################################
2249#
2250# Documentation for ndarray attributes and methods
2251#
2252##############################################################################
2253
2254
2255##############################################################################
2256#
2257# ndarray object
2258#
2259##############################################################################
2260
2261
2262add_newdoc('numpy.core.multiarray', 'ndarray',
2263 """
2264 ndarray(shape, dtype=float, buffer=None, offset=0,
2265 strides=None, order=None)
2266
2267 An array object represents a multidimensional, homogeneous array
2268 of fixed-size items. An associated data-type object describes the
2269 format of each element in the array (its byte-order, how many bytes it
2270 occupies in memory, whether it is an integer, a floating point number,
2271 or something else, etc.)
2272
2273 Arrays should be constructed using `array`, `zeros` or `empty` (refer
2274 to the See Also section below). The parameters given here refer to
2275 a low-level method (`ndarray(...)`) for instantiating an array.
2276
2277 For more information, refer to the `numpy` module and examine the
2278 methods and attributes of an array.
2279
2280 Parameters
2281 ----------
2282 (for the __new__ method; see Notes below)
2283
2284 shape : tuple of ints
2285 Shape of created array.
2286 dtype : data-type, optional
2287 Any object that can be interpreted as a numpy data type.
2288 buffer : object exposing buffer interface, optional
2289 Used to fill the array with data.
2290 offset : int, optional
2291 Offset of array data in buffer.
2292 strides : tuple of ints, optional
2293 Strides of data in memory.
2294 order : {'C', 'F'}, optional
2295 Row-major (C-style) or column-major (Fortran-style) order.
2296
2297 Attributes
2298 ----------
2299 T : ndarray
2300 Transpose of the array.
2301 data : buffer
2302 The array's elements, in memory.
2303 dtype : dtype object
2304 Describes the format of the elements in the array.
2305 flags : dict
2306 Dictionary containing information related to memory use, e.g.,
2307 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
2308 flat : numpy.flatiter object
2309 Flattened version of the array as an iterator. The iterator
2310 allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
2311 assignment examples; TODO).
2312 imag : ndarray
2313 Imaginary part of the array.
2314 real : ndarray
2315 Real part of the array.
2316 size : int
2317 Number of elements in the array.
2318 itemsize : int
2319 The memory use of each array element in bytes.
2320 nbytes : int
2321 The total number of bytes required to store the array data,
2322 i.e., ``itemsize * size``.
2323 ndim : int
2324 The array's number of dimensions.
2325 shape : tuple of ints
2326 Shape of the array.
2327 strides : tuple of ints
2328 The step-size required to move from one element to the next in
2329 memory. For example, a contiguous ``(3, 4)`` array of type
2330 ``int16`` in C-order has strides ``(8, 2)``. This implies that
2331 to move from element to element in memory requires jumps of 2 bytes.
2332 To move from row-to-row, one needs to jump 8 bytes at a time
2333 (``2 * 4``).
2334 ctypes : ctypes object
2335 Class containing properties of the array needed for interaction
2336 with ctypes.
2337 base : ndarray
2338 If the array is a view into another array, that array is its `base`
2339 (unless that array is also a view). The `base` array is where the
2340 array data is actually stored.
2341
2342 See Also
2343 --------
2344 array : Construct an array.
2345 zeros : Create an array, each element of which is zero.
2346 empty : Create an array, but leave its allocated memory unchanged (i.e.,
2347 it contains "garbage").
2348 dtype : Create a data-type.
2349 numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
2350 w.r.t. its `dtype.type <numpy.dtype.type>`.
2351
2352 Notes
2353 -----
2354 There are two modes of creating an array using ``__new__``:
2355
2356 1. If `buffer` is None, then only `shape`, `dtype`, and `order`
2357 are used.
2358 2. If `buffer` is an object exposing the buffer interface, then
2359 all keywords are interpreted.
2360
2361 No ``__init__`` method is needed because the array is fully initialized
2362 after the ``__new__`` method.
2363
2364 Examples
2365 --------
2366 These examples illustrate the low-level `ndarray` constructor. Refer
2367 to the `See Also` section above for easier ways of constructing an
2368 ndarray.
2369
2370 First mode, `buffer` is None:
2371
2372 >>> np.ndarray(shape=(2,2), dtype=float, order='F')
2373 array([[0.0e+000, 0.0e+000], # random
2374 [ nan, 2.5e-323]])
2375
2376 Second mode:
2377
2378 >>> np.ndarray((2,), buffer=np.array([1,2,3]),
2379 ... offset=np.int_().itemsize,
2380 ... dtype=int) # offset = 1*itemsize, i.e. skip first element
2381 array([2, 3])
2382
2383 """)
2384
2385
2386##############################################################################
2387#
2388# ndarray attributes
2389#
2390##############################################################################
2391
2392
2393add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
2394 """Array protocol: Python side."""))
2395
2396
2397add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
2398 """Array priority."""))
2399
2400
2401add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
2402 """Array protocol: C-struct side."""))
2403
2404add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack__',
2405 """a.__dlpack__(*, stream=None)
2406
2407 DLPack Protocol: Part of the Array API."""))
2408
2409add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack_device__',
2410 """a.__dlpack_device__()
2411
2412 DLPack Protocol: Part of the Array API."""))
2413
2414add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
2415 """
2416 Base object if memory is from some other object.
2417
2418 Examples
2419 --------
2420 The base of an array that owns its memory is None:
2421
2422 >>> x = np.array([1,2,3,4])
2423 >>> x.base is None
2424 True
2425
2426 Slicing creates a view, whose memory is shared with x:
2427
2428 >>> y = x[2:]
2429 >>> y.base is x
2430 True
2431
2432 """))
2433
2434
2435add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
2436 """
2437 An object to simplify the interaction of the array with the ctypes
2438 module.
2439
2440 This attribute creates an object that makes it easier to use arrays
2441 when calling shared libraries with the ctypes module. The returned
2442 object has, among others, data, shape, and strides attributes (see
2443 Notes below) which themselves return ctypes objects that can be used
2444 as arguments to a shared library.
2445
2446 Parameters
2447 ----------
2448 None
2449
2450 Returns
2451 -------
2452 c : Python object
2453 Possessing attributes data, shape, strides, etc.
2454
2455 See Also
2456 --------
2457 numpy.ctypeslib
2458
2459 Notes
2460 -----
2461 Below are the public attributes of this object which were documented
2462 in "Guide to NumPy" (we have omitted undocumented public attributes,
2463 as well as documented private attributes):
2464
2465 .. autoattribute:: numpy.core._internal._ctypes.data
2466 :noindex:
2467
2468 .. autoattribute:: numpy.core._internal._ctypes.shape
2469 :noindex:
2470
2471 .. autoattribute:: numpy.core._internal._ctypes.strides
2472 :noindex:
2473
2474 .. automethod:: numpy.core._internal._ctypes.data_as
2475 :noindex:
2476
2477 .. automethod:: numpy.core._internal._ctypes.shape_as
2478 :noindex:
2479
2480 .. automethod:: numpy.core._internal._ctypes.strides_as
2481 :noindex:
2482
2483 If the ctypes module is not available, then the ctypes attribute
2484 of array objects still returns something useful, but ctypes objects
2485 are not returned and errors may be raised instead. In particular,
2486 the object will still have the ``as_parameter`` attribute which will
2487 return an integer equal to the data attribute.
2488
2489 Examples
2490 --------
2491 >>> import ctypes
2492 >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
2493 >>> x
2494 array([[0, 1],
2495 [2, 3]], dtype=int32)
2496 >>> x.ctypes.data
2497 31962608 # may vary
2498 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
2499 <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
2500 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
2501 c_uint(0)
2502 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
2503 c_ulong(4294967296)
2504 >>> x.ctypes.shape
2505 <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
2506 >>> x.ctypes.strides
2507 <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary
2508
2509 """))
2510
2511
2512add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
2513 """Python buffer object pointing to the start of the array's data."""))
2514
2515
2516add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
2517 """
2518 Data-type of the array's elements.
2519
2520 .. warning::
2521
2522 Setting ``arr.dtype`` is discouraged and may be deprecated in the
2523 future. Setting will replace the ``dtype`` without modifying the
2524 memory (see also `ndarray.view` and `ndarray.astype`).
2525
2526 Parameters
2527 ----------
2528 None
2529
2530 Returns
2531 -------
2532 d : numpy dtype object
2533
2534 See Also
2535 --------
2536 ndarray.astype : Cast the values contained in the array to a new data-type.
2537 ndarray.view : Create a view of the same data but a different data-type.
2538 numpy.dtype
2539
2540 Examples
2541 --------
2542 >>> x
2543 array([[0, 1],
2544 [2, 3]])
2545 >>> x.dtype
2546 dtype('int32')
2547 >>> type(x.dtype)
2548 <type 'numpy.dtype'>
2549
2550 """))
2551
2552
2553add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
2554 """
2555 The imaginary part of the array.
2556
2557 Examples
2558 --------
2559 >>> x = np.sqrt([1+0j, 0+1j])
2560 >>> x.imag
2561 array([ 0. , 0.70710678])
2562 >>> x.imag.dtype
2563 dtype('float64')
2564
2565 """))
2566
2567
2568add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
2569 """
2570 Length of one array element in bytes.
2571
2572 Examples
2573 --------
2574 >>> x = np.array([1,2,3], dtype=np.float64)
2575 >>> x.itemsize
2576 8
2577 >>> x = np.array([1,2,3], dtype=np.complex128)
2578 >>> x.itemsize
2579 16
2580
2581 """))
2582
2583
2584add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
2585 """
2586 Information about the memory layout of the array.
2587
2588 Attributes
2589 ----------
2590 C_CONTIGUOUS (C)
2591 The data is in a single, C-style contiguous segment.
2592 F_CONTIGUOUS (F)
2593 The data is in a single, Fortran-style contiguous segment.
2594 OWNDATA (O)
2595 The array owns the memory it uses or borrows it from another object.
2596 WRITEABLE (W)
2597 The data area can be written to. Setting this to False locks
2598 the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
2599 from its base array at creation time, but a view of a writeable
2600 array may be subsequently locked while the base array remains writeable.
2601 (The opposite is not true, in that a view of a locked array may not
2602 be made writeable. However, currently, locking a base object does not
2603 lock any views that already reference it, so under that circumstance it
2604 is possible to alter the contents of a locked array via a previously
2605 created writeable view onto it.) Attempting to change a non-writeable
2606 array raises a RuntimeError exception.
2607 ALIGNED (A)
2608 The data and all elements are aligned appropriately for the hardware.
2609 WRITEBACKIFCOPY (X)
2610 This array is a copy of some other array. The C-API function
2611 PyArray_ResolveWritebackIfCopy must be called before deallocating
2612 to the base array will be updated with the contents of this array.
2613 FNC
2614 F_CONTIGUOUS and not C_CONTIGUOUS.
2615 FORC
2616 F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
2617 BEHAVED (B)
2618 ALIGNED and WRITEABLE.
2619 CARRAY (CA)
2620 BEHAVED and C_CONTIGUOUS.
2621 FARRAY (FA)
2622 BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
2623
2624 Notes
2625 -----
2626 The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
2627 or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
2628 names are only supported in dictionary access.
2629
2630 Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be
2631 changed by the user, via direct assignment to the attribute or dictionary
2632 entry, or by calling `ndarray.setflags`.
2633
2634 The array flags cannot be set arbitrarily:
2635
2636 - WRITEBACKIFCOPY can only be set ``False``.
2637 - ALIGNED can only be set ``True`` if the data is truly aligned.
2638 - WRITEABLE can only be set ``True`` if the array owns its own memory
2639 or the ultimate owner of the memory exposes a writeable buffer
2640 interface or is a string.
2641
2642 Arrays can be both C-style and Fortran-style contiguous simultaneously.
2643 This is clear for 1-dimensional arrays, but can also be true for higher
2644 dimensional arrays.
2645
2646 Even for contiguous arrays a stride for a given dimension
2647 ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
2648 or the array has no elements.
2649 It does *not* generally hold that ``self.strides[-1] == self.itemsize``
2650 for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
2651 Fortran-style contiguous arrays is true.
2652 """))
2653
2654
2655add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
2656 """
2657 A 1-D iterator over the array.
2658
2659 This is a `numpy.flatiter` instance, which acts similarly to, but is not
2660 a subclass of, Python's built-in iterator object.
2661
2662 See Also
2663 --------
2664 flatten : Return a copy of the array collapsed into one dimension.
2665
2666 flatiter
2667
2668 Examples
2669 --------
2670 >>> x = np.arange(1, 7).reshape(2, 3)
2671 >>> x
2672 array([[1, 2, 3],
2673 [4, 5, 6]])
2674 >>> x.flat[3]
2675 4
2676 >>> x.T
2677 array([[1, 4],
2678 [2, 5],
2679 [3, 6]])
2680 >>> x.T.flat[3]
2681 5
2682 >>> type(x.flat)
2683 <class 'numpy.flatiter'>
2684
2685 An assignment example:
2686
2687 >>> x.flat = 3; x
2688 array([[3, 3, 3],
2689 [3, 3, 3]])
2690 >>> x.flat[[1,4]] = 1; x
2691 array([[3, 1, 3],
2692 [3, 1, 3]])
2693
2694 """))
2695
2696
2697add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
2698 """
2699 Total bytes consumed by the elements of the array.
2700
2701 Notes
2702 -----
2703 Does not include memory consumed by non-element attributes of the
2704 array object.
2705
2706 Examples
2707 --------
2708 >>> x = np.zeros((3,5,2), dtype=np.complex128)
2709 >>> x.nbytes
2710 480
2711 >>> np.prod(x.shape) * x.itemsize
2712 480
2713
2714 """))
2715
2716
2717add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
2718 """
2719 Number of array dimensions.
2720
2721 Examples
2722 --------
2723 >>> x = np.array([1, 2, 3])
2724 >>> x.ndim
2725 1
2726 >>> y = np.zeros((2, 3, 4))
2727 >>> y.ndim
2728 3
2729
2730 """))
2731
2732
2733add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
2734 """
2735 The real part of the array.
2736
2737 Examples
2738 --------
2739 >>> x = np.sqrt([1+0j, 0+1j])
2740 >>> x.real
2741 array([ 1. , 0.70710678])
2742 >>> x.real.dtype
2743 dtype('float64')
2744
2745 See Also
2746 --------
2747 numpy.real : equivalent function
2748
2749 """))
2750
2751
2752add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
2753 """
2754 Tuple of array dimensions.
2755
2756 The shape property is usually used to get the current shape of an array,
2757 but may also be used to reshape the array in-place by assigning a tuple of
2758 array dimensions to it. As with `numpy.reshape`, one of the new shape
2759 dimensions can be -1, in which case its value is inferred from the size of
2760 the array and the remaining dimensions. Reshaping an array in-place will
2761 fail if a copy is required.
2762
2763 .. warning::
2764
2765 Setting ``arr.shape`` is discouraged and may be deprecated in the
2766 future. Using `ndarray.reshape` is the preferred approach.
2767
2768 Examples
2769 --------
2770 >>> x = np.array([1, 2, 3, 4])
2771 >>> x.shape
2772 (4,)
2773 >>> y = np.zeros((2, 3, 4))
2774 >>> y.shape
2775 (2, 3, 4)
2776 >>> y.shape = (3, 8)
2777 >>> y
2778 array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
2779 [ 0., 0., 0., 0., 0., 0., 0., 0.],
2780 [ 0., 0., 0., 0., 0., 0., 0., 0.]])
2781 >>> y.shape = (3, 6)
2782 Traceback (most recent call last):
2783 File "<stdin>", line 1, in <module>
2784 ValueError: total size of new array must be unchanged
2785 >>> np.zeros((4,2))[::2].shape = (-1,)
2786 Traceback (most recent call last):
2787 File "<stdin>", line 1, in <module>
2788 AttributeError: Incompatible shape for in-place modification. Use
2789 `.reshape()` to make a copy with the desired shape.
2790
2791 See Also
2792 --------
2793 numpy.shape : Equivalent getter function.
2794 numpy.reshape : Function similar to setting ``shape``.
2795 ndarray.reshape : Method similar to setting ``shape``.
2796
2797 """))
2798
2799
2800add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
2801 """
2802 Number of elements in the array.
2803
2804 Equal to ``np.prod(a.shape)``, i.e., the product of the array's
2805 dimensions.
2806
2807 Notes
2808 -----
2809 `a.size` returns a standard arbitrary precision Python integer. This
2810 may not be the case with other methods of obtaining the same value
2811 (like the suggested ``np.prod(a.shape)``, which returns an instance
2812 of ``np.int_``), and may be relevant if the value is used further in
2813 calculations that may overflow a fixed size integer type.
2814
2815 Examples
2816 --------
2817 >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
2818 >>> x.size
2819 30
2820 >>> np.prod(x.shape)
2821 30
2822
2823 """))
2824
2825
2826add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
2827 """
2828 Tuple of bytes to step in each dimension when traversing an array.
2829
2830 The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
2831 is::
2832
2833 offset = sum(np.array(i) * a.strides)
2834
2835 A more detailed explanation of strides can be found in the
2836 "ndarray.rst" file in the NumPy reference guide.
2837
2838 .. warning::
2839
2840 Setting ``arr.strides`` is discouraged and may be deprecated in the
2841 future. `numpy.lib.stride_tricks.as_strided` should be preferred
2842 to create a new view of the same data in a safer way.
2843
2844 Notes
2845 -----
2846 Imagine an array of 32-bit integers (each 4 bytes)::
2847
2848 x = np.array([[0, 1, 2, 3, 4],
2849 [5, 6, 7, 8, 9]], dtype=np.int32)
2850
2851 This array is stored in memory as 40 bytes, one after the other
2852 (known as a contiguous block of memory). The strides of an array tell
2853 us how many bytes we have to skip in memory to move to the next position
2854 along a certain axis. For example, we have to skip 4 bytes (1 value) to
2855 move to the next column, but 20 bytes (5 values) to get to the same
2856 position in the next row. As such, the strides for the array `x` will be
2857 ``(20, 4)``.
2858
2859 See Also
2860 --------
2861 numpy.lib.stride_tricks.as_strided
2862
2863 Examples
2864 --------
2865 >>> y = np.reshape(np.arange(2*3*4), (2,3,4))
2866 >>> y
2867 array([[[ 0, 1, 2, 3],
2868 [ 4, 5, 6, 7],
2869 [ 8, 9, 10, 11]],
2870 [[12, 13, 14, 15],
2871 [16, 17, 18, 19],
2872 [20, 21, 22, 23]]])
2873 >>> y.strides
2874 (48, 16, 4)
2875 >>> y[1,1,1]
2876 17
2877 >>> offset=sum(y.strides * np.array((1,1,1)))
2878 >>> offset/y.itemsize
2879 17
2880
2881 >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
2882 >>> x.strides
2883 (32, 4, 224, 1344)
2884 >>> i = np.array([3,5,2,2])
2885 >>> offset = sum(i * x.strides)
2886 >>> x[3,5,2,2]
2887 813
2888 >>> offset / x.itemsize
2889 813
2890
2891 """))
2892
2893
2894add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
2895 """
2896 View of the transposed array.
2897
2898 Same as ``self.transpose()``.
2899
2900 Examples
2901 --------
2902 >>> a = np.array([[1, 2], [3, 4]])
2903 >>> a
2904 array([[1, 2],
2905 [3, 4]])
2906 >>> a.T
2907 array([[1, 3],
2908 [2, 4]])
2909
2910 >>> a = np.array([1, 2, 3, 4])
2911 >>> a
2912 array([1, 2, 3, 4])
2913 >>> a.T
2914 array([1, 2, 3, 4])
2915
2916 See Also
2917 --------
2918 transpose
2919
2920 """))
2921
2922
2923##############################################################################
2924#
2925# ndarray methods
2926#
2927##############################################################################
2928
2929
2930add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
2931 """ a.__array__([dtype], /) -> reference if type unchanged, copy otherwise.
2932
2933 Returns either a new reference to self if dtype is not given or a new array
2934 of provided data type if dtype is different from the current dtype of the
2935 array.
2936
2937 """))
2938
2939
2940add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
2941 """a.__array_finalize__(obj, /)
2942
2943 Present so subclasses can call super. Does nothing.
2944
2945 """))
2946
2947
2948add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__',
2949 """a.__array_prepare__(array[, context], /)
2950
2951 Returns a view of `array` with the same type as self.
2952
2953 """))
2954
2955
2956add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
2957 """a.__array_wrap__(array[, context], /)
2958
2959 Returns a view of `array` with the same type as self.
2960
2961 """))
2962
2963
2964add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
2965 """a.__copy__()
2966
2967 Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
2968
2969 Equivalent to ``a.copy(order='K')``.
2970
2971 """))
2972
2973
2974add_newdoc('numpy.core.multiarray', 'ndarray', ('__class_getitem__',
2975 """a.__class_getitem__(item, /)
2976
2977 Return a parametrized wrapper around the `~numpy.ndarray` type.
2978
2979 .. versionadded:: 1.22
2980
2981 Returns
2982 -------
2983 alias : types.GenericAlias
2984 A parametrized `~numpy.ndarray` type.
2985
2986 Examples
2987 --------
2988 >>> from typing import Any
2989 >>> import numpy as np
2990
2991 >>> np.ndarray[Any, np.dtype[Any]]
2992 numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]
2993
2994 Notes
2995 -----
2996 This method is only available for python 3.9 and later.
2997
2998 See Also
2999 --------
3000 :pep:`585` : Type hinting generics in standard collections.
3001 numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
3002 w.r.t. its `dtype.type <numpy.dtype.type>`.
3003
3004 """))
3005
3006
3007add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
3008 """a.__deepcopy__(memo, /) -> Deep copy of array.
3009
3010 Used if :func:`copy.deepcopy` is called on an array.
3011
3012 """))
3013
3014
3015add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
3016 """a.__reduce__()
3017
3018 For pickling.
3019
3020 """))
3021
3022
3023add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
3024 """a.__setstate__(state, /)
3025
3026 For unpickling.
3027
3028 The `state` argument must be a sequence that contains the following
3029 elements:
3030
3031 Parameters
3032 ----------
3033 version : int
3034 optional pickle version. If omitted defaults to 0.
3035 shape : tuple
3036 dtype : data-type
3037 isFortran : bool
3038 rawdata : string or list
3039 a binary string with the data (or a list if 'a' is an object array)
3040
3041 """))
3042
3043
3044add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
3045 """
3046 a.all(axis=None, out=None, keepdims=False, *, where=True)
3047
3048 Returns True if all elements evaluate to True.
3049
3050 Refer to `numpy.all` for full documentation.
3051
3052 See Also
3053 --------
3054 numpy.all : equivalent function
3055
3056 """))
3057
3058
3059add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
3060 """
3061 a.any(axis=None, out=None, keepdims=False, *, where=True)
3062
3063 Returns True if any of the elements of `a` evaluate to True.
3064
3065 Refer to `numpy.any` for full documentation.
3066
3067 See Also
3068 --------
3069 numpy.any : equivalent function
3070
3071 """))
3072
3073
3074add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
3075 """
3076 a.argmax(axis=None, out=None, *, keepdims=False)
3077
3078 Return indices of the maximum values along the given axis.
3079
3080 Refer to `numpy.argmax` for full documentation.
3081
3082 See Also
3083 --------
3084 numpy.argmax : equivalent function
3085
3086 """))
3087
3088
3089add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
3090 """
3091 a.argmin(axis=None, out=None, *, keepdims=False)
3092
3093 Return indices of the minimum values along the given axis.
3094
3095 Refer to `numpy.argmin` for detailed documentation.
3096
3097 See Also
3098 --------
3099 numpy.argmin : equivalent function
3100
3101 """))
3102
3103
3104add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
3105 """
3106 a.argsort(axis=-1, kind=None, order=None)
3107
3108 Returns the indices that would sort this array.
3109
3110 Refer to `numpy.argsort` for full documentation.
3111
3112 See Also
3113 --------
3114 numpy.argsort : equivalent function
3115
3116 """))
3117
3118
3119add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition',
3120 """
3121 a.argpartition(kth, axis=-1, kind='introselect', order=None)
3122
3123 Returns the indices that would partition this array.
3124
3125 Refer to `numpy.argpartition` for full documentation.
3126
3127 .. versionadded:: 1.8.0
3128
3129 See Also
3130 --------
3131 numpy.argpartition : equivalent function
3132
3133 """))
3134
3135
3136add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
3137 """
3138 a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
3139
3140 Copy of the array, cast to a specified type.
3141
3142 Parameters
3143 ----------
3144 dtype : str or dtype
3145 Typecode or data-type to which the array is cast.
3146 order : {'C', 'F', 'A', 'K'}, optional
3147 Controls the memory layout order of the result.
3148 'C' means C order, 'F' means Fortran order, 'A'
3149 means 'F' order if all the arrays are Fortran contiguous,
3150 'C' order otherwise, and 'K' means as close to the
3151 order the array elements appear in memory as possible.
3152 Default is 'K'.
3153 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
3154 Controls what kind of data casting may occur. Defaults to 'unsafe'
3155 for backwards compatibility.
3156
3157 * 'no' means the data types should not be cast at all.
3158 * 'equiv' means only byte-order changes are allowed.
3159 * 'safe' means only casts which can preserve values are allowed.
3160 * 'same_kind' means only safe casts or casts within a kind,
3161 like float64 to float32, are allowed.
3162 * 'unsafe' means any data conversions may be done.
3163 subok : bool, optional
3164 If True, then sub-classes will be passed-through (default), otherwise
3165 the returned array will be forced to be a base-class array.
3166 copy : bool, optional
3167 By default, astype always returns a newly allocated array. If this
3168 is set to false, and the `dtype`, `order`, and `subok`
3169 requirements are satisfied, the input array is returned instead
3170 of a copy.
3171
3172 Returns
3173 -------
3174 arr_t : ndarray
3175 Unless `copy` is False and the other conditions for returning the input
3176 array are satisfied (see description for `copy` input parameter), `arr_t`
3177 is a new array of the same shape as the input array, with dtype, order
3178 given by `dtype`, `order`.
3179
3180 Notes
3181 -----
3182 .. versionchanged:: 1.17.0
3183 Casting between a simple data type and a structured one is possible only
3184 for "unsafe" casting. Casting to multiple fields is allowed, but
3185 casting from multiple fields is not.
3186
3187 .. versionchanged:: 1.9.0
3188 Casting from numeric to string types in 'safe' casting mode requires
3189 that the string dtype length is long enough to store the max
3190 integer/float value converted.
3191
3192 Raises
3193 ------
3194 ComplexWarning
3195 When casting from complex to float or int. To avoid this,
3196 one should use ``a.real.astype(t)``.
3197
3198 Examples
3199 --------
3200 >>> x = np.array([1, 2, 2.5])
3201 >>> x
3202 array([1. , 2. , 2.5])
3203
3204 >>> x.astype(int)
3205 array([1, 2, 2])
3206
3207 """))
3208
3209
3210add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
3211 """
3212 a.byteswap(inplace=False)
3213
3214 Swap the bytes of the array elements
3215
3216 Toggle between low-endian and big-endian data representation by
3217 returning a byteswapped array, optionally swapped in-place.
3218 Arrays of byte-strings are not swapped. The real and imaginary
3219 parts of a complex number are swapped individually.
3220
3221 Parameters
3222 ----------
3223 inplace : bool, optional
3224 If ``True``, swap bytes in-place, default is ``False``.
3225
3226 Returns
3227 -------
3228 out : ndarray
3229 The byteswapped array. If `inplace` is ``True``, this is
3230 a view to self.
3231
3232 Examples
3233 --------
3234 >>> A = np.array([1, 256, 8755], dtype=np.int16)
3235 >>> list(map(hex, A))
3236 ['0x1', '0x100', '0x2233']
3237 >>> A.byteswap(inplace=True)
3238 array([ 256, 1, 13090], dtype=int16)
3239 >>> list(map(hex, A))
3240 ['0x100', '0x1', '0x3322']
3241
3242 Arrays of byte-strings are not swapped
3243
3244 >>> A = np.array([b'ceg', b'fac'])
3245 >>> A.byteswap()
3246 array([b'ceg', b'fac'], dtype='|S3')
3247
3248 ``A.newbyteorder().byteswap()`` produces an array with the same values
3249 but different representation in memory
3250
3251 >>> A = np.array([1, 2, 3])
3252 >>> A.view(np.uint8)
3253 array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
3254 0, 0], dtype=uint8)
3255 >>> A.newbyteorder().byteswap(inplace=True)
3256 array([1, 2, 3])
3257 >>> A.view(np.uint8)
3258 array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
3259 0, 3], dtype=uint8)
3260
3261 """))
3262
3263
3264add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
3265 """
3266 a.choose(choices, out=None, mode='raise')
3267
3268 Use an index array to construct a new array from a set of choices.
3269
3270 Refer to `numpy.choose` for full documentation.
3271
3272 See Also
3273 --------
3274 numpy.choose : equivalent function
3275
3276 """))
3277
3278
3279add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
3280 """
3281 a.clip(min=None, max=None, out=None, **kwargs)
3282
3283 Return an array whose values are limited to ``[min, max]``.
3284 One of max or min must be given.
3285
3286 Refer to `numpy.clip` for full documentation.
3287
3288 See Also
3289 --------
3290 numpy.clip : equivalent function
3291
3292 """))
3293
3294
3295add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
3296 """
3297 a.compress(condition, axis=None, out=None)
3298
3299 Return selected slices of this array along given axis.
3300
3301 Refer to `numpy.compress` for full documentation.
3302
3303 See Also
3304 --------
3305 numpy.compress : equivalent function
3306
3307 """))
3308
3309
3310add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
3311 """
3312 a.conj()
3313
3314 Complex-conjugate all elements.
3315
3316 Refer to `numpy.conjugate` for full documentation.
3317
3318 See Also
3319 --------
3320 numpy.conjugate : equivalent function
3321
3322 """))
3323
3324
3325add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
3326 """
3327 a.conjugate()
3328
3329 Return the complex conjugate, element-wise.
3330
3331 Refer to `numpy.conjugate` for full documentation.
3332
3333 See Also
3334 --------
3335 numpy.conjugate : equivalent function
3336
3337 """))
3338
3339
3340add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
3341 """
3342 a.copy(order='C')
3343
3344 Return a copy of the array.
3345
3346 Parameters
3347 ----------
3348 order : {'C', 'F', 'A', 'K'}, optional
3349 Controls the memory layout of the copy. 'C' means C-order,
3350 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
3351 'C' otherwise. 'K' means match the layout of `a` as closely
3352 as possible. (Note that this function and :func:`numpy.copy` are very
3353 similar but have different default values for their order=
3354 arguments, and this function always passes sub-classes through.)
3355
3356 See also
3357 --------
3358 numpy.copy : Similar function with different default behavior
3359 numpy.copyto
3360
3361 Notes
3362 -----
3363 This function is the preferred method for creating an array copy. The
3364 function :func:`numpy.copy` is similar, but it defaults to using order 'K',
3365 and will not pass sub-classes through by default.
3366
3367 Examples
3368 --------
3369 >>> x = np.array([[1,2,3],[4,5,6]], order='F')
3370
3371 >>> y = x.copy()
3372
3373 >>> x.fill(0)
3374
3375 >>> x
3376 array([[0, 0, 0],
3377 [0, 0, 0]])
3378
3379 >>> y
3380 array([[1, 2, 3],
3381 [4, 5, 6]])
3382
3383 >>> y.flags['C_CONTIGUOUS']
3384 True
3385
3386 """))
3387
3388
3389add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
3390 """
3391 a.cumprod(axis=None, dtype=None, out=None)
3392
3393 Return the cumulative product of the elements along the given axis.
3394
3395 Refer to `numpy.cumprod` for full documentation.
3396
3397 See Also
3398 --------
3399 numpy.cumprod : equivalent function
3400
3401 """))
3402
3403
3404add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
3405 """
3406 a.cumsum(axis=None, dtype=None, out=None)
3407
3408 Return the cumulative sum of the elements along the given axis.
3409
3410 Refer to `numpy.cumsum` for full documentation.
3411
3412 See Also
3413 --------
3414 numpy.cumsum : equivalent function
3415
3416 """))
3417
3418
3419add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
3420 """
3421 a.diagonal(offset=0, axis1=0, axis2=1)
3422
3423 Return specified diagonals. In NumPy 1.9 the returned array is a
3424 read-only view instead of a copy as in previous NumPy versions. In
3425 a future version the read-only restriction will be removed.
3426
3427 Refer to :func:`numpy.diagonal` for full documentation.
3428
3429 See Also
3430 --------
3431 numpy.diagonal : equivalent function
3432
3433 """))
3434
3435
3436add_newdoc('numpy.core.multiarray', 'ndarray', ('dot'))
3437
3438
3439add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
3440 """a.dump(file)
3441
3442 Dump a pickle of the array to the specified file.
3443 The array can be read back with pickle.load or numpy.load.
3444
3445 Parameters
3446 ----------
3447 file : str or Path
3448 A string naming the dump file.
3449
3450 .. versionchanged:: 1.17.0
3451 `pathlib.Path` objects are now accepted.
3452
3453 """))
3454
3455
3456add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
3457 """
3458 a.dumps()
3459
3460 Returns the pickle of the array as a string.
3461 pickle.loads will convert the string back to an array.
3462
3463 Parameters
3464 ----------
3465 None
3466
3467 """))
3468
3469
3470add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
3471 """
3472 a.fill(value)
3473
3474 Fill the array with a scalar value.
3475
3476 Parameters
3477 ----------
3478 value : scalar
3479 All elements of `a` will be assigned this value.
3480
3481 Examples
3482 --------
3483 >>> a = np.array([1, 2])
3484 >>> a.fill(0)
3485 >>> a
3486 array([0, 0])
3487 >>> a = np.empty(2)
3488 >>> a.fill(1)
3489 >>> a
3490 array([1., 1.])
3491
3492 Fill expects a scalar value and always behaves the same as assigning
3493 to a single array element. The following is a rare example where this
3494 distinction is important:
3495
3496 >>> a = np.array([None, None], dtype=object)
3497 >>> a[0] = np.array(3)
3498 >>> a
3499 array([array(3), None], dtype=object)
3500 >>> a.fill(np.array(3))
3501 >>> a
3502 array([array(3), array(3)], dtype=object)
3503
3504 Where other forms of assignments will unpack the array being assigned:
3505
3506 >>> a[...] = np.array(3)
3507 >>> a
3508 array([3, 3], dtype=object)
3509
3510 """))
3511
3512
3513add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
3514 """
3515 a.flatten(order='C')
3516
3517 Return a copy of the array collapsed into one dimension.
3518
3519 Parameters
3520 ----------
3521 order : {'C', 'F', 'A', 'K'}, optional
3522 'C' means to flatten in row-major (C-style) order.
3523 'F' means to flatten in column-major (Fortran-
3524 style) order. 'A' means to flatten in column-major
3525 order if `a` is Fortran *contiguous* in memory,
3526 row-major order otherwise. 'K' means to flatten
3527 `a` in the order the elements occur in memory.
3528 The default is 'C'.
3529
3530 Returns
3531 -------
3532 y : ndarray
3533 A copy of the input array, flattened to one dimension.
3534
3535 See Also
3536 --------
3537 ravel : Return a flattened array.
3538 flat : A 1-D flat iterator over the array.
3539
3540 Examples
3541 --------
3542 >>> a = np.array([[1,2], [3,4]])
3543 >>> a.flatten()
3544 array([1, 2, 3, 4])
3545 >>> a.flatten('F')
3546 array([1, 3, 2, 4])
3547
3548 """))
3549
3550
3551add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
3552 """
3553 a.getfield(dtype, offset=0)
3554
3555 Returns a field of the given array as a certain type.
3556
3557 A field is a view of the array data with a given data-type. The values in
3558 the view are determined by the given type and the offset into the current
3559 array in bytes. The offset needs to be such that the view dtype fits in the
3560 array dtype; for example an array of dtype complex128 has 16-byte elements.
3561 If taking a view with a 32-bit integer (4 bytes), the offset needs to be
3562 between 0 and 12 bytes.
3563
3564 Parameters
3565 ----------
3566 dtype : str or dtype
3567 The data type of the view. The dtype size of the view can not be larger
3568 than that of the array itself.
3569 offset : int
3570 Number of bytes to skip before beginning the element view.
3571
3572 Examples
3573 --------
3574 >>> x = np.diag([1.+1.j]*2)
3575 >>> x[1, 1] = 2 + 4.j
3576 >>> x
3577 array([[1.+1.j, 0.+0.j],
3578 [0.+0.j, 2.+4.j]])
3579 >>> x.getfield(np.float64)
3580 array([[1., 0.],
3581 [0., 2.]])
3582
3583 By choosing an offset of 8 bytes we can select the complex part of the
3584 array for our view:
3585
3586 >>> x.getfield(np.float64, offset=8)
3587 array([[1., 0.],
3588 [0., 4.]])
3589
3590 """))
3591
3592
3593add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
3594 """
3595 a.item(*args)
3596
3597 Copy an element of an array to a standard Python scalar and return it.
3598
3599 Parameters
3600 ----------
3601 \\*args : Arguments (variable number and type)
3602
3603 * none: in this case, the method only works for arrays
3604 with one element (`a.size == 1`), which element is
3605 copied into a standard Python scalar object and returned.
3606
3607 * int_type: this argument is interpreted as a flat index into
3608 the array, specifying which element to copy and return.
3609
3610 * tuple of int_types: functions as does a single int_type argument,
3611 except that the argument is interpreted as an nd-index into the
3612 array.
3613
3614 Returns
3615 -------
3616 z : Standard Python scalar object
3617 A copy of the specified element of the array as a suitable
3618 Python scalar
3619
3620 Notes
3621 -----
3622 When the data type of `a` is longdouble or clongdouble, item() returns
3623 a scalar array object because there is no available Python scalar that
3624 would not lose information. Void arrays return a buffer object for item(),
3625 unless fields are defined, in which case a tuple is returned.
3626
3627 `item` is very similar to a[args], except, instead of an array scalar,
3628 a standard Python scalar is returned. This can be useful for speeding up
3629 access to elements of the array and doing arithmetic on elements of the
3630 array using Python's optimized math.
3631
3632 Examples
3633 --------
3634 >>> np.random.seed(123)
3635 >>> x = np.random.randint(9, size=(3, 3))
3636 >>> x
3637 array([[2, 2, 6],
3638 [1, 3, 6],
3639 [1, 0, 1]])
3640 >>> x.item(3)
3641 1
3642 >>> x.item(7)
3643 0
3644 >>> x.item((0, 1))
3645 2
3646 >>> x.item((2, 2))
3647 1
3648
3649 """))
3650
3651
3652add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
3653 """
3654 a.itemset(*args)
3655
3656 Insert scalar into an array (scalar is cast to array's dtype, if possible)
3657
3658 There must be at least 1 argument, and define the last argument
3659 as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster
3660 than ``a[args] = item``. The item should be a scalar value and `args`
3661 must select a single item in the array `a`.
3662
3663 Parameters
3664 ----------
3665 \\*args : Arguments
3666 If one argument: a scalar, only used in case `a` is of size 1.
3667 If two arguments: the last argument is the value to be set
3668 and must be a scalar, the first argument specifies a single array
3669 element location. It is either an int or a tuple.
3670
3671 Notes
3672 -----
3673 Compared to indexing syntax, `itemset` provides some speed increase
3674 for placing a scalar into a particular location in an `ndarray`,
3675 if you must do this. However, generally this is discouraged:
3676 among other problems, it complicates the appearance of the code.
3677 Also, when using `itemset` (and `item`) inside a loop, be sure
3678 to assign the methods to a local variable to avoid the attribute
3679 look-up at each loop iteration.
3680
3681 Examples
3682 --------
3683 >>> np.random.seed(123)
3684 >>> x = np.random.randint(9, size=(3, 3))
3685 >>> x
3686 array([[2, 2, 6],
3687 [1, 3, 6],
3688 [1, 0, 1]])
3689 >>> x.itemset(4, 0)
3690 >>> x.itemset((2, 2), 9)
3691 >>> x
3692 array([[2, 2, 6],
3693 [1, 0, 6],
3694 [1, 0, 9]])
3695
3696 """))
3697
3698
3699add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
3700 """
3701 a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
3702
3703 Return the maximum along a given axis.
3704
3705 Refer to `numpy.amax` for full documentation.
3706
3707 See Also
3708 --------
3709 numpy.amax : equivalent function
3710
3711 """))
3712
3713
3714add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
3715 """
3716 a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
3717
3718 Returns the average of the array elements along given axis.
3719
3720 Refer to `numpy.mean` for full documentation.
3721
3722 See Also
3723 --------
3724 numpy.mean : equivalent function
3725
3726 """))
3727
3728
3729add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
3730 """
3731 a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
3732
3733 Return the minimum along a given axis.
3734
3735 Refer to `numpy.amin` for full documentation.
3736
3737 See Also
3738 --------
3739 numpy.amin : equivalent function
3740
3741 """))
3742
3743
3744add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
3745 """
3746 arr.newbyteorder(new_order='S', /)
3747
3748 Return the array with the same data viewed with a different byte order.
3749
3750 Equivalent to::
3751
3752 arr.view(arr.dtype.newbytorder(new_order))
3753
3754 Changes are also made in all fields and sub-arrays of the array data
3755 type.
3756
3757
3758
3759 Parameters
3760 ----------
3761 new_order : string, optional
3762 Byte order to force; a value from the byte order specifications
3763 below. `new_order` codes can be any of:
3764
3765 * 'S' - swap dtype from current to opposite endian
3766 * {'<', 'little'} - little endian
3767 * {'>', 'big'} - big endian
3768 * {'=', 'native'} - native order, equivalent to `sys.byteorder`
3769 * {'|', 'I'} - ignore (no change to byte order)
3770
3771 The default value ('S') results in swapping the current
3772 byte order.
3773
3774
3775 Returns
3776 -------
3777 new_arr : array
3778 New array object with the dtype reflecting given change to the
3779 byte order.
3780
3781 """))
3782
3783
3784add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
3785 """
3786 a.nonzero()
3787
3788 Return the indices of the elements that are non-zero.
3789
3790 Refer to `numpy.nonzero` for full documentation.
3791
3792 See Also
3793 --------
3794 numpy.nonzero : equivalent function
3795
3796 """))
3797
3798
3799add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
3800 """
3801 a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
3802
3803 Return the product of the array elements over the given axis
3804
3805 Refer to `numpy.prod` for full documentation.
3806
3807 See Also
3808 --------
3809 numpy.prod : equivalent function
3810
3811 """))
3812
3813
3814add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
3815 """
3816 a.ptp(axis=None, out=None, keepdims=False)
3817
3818 Peak to peak (maximum - minimum) value along a given axis.
3819
3820 Refer to `numpy.ptp` for full documentation.
3821
3822 See Also
3823 --------
3824 numpy.ptp : equivalent function
3825
3826 """))
3827
3828
3829add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
3830 """
3831 a.put(indices, values, mode='raise')
3832
3833 Set ``a.flat[n] = values[n]`` for all `n` in indices.
3834
3835 Refer to `numpy.put` for full documentation.
3836
3837 See Also
3838 --------
3839 numpy.put : equivalent function
3840
3841 """))
3842
3843
3844add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
3845 """
3846 a.ravel([order])
3847
3848 Return a flattened array.
3849
3850 Refer to `numpy.ravel` for full documentation.
3851
3852 See Also
3853 --------
3854 numpy.ravel : equivalent function
3855
3856 ndarray.flat : a flat iterator on the array.
3857
3858 """))
3859
3860
3861add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
3862 """
3863 a.repeat(repeats, axis=None)
3864
3865 Repeat elements of an array.
3866
3867 Refer to `numpy.repeat` for full documentation.
3868
3869 See Also
3870 --------
3871 numpy.repeat : equivalent function
3872
3873 """))
3874
3875
3876add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
3877 """
3878 a.reshape(shape, order='C')
3879
3880 Returns an array containing the same data with a new shape.
3881
3882 Refer to `numpy.reshape` for full documentation.
3883
3884 See Also
3885 --------
3886 numpy.reshape : equivalent function
3887
3888 Notes
3889 -----
3890 Unlike the free function `numpy.reshape`, this method on `ndarray` allows
3891 the elements of the shape parameter to be passed in as separate arguments.
3892 For example, ``a.reshape(10, 11)`` is equivalent to
3893 ``a.reshape((10, 11))``.
3894
3895 """))
3896
3897
3898add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
3899 """
3900 a.resize(new_shape, refcheck=True)
3901
3902 Change shape and size of array in-place.
3903
3904 Parameters
3905 ----------
3906 new_shape : tuple of ints, or `n` ints
3907 Shape of resized array.
3908 refcheck : bool, optional
3909 If False, reference count will not be checked. Default is True.
3910
3911 Returns
3912 -------
3913 None
3914
3915 Raises
3916 ------
3917 ValueError
3918 If `a` does not own its own data or references or views to it exist,
3919 and the data memory must be changed.
3920 PyPy only: will always raise if the data memory must be changed, since
3921 there is no reliable way to determine if references or views to it
3922 exist.
3923
3924 SystemError
3925 If the `order` keyword argument is specified. This behaviour is a
3926 bug in NumPy.
3927
3928 See Also
3929 --------
3930 resize : Return a new array with the specified shape.
3931
3932 Notes
3933 -----
3934 This reallocates space for the data area if necessary.
3935
3936 Only contiguous arrays (data elements consecutive in memory) can be
3937 resized.
3938
3939 The purpose of the reference count check is to make sure you
3940 do not use this array as a buffer for another Python object and then
3941 reallocate the memory. However, reference counts can increase in
3942 other ways so if you are sure that you have not shared the memory
3943 for this array with another Python object, then you may safely set
3944 `refcheck` to False.
3945
3946 Examples
3947 --------
3948 Shrinking an array: array is flattened (in the order that the data are
3949 stored in memory), resized, and reshaped:
3950
3951 >>> a = np.array([[0, 1], [2, 3]], order='C')
3952 >>> a.resize((2, 1))
3953 >>> a
3954 array([[0],
3955 [1]])
3956
3957 >>> a = np.array([[0, 1], [2, 3]], order='F')
3958 >>> a.resize((2, 1))
3959 >>> a
3960 array([[0],
3961 [2]])
3962
3963 Enlarging an array: as above, but missing entries are filled with zeros:
3964
3965 >>> b = np.array([[0, 1], [2, 3]])
3966 >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
3967 >>> b
3968 array([[0, 1, 2],
3969 [3, 0, 0]])
3970
3971 Referencing an array prevents resizing...
3972
3973 >>> c = a
3974 >>> a.resize((1, 1))
3975 Traceback (most recent call last):
3976 ...
3977 ValueError: cannot resize an array that references or is referenced ...
3978
3979 Unless `refcheck` is False:
3980
3981 >>> a.resize((1, 1), refcheck=False)
3982 >>> a
3983 array([[0]])
3984 >>> c
3985 array([[0]])
3986
3987 """))
3988
3989
3990add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
3991 """
3992 a.round(decimals=0, out=None)
3993
3994 Return `a` with each element rounded to the given number of decimals.
3995
3996 Refer to `numpy.around` for full documentation.
3997
3998 See Also
3999 --------
4000 numpy.around : equivalent function
4001
4002 """))
4003
4004
4005add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
4006 """
4007 a.searchsorted(v, side='left', sorter=None)
4008
4009 Find indices where elements of v should be inserted in a to maintain order.
4010
4011 For full documentation, see `numpy.searchsorted`
4012
4013 See Also
4014 --------
4015 numpy.searchsorted : equivalent function
4016
4017 """))
4018
4019
4020add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
4021 """
4022 a.setfield(val, dtype, offset=0)
4023
4024 Put a value into a specified place in a field defined by a data-type.
4025
4026 Place `val` into `a`'s field defined by `dtype` and beginning `offset`
4027 bytes into the field.
4028
4029 Parameters
4030 ----------
4031 val : object
4032 Value to be placed in field.
4033 dtype : dtype object
4034 Data-type of the field in which to place `val`.
4035 offset : int, optional
4036 The number of bytes into the field at which to place `val`.
4037
4038 Returns
4039 -------
4040 None
4041
4042 See Also
4043 --------
4044 getfield
4045
4046 Examples
4047 --------
4048 >>> x = np.eye(3)
4049 >>> x.getfield(np.float64)
4050 array([[1., 0., 0.],
4051 [0., 1., 0.],
4052 [0., 0., 1.]])
4053 >>> x.setfield(3, np.int32)
4054 >>> x.getfield(np.int32)
4055 array([[3, 3, 3],
4056 [3, 3, 3],
4057 [3, 3, 3]], dtype=int32)
4058 >>> x
4059 array([[1.0e+000, 1.5e-323, 1.5e-323],
4060 [1.5e-323, 1.0e+000, 1.5e-323],
4061 [1.5e-323, 1.5e-323, 1.0e+000]])
4062 >>> x.setfield(np.eye(3), np.int32)
4063 >>> x
4064 array([[1., 0., 0.],
4065 [0., 1., 0.],
4066 [0., 0., 1.]])
4067
4068 """))
4069
4070
4071add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
4072 """
4073 a.setflags(write=None, align=None, uic=None)
4074
4075 Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY,
4076 respectively.
4077
4078 These Boolean-valued flags affect how numpy interprets the memory
4079 area used by `a` (see Notes below). The ALIGNED flag can only
4080 be set to True if the data is actually aligned according to the type.
4081 The WRITEBACKIFCOPY and flag can never be set
4082 to True. The flag WRITEABLE can only be set to True if the array owns its
4083 own memory, or the ultimate owner of the memory exposes a writeable buffer
4084 interface, or is a string. (The exception for string is made so that
4085 unpickling can be done without copying memory.)
4086
4087 Parameters
4088 ----------
4089 write : bool, optional
4090 Describes whether or not `a` can be written to.
4091 align : bool, optional
4092 Describes whether or not `a` is aligned properly for its type.
4093 uic : bool, optional
4094 Describes whether or not `a` is a copy of another "base" array.
4095
4096 Notes
4097 -----
4098 Array flags provide information about how the memory area used
4099 for the array is to be interpreted. There are 7 Boolean flags
4100 in use, only four of which can be changed by the user:
4101 WRITEBACKIFCOPY, WRITEABLE, and ALIGNED.
4102
4103 WRITEABLE (W) the data area can be written to;
4104
4105 ALIGNED (A) the data and strides are aligned appropriately for the hardware
4106 (as determined by the compiler);
4107
4108 WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
4109 by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
4110 called, the base array will be updated with the contents of this array.
4111
4112 All flags can be accessed using the single (upper case) letter as well
4113 as the full name.
4114
4115 Examples
4116 --------
4117 >>> y = np.array([[3, 1, 7],
4118 ... [2, 0, 0],
4119 ... [8, 5, 9]])
4120 >>> y
4121 array([[3, 1, 7],
4122 [2, 0, 0],
4123 [8, 5, 9]])
4124 >>> y.flags
4125 C_CONTIGUOUS : True
4126 F_CONTIGUOUS : False
4127 OWNDATA : True
4128 WRITEABLE : True
4129 ALIGNED : True
4130 WRITEBACKIFCOPY : False
4131 >>> y.setflags(write=0, align=0)
4132 >>> y.flags
4133 C_CONTIGUOUS : True
4134 F_CONTIGUOUS : False
4135 OWNDATA : True
4136 WRITEABLE : False
4137 ALIGNED : False
4138 WRITEBACKIFCOPY : False
4139 >>> y.setflags(uic=1)
4140 Traceback (most recent call last):
4141 File "<stdin>", line 1, in <module>
4142 ValueError: cannot set WRITEBACKIFCOPY flag to True
4143
4144 """))
4145
4146
4147add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
4148 """
4149 a.sort(axis=-1, kind=None, order=None)
4150
4151 Sort an array in-place. Refer to `numpy.sort` for full documentation.
4152
4153 Parameters
4154 ----------
4155 axis : int, optional
4156 Axis along which to sort. Default is -1, which means sort along the
4157 last axis.
4158 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
4159 Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
4160 and 'mergesort' use timsort under the covers and, in general, the
4161 actual implementation will vary with datatype. The 'mergesort' option
4162 is retained for backwards compatibility.
4163
4164 .. versionchanged:: 1.15.0
4165 The 'stable' option was added.
4166
4167 order : str or list of str, optional
4168 When `a` is an array with fields defined, this argument specifies
4169 which fields to compare first, second, etc. A single field can
4170 be specified as a string, and not all fields need be specified,
4171 but unspecified fields will still be used, in the order in which
4172 they come up in the dtype, to break ties.
4173
4174 See Also
4175 --------
4176 numpy.sort : Return a sorted copy of an array.
4177 numpy.argsort : Indirect sort.
4178 numpy.lexsort : Indirect stable sort on multiple keys.
4179 numpy.searchsorted : Find elements in sorted array.
4180 numpy.partition: Partial sort.
4181
4182 Notes
4183 -----
4184 See `numpy.sort` for notes on the different sorting algorithms.
4185
4186 Examples
4187 --------
4188 >>> a = np.array([[1,4], [3,1]])
4189 >>> a.sort(axis=1)
4190 >>> a
4191 array([[1, 4],
4192 [1, 3]])
4193 >>> a.sort(axis=0)
4194 >>> a
4195 array([[1, 3],
4196 [1, 4]])
4197
4198 Use the `order` keyword to specify a field to use when sorting a
4199 structured array:
4200
4201 >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
4202 >>> a.sort(order='y')
4203 >>> a
4204 array([(b'c', 1), (b'a', 2)],
4205 dtype=[('x', 'S1'), ('y', '<i8')])
4206
4207 """))
4208
4209
4210add_newdoc('numpy.core.multiarray', 'ndarray', ('partition',
4211 """
4212 a.partition(kth, axis=-1, kind='introselect', order=None)
4213
4214 Rearranges the elements in the array in such a way that the value of the
4215 element in kth position is in the position it would be in a sorted array.
4216 All elements smaller than the kth element are moved before this element and
4217 all equal or greater are moved behind it. The ordering of the elements in
4218 the two partitions is undefined.
4219
4220 .. versionadded:: 1.8.0
4221
4222 Parameters
4223 ----------
4224 kth : int or sequence of ints
4225 Element index to partition by. The kth element value will be in its
4226 final sorted position and all smaller elements will be moved before it
4227 and all equal or greater elements behind it.
4228 The order of all elements in the partitions is undefined.
4229 If provided with a sequence of kth it will partition all elements
4230 indexed by kth of them into their sorted position at once.
4231
4232 .. deprecated:: 1.22.0
4233 Passing booleans as index is deprecated.
4234 axis : int, optional
4235 Axis along which to sort. Default is -1, which means sort along the
4236 last axis.
4237 kind : {'introselect'}, optional
4238 Selection algorithm. Default is 'introselect'.
4239 order : str or list of str, optional
4240 When `a` is an array with fields defined, this argument specifies
4241 which fields to compare first, second, etc. A single field can
4242 be specified as a string, and not all fields need to be specified,
4243 but unspecified fields will still be used, in the order in which
4244 they come up in the dtype, to break ties.
4245
4246 See Also
4247 --------
4248 numpy.partition : Return a partitioned copy of an array.
4249 argpartition : Indirect partition.
4250 sort : Full sort.
4251
4252 Notes
4253 -----
4254 See ``np.partition`` for notes on the different algorithms.
4255
4256 Examples
4257 --------
4258 >>> a = np.array([3, 4, 2, 1])
4259 >>> a.partition(3)
4260 >>> a
4261 array([2, 1, 3, 4])
4262
4263 >>> a.partition((1, 3))
4264 >>> a
4265 array([1, 2, 3, 4])
4266 """))
4267
4268
4269add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
4270 """
4271 a.squeeze(axis=None)
4272
4273 Remove axes of length one from `a`.
4274
4275 Refer to `numpy.squeeze` for full documentation.
4276
4277 See Also
4278 --------
4279 numpy.squeeze : equivalent function
4280
4281 """))
4282
4283
4284add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
4285 """
4286 a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
4287
4288 Returns the standard deviation of the array elements along given axis.
4289
4290 Refer to `numpy.std` for full documentation.
4291
4292 See Also
4293 --------
4294 numpy.std : equivalent function
4295
4296 """))
4297
4298
4299add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
4300 """
4301 a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
4302
4303 Return the sum of the array elements over the given axis.
4304
4305 Refer to `numpy.sum` for full documentation.
4306
4307 See Also
4308 --------
4309 numpy.sum : equivalent function
4310
4311 """))
4312
4313
4314add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
4315 """
4316 a.swapaxes(axis1, axis2)
4317
4318 Return a view of the array with `axis1` and `axis2` interchanged.
4319
4320 Refer to `numpy.swapaxes` for full documentation.
4321
4322 See Also
4323 --------
4324 numpy.swapaxes : equivalent function
4325
4326 """))
4327
4328
4329add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
4330 """
4331 a.take(indices, axis=None, out=None, mode='raise')
4332
4333 Return an array formed from the elements of `a` at the given indices.
4334
4335 Refer to `numpy.take` for full documentation.
4336
4337 See Also
4338 --------
4339 numpy.take : equivalent function
4340
4341 """))
4342
4343
4344add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
4345 """
4346 a.tofile(fid, sep="", format="%s")
4347
4348 Write array to a file as text or binary (default).
4349
4350 Data is always written in 'C' order, independent of the order of `a`.
4351 The data produced by this method can be recovered using the function
4352 fromfile().
4353
4354 Parameters
4355 ----------
4356 fid : file or str or Path
4357 An open file object, or a string containing a filename.
4358
4359 .. versionchanged:: 1.17.0
4360 `pathlib.Path` objects are now accepted.
4361
4362 sep : str
4363 Separator between array items for text output.
4364 If "" (empty), a binary file is written, equivalent to
4365 ``file.write(a.tobytes())``.
4366 format : str
4367 Format string for text file output.
4368 Each entry in the array is formatted to text by first converting
4369 it to the closest Python type, and then using "format" % item.
4370
4371 Notes
4372 -----
4373 This is a convenience function for quick storage of array data.
4374 Information on endianness and precision is lost, so this method is not a
4375 good choice for files intended to archive data or transport data between
4376 machines with different endianness. Some of these problems can be overcome
4377 by outputting the data as text files, at the expense of speed and file
4378 size.
4379
4380 When fid is a file object, array contents are directly written to the
4381 file, bypassing the file object's ``write`` method. As a result, tofile
4382 cannot be used with files objects supporting compression (e.g., GzipFile)
4383 or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
4384
4385 """))
4386
4387
4388add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
4389 """
4390 a.tolist()
4391
4392 Return the array as an ``a.ndim``-levels deep nested list of Python scalars.
4393
4394 Return a copy of the array data as a (nested) Python list.
4395 Data items are converted to the nearest compatible builtin Python type, via
4396 the `~numpy.ndarray.item` function.
4397
4398 If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will
4399 not be a list at all, but a simple Python scalar.
4400
4401 Parameters
4402 ----------
4403 none
4404
4405 Returns
4406 -------
4407 y : object, or list of object, or list of list of object, or ...
4408 The possibly nested list of array elements.
4409
4410 Notes
4411 -----
4412 The array may be recreated via ``a = np.array(a.tolist())``, although this
4413 may sometimes lose precision.
4414
4415 Examples
4416 --------
4417 For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``,
4418 except that ``tolist`` changes numpy scalars to Python scalars:
4419
4420 >>> a = np.uint32([1, 2])
4421 >>> a_list = list(a)
4422 >>> a_list
4423 [1, 2]
4424 >>> type(a_list[0])
4425 <class 'numpy.uint32'>
4426 >>> a_tolist = a.tolist()
4427 >>> a_tolist
4428 [1, 2]
4429 >>> type(a_tolist[0])
4430 <class 'int'>
4431
4432 Additionally, for a 2D array, ``tolist`` applies recursively:
4433
4434 >>> a = np.array([[1, 2], [3, 4]])
4435 >>> list(a)
4436 [array([1, 2]), array([3, 4])]
4437 >>> a.tolist()
4438 [[1, 2], [3, 4]]
4439
4440 The base case for this recursion is a 0D array:
4441
4442 >>> a = np.array(1)
4443 >>> list(a)
4444 Traceback (most recent call last):
4445 ...
4446 TypeError: iteration over a 0-d array
4447 >>> a.tolist()
4448 1
4449 """))
4450
4451
4452add_newdoc('numpy.core.multiarray', 'ndarray', ('tobytes', """
4453 a.tobytes(order='C')
4454
4455 Construct Python bytes containing the raw data bytes in the array.
4456
4457 Constructs Python bytes showing a copy of the raw contents of
4458 data memory. The bytes object is produced in C-order by default.
4459 This behavior is controlled by the ``order`` parameter.
4460
4461 .. versionadded:: 1.9.0
4462
4463 Parameters
4464 ----------
4465 order : {'C', 'F', 'A'}, optional
4466 Controls the memory layout of the bytes object. 'C' means C-order,
4467 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is
4468 Fortran contiguous, 'C' otherwise. Default is 'C'.
4469
4470 Returns
4471 -------
4472 s : bytes
4473 Python bytes exhibiting a copy of `a`'s raw data.
4474
4475 See also
4476 --------
4477 frombuffer
4478 Inverse of this operation, construct a 1-dimensional array from Python
4479 bytes.
4480
4481 Examples
4482 --------
4483 >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
4484 >>> x.tobytes()
4485 b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00'
4486 >>> x.tobytes('C') == x.tobytes()
4487 True
4488 >>> x.tobytes('F')
4489 b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00'
4490
4491 """))
4492
4493
4494add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', r"""
4495 a.tostring(order='C')
4496
4497 A compatibility alias for `tobytes`, with exactly the same behavior.
4498
4499 Despite its name, it returns `bytes` not `str`\ s.
4500
4501 .. deprecated:: 1.19.0
4502 """))
4503
4504
4505add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
4506 """
4507 a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
4508
4509 Return the sum along diagonals of the array.
4510
4511 Refer to `numpy.trace` for full documentation.
4512
4513 See Also
4514 --------
4515 numpy.trace : equivalent function
4516
4517 """))
4518
4519
4520add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
4521 """
4522 a.transpose(*axes)
4523
4524 Returns a view of the array with axes transposed.
4525
4526 Refer to `numpy.transpose` for full documentation.
4527
4528 Parameters
4529 ----------
4530 axes : None, tuple of ints, or `n` ints
4531
4532 * None or no argument: reverses the order of the axes.
4533
4534 * tuple of ints: `i` in the `j`-th place in the tuple means that the
4535 array's `i`-th axis becomes the transposed array's `j`-th axis.
4536
4537 * `n` ints: same as an n-tuple of the same ints (this form is
4538 intended simply as a "convenience" alternative to the tuple form).
4539
4540 Returns
4541 -------
4542 p : ndarray
4543 View of the array with its axes suitably permuted.
4544
4545 See Also
4546 --------
4547 transpose : Equivalent function.
4548 ndarray.T : Array property returning the array transposed.
4549 ndarray.reshape : Give a new shape to an array without changing its data.
4550
4551 Examples
4552 --------
4553 >>> a = np.array([[1, 2], [3, 4]])
4554 >>> a
4555 array([[1, 2],
4556 [3, 4]])
4557 >>> a.transpose()
4558 array([[1, 3],
4559 [2, 4]])
4560 >>> a.transpose((1, 0))
4561 array([[1, 3],
4562 [2, 4]])
4563 >>> a.transpose(1, 0)
4564 array([[1, 3],
4565 [2, 4]])
4566
4567 >>> a = np.array([1, 2, 3, 4])
4568 >>> a
4569 array([1, 2, 3, 4])
4570 >>> a.transpose()
4571 array([1, 2, 3, 4])
4572
4573 """))
4574
4575
4576add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
4577 """
4578 a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
4579
4580 Returns the variance of the array elements, along given axis.
4581
4582 Refer to `numpy.var` for full documentation.
4583
4584 See Also
4585 --------
4586 numpy.var : equivalent function
4587
4588 """))
4589
4590
4591add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
4592 """
4593 a.view([dtype][, type])
4594
4595 New view of array with the same data.
4596
4597 .. note::
4598 Passing None for ``dtype`` is different from omitting the parameter,
4599 since the former invokes ``dtype(None)`` which is an alias for
4600 ``dtype('float_')``.
4601
4602 Parameters
4603 ----------
4604 dtype : data-type or ndarray sub-class, optional
4605 Data-type descriptor of the returned view, e.g., float32 or int16.
4606 Omitting it results in the view having the same data-type as `a`.
4607 This argument can also be specified as an ndarray sub-class, which
4608 then specifies the type of the returned object (this is equivalent to
4609 setting the ``type`` parameter).
4610 type : Python type, optional
4611 Type of the returned view, e.g., ndarray or matrix. Again, omission
4612 of the parameter results in type preservation.
4613
4614 Notes
4615 -----
4616 ``a.view()`` is used two different ways:
4617
4618 ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
4619 of the array's memory with a different data-type. This can cause a
4620 reinterpretation of the bytes of memory.
4621
4622 ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
4623 returns an instance of `ndarray_subclass` that looks at the same array
4624 (same shape, dtype, etc.) This does not cause a reinterpretation of the
4625 memory.
4626
4627 For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
4628 bytes per entry than the previous dtype (for example, converting a regular
4629 array to a structured array), then the last axis of ``a`` must be
4630 contiguous. This axis will be resized in the result.
4631
4632 .. versionchanged:: 1.23.0
4633 Only the last axis needs to be contiguous. Previously, the entire array
4634 had to be C-contiguous.
4635
4636 Examples
4637 --------
4638 >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
4639
4640 Viewing array data using a different type and dtype:
4641
4642 >>> y = x.view(dtype=np.int16, type=np.matrix)
4643 >>> y
4644 matrix([[513]], dtype=int16)
4645 >>> print(type(y))
4646 <class 'numpy.matrix'>
4647
4648 Creating a view on a structured array so it can be used in calculations
4649
4650 >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
4651 >>> xv = x.view(dtype=np.int8).reshape(-1,2)
4652 >>> xv
4653 array([[1, 2],
4654 [3, 4]], dtype=int8)
4655 >>> xv.mean(0)
4656 array([2., 3.])
4657
4658 Making changes to the view changes the underlying array
4659
4660 >>> xv[0,1] = 20
4661 >>> x
4662 array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
4663
4664 Using a view to convert an array to a recarray:
4665
4666 >>> z = x.view(np.recarray)
4667 >>> z.a
4668 array([1, 3], dtype=int8)
4669
4670 Views share data:
4671
4672 >>> x[0] = (9, 10)
4673 >>> z[0]
4674 (9, 10)
4675
4676 Views that change the dtype size (bytes per entry) should normally be
4677 avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
4678
4679 >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
4680 >>> y = x[:, ::2]
4681 >>> y
4682 array([[1, 3],
4683 [4, 6]], dtype=int16)
4684 >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
4685 Traceback (most recent call last):
4686 ...
4687 ValueError: To change to a dtype of a different size, the last axis must be contiguous
4688 >>> z = y.copy()
4689 >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
4690 array([[(1, 3)],
4691 [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])
4692
4693 However, views that change dtype are totally fine for arrays with a
4694 contiguous last axis, even if the rest of the axes are not C-contiguous:
4695
4696 >>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
4697 >>> x.transpose(1, 0, 2).view(np.int16)
4698 array([[[ 256, 770],
4699 [3340, 3854]],
4700 <BLANKLINE>
4701 [[1284, 1798],
4702 [4368, 4882]],
4703 <BLANKLINE>
4704 [[2312, 2826],
4705 [5396, 5910]]], dtype=int16)
4706
4707 """))
4708
4709
4710##############################################################################
4711#
4712# umath functions
4713#
4714##############################################################################
4715
4716add_newdoc('numpy.core.umath', 'frompyfunc',
4717 """
4718 frompyfunc(func, /, nin, nout, *[, identity])
4719
4720 Takes an arbitrary Python function and returns a NumPy ufunc.
4721
4722 Can be used, for example, to add broadcasting to a built-in Python
4723 function (see Examples section).
4724
4725 Parameters
4726 ----------
4727 func : Python function object
4728 An arbitrary Python function.
4729 nin : int
4730 The number of input arguments.
4731 nout : int
4732 The number of objects returned by `func`.
4733 identity : object, optional
4734 The value to use for the `~numpy.ufunc.identity` attribute of the resulting
4735 object. If specified, this is equivalent to setting the underlying
4736 C ``identity`` field to ``PyUFunc_IdentityValue``.
4737 If omitted, the identity is set to ``PyUFunc_None``. Note that this is
4738 _not_ equivalent to setting the identity to ``None``, which implies the
4739 operation is reorderable.
4740
4741 Returns
4742 -------
4743 out : ufunc
4744 Returns a NumPy universal function (``ufunc``) object.
4745
4746 See Also
4747 --------
4748 vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy.
4749
4750 Notes
4751 -----
4752 The returned ufunc always returns PyObject arrays.
4753
4754 Examples
4755 --------
4756 Use frompyfunc to add broadcasting to the Python function ``oct``:
4757
4758 >>> oct_array = np.frompyfunc(oct, 1, 1)
4759 >>> oct_array(np.array((10, 30, 100)))
4760 array(['0o12', '0o36', '0o144'], dtype=object)
4761 >>> np.array((oct(10), oct(30), oct(100))) # for comparison
4762 array(['0o12', '0o36', '0o144'], dtype='<U5')
4763
4764 """)
4765
4766add_newdoc('numpy.core.umath', 'geterrobj',
4767 """
4768 geterrobj()
4769
4770 Return the current object that defines floating-point error handling.
4771
4772 The error object contains all information that defines the error handling
4773 behavior in NumPy. `geterrobj` is used internally by the other
4774 functions that get and set error handling behavior (`geterr`, `seterr`,
4775 `geterrcall`, `seterrcall`).
4776
4777 Returns
4778 -------
4779 errobj : list
4780 The error object, a list containing three elements:
4781 [internal numpy buffer size, error mask, error callback function].
4782
4783 The error mask is a single integer that holds the treatment information
4784 on all four floating point errors. The information for each error type
4785 is contained in three bits of the integer. If we print it in base 8, we
4786 can see what treatment is set for "invalid", "under", "over", and
4787 "divide" (in that order). The printed string can be interpreted with
4788
4789 * 0 : 'ignore'
4790 * 1 : 'warn'
4791 * 2 : 'raise'
4792 * 3 : 'call'
4793 * 4 : 'print'
4794 * 5 : 'log'
4795
4796 See Also
4797 --------
4798 seterrobj, seterr, geterr, seterrcall, geterrcall
4799 getbufsize, setbufsize
4800
4801 Notes
4802 -----
4803 For complete documentation of the types of floating-point exceptions and
4804 treatment options, see `seterr`.
4805
4806 Examples
4807 --------
4808 >>> np.geterrobj() # first get the defaults
4809 [8192, 521, None]
4810
4811 >>> def err_handler(type, flag):
4812 ... print("Floating point error (%s), with flag %s" % (type, flag))
4813 ...
4814 >>> old_bufsize = np.setbufsize(20000)
4815 >>> old_err = np.seterr(divide='raise')
4816 >>> old_handler = np.seterrcall(err_handler)
4817 >>> np.geterrobj()
4818 [8192, 521, <function err_handler at 0x91dcaac>]
4819
4820 >>> old_err = np.seterr(all='ignore')
4821 >>> np.base_repr(np.geterrobj()[1], 8)
4822 '0'
4823 >>> old_err = np.seterr(divide='warn', over='log', under='call',
4824 ... invalid='print')
4825 >>> np.base_repr(np.geterrobj()[1], 8)
4826 '4351'
4827
4828 """)
4829
4830add_newdoc('numpy.core.umath', 'seterrobj',
4831 """
4832 seterrobj(errobj, /)
4833
4834 Set the object that defines floating-point error handling.
4835
4836 The error object contains all information that defines the error handling
4837 behavior in NumPy. `seterrobj` is used internally by the other
4838 functions that set error handling behavior (`seterr`, `seterrcall`).
4839
4840 Parameters
4841 ----------
4842 errobj : list
4843 The error object, a list containing three elements:
4844 [internal numpy buffer size, error mask, error callback function].
4845
4846 The error mask is a single integer that holds the treatment information
4847 on all four floating point errors. The information for each error type
4848 is contained in three bits of the integer. If we print it in base 8, we
4849 can see what treatment is set for "invalid", "under", "over", and
4850 "divide" (in that order). The printed string can be interpreted with
4851
4852 * 0 : 'ignore'
4853 * 1 : 'warn'
4854 * 2 : 'raise'
4855 * 3 : 'call'
4856 * 4 : 'print'
4857 * 5 : 'log'
4858
4859 See Also
4860 --------
4861 geterrobj, seterr, geterr, seterrcall, geterrcall
4862 getbufsize, setbufsize
4863
4864 Notes
4865 -----
4866 For complete documentation of the types of floating-point exceptions and
4867 treatment options, see `seterr`.
4868
4869 Examples
4870 --------
4871 >>> old_errobj = np.geterrobj() # first get the defaults
4872 >>> old_errobj
4873 [8192, 521, None]
4874
4875 >>> def err_handler(type, flag):
4876 ... print("Floating point error (%s), with flag %s" % (type, flag))
4877 ...
4878 >>> new_errobj = [20000, 12, err_handler]
4879 >>> np.seterrobj(new_errobj)
4880 >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
4881 '14'
4882 >>> np.geterr()
4883 {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
4884 >>> np.geterrcall() is err_handler
4885 True
4886
4887 """)
4888
4889
4890##############################################################################
4891#
4892# compiled_base functions
4893#
4894##############################################################################
4895
4896add_newdoc('numpy.core.multiarray', 'add_docstring',
4897 """
4898 add_docstring(obj, docstring)
4899
4900 Add a docstring to a built-in obj if possible.
4901 If the obj already has a docstring raise a RuntimeError
4902 If this routine does not know how to add a docstring to the object
4903 raise a TypeError
4904 """)
4905
4906add_newdoc('numpy.core.umath', '_add_newdoc_ufunc',
4907 """
4908 add_ufunc_docstring(ufunc, new_docstring)
4909
4910 Replace the docstring for a ufunc with new_docstring.
4911 This method will only work if the current docstring for
4912 the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
4913
4914 Parameters
4915 ----------
4916 ufunc : numpy.ufunc
4917 A ufunc whose current doc is NULL.
4918 new_docstring : string
4919 The new docstring for the ufunc.
4920
4921 Notes
4922 -----
4923 This method allocates memory for new_docstring on
4924 the heap. Technically this creates a mempory leak, since this
4925 memory will not be reclaimed until the end of the program
4926 even if the ufunc itself is removed. However this will only
4927 be a problem if the user is repeatedly creating ufuncs with
4928 no documentation, adding documentation via add_newdoc_ufunc,
4929 and then throwing away the ufunc.
4930 """)
4931
4932add_newdoc('numpy.core.multiarray', 'get_handler_name',
4933 """
4934 get_handler_name(a: ndarray) -> str,None
4935
4936 Return the name of the memory handler used by `a`. If not provided, return
4937 the name of the memory handler that will be used to allocate data for the
4938 next `ndarray` in this context. May return None if `a` does not own its
4939 memory, in which case you can traverse ``a.base`` for a memory handler.
4940 """)
4941
4942add_newdoc('numpy.core.multiarray', 'get_handler_version',
4943 """
4944 get_handler_version(a: ndarray) -> int,None
4945
4946 Return the version of the memory handler used by `a`. If not provided,
4947 return the version of the memory handler that will be used to allocate data
4948 for the next `ndarray` in this context. May return None if `a` does not own
4949 its memory, in which case you can traverse ``a.base`` for a memory handler.
4950 """)
4951
4952add_newdoc('numpy.core.multiarray', '_get_madvise_hugepage',
4953 """
4954 _get_madvise_hugepage() -> bool
4955
4956 Get use of ``madvise (2)`` MADV_HUGEPAGE support when
4957 allocating the array data. Returns the currently set value.
4958 See `global_state` for more information.
4959 """)
4960
4961add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage',
4962 """
4963 _set_madvise_hugepage(enabled: bool) -> bool
4964
4965 Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when
4966 allocating the array data. Returns the previously set value.
4967 See `global_state` for more information.
4968 """)
4969
4970add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g',
4971 """
4972 format_float_OSprintf_g(val, precision)
4973
4974 Print a floating point scalar using the system's printf function,
4975 equivalent to:
4976
4977 printf("%.*g", precision, val);
4978
4979 for half/float/double, or replacing 'g' by 'Lg' for longdouble. This
4980 method is designed to help cross-validate the format_float_* methods.
4981
4982 Parameters
4983 ----------
4984 val : python float or numpy floating scalar
4985 Value to format.
4986
4987 precision : non-negative integer, optional
4988 Precision given to printf.
4989
4990 Returns
4991 -------
4992 rep : string
4993 The string representation of the floating point value
4994
4995 See Also
4996 --------
4997 format_float_scientific
4998 format_float_positional
4999 """)
5000
5001
5002##############################################################################
5003#
5004# Documentation for ufunc attributes and methods
5005#
5006##############################################################################
5007
5008
5009##############################################################################
5010#
5011# ufunc object
5012#
5013##############################################################################
5014
5015add_newdoc('numpy.core', 'ufunc',
5016 """
5017 Functions that operate element by element on whole arrays.
5018
5019 To see the documentation for a specific ufunc, use `info`. For
5020 example, ``np.info(np.sin)``. Because ufuncs are written in C
5021 (for speed) and linked into Python with NumPy's ufunc facility,
5022 Python's help() function finds this page whenever help() is called
5023 on a ufunc.
5024
5025 A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
5026
5027 **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)``
5028
5029 Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
5030
5031 The broadcasting rules are:
5032
5033 * Dimensions of length 1 may be prepended to either array.
5034 * Arrays may be repeated along dimensions of length 1.
5035
5036 Parameters
5037 ----------
5038 *x : array_like
5039 Input arrays.
5040 out : ndarray, None, or tuple of ndarray and None, optional
5041 Alternate array object(s) in which to put the result; if provided, it
5042 must have a shape that the inputs broadcast to. A tuple of arrays
5043 (possible only as a keyword argument) must have length equal to the
5044 number of outputs; use None for uninitialized outputs to be
5045 allocated by the ufunc.
5046 where : array_like, optional
5047 This condition is broadcast over the input. At locations where the
5048 condition is True, the `out` array will be set to the ufunc result.
5049 Elsewhere, the `out` array will retain its original value.
5050 Note that if an uninitialized `out` array is created via the default
5051 ``out=None``, locations within it where the condition is False will
5052 remain uninitialized.
5053 **kwargs
5054 For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.
5055
5056 Returns
5057 -------
5058 r : ndarray or tuple of ndarray
5059 `r` will have the shape that the arrays in `x` broadcast to; if `out` is
5060 provided, it will be returned. If not, `r` will be allocated and
5061 may contain uninitialized values. If the function has more than one
5062 output, then the result will be a tuple of arrays.
5063
5064 """)
5065
5066
5067##############################################################################
5068#
5069# ufunc attributes
5070#
5071##############################################################################
5072
5073add_newdoc('numpy.core', 'ufunc', ('identity',
5074 """
5075 The identity value.
5076
5077 Data attribute containing the identity element for the ufunc, if it has one.
5078 If it does not, the attribute value is None.
5079
5080 Examples
5081 --------
5082 >>> np.add.identity
5083 0
5084 >>> np.multiply.identity
5085 1
5086 >>> np.power.identity
5087 1
5088 >>> print(np.exp.identity)
5089 None
5090 """))
5091
5092add_newdoc('numpy.core', 'ufunc', ('nargs',
5093 """
5094 The number of arguments.
5095
5096 Data attribute containing the number of arguments the ufunc takes, including
5097 optional ones.
5098
5099 Notes
5100 -----
5101 Typically this value will be one more than what you might expect because all
5102 ufuncs take the optional "out" argument.
5103
5104 Examples
5105 --------
5106 >>> np.add.nargs
5107 3
5108 >>> np.multiply.nargs
5109 3
5110 >>> np.power.nargs
5111 3
5112 >>> np.exp.nargs
5113 2
5114 """))
5115
5116add_newdoc('numpy.core', 'ufunc', ('nin',
5117 """
5118 The number of inputs.
5119
5120 Data attribute containing the number of arguments the ufunc treats as input.
5121
5122 Examples
5123 --------
5124 >>> np.add.nin
5125 2
5126 >>> np.multiply.nin
5127 2
5128 >>> np.power.nin
5129 2
5130 >>> np.exp.nin
5131 1
5132 """))
5133
5134add_newdoc('numpy.core', 'ufunc', ('nout',
5135 """
5136 The number of outputs.
5137
5138 Data attribute containing the number of arguments the ufunc treats as output.
5139
5140 Notes
5141 -----
5142 Since all ufuncs can take output arguments, this will always be (at least) 1.
5143
5144 Examples
5145 --------
5146 >>> np.add.nout
5147 1
5148 >>> np.multiply.nout
5149 1
5150 >>> np.power.nout
5151 1
5152 >>> np.exp.nout
5153 1
5154
5155 """))
5156
5157add_newdoc('numpy.core', 'ufunc', ('ntypes',
5158 """
5159 The number of types.
5160
5161 The number of numerical NumPy types - of which there are 18 total - on which
5162 the ufunc can operate.
5163
5164 See Also
5165 --------
5166 numpy.ufunc.types
5167
5168 Examples
5169 --------
5170 >>> np.add.ntypes
5171 18
5172 >>> np.multiply.ntypes
5173 18
5174 >>> np.power.ntypes
5175 17
5176 >>> np.exp.ntypes
5177 7
5178 >>> np.remainder.ntypes
5179 14
5180
5181 """))
5182
5183add_newdoc('numpy.core', 'ufunc', ('types',
5184 """
5185 Returns a list with types grouped input->output.
5186
5187 Data attribute listing the data-type "Domain-Range" groupings the ufunc can
5188 deliver. The data-types are given using the character codes.
5189
5190 See Also
5191 --------
5192 numpy.ufunc.ntypes
5193
5194 Examples
5195 --------
5196 >>> np.add.types
5197 ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
5198 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
5199 'GG->G', 'OO->O']
5200
5201 >>> np.multiply.types
5202 ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
5203 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
5204 'GG->G', 'OO->O']
5205
5206 >>> np.power.types
5207 ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
5208 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
5209 'OO->O']
5210
5211 >>> np.exp.types
5212 ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
5213
5214 >>> np.remainder.types
5215 ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
5216 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
5217
5218 """))
5219
5220add_newdoc('numpy.core', 'ufunc', ('signature',
5221 """
5222 Definition of the core elements a generalized ufunc operates on.
5223
5224 The signature determines how the dimensions of each input/output array
5225 are split into core and loop dimensions:
5226
5227 1. Each dimension in the signature is matched to a dimension of the
5228 corresponding passed-in array, starting from the end of the shape tuple.
5229 2. Core dimensions assigned to the same label in the signature must have
5230 exactly matching sizes, no broadcasting is performed.
5231 3. The core dimensions are removed from all inputs and the remaining
5232 dimensions are broadcast together, defining the loop dimensions.
5233
5234 Notes
5235 -----
5236 Generalized ufuncs are used internally in many linalg functions, and in
5237 the testing suite; the examples below are taken from these.
5238 For ufuncs that operate on scalars, the signature is None, which is
5239 equivalent to '()' for every argument.
5240
5241 Examples
5242 --------
5243 >>> np.core.umath_tests.matrix_multiply.signature
5244 '(m,n),(n,p)->(m,p)'
5245 >>> np.linalg._umath_linalg.det.signature
5246 '(m,m)->()'
5247 >>> np.add.signature is None
5248 True # equivalent to '(),()->()'
5249 """))
5250
5251##############################################################################
5252#
5253# ufunc methods
5254#
5255##############################################################################
5256
5257add_newdoc('numpy.core', 'ufunc', ('reduce',
5258 """
5259 reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)
5260
5261 Reduces `array`'s dimension by one, by applying ufunc along one axis.
5262
5263 Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then
5264 :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
5265 the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
5266 ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
5267 For a one-dimensional array, reduce produces results equivalent to:
5268 ::
5269
5270 r = op.identity # op = ufunc
5271 for i in range(len(A)):
5272 r = op(r, A[i])
5273 return r
5274
5275 For example, add.reduce() is equivalent to sum().
5276
5277 Parameters
5278 ----------
5279 array : array_like
5280 The array to act on.
5281 axis : None or int or tuple of ints, optional
5282 Axis or axes along which a reduction is performed.
5283 The default (`axis` = 0) is perform a reduction over the first
5284 dimension of the input array. `axis` may be negative, in
5285 which case it counts from the last to the first axis.
5286
5287 .. versionadded:: 1.7.0
5288
5289 If this is None, a reduction is performed over all the axes.
5290 If this is a tuple of ints, a reduction is performed on multiple
5291 axes, instead of a single axis or all the axes as before.
5292
5293 For operations which are either not commutative or not associative,
5294 doing a reduction over multiple axes is not well-defined. The
5295 ufuncs do not currently raise an exception in this case, but will
5296 likely do so in the future.
5297 dtype : data-type code, optional
5298 The type used to represent the intermediate results. Defaults
5299 to the data-type of the output array if this is provided, or
5300 the data-type of the input array if no output array is provided.
5301 out : ndarray, None, or tuple of ndarray and None, optional
5302 A location into which the result is stored. If not provided or None,
5303 a freshly-allocated array is returned. For consistency with
5304 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
5305 1-element tuple.
5306
5307 .. versionchanged:: 1.13.0
5308 Tuples are allowed for keyword argument.
5309 keepdims : bool, optional
5310 If this is set to True, the axes which are reduced are left
5311 in the result as dimensions with size one. With this option,
5312 the result will broadcast correctly against the original `array`.
5313
5314 .. versionadded:: 1.7.0
5315 initial : scalar, optional
5316 The value with which to start the reduction.
5317 If the ufunc has no identity or the dtype is object, this defaults
5318 to None - otherwise it defaults to ufunc.identity.
5319 If ``None`` is given, the first element of the reduction is used,
5320 and an error is thrown if the reduction is empty.
5321
5322 .. versionadded:: 1.15.0
5323
5324 where : array_like of bool, optional
5325 A boolean array which is broadcasted to match the dimensions
5326 of `array`, and selects elements to include in the reduction. Note
5327 that for ufuncs like ``minimum`` that do not have an identity
5328 defined, one has to pass in also ``initial``.
5329
5330 .. versionadded:: 1.17.0
5331
5332 Returns
5333 -------
5334 r : ndarray
5335 The reduced array. If `out` was supplied, `r` is a reference to it.
5336
5337 Examples
5338 --------
5339 >>> np.multiply.reduce([2,3,5])
5340 30
5341
5342 A multi-dimensional array example:
5343
5344 >>> X = np.arange(8).reshape((2,2,2))
5345 >>> X
5346 array([[[0, 1],
5347 [2, 3]],
5348 [[4, 5],
5349 [6, 7]]])
5350 >>> np.add.reduce(X, 0)
5351 array([[ 4, 6],
5352 [ 8, 10]])
5353 >>> np.add.reduce(X) # confirm: default axis value is 0
5354 array([[ 4, 6],
5355 [ 8, 10]])
5356 >>> np.add.reduce(X, 1)
5357 array([[ 2, 4],
5358 [10, 12]])
5359 >>> np.add.reduce(X, 2)
5360 array([[ 1, 5],
5361 [ 9, 13]])
5362
5363 You can use the ``initial`` keyword argument to initialize the reduction
5364 with a different value, and ``where`` to select specific elements to include:
5365
5366 >>> np.add.reduce([10], initial=5)
5367 15
5368 >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
5369 array([14., 14.])
5370 >>> a = np.array([10., np.nan, 10])
5371 >>> np.add.reduce(a, where=~np.isnan(a))
5372 20.0
5373
5374 Allows reductions of empty arrays where they would normally fail, i.e.
5375 for ufuncs without an identity.
5376
5377 >>> np.minimum.reduce([], initial=np.inf)
5378 inf
5379 >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
5380 array([ 1., 10.])
5381 >>> np.minimum.reduce([])
5382 Traceback (most recent call last):
5383 ...
5384 ValueError: zero-size array to reduction operation minimum which has no identity
5385 """))
5386
5387add_newdoc('numpy.core', 'ufunc', ('accumulate',
5388 """
5389 accumulate(array, axis=0, dtype=None, out=None)
5390
5391 Accumulate the result of applying the operator to all elements.
5392
5393 For a one-dimensional array, accumulate produces results equivalent to::
5394
5395 r = np.empty(len(A))
5396 t = op.identity # op = the ufunc being applied to A's elements
5397 for i in range(len(A)):
5398 t = op(t, A[i])
5399 r[i] = t
5400 return r
5401
5402 For example, add.accumulate() is equivalent to np.cumsum().
5403
5404 For a multi-dimensional array, accumulate is applied along only one
5405 axis (axis zero by default; see Examples below) so repeated use is
5406 necessary if one wants to accumulate over multiple axes.
5407
5408 Parameters
5409 ----------
5410 array : array_like
5411 The array to act on.
5412 axis : int, optional
5413 The axis along which to apply the accumulation; default is zero.
5414 dtype : data-type code, optional
5415 The data-type used to represent the intermediate results. Defaults
5416 to the data-type of the output array if such is provided, or the
5417 data-type of the input array if no output array is provided.
5418 out : ndarray, None, or tuple of ndarray and None, optional
5419 A location into which the result is stored. If not provided or None,
5420 a freshly-allocated array is returned. For consistency with
5421 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
5422 1-element tuple.
5423
5424 .. versionchanged:: 1.13.0
5425 Tuples are allowed for keyword argument.
5426
5427 Returns
5428 -------
5429 r : ndarray
5430 The accumulated values. If `out` was supplied, `r` is a reference to
5431 `out`.
5432
5433 Examples
5434 --------
5435 1-D array examples:
5436
5437 >>> np.add.accumulate([2, 3, 5])
5438 array([ 2, 5, 10])
5439 >>> np.multiply.accumulate([2, 3, 5])
5440 array([ 2, 6, 30])
5441
5442 2-D array examples:
5443
5444 >>> I = np.eye(2)
5445 >>> I
5446 array([[1., 0.],
5447 [0., 1.]])
5448
5449 Accumulate along axis 0 (rows), down columns:
5450
5451 >>> np.add.accumulate(I, 0)
5452 array([[1., 0.],
5453 [1., 1.]])
5454 >>> np.add.accumulate(I) # no axis specified = axis zero
5455 array([[1., 0.],
5456 [1., 1.]])
5457
5458 Accumulate along axis 1 (columns), through rows:
5459
5460 >>> np.add.accumulate(I, 1)
5461 array([[1., 1.],
5462 [0., 1.]])
5463
5464 """))
5465
5466add_newdoc('numpy.core', 'ufunc', ('reduceat',
5467 """
5468 reduceat(array, indices, axis=0, dtype=None, out=None)
5469
5470 Performs a (local) reduce with specified slices over a single axis.
5471
5472 For i in ``range(len(indices))``, `reduceat` computes
5473 ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
5474 generalized "row" parallel to `axis` in the final result (i.e., in a
5475 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
5476 `axis = 1`, it becomes the i-th column). There are three exceptions to this:
5477
5478 * when ``i = len(indices) - 1`` (so for the last index),
5479 ``indices[i+1] = array.shape[axis]``.
5480 * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
5481 simply ``array[indices[i]]``.
5482 * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
5483
5484 The shape of the output depends on the size of `indices`, and may be
5485 larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
5486
5487 Parameters
5488 ----------
5489 array : array_like
5490 The array to act on.
5491 indices : array_like
5492 Paired indices, comma separated (not colon), specifying slices to
5493 reduce.
5494 axis : int, optional
5495 The axis along which to apply the reduceat.
5496 dtype : data-type code, optional
5497 The type used to represent the intermediate results. Defaults
5498 to the data type of the output array if this is provided, or
5499 the data type of the input array if no output array is provided.
5500 out : ndarray, None, or tuple of ndarray and None, optional
5501 A location into which the result is stored. If not provided or None,
5502 a freshly-allocated array is returned. For consistency with
5503 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
5504 1-element tuple.
5505
5506 .. versionchanged:: 1.13.0
5507 Tuples are allowed for keyword argument.
5508
5509 Returns
5510 -------
5511 r : ndarray
5512 The reduced values. If `out` was supplied, `r` is a reference to
5513 `out`.
5514
5515 Notes
5516 -----
5517 A descriptive example:
5518
5519 If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
5520 ``ufunc.reduceat(array, indices)[::2]`` where `indices` is
5521 ``range(len(array) - 1)`` with a zero placed
5522 in every other element:
5523 ``indices = zeros(2 * len(array) - 1)``,
5524 ``indices[1::2] = range(1, len(array))``.
5525
5526 Don't be fooled by this attribute's name: `reduceat(array)` is not
5527 necessarily smaller than `array`.
5528
5529 Examples
5530 --------
5531 To take the running sum of four successive values:
5532
5533 >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
5534 array([ 6, 10, 14, 18])
5535
5536 A 2-D example:
5537
5538 >>> x = np.linspace(0, 15, 16).reshape(4,4)
5539 >>> x
5540 array([[ 0., 1., 2., 3.],
5541 [ 4., 5., 6., 7.],
5542 [ 8., 9., 10., 11.],
5543 [12., 13., 14., 15.]])
5544
5545 ::
5546
5547 # reduce such that the result has the following five rows:
5548 # [row1 + row2 + row3]
5549 # [row4]
5550 # [row2]
5551 # [row3]
5552 # [row1 + row2 + row3 + row4]
5553
5554 >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
5555 array([[12., 15., 18., 21.],
5556 [12., 13., 14., 15.],
5557 [ 4., 5., 6., 7.],
5558 [ 8., 9., 10., 11.],
5559 [24., 28., 32., 36.]])
5560
5561 ::
5562
5563 # reduce such that result has the following two columns:
5564 # [col1 * col2 * col3, col4]
5565
5566 >>> np.multiply.reduceat(x, [0, 3], 1)
5567 array([[ 0., 3.],
5568 [ 120., 7.],
5569 [ 720., 11.],
5570 [2184., 15.]])
5571
5572 """))
5573
5574add_newdoc('numpy.core', 'ufunc', ('outer',
5575 r"""
5576 outer(A, B, /, **kwargs)
5577
5578 Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
5579
5580 Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
5581 ``op.outer(A, B)`` is an array of dimension M + N such that:
5582
5583 .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
5584 op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
5585
5586 For `A` and `B` one-dimensional, this is equivalent to::
5587
5588 r = empty(len(A),len(B))
5589 for i in range(len(A)):
5590 for j in range(len(B)):
5591 r[i,j] = op(A[i], B[j]) # op = ufunc in question
5592
5593 Parameters
5594 ----------
5595 A : array_like
5596 First array
5597 B : array_like
5598 Second array
5599 kwargs : any
5600 Arguments to pass on to the ufunc. Typically `dtype` or `out`.
5601 See `ufunc` for a comprehensive overview of all available arguments.
5602
5603 Returns
5604 -------
5605 r : ndarray
5606 Output array
5607
5608 See Also
5609 --------
5610 numpy.outer : A less powerful version of ``np.multiply.outer``
5611 that `ravel`\ s all inputs to 1D. This exists
5612 primarily for compatibility with old code.
5613
5614 tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
5615 ``np.multiply.outer(a, b)`` behave same for all
5616 dimensions of a and b.
5617
5618 Examples
5619 --------
5620 >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
5621 array([[ 4, 5, 6],
5622 [ 8, 10, 12],
5623 [12, 15, 18]])
5624
5625 A multi-dimensional example:
5626
5627 >>> A = np.array([[1, 2, 3], [4, 5, 6]])
5628 >>> A.shape
5629 (2, 3)
5630 >>> B = np.array([[1, 2, 3, 4]])
5631 >>> B.shape
5632 (1, 4)
5633 >>> C = np.multiply.outer(A, B)
5634 >>> C.shape; C
5635 (2, 3, 1, 4)
5636 array([[[[ 1, 2, 3, 4]],
5637 [[ 2, 4, 6, 8]],
5638 [[ 3, 6, 9, 12]]],
5639 [[[ 4, 8, 12, 16]],
5640 [[ 5, 10, 15, 20]],
5641 [[ 6, 12, 18, 24]]]])
5642
5643 """))
5644
5645add_newdoc('numpy.core', 'ufunc', ('at',
5646 """
5647 at(a, indices, b=None, /)
5648
5649 Performs unbuffered in place operation on operand 'a' for elements
5650 specified by 'indices'. For addition ufunc, this method is equivalent to
5651 ``a[indices] += b``, except that results are accumulated for elements that
5652 are indexed more than once. For example, ``a[[0,0]] += 1`` will only
5653 increment the first element once because of buffering, whereas
5654 ``add.at(a, [0,0], 1)`` will increment the first element twice.
5655
5656 .. versionadded:: 1.8.0
5657
5658 Parameters
5659 ----------
5660 a : array_like
5661 The array to perform in place operation on.
5662 indices : array_like or tuple
5663 Array like index object or slice object for indexing into first
5664 operand. If first operand has multiple dimensions, indices can be a
5665 tuple of array like index objects or slice objects.
5666 b : array_like
5667 Second operand for ufuncs requiring two operands. Operand must be
5668 broadcastable over first operand after indexing or slicing.
5669
5670 Examples
5671 --------
5672 Set items 0 and 1 to their negative values:
5673
5674 >>> a = np.array([1, 2, 3, 4])
5675 >>> np.negative.at(a, [0, 1])
5676 >>> a
5677 array([-1, -2, 3, 4])
5678
5679 Increment items 0 and 1, and increment item 2 twice:
5680
5681 >>> a = np.array([1, 2, 3, 4])
5682 >>> np.add.at(a, [0, 1, 2, 2], 1)
5683 >>> a
5684 array([2, 3, 5, 4])
5685
5686 Add items 0 and 1 in first array to second array,
5687 and store results in first array:
5688
5689 >>> a = np.array([1, 2, 3, 4])
5690 >>> b = np.array([1, 2])
5691 >>> np.add.at(a, [0, 1], b)
5692 >>> a
5693 array([2, 4, 3, 4])
5694
5695 """))
5696
5697add_newdoc('numpy.core', 'ufunc', ('resolve_dtypes',
5698 """
5699 resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False)
5700
5701 Find the dtypes NumPy will use for the operation. Both input and
5702 output dtypes are returned and may differ from those provided.
5703
5704 .. note::
5705
5706 This function always applies NEP 50 rules since it is not provided
5707 any actual values. The Python types ``int``, ``float``, and
5708 ``complex`` thus behave weak and should be passed for "untyped"
5709 Python input.
5710
5711 Parameters
5712 ----------
5713 dtypes : tuple of dtypes, None, or literal int, float, complex
5714 The input dtypes for each operand. Output operands can be
5715 None, indicating that the dtype must be found.
5716 signature : tuple of DTypes or None, optional
5717 If given, enforces exact DType (classes) of the specific operand.
5718 The ufunc ``dtype`` argument is equivalent to passing a tuple with
5719 only output dtypes set.
5720 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
5721 The casting mode when casting is necessary. This is identical to
5722 the ufunc call casting modes.
5723 reduction : boolean
5724 If given, the resolution assumes a reduce operation is happening
5725 which slightly changes the promotion and type resolution rules.
5726 `dtypes` is usually something like ``(None, np.dtype("i2"), None)``
5727 for reductions (first input is also the output).
5728
5729 .. note::
5730
5731 The default casting mode is "same_kind", however, as of
5732 NumPy 1.24, NumPy uses "unsafe" for reductions.
5733
5734 Returns
5735 -------
5736 dtypes : tuple of dtypes
5737 The dtypes which NumPy would use for the calculation. Note that
5738 dtypes may not match the passed in ones (casting is necessary).
5739
5740 See Also
5741 --------
5742 numpy.ufunc._resolve_dtypes_and_context :
5743 Similar function to this, but returns additional information which
5744 give access to the core C functionality of NumPy.
5745
5746 Examples
5747 --------
5748 This API requires passing dtypes, define them for convenience:
5749
5750 >>> int32 = np.dtype("int32")
5751 >>> float32 = np.dtype("float32")
5752
5753 The typical ufunc call does not pass an output dtype. `np.add` has two
5754 inputs and one output, so leave the output as ``None`` (not provided):
5755
5756 >>> np.add.resolve_dtypes((int32, float32, None))
5757 (dtype('float64'), dtype('float64'), dtype('float64'))
5758
5759 The loop found uses "float64" for all operands (including the output), the
5760 first input would be cast.
5761
5762 ``resolve_dtypes`` supports "weak" handling for Python scalars by passing
5763 ``int``, ``float``, or ``complex``:
5764
5765 >>> np.add.resolve_dtypes((float32, float, None))
5766 (dtype('float32'), dtype('float32'), dtype('float32'))
5767
5768 Where the Python ``float`` behaves samilar to a Python value ``0.0``
5769 in a ufunc call. (See :ref:`NEP 50 <NEP50>` for details.)
5770
5771 """))
5772
5773add_newdoc('numpy.core', 'ufunc', ('_resolve_dtypes_and_context',
5774 """
5775 _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False)
5776
5777 See `numpy.ufunc.resolve_dtypes` for parameter information. This
5778 function is considered *unstable*. You may use it, but the returned
5779 information is NumPy version specific and expected to change.
5780 Large API/ABI changes are not expected, but a new NumPy version is
5781 expected to require updating code using this functionality.
5782
5783 This function is designed to be used in conjunction with
5784 `numpy.ufunc._get_strided_loop`. The calls are split to mirror the C API
5785 and allow future improvements.
5786
5787 Returns
5788 -------
5789 dtypes : tuple of dtypes
5790 call_info :
5791 PyCapsule with all necessary information to get access to low level
5792 C calls. See `numpy.ufunc._get_strided_loop` for more information.
5793
5794 """))
5795
5796add_newdoc('numpy.core', 'ufunc', ('_get_strided_loop',
5797 """
5798 _get_strided_loop(call_info, /, *, fixed_strides=None)
5799
5800 This function fills in the ``call_info`` capsule to include all
5801 information necessary to call the low-level strided loop from NumPy.
5802
5803 See notes for more information.
5804
5805 Parameters
5806 ----------
5807 call_info : PyCapsule
5808 The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`.
5809 fixed_strides : tuple of int or None, optional
5810 A tuple with fixed byte strides of all input arrays. NumPy may use
5811 this information to find specialized loops, so any call must follow
5812 the given stride. Use ``None`` to indicate that the stride is not
5813 known (or not fixed) for all calls.
5814
5815 Notes
5816 -----
5817 Together with `numpy.ufunc._resolve_dtypes_and_context` this function
5818 gives low-level access to the NumPy ufunc loops.
5819 The first function does general preparation and returns the required
5820 information. It returns this as a C capsule with the version specific
5821 name ``numpy_1.24_ufunc_call_info``.
5822 The NumPy 1.24 ufunc call info capsule has the following layout::
5823
5824 typedef struct {
5825 PyArrayMethod_StridedLoop *strided_loop;
5826 PyArrayMethod_Context *context;
5827 NpyAuxData *auxdata;
5828
5829 /* Flag information (expected to change) */
5830 npy_bool requires_pyapi; /* GIL is required by loop */
5831
5832 /* Loop doesn't set FPE flags; if not set check FPE flags */
5833 npy_bool no_floatingpoint_errors;
5834 } ufunc_call_info;
5835
5836 Note that the first call only fills in the ``context``. The call to
5837 ``_get_strided_loop`` fills in all other data.
5838 Please see the ``numpy/experimental_dtype_api.h`` header for exact
5839 call information; the main thing to note is that the new-style loops
5840 return 0 on success, -1 on failure. They are passed context as new
5841 first input and ``auxdata`` as (replaced) last.
5842
5843 Only the ``strided_loop``signature is considered guaranteed stable
5844 for NumPy bug-fix releases. All other API is tied to the experimental
5845 API versioning.
5846
5847 The reason for the split call is that cast information is required to
5848 decide what the fixed-strides will be.
5849
5850 NumPy ties the lifetime of the ``auxdata`` information to the capsule.
5851
5852 """))
5853
5854
5855
5856##############################################################################
5857#
5858# Documentation for dtype attributes and methods
5859#
5860##############################################################################
5861
5862##############################################################################
5863#
5864# dtype object
5865#
5866##############################################################################
5867
5868add_newdoc('numpy.core.multiarray', 'dtype',
5869 """
5870 dtype(dtype, align=False, copy=False, [metadata])
5871
5872 Create a data type object.
5873
5874 A numpy array is homogeneous, and contains elements described by a
5875 dtype object. A dtype object can be constructed from different
5876 combinations of fundamental numeric types.
5877
5878 Parameters
5879 ----------
5880 dtype
5881 Object to be converted to a data type object.
5882 align : bool, optional
5883 Add padding to the fields to match what a C compiler would output
5884 for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
5885 or a comma-separated string. If a struct dtype is being created,
5886 this also sets a sticky alignment flag ``isalignedstruct``.
5887 copy : bool, optional
5888 Make a new copy of the data-type object. If ``False``, the result
5889 may just be a reference to a built-in data-type object.
5890 metadata : dict, optional
5891 An optional dictionary with dtype metadata.
5892
5893 See also
5894 --------
5895 result_type
5896
5897 Examples
5898 --------
5899 Using array-scalar type:
5900
5901 >>> np.dtype(np.int16)
5902 dtype('int16')
5903
5904 Structured type, one field name 'f1', containing int16:
5905
5906 >>> np.dtype([('f1', np.int16)])
5907 dtype([('f1', '<i2')])
5908
5909 Structured type, one field named 'f1', in itself containing a structured
5910 type with one field:
5911
5912 >>> np.dtype([('f1', [('f1', np.int16)])])
5913 dtype([('f1', [('f1', '<i2')])])
5914
5915 Structured type, two fields: the first field contains an unsigned int, the
5916 second an int32:
5917
5918 >>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
5919 dtype([('f1', '<u8'), ('f2', '<i4')])
5920
5921 Using array-protocol type strings:
5922
5923 >>> np.dtype([('a','f8'),('b','S10')])
5924 dtype([('a', '<f8'), ('b', 'S10')])
5925
5926 Using comma-separated field formats. The shape is (2,3):
5927
5928 >>> np.dtype("i4, (2,3)f8")
5929 dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
5930
5931 Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
5932 is a flexible type, here of size 10:
5933
5934 >>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
5935 dtype([('hello', '<i8', (3,)), ('world', 'V10')])
5936
5937 Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
5938 the offsets in bytes:
5939
5940 >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
5941 dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))
5942
5943 Using dictionaries. Two fields named 'gender' and 'age':
5944
5945 >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
5946 dtype([('gender', 'S1'), ('age', 'u1')])
5947
5948 Offsets in bytes, here 0 and 25:
5949
5950 >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
5951 dtype([('surname', 'S25'), ('age', 'u1')])
5952
5953 """)
5954
5955##############################################################################
5956#
5957# dtype attributes
5958#
5959##############################################################################
5960
5961add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
5962 """
5963 The required alignment (bytes) of this data-type according to the compiler.
5964
5965 More information is available in the C-API section of the manual.
5966
5967 Examples
5968 --------
5969
5970 >>> x = np.dtype('i4')
5971 >>> x.alignment
5972 4
5973
5974 >>> x = np.dtype(float)
5975 >>> x.alignment
5976 8
5977
5978 """))
5979
5980add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
5981 """
5982 A character indicating the byte-order of this data-type object.
5983
5984 One of:
5985
5986 === ==============
5987 '=' native
5988 '<' little-endian
5989 '>' big-endian
5990 '|' not applicable
5991 === ==============
5992
5993 All built-in data-type objects have byteorder either '=' or '|'.
5994
5995 Examples
5996 --------
5997
5998 >>> dt = np.dtype('i2')
5999 >>> dt.byteorder
6000 '='
6001 >>> # endian is not relevant for 8 bit numbers
6002 >>> np.dtype('i1').byteorder
6003 '|'
6004 >>> # or ASCII strings
6005 >>> np.dtype('S2').byteorder
6006 '|'
6007 >>> # Even if specific code is given, and it is native
6008 >>> # '=' is the byteorder
6009 >>> import sys
6010 >>> sys_is_le = sys.byteorder == 'little'
6011 >>> native_code = sys_is_le and '<' or '>'
6012 >>> swapped_code = sys_is_le and '>' or '<'
6013 >>> dt = np.dtype(native_code + 'i2')
6014 >>> dt.byteorder
6015 '='
6016 >>> # Swapped code shows up as itself
6017 >>> dt = np.dtype(swapped_code + 'i2')
6018 >>> dt.byteorder == swapped_code
6019 True
6020
6021 """))
6022
6023add_newdoc('numpy.core.multiarray', 'dtype', ('char',
6024 """A unique character code for each of the 21 different built-in types.
6025
6026 Examples
6027 --------
6028
6029 >>> x = np.dtype(float)
6030 >>> x.char
6031 'd'
6032
6033 """))
6034
6035add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
6036 """
6037 `__array_interface__` description of the data-type.
6038
6039 The format is that required by the 'descr' key in the
6040 `__array_interface__` attribute.
6041
6042 Warning: This attribute exists specifically for `__array_interface__`,
6043 and passing it directly to `np.dtype` will not accurately reconstruct
6044 some dtypes (e.g., scalar and subarray dtypes).
6045
6046 Examples
6047 --------
6048
6049 >>> x = np.dtype(float)
6050 >>> x.descr
6051 [('', '<f8')]
6052
6053 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
6054 >>> dt.descr
6055 [('name', '<U16'), ('grades', '<f8', (2,))]
6056
6057 """))
6058
6059add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
6060 """
6061 Dictionary of named fields defined for this data type, or ``None``.
6062
6063 The dictionary is indexed by keys that are the names of the fields.
6064 Each entry in the dictionary is a tuple fully describing the field::
6065
6066 (dtype, offset[, title])
6067
6068 Offset is limited to C int, which is signed and usually 32 bits.
6069 If present, the optional title can be any object (if it is a string
6070 or unicode then it will also be a key in the fields dictionary,
6071 otherwise it's meta-data). Notice also that the first two elements
6072 of the tuple can be passed directly as arguments to the ``ndarray.getfield``
6073 and ``ndarray.setfield`` methods.
6074
6075 See Also
6076 --------
6077 ndarray.getfield, ndarray.setfield
6078
6079 Examples
6080 --------
6081 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
6082 >>> print(dt.fields)
6083 {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
6084
6085 """))
6086
6087add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
6088 """
6089 Bit-flags describing how this data type is to be interpreted.
6090
6091 Bit-masks are in `numpy.core.multiarray` as the constants
6092 `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
6093 `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
6094 of these flags is in C-API documentation; they are largely useful
6095 for user-defined data-types.
6096
6097 The following example demonstrates that operations on this particular
6098 dtype requires Python C-API.
6099
6100 Examples
6101 --------
6102
6103 >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
6104 >>> x.flags
6105 16
6106 >>> np.core.multiarray.NEEDS_PYAPI
6107 16
6108
6109 """))
6110
6111add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
6112 """
6113 Boolean indicating whether this dtype contains any reference-counted
6114 objects in any fields or sub-dtypes.
6115
6116 Recall that what is actually in the ndarray memory representing
6117 the Python object is the memory address of that object (a pointer).
6118 Special handling may be required, and this attribute is useful for
6119 distinguishing data types that may contain arbitrary Python objects
6120 and data-types that won't.
6121
6122 """))
6123
6124add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
6125 """
6126 Integer indicating how this dtype relates to the built-in dtypes.
6127
6128 Read-only.
6129
6130 = ========================================================================
6131 0 if this is a structured array type, with fields
6132 1 if this is a dtype compiled into numpy (such as ints, floats etc)
6133 2 if the dtype is for a user-defined numpy type
6134 A user-defined type uses the numpy C-API machinery to extend
6135 numpy to handle a new array type. See
6136 :ref:`user.user-defined-data-types` in the NumPy manual.
6137 = ========================================================================
6138
6139 Examples
6140 --------
6141 >>> dt = np.dtype('i2')
6142 >>> dt.isbuiltin
6143 1
6144 >>> dt = np.dtype('f8')
6145 >>> dt.isbuiltin
6146 1
6147 >>> dt = np.dtype([('field1', 'f8')])
6148 >>> dt.isbuiltin
6149 0
6150
6151 """))
6152
6153add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
6154 """
6155 Boolean indicating whether the byte order of this dtype is native
6156 to the platform.
6157
6158 """))
6159
6160add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct',
6161 """
6162 Boolean indicating whether the dtype is a struct which maintains
6163 field alignment. This flag is sticky, so when combining multiple
6164 structs together, it is preserved and produces new dtypes which
6165 are also aligned.
6166
6167 """))
6168
6169add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
6170 """
6171 The element size of this data-type object.
6172
6173 For 18 of the 21 types this number is fixed by the data-type.
6174 For the flexible data-types, this number can be anything.
6175
6176 Examples
6177 --------
6178
6179 >>> arr = np.array([[1, 2], [3, 4]])
6180 >>> arr.dtype
6181 dtype('int64')
6182 >>> arr.itemsize
6183 8
6184
6185 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
6186 >>> dt.itemsize
6187 80
6188
6189 """))
6190
6191add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
6192 """
6193 A character code (one of 'biufcmMOSUV') identifying the general kind of data.
6194
6195 = ======================
6196 b boolean
6197 i signed integer
6198 u unsigned integer
6199 f floating-point
6200 c complex floating-point
6201 m timedelta
6202 M datetime
6203 O object
6204 S (byte-)string
6205 U Unicode
6206 V void
6207 = ======================
6208
6209 Examples
6210 --------
6211
6212 >>> dt = np.dtype('i4')
6213 >>> dt.kind
6214 'i'
6215 >>> dt = np.dtype('f8')
6216 >>> dt.kind
6217 'f'
6218 >>> dt = np.dtype([('field1', 'f8')])
6219 >>> dt.kind
6220 'V'
6221
6222 """))
6223
6224add_newdoc('numpy.core.multiarray', 'dtype', ('metadata',
6225 """
6226 Either ``None`` or a readonly dictionary of metadata (mappingproxy).
6227
6228 The metadata field can be set using any dictionary at data-type
6229 creation. NumPy currently has no uniform approach to propagating
6230 metadata; although some array operations preserve it, there is no
6231 guarantee that others will.
6232
6233 .. warning::
6234
6235 Although used in certain projects, this feature was long undocumented
6236 and is not well supported. Some aspects of metadata propagation
6237 are expected to change in the future.
6238
6239 Examples
6240 --------
6241
6242 >>> dt = np.dtype(float, metadata={"key": "value"})
6243 >>> dt.metadata["key"]
6244 'value'
6245 >>> arr = np.array([1, 2, 3], dtype=dt)
6246 >>> arr.dtype.metadata
6247 mappingproxy({'key': 'value'})
6248
6249 Adding arrays with identical datatypes currently preserves the metadata:
6250
6251 >>> (arr + arr).dtype.metadata
6252 mappingproxy({'key': 'value'})
6253
6254 But if the arrays have different dtype metadata, the metadata may be
6255 dropped:
6256
6257 >>> dt2 = np.dtype(float, metadata={"key2": "value2"})
6258 >>> arr2 = np.array([3, 2, 1], dtype=dt2)
6259 >>> (arr + arr2).dtype.metadata is None
6260 True # The metadata field is cleared so None is returned
6261 """))
6262
6263add_newdoc('numpy.core.multiarray', 'dtype', ('name',
6264 """
6265 A bit-width name for this data-type.
6266
6267 Un-sized flexible data-type objects do not have this attribute.
6268
6269 Examples
6270 --------
6271
6272 >>> x = np.dtype(float)
6273 >>> x.name
6274 'float64'
6275 >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
6276 >>> x.name
6277 'void640'
6278
6279 """))
6280
6281add_newdoc('numpy.core.multiarray', 'dtype', ('names',
6282 """
6283 Ordered list of field names, or ``None`` if there are no fields.
6284
6285 The names are ordered according to increasing byte offset. This can be
6286 used, for example, to walk through all of the named fields in offset order.
6287
6288 Examples
6289 --------
6290 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
6291 >>> dt.names
6292 ('name', 'grades')
6293
6294 """))
6295
6296add_newdoc('numpy.core.multiarray', 'dtype', ('num',
6297 """
6298 A unique number for each of the 21 different built-in types.
6299
6300 These are roughly ordered from least-to-most precision.
6301
6302 Examples
6303 --------
6304
6305 >>> dt = np.dtype(str)
6306 >>> dt.num
6307 19
6308
6309 >>> dt = np.dtype(float)
6310 >>> dt.num
6311 12
6312
6313 """))
6314
6315add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
6316 """
6317 Shape tuple of the sub-array if this data type describes a sub-array,
6318 and ``()`` otherwise.
6319
6320 Examples
6321 --------
6322
6323 >>> dt = np.dtype(('i4', 4))
6324 >>> dt.shape
6325 (4,)
6326
6327 >>> dt = np.dtype(('i4', (2, 3)))
6328 >>> dt.shape
6329 (2, 3)
6330
6331 """))
6332
6333add_newdoc('numpy.core.multiarray', 'dtype', ('ndim',
6334 """
6335 Number of dimensions of the sub-array if this data type describes a
6336 sub-array, and ``0`` otherwise.
6337
6338 .. versionadded:: 1.13.0
6339
6340 Examples
6341 --------
6342 >>> x = np.dtype(float)
6343 >>> x.ndim
6344 0
6345
6346 >>> x = np.dtype((float, 8))
6347 >>> x.ndim
6348 1
6349
6350 >>> x = np.dtype(('i4', (3, 4)))
6351 >>> x.ndim
6352 2
6353
6354 """))
6355
6356add_newdoc('numpy.core.multiarray', 'dtype', ('str',
6357 """The array-protocol typestring of this data-type object."""))
6358
6359add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
6360 """
6361 Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
6362 None otherwise.
6363
6364 The *shape* is the fixed shape of the sub-array described by this
6365 data type, and *item_dtype* the data type of the array.
6366
6367 If a field whose dtype object has this attribute is retrieved,
6368 then the extra dimensions implied by *shape* are tacked on to
6369 the end of the retrieved array.
6370
6371 See Also
6372 --------
6373 dtype.base
6374
6375 Examples
6376 --------
6377 >>> x = numpy.dtype('8f')
6378 >>> x.subdtype
6379 (dtype('float32'), (8,))
6380
6381 >>> x = numpy.dtype('i2')
6382 >>> x.subdtype
6383 >>>
6384
6385 """))
6386
6387add_newdoc('numpy.core.multiarray', 'dtype', ('base',
6388 """
6389 Returns dtype for the base element of the subarrays,
6390 regardless of their dimension or shape.
6391
6392 See Also
6393 --------
6394 dtype.subdtype
6395
6396 Examples
6397 --------
6398 >>> x = numpy.dtype('8f')
6399 >>> x.base
6400 dtype('float32')
6401
6402 >>> x = numpy.dtype('i2')
6403 >>> x.base
6404 dtype('int16')
6405
6406 """))
6407
6408add_newdoc('numpy.core.multiarray', 'dtype', ('type',
6409 """The type object used to instantiate a scalar of this data-type."""))
6410
6411##############################################################################
6412#
6413# dtype methods
6414#
6415##############################################################################
6416
6417add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
6418 """
6419 newbyteorder(new_order='S', /)
6420
6421 Return a new dtype with a different byte order.
6422
6423 Changes are also made in all fields and sub-arrays of the data type.
6424
6425 Parameters
6426 ----------
6427 new_order : string, optional
6428 Byte order to force; a value from the byte order specifications
6429 below. The default value ('S') results in swapping the current
6430 byte order. `new_order` codes can be any of:
6431
6432 * 'S' - swap dtype from current to opposite endian
6433 * {'<', 'little'} - little endian
6434 * {'>', 'big'} - big endian
6435 * {'=', 'native'} - native order
6436 * {'|', 'I'} - ignore (no change to byte order)
6437
6438 Returns
6439 -------
6440 new_dtype : dtype
6441 New dtype object with the given change to the byte order.
6442
6443 Notes
6444 -----
6445 Changes are also made in all fields and sub-arrays of the data type.
6446
6447 Examples
6448 --------
6449 >>> import sys
6450 >>> sys_is_le = sys.byteorder == 'little'
6451 >>> native_code = sys_is_le and '<' or '>'
6452 >>> swapped_code = sys_is_le and '>' or '<'
6453 >>> native_dt = np.dtype(native_code+'i2')
6454 >>> swapped_dt = np.dtype(swapped_code+'i2')
6455 >>> native_dt.newbyteorder('S') == swapped_dt
6456 True
6457 >>> native_dt.newbyteorder() == swapped_dt
6458 True
6459 >>> native_dt == swapped_dt.newbyteorder('S')
6460 True
6461 >>> native_dt == swapped_dt.newbyteorder('=')
6462 True
6463 >>> native_dt == swapped_dt.newbyteorder('N')
6464 True
6465 >>> native_dt == native_dt.newbyteorder('|')
6466 True
6467 >>> np.dtype('<i2') == native_dt.newbyteorder('<')
6468 True
6469 >>> np.dtype('<i2') == native_dt.newbyteorder('L')
6470 True
6471 >>> np.dtype('>i2') == native_dt.newbyteorder('>')
6472 True
6473 >>> np.dtype('>i2') == native_dt.newbyteorder('B')
6474 True
6475
6476 """))
6477
6478add_newdoc('numpy.core.multiarray', 'dtype', ('__class_getitem__',
6479 """
6480 __class_getitem__(item, /)
6481
6482 Return a parametrized wrapper around the `~numpy.dtype` type.
6483
6484 .. versionadded:: 1.22
6485
6486 Returns
6487 -------
6488 alias : types.GenericAlias
6489 A parametrized `~numpy.dtype` type.
6490
6491 Examples
6492 --------
6493 >>> import numpy as np
6494
6495 >>> np.dtype[np.int64]
6496 numpy.dtype[numpy.int64]
6497
6498 Notes
6499 -----
6500 This method is only available for python 3.9 and later.
6501
6502 See Also
6503 --------
6504 :pep:`585` : Type hinting generics in standard collections.
6505
6506 """))
6507
6508add_newdoc('numpy.core.multiarray', 'dtype', ('__ge__',
6509 """
6510 __ge__(value, /)
6511
6512 Return ``self >= value``.
6513
6514 Equivalent to ``np.can_cast(value, self, casting="safe")``.
6515
6516 See Also
6517 --------
6518 can_cast : Returns True if cast between data types can occur according to
6519 the casting rule.
6520
6521 """))
6522
6523add_newdoc('numpy.core.multiarray', 'dtype', ('__le__',
6524 """
6525 __le__(value, /)
6526
6527 Return ``self <= value``.
6528
6529 Equivalent to ``np.can_cast(self, value, casting="safe")``.
6530
6531 See Also
6532 --------
6533 can_cast : Returns True if cast between data types can occur according to
6534 the casting rule.
6535
6536 """))
6537
6538add_newdoc('numpy.core.multiarray', 'dtype', ('__gt__',
6539 """
6540 __ge__(value, /)
6541
6542 Return ``self > value``.
6543
6544 Equivalent to
6545 ``self != value and np.can_cast(value, self, casting="safe")``.
6546
6547 See Also
6548 --------
6549 can_cast : Returns True if cast between data types can occur according to
6550 the casting rule.
6551
6552 """))
6553
6554add_newdoc('numpy.core.multiarray', 'dtype', ('__lt__',
6555 """
6556 __lt__(value, /)
6557
6558 Return ``self < value``.
6559
6560 Equivalent to
6561 ``self != value and np.can_cast(self, value, casting="safe")``.
6562
6563 See Also
6564 --------
6565 can_cast : Returns True if cast between data types can occur according to
6566 the casting rule.
6567
6568 """))
6569
6570##############################################################################
6571#
6572# Datetime-related Methods
6573#
6574##############################################################################
6575
6576add_newdoc('numpy.core.multiarray', 'busdaycalendar',
6577 """
6578 busdaycalendar(weekmask='1111100', holidays=None)
6579
6580 A business day calendar object that efficiently stores information
6581 defining valid days for the busday family of functions.
6582
6583 The default valid days are Monday through Friday ("business days").
6584 A busdaycalendar object can be specified with any set of weekly
6585 valid days, plus an optional "holiday" dates that always will be invalid.
6586
6587 Once a busdaycalendar object is created, the weekmask and holidays
6588 cannot be modified.
6589
6590 .. versionadded:: 1.7.0
6591
6592 Parameters
6593 ----------
6594 weekmask : str or array_like of bool, optional
6595 A seven-element array indicating which of Monday through Sunday are
6596 valid days. May be specified as a length-seven list or array, like
6597 [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
6598 like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
6599 weekdays, optionally separated by white space. Valid abbreviations
6600 are: Mon Tue Wed Thu Fri Sat Sun
6601 holidays : array_like of datetime64[D], optional
6602 An array of dates to consider as invalid dates, no matter which
6603 weekday they fall upon. Holiday dates may be specified in any
6604 order, and NaT (not-a-time) dates are ignored. This list is
6605 saved in a normalized form that is suited for fast calculations
6606 of valid days.
6607
6608 Returns
6609 -------
6610 out : busdaycalendar
6611 A business day calendar object containing the specified
6612 weekmask and holidays values.
6613
6614 See Also
6615 --------
6616 is_busday : Returns a boolean array indicating valid days.
6617 busday_offset : Applies an offset counted in valid days.
6618 busday_count : Counts how many valid days are in a half-open date range.
6619
6620 Attributes
6621 ----------
6622 Note: once a busdaycalendar object is created, you cannot modify the
6623 weekmask or holidays. The attributes return copies of internal data.
6624 weekmask : (copy) seven-element array of bool
6625 holidays : (copy) sorted array of datetime64[D]
6626
6627 Examples
6628 --------
6629 >>> # Some important days in July
6630 ... bdd = np.busdaycalendar(
6631 ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
6632 >>> # Default is Monday to Friday weekdays
6633 ... bdd.weekmask
6634 array([ True, True, True, True, True, False, False])
6635 >>> # Any holidays already on the weekend are removed
6636 ... bdd.holidays
6637 array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
6638 """)
6639
6640add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask',
6641 """A copy of the seven-element boolean mask indicating valid days."""))
6642
6643add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays',
6644 """A copy of the holiday array indicating additional invalid days."""))
6645
6646add_newdoc('numpy.core.multiarray', 'normalize_axis_index',
6647 """
6648 normalize_axis_index(axis, ndim, msg_prefix=None)
6649
6650 Normalizes an axis index, `axis`, such that is a valid positive index into
6651 the shape of array with `ndim` dimensions. Raises an AxisError with an
6652 appropriate message if this is not possible.
6653
6654 Used internally by all axis-checking logic.
6655
6656 .. versionadded:: 1.13.0
6657
6658 Parameters
6659 ----------
6660 axis : int
6661 The un-normalized index of the axis. Can be negative
6662 ndim : int
6663 The number of dimensions of the array that `axis` should be normalized
6664 against
6665 msg_prefix : str
6666 A prefix to put before the message, typically the name of the argument
6667
6668 Returns
6669 -------
6670 normalized_axis : int
6671 The normalized axis index, such that `0 <= normalized_axis < ndim`
6672
6673 Raises
6674 ------
6675 AxisError
6676 If the axis index is invalid, when `-ndim <= axis < ndim` is false.
6677
6678 Examples
6679 --------
6680 >>> normalize_axis_index(0, ndim=3)
6681 0
6682 >>> normalize_axis_index(1, ndim=3)
6683 1
6684 >>> normalize_axis_index(-1, ndim=3)
6685 2
6686
6687 >>> normalize_axis_index(3, ndim=3)
6688 Traceback (most recent call last):
6689 ...
6690 AxisError: axis 3 is out of bounds for array of dimension 3
6691 >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
6692 Traceback (most recent call last):
6693 ...
6694 AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3
6695 """)
6696
6697add_newdoc('numpy.core.multiarray', 'datetime_data',
6698 """
6699 datetime_data(dtype, /)
6700
6701 Get information about the step size of a date or time type.
6702
6703 The returned tuple can be passed as the second argument of `numpy.datetime64` and
6704 `numpy.timedelta64`.
6705
6706 Parameters
6707 ----------
6708 dtype : dtype
6709 The dtype object, which must be a `datetime64` or `timedelta64` type.
6710
6711 Returns
6712 -------
6713 unit : str
6714 The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype
6715 is based.
6716 count : int
6717 The number of base units in a step.
6718
6719 Examples
6720 --------
6721 >>> dt_25s = np.dtype('timedelta64[25s]')
6722 >>> np.datetime_data(dt_25s)
6723 ('s', 25)
6724 >>> np.array(10, dt_25s).astype('timedelta64[s]')
6725 array(250, dtype='timedelta64[s]')
6726
6727 The result can be used to construct a datetime that uses the same units
6728 as a timedelta
6729
6730 >>> np.datetime64('2010', np.datetime_data(dt_25s))
6731 numpy.datetime64('2010-01-01T00:00:00','25s')
6732 """)
6733
6734
6735##############################################################################
6736#
6737# Documentation for `generic` attributes and methods
6738#
6739##############################################################################
6740
6741add_newdoc('numpy.core.numerictypes', 'generic',
6742 """
6743 Base class for numpy scalar types.
6744
6745 Class from which most (all?) numpy scalar types are derived. For
6746 consistency, exposes the same API as `ndarray`, despite many
6747 consequent attributes being either "get-only," or completely irrelevant.
6748 This is the class from which it is strongly suggested users should derive
6749 custom scalar types.
6750
6751 """)
6752
6753# Attributes
6754
6755def refer_to_array_attribute(attr, method=True):
6756 docstring = """
6757 Scalar {} identical to the corresponding array attribute.
6758
6759 Please see `ndarray.{}`.
6760 """
6761
6762 return attr, docstring.format("method" if method else "attribute", attr)
6763
6764
6765add_newdoc('numpy.core.numerictypes', 'generic',
6766 refer_to_array_attribute('T', method=False))
6767
6768add_newdoc('numpy.core.numerictypes', 'generic',
6769 refer_to_array_attribute('base', method=False))
6770
6771add_newdoc('numpy.core.numerictypes', 'generic', ('data',
6772 """Pointer to start of data."""))
6773
6774add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
6775 """Get array data-descriptor."""))
6776
6777add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
6778 """The integer value of flags."""))
6779
6780add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
6781 """A 1-D view of the scalar."""))
6782
6783add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
6784 """The imaginary part of the scalar."""))
6785
6786add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
6787 """The length of one element in bytes."""))
6788
6789add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
6790 """The length of the scalar in bytes."""))
6791
6792add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
6793 """The number of array dimensions."""))
6794
6795add_newdoc('numpy.core.numerictypes', 'generic', ('real',
6796 """The real part of the scalar."""))
6797
6798add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
6799 """Tuple of array dimensions."""))
6800
6801add_newdoc('numpy.core.numerictypes', 'generic', ('size',
6802 """The number of elements in the gentype."""))
6803
6804add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
6805 """Tuple of bytes steps in each dimension."""))
6806
6807# Methods
6808
6809add_newdoc('numpy.core.numerictypes', 'generic',
6810 refer_to_array_attribute('all'))
6811
6812add_newdoc('numpy.core.numerictypes', 'generic',
6813 refer_to_array_attribute('any'))
6814
6815add_newdoc('numpy.core.numerictypes', 'generic',
6816 refer_to_array_attribute('argmax'))
6817
6818add_newdoc('numpy.core.numerictypes', 'generic',
6819 refer_to_array_attribute('argmin'))
6820
6821add_newdoc('numpy.core.numerictypes', 'generic',
6822 refer_to_array_attribute('argsort'))
6823
6824add_newdoc('numpy.core.numerictypes', 'generic',
6825 refer_to_array_attribute('astype'))
6826
6827add_newdoc('numpy.core.numerictypes', 'generic',
6828 refer_to_array_attribute('byteswap'))
6829
6830add_newdoc('numpy.core.numerictypes', 'generic',
6831 refer_to_array_attribute('choose'))
6832
6833add_newdoc('numpy.core.numerictypes', 'generic',
6834 refer_to_array_attribute('clip'))
6835
6836add_newdoc('numpy.core.numerictypes', 'generic',
6837 refer_to_array_attribute('compress'))
6838
6839add_newdoc('numpy.core.numerictypes', 'generic',
6840 refer_to_array_attribute('conjugate'))
6841
6842add_newdoc('numpy.core.numerictypes', 'generic',
6843 refer_to_array_attribute('copy'))
6844
6845add_newdoc('numpy.core.numerictypes', 'generic',
6846 refer_to_array_attribute('cumprod'))
6847
6848add_newdoc('numpy.core.numerictypes', 'generic',
6849 refer_to_array_attribute('cumsum'))
6850
6851add_newdoc('numpy.core.numerictypes', 'generic',
6852 refer_to_array_attribute('diagonal'))
6853
6854add_newdoc('numpy.core.numerictypes', 'generic',
6855 refer_to_array_attribute('dump'))
6856
6857add_newdoc('numpy.core.numerictypes', 'generic',
6858 refer_to_array_attribute('dumps'))
6859
6860add_newdoc('numpy.core.numerictypes', 'generic',
6861 refer_to_array_attribute('fill'))
6862
6863add_newdoc('numpy.core.numerictypes', 'generic',
6864 refer_to_array_attribute('flatten'))
6865
6866add_newdoc('numpy.core.numerictypes', 'generic',
6867 refer_to_array_attribute('getfield'))
6868
6869add_newdoc('numpy.core.numerictypes', 'generic',
6870 refer_to_array_attribute('item'))
6871
6872add_newdoc('numpy.core.numerictypes', 'generic',
6873 refer_to_array_attribute('itemset'))
6874
6875add_newdoc('numpy.core.numerictypes', 'generic',
6876 refer_to_array_attribute('max'))
6877
6878add_newdoc('numpy.core.numerictypes', 'generic',
6879 refer_to_array_attribute('mean'))
6880
6881add_newdoc('numpy.core.numerictypes', 'generic',
6882 refer_to_array_attribute('min'))
6883
6884add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
6885 """
6886 newbyteorder(new_order='S', /)
6887
6888 Return a new `dtype` with a different byte order.
6889
6890 Changes are also made in all fields and sub-arrays of the data type.
6891
6892 The `new_order` code can be any from the following:
6893
6894 * 'S' - swap dtype from current to opposite endian
6895 * {'<', 'little'} - little endian
6896 * {'>', 'big'} - big endian
6897 * {'=', 'native'} - native order
6898 * {'|', 'I'} - ignore (no change to byte order)
6899
6900 Parameters
6901 ----------
6902 new_order : str, optional
6903 Byte order to force; a value from the byte order specifications
6904 above. The default value ('S') results in swapping the current
6905 byte order.
6906
6907
6908 Returns
6909 -------
6910 new_dtype : dtype
6911 New `dtype` object with the given change to the byte order.
6912
6913 """))
6914
6915add_newdoc('numpy.core.numerictypes', 'generic',
6916 refer_to_array_attribute('nonzero'))
6917
6918add_newdoc('numpy.core.numerictypes', 'generic',
6919 refer_to_array_attribute('prod'))
6920
6921add_newdoc('numpy.core.numerictypes', 'generic',
6922 refer_to_array_attribute('ptp'))
6923
6924add_newdoc('numpy.core.numerictypes', 'generic',
6925 refer_to_array_attribute('put'))
6926
6927add_newdoc('numpy.core.numerictypes', 'generic',
6928 refer_to_array_attribute('ravel'))
6929
6930add_newdoc('numpy.core.numerictypes', 'generic',
6931 refer_to_array_attribute('repeat'))
6932
6933add_newdoc('numpy.core.numerictypes', 'generic',
6934 refer_to_array_attribute('reshape'))
6935
6936add_newdoc('numpy.core.numerictypes', 'generic',
6937 refer_to_array_attribute('resize'))
6938
6939add_newdoc('numpy.core.numerictypes', 'generic',
6940 refer_to_array_attribute('round'))
6941
6942add_newdoc('numpy.core.numerictypes', 'generic',
6943 refer_to_array_attribute('searchsorted'))
6944
6945add_newdoc('numpy.core.numerictypes', 'generic',
6946 refer_to_array_attribute('setfield'))
6947
6948add_newdoc('numpy.core.numerictypes', 'generic',
6949 refer_to_array_attribute('setflags'))
6950
6951add_newdoc('numpy.core.numerictypes', 'generic',
6952 refer_to_array_attribute('sort'))
6953
6954add_newdoc('numpy.core.numerictypes', 'generic',
6955 refer_to_array_attribute('squeeze'))
6956
6957add_newdoc('numpy.core.numerictypes', 'generic',
6958 refer_to_array_attribute('std'))
6959
6960add_newdoc('numpy.core.numerictypes', 'generic',
6961 refer_to_array_attribute('sum'))
6962
6963add_newdoc('numpy.core.numerictypes', 'generic',
6964 refer_to_array_attribute('swapaxes'))
6965
6966add_newdoc('numpy.core.numerictypes', 'generic',
6967 refer_to_array_attribute('take'))
6968
6969add_newdoc('numpy.core.numerictypes', 'generic',
6970 refer_to_array_attribute('tofile'))
6971
6972add_newdoc('numpy.core.numerictypes', 'generic',
6973 refer_to_array_attribute('tolist'))
6974
6975add_newdoc('numpy.core.numerictypes', 'generic',
6976 refer_to_array_attribute('tostring'))
6977
6978add_newdoc('numpy.core.numerictypes', 'generic',
6979 refer_to_array_attribute('trace'))
6980
6981add_newdoc('numpy.core.numerictypes', 'generic',
6982 refer_to_array_attribute('transpose'))
6983
6984add_newdoc('numpy.core.numerictypes', 'generic',
6985 refer_to_array_attribute('var'))
6986
6987add_newdoc('numpy.core.numerictypes', 'generic',
6988 refer_to_array_attribute('view'))
6989
6990add_newdoc('numpy.core.numerictypes', 'number', ('__class_getitem__',
6991 """
6992 __class_getitem__(item, /)
6993
6994 Return a parametrized wrapper around the `~numpy.number` type.
6995
6996 .. versionadded:: 1.22
6997
6998 Returns
6999 -------
7000 alias : types.GenericAlias
7001 A parametrized `~numpy.number` type.
7002
7003 Examples
7004 --------
7005 >>> from typing import Any
7006 >>> import numpy as np
7007
7008 >>> np.signedinteger[Any]
7009 numpy.signedinteger[typing.Any]
7010
7011 Notes
7012 -----
7013 This method is only available for python 3.9 and later.
7014
7015 See Also
7016 --------
7017 :pep:`585` : Type hinting generics in standard collections.
7018
7019 """))
7020
7021##############################################################################
7022#
7023# Documentation for scalar type abstract base classes in type hierarchy
7024#
7025##############################################################################
7026
7027
7028add_newdoc('numpy.core.numerictypes', 'number',
7029 """
7030 Abstract base class of all numeric scalar types.
7031
7032 """)
7033
7034add_newdoc('numpy.core.numerictypes', 'integer',
7035 """
7036 Abstract base class of all integer scalar types.
7037
7038 """)
7039
7040add_newdoc('numpy.core.numerictypes', 'signedinteger',
7041 """
7042 Abstract base class of all signed integer scalar types.
7043
7044 """)
7045
7046add_newdoc('numpy.core.numerictypes', 'unsignedinteger',
7047 """
7048 Abstract base class of all unsigned integer scalar types.
7049
7050 """)
7051
7052add_newdoc('numpy.core.numerictypes', 'inexact',
7053 """
7054 Abstract base class of all numeric scalar types with a (potentially)
7055 inexact representation of the values in its range, such as
7056 floating-point numbers.
7057
7058 """)
7059
7060add_newdoc('numpy.core.numerictypes', 'floating',
7061 """
7062 Abstract base class of all floating-point scalar types.
7063
7064 """)
7065
7066add_newdoc('numpy.core.numerictypes', 'complexfloating',
7067 """
7068 Abstract base class of all complex number scalar types that are made up of
7069 floating-point numbers.
7070
7071 """)
7072
7073add_newdoc('numpy.core.numerictypes', 'flexible',
7074 """
7075 Abstract base class of all scalar types without predefined length.
7076 The actual size of these types depends on the specific `np.dtype`
7077 instantiation.
7078
7079 """)
7080
7081add_newdoc('numpy.core.numerictypes', 'character',
7082 """
7083 Abstract base class of all character string scalar types.
7084
7085 """)