Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/numpy/core/_add_newdocs.py: 100%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

277 statements  

1""" 

2This is only meant to add docs to objects defined in C-extension modules. 

3The purpose is to allow easier editing of the docstrings without 

4requiring a re-compile. 

5 

6NOTE: Many of the methods of ndarray have corresponding functions. 

7 If you update these docstrings, please keep also the ones in 

8 core/fromnumeric.py, core/defmatrix.py up-to-date. 

9 

10""" 

11 

12from numpy.core.function_base import add_newdoc 

13from numpy.core.overrides import array_function_like_doc 

14 

15############################################################################### 

16# 

17# flatiter 

18# 

19# flatiter needs a toplevel description 

20# 

21############################################################################### 

22 

23add_newdoc('numpy.core', 'flatiter', 

24 """ 

25 Flat iterator object to iterate over arrays. 

26 

27 A `flatiter` iterator is returned by ``x.flat`` for any array `x`. 

28 It allows iterating over the array as if it were a 1-D array, 

29 either in a for-loop or by calling its `next` method. 

30 

31 Iteration is done in row-major, C-style order (the last 

32 index varying the fastest). The iterator can also be indexed using 

33 basic slicing or advanced indexing. 

34 

35 See Also 

36 -------- 

37 ndarray.flat : Return a flat iterator over an array. 

38 ndarray.flatten : Returns a flattened copy of an array. 

39 

40 Notes 

41 ----- 

42 A `flatiter` iterator can not be constructed directly from Python code 

43 by calling the `flatiter` constructor. 

44 

45 Examples 

46 -------- 

47 >>> x = np.arange(6).reshape(2, 3) 

48 >>> fl = x.flat 

49 >>> type(fl) 

50 <class 'numpy.flatiter'> 

51 >>> for item in fl: 

52 ... print(item) 

53 ... 

54 0 

55 1 

56 2 

57 3 

58 4 

59 5 

60 

61 >>> fl[2:4] 

62 array([2, 3]) 

63 

64 """) 

65 

66# flatiter attributes 

67 

68add_newdoc('numpy.core', 'flatiter', ('base', 

69 """ 

70 A reference to the array that is iterated over. 

71 

72 Examples 

73 -------- 

74 >>> x = np.arange(5) 

75 >>> fl = x.flat 

76 >>> fl.base is x 

77 True 

78 

79 """)) 

80 

81 

82 

83add_newdoc('numpy.core', 'flatiter', ('coords', 

84 """ 

85 An N-dimensional tuple of current coordinates. 

86 

87 Examples 

88 -------- 

89 >>> x = np.arange(6).reshape(2, 3) 

90 >>> fl = x.flat 

91 >>> fl.coords 

92 (0, 0) 

93 >>> next(fl) 

94 0 

95 >>> fl.coords 

96 (0, 1) 

97 

98 """)) 

99 

100 

101 

102add_newdoc('numpy.core', 'flatiter', ('index', 

103 """ 

104 Current flat index into the array. 

105 

106 Examples 

107 -------- 

108 >>> x = np.arange(6).reshape(2, 3) 

109 >>> fl = x.flat 

110 >>> fl.index 

111 0 

112 >>> next(fl) 

113 0 

114 >>> fl.index 

115 1 

116 

117 """)) 

118 

119# flatiter functions 

120 

121add_newdoc('numpy.core', 'flatiter', ('__array__', 

122 """__array__(type=None) Get array from iterator 

123 

124 """)) 

125 

126 

127add_newdoc('numpy.core', 'flatiter', ('copy', 

128 """ 

129 copy() 

130 

131 Get a copy of the iterator as a 1-D array. 

132 

133 Examples 

134 -------- 

135 >>> x = np.arange(6).reshape(2, 3) 

136 >>> x 

137 array([[0, 1, 2], 

138 [3, 4, 5]]) 

139 >>> fl = x.flat 

140 >>> fl.copy() 

141 array([0, 1, 2, 3, 4, 5]) 

142 

143 """)) 

144 

145 

146############################################################################### 

147# 

148# nditer 

149# 

150############################################################################### 

151 

152add_newdoc('numpy.core', 'nditer', 

153 """ 

154 nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0) 

155 

156 Efficient multi-dimensional iterator object to iterate over arrays. 

157 To get started using this object, see the 

158 :ref:`introductory guide to array iteration <arrays.nditer>`. 

159 

160 Parameters 

161 ---------- 

162 op : ndarray or sequence of array_like 

163 The array(s) to iterate over. 

164 

165 flags : sequence of str, optional 

166 Flags to control the behavior of the iterator. 

167 

168 * ``buffered`` enables buffering when required. 

169 * ``c_index`` causes a C-order index to be tracked. 

170 * ``f_index`` causes a Fortran-order index to be tracked. 

171 * ``multi_index`` causes a multi-index, or a tuple of indices 

172 with one per iteration dimension, to be tracked. 

173 * ``common_dtype`` causes all the operands to be converted to 

174 a common data type, with copying or buffering as necessary. 

175 * ``copy_if_overlap`` causes the iterator to determine if read 

176 operands have overlap with write operands, and make temporary 

177 copies as necessary to avoid overlap. False positives (needless 

178 copying) are possible in some cases. 

179 * ``delay_bufalloc`` delays allocation of the buffers until 

180 a reset() call is made. Allows ``allocate`` operands to 

181 be initialized before their values are copied into the buffers. 

182 * ``external_loop`` causes the ``values`` given to be 

183 one-dimensional arrays with multiple values instead of 

184 zero-dimensional arrays. 

185 * ``grow_inner`` allows the ``value`` array sizes to be made 

186 larger than the buffer size when both ``buffered`` and 

187 ``external_loop`` is used. 

188 * ``ranged`` allows the iterator to be restricted to a sub-range 

189 of the iterindex values. 

190 * ``refs_ok`` enables iteration of reference types, such as 

191 object arrays. 

192 * ``reduce_ok`` enables iteration of ``readwrite`` operands 

193 which are broadcasted, also known as reduction operands. 

194 * ``zerosize_ok`` allows `itersize` to be zero. 

195 op_flags : list of list of str, optional 

196 This is a list of flags for each operand. At minimum, one of 

197 ``readonly``, ``readwrite``, or ``writeonly`` must be specified. 

198 

199 * ``readonly`` indicates the operand will only be read from. 

200 * ``readwrite`` indicates the operand will be read from and written to. 

201 * ``writeonly`` indicates the operand will only be written to. 

202 * ``no_broadcast`` prevents the operand from being broadcasted. 

203 * ``contig`` forces the operand data to be contiguous. 

204 * ``aligned`` forces the operand data to be aligned. 

205 * ``nbo`` forces the operand data to be in native byte order. 

206 * ``copy`` allows a temporary read-only copy if required. 

207 * ``updateifcopy`` allows a temporary read-write copy if required. 

208 * ``allocate`` causes the array to be allocated if it is None 

209 in the ``op`` parameter. 

210 * ``no_subtype`` prevents an ``allocate`` operand from using a subtype. 

211 * ``arraymask`` indicates that this operand is the mask to use 

212 for selecting elements when writing to operands with the 

213 'writemasked' flag set. The iterator does not enforce this, 

214 but when writing from a buffer back to the array, it only 

215 copies those elements indicated by this mask. 

216 * ``writemasked`` indicates that only elements where the chosen 

217 ``arraymask`` operand is True will be written to. 

218 * ``overlap_assume_elementwise`` can be used to mark operands that are 

219 accessed only in the iterator order, to allow less conservative 

220 copying when ``copy_if_overlap`` is present. 

221 op_dtypes : dtype or tuple of dtype(s), optional 

222 The required data type(s) of the operands. If copying or buffering 

223 is enabled, the data will be converted to/from their original types. 

224 order : {'C', 'F', 'A', 'K'}, optional 

225 Controls the iteration order. 'C' means C order, 'F' means 

226 Fortran order, 'A' means 'F' order if all the arrays are Fortran 

227 contiguous, 'C' order otherwise, and 'K' means as close to the 

228 order the array elements appear in memory as possible. This also 

229 affects the element memory order of ``allocate`` operands, as they 

230 are allocated to be compatible with iteration order. 

231 Default is 'K'. 

232 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

233 Controls what kind of data casting may occur when making a copy 

234 or buffering. Setting this to 'unsafe' is not recommended, 

235 as it can adversely affect accumulations. 

236 

237 * 'no' means the data types should not be cast at all. 

238 * 'equiv' means only byte-order changes are allowed. 

239 * 'safe' means only casts which can preserve values are allowed. 

240 * 'same_kind' means only safe casts or casts within a kind, 

241 like float64 to float32, are allowed. 

242 * 'unsafe' means any data conversions may be done. 

243 op_axes : list of list of ints, optional 

244 If provided, is a list of ints or None for each operands. 

245 The list of axes for an operand is a mapping from the dimensions 

246 of the iterator to the dimensions of the operand. A value of 

247 -1 can be placed for entries, causing that dimension to be 

248 treated as `newaxis`. 

249 itershape : tuple of ints, optional 

250 The desired shape of the iterator. This allows ``allocate`` operands 

251 with a dimension mapped by op_axes not corresponding to a dimension 

252 of a different operand to get a value not equal to 1 for that 

253 dimension. 

254 buffersize : int, optional 

255 When buffering is enabled, controls the size of the temporary 

256 buffers. Set to 0 for the default value. 

257 

258 Attributes 

259 ---------- 

260 dtypes : tuple of dtype(s) 

261 The data types of the values provided in `value`. This may be 

262 different from the operand data types if buffering is enabled. 

263 Valid only before the iterator is closed. 

264 finished : bool 

265 Whether the iteration over the operands is finished or not. 

266 has_delayed_bufalloc : bool 

267 If True, the iterator was created with the ``delay_bufalloc`` flag, 

268 and no reset() function was called on it yet. 

269 has_index : bool 

270 If True, the iterator was created with either the ``c_index`` or 

271 the ``f_index`` flag, and the property `index` can be used to 

272 retrieve it. 

273 has_multi_index : bool 

274 If True, the iterator was created with the ``multi_index`` flag, 

275 and the property `multi_index` can be used to retrieve it. 

276 index 

277 When the ``c_index`` or ``f_index`` flag was used, this property 

278 provides access to the index. Raises a ValueError if accessed 

279 and ``has_index`` is False. 

280 iterationneedsapi : bool 

281 Whether iteration requires access to the Python API, for example 

282 if one of the operands is an object array. 

283 iterindex : int 

284 An index which matches the order of iteration. 

285 itersize : int 

286 Size of the iterator. 

287 itviews 

288 Structured view(s) of `operands` in memory, matching the reordered 

289 and optimized iterator access pattern. Valid only before the iterator 

290 is closed. 

291 multi_index 

292 When the ``multi_index`` flag was used, this property 

293 provides access to the index. Raises a ValueError if accessed 

294 accessed and ``has_multi_index`` is False. 

295 ndim : int 

296 The dimensions of the iterator. 

297 nop : int 

298 The number of iterator operands. 

299 operands : tuple of operand(s) 

300 The array(s) to be iterated over. Valid only before the iterator is 

301 closed. 

302 shape : tuple of ints 

303 Shape tuple, the shape of the iterator. 

304 value 

305 Value of ``operands`` at current iteration. Normally, this is a 

306 tuple of array scalars, but if the flag ``external_loop`` is used, 

307 it is a tuple of one dimensional arrays. 

308 

309 Notes 

310 ----- 

311 `nditer` supersedes `flatiter`. The iterator implementation behind 

312 `nditer` is also exposed by the NumPy C API. 

313 

314 The Python exposure supplies two iteration interfaces, one which follows 

315 the Python iterator protocol, and another which mirrors the C-style 

316 do-while pattern. The native Python approach is better in most cases, but 

317 if you need the coordinates or index of an iterator, use the C-style pattern. 

318 

319 Examples 

320 -------- 

321 Here is how we might write an ``iter_add`` function, using the 

322 Python iterator protocol: 

323 

324 >>> def iter_add_py(x, y, out=None): 

325 ... addop = np.add 

326 ... it = np.nditer([x, y, out], [], 

327 ... [['readonly'], ['readonly'], ['writeonly','allocate']]) 

328 ... with it: 

329 ... for (a, b, c) in it: 

330 ... addop(a, b, out=c) 

331 ... return it.operands[2] 

332 

333 Here is the same function, but following the C-style pattern: 

334 

335 >>> def iter_add(x, y, out=None): 

336 ... addop = np.add 

337 ... it = np.nditer([x, y, out], [], 

338 ... [['readonly'], ['readonly'], ['writeonly','allocate']]) 

339 ... with it: 

340 ... while not it.finished: 

341 ... addop(it[0], it[1], out=it[2]) 

342 ... it.iternext() 

343 ... return it.operands[2] 

344 

345 Here is an example outer product function: 

346 

347 >>> def outer_it(x, y, out=None): 

348 ... mulop = np.multiply 

349 ... it = np.nditer([x, y, out], ['external_loop'], 

350 ... [['readonly'], ['readonly'], ['writeonly', 'allocate']], 

351 ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim, 

352 ... [-1] * x.ndim + list(range(y.ndim)), 

353 ... None]) 

354 ... with it: 

355 ... for (a, b, c) in it: 

356 ... mulop(a, b, out=c) 

357 ... return it.operands[2] 

358 

359 >>> a = np.arange(2)+1 

360 >>> b = np.arange(3)+1 

361 >>> outer_it(a,b) 

362 array([[1, 2, 3], 

363 [2, 4, 6]]) 

364 

365 Here is an example function which operates like a "lambda" ufunc: 

366 

367 >>> def luf(lamdaexpr, *args, **kwargs): 

368 ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)''' 

369 ... nargs = len(args) 

370 ... op = (kwargs.get('out',None),) + args 

371 ... it = np.nditer(op, ['buffered','external_loop'], 

372 ... [['writeonly','allocate','no_broadcast']] + 

373 ... [['readonly','nbo','aligned']]*nargs, 

374 ... order=kwargs.get('order','K'), 

375 ... casting=kwargs.get('casting','safe'), 

376 ... buffersize=kwargs.get('buffersize',0)) 

377 ... while not it.finished: 

378 ... it[0] = lamdaexpr(*it[1:]) 

379 ... it.iternext() 

380 ... return it.operands[0] 

381 

382 >>> a = np.arange(5) 

383 >>> b = np.ones(5) 

384 >>> luf(lambda i,j:i*i + j/2, a, b) 

385 array([ 0.5, 1.5, 4.5, 9.5, 16.5]) 

386 

387 If operand flags ``"writeonly"`` or ``"readwrite"`` are used the 

388 operands may be views into the original data with the 

389 `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a 

390 context manager or the `nditer.close` method must be called before 

391 using the result. The temporary data will be written back to the 

392 original data when the `__exit__` function is called but not before: 

393 

394 >>> a = np.arange(6, dtype='i4')[::-2] 

395 >>> with np.nditer(a, [], 

396 ... [['writeonly', 'updateifcopy']], 

397 ... casting='unsafe', 

398 ... op_dtypes=[np.dtype('f4')]) as i: 

399 ... x = i.operands[0] 

400 ... x[:] = [-1, -2, -3] 

401 ... # a still unchanged here 

402 >>> a, x 

403 (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32)) 

404 

405 It is important to note that once the iterator is exited, dangling 

406 references (like `x` in the example) may or may not share data with 

407 the original data `a`. If writeback semantics were active, i.e. if 

408 `x.base.flags.writebackifcopy` is `True`, then exiting the iterator 

409 will sever the connection between `x` and `a`, writing to `x` will 

410 no longer write to `a`. If writeback semantics are not active, then 

411 `x.data` will still point at some part of `a.data`, and writing to 

412 one will affect the other. 

413 

414 Context management and the `close` method appeared in version 1.15.0. 

415 

416 """) 

417 

418# nditer methods 

419 

420add_newdoc('numpy.core', 'nditer', ('copy', 

421 """ 

422 copy() 

423 

424 Get a copy of the iterator in its current state. 

425 

426 Examples 

427 -------- 

428 >>> x = np.arange(10) 

429 >>> y = x + 1 

430 >>> it = np.nditer([x, y]) 

431 >>> next(it) 

432 (array(0), array(1)) 

433 >>> it2 = it.copy() 

434 >>> next(it2) 

435 (array(1), array(2)) 

436 

437 """)) 

438 

439add_newdoc('numpy.core', 'nditer', ('operands', 

440 """ 

441 operands[`Slice`] 

442 

443 The array(s) to be iterated over. Valid only before the iterator is closed. 

444 """)) 

445 

446add_newdoc('numpy.core', 'nditer', ('debug_print', 

447 """ 

448 debug_print() 

449 

450 Print the current state of the `nditer` instance and debug info to stdout. 

451 

452 """)) 

453 

454add_newdoc('numpy.core', 'nditer', ('enable_external_loop', 

455 """ 

456 enable_external_loop() 

457 

458 When the "external_loop" was not used during construction, but 

459 is desired, this modifies the iterator to behave as if the flag 

460 was specified. 

461 

462 """)) 

463 

464add_newdoc('numpy.core', 'nditer', ('iternext', 

465 """ 

466 iternext() 

467 

468 Check whether iterations are left, and perform a single internal iteration 

469 without returning the result. Used in the C-style pattern do-while 

470 pattern. For an example, see `nditer`. 

471 

472 Returns 

473 ------- 

474 iternext : bool 

475 Whether or not there are iterations left. 

476 

477 """)) 

478 

479add_newdoc('numpy.core', 'nditer', ('remove_axis', 

480 """ 

481 remove_axis(i, /) 

482 

483 Removes axis `i` from the iterator. Requires that the flag "multi_index" 

484 be enabled. 

485 

486 """)) 

487 

488add_newdoc('numpy.core', 'nditer', ('remove_multi_index', 

489 """ 

490 remove_multi_index() 

491 

492 When the "multi_index" flag was specified, this removes it, allowing 

493 the internal iteration structure to be optimized further. 

494 

495 """)) 

496 

497add_newdoc('numpy.core', 'nditer', ('reset', 

498 """ 

499 reset() 

500 

501 Reset the iterator to its initial state. 

502 

503 """)) 

504 

505add_newdoc('numpy.core', 'nested_iters', 

506 """ 

507 nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \ 

508 order="K", casting="safe", buffersize=0) 

509 

510 Create nditers for use in nested loops 

511 

512 Create a tuple of `nditer` objects which iterate in nested loops over 

513 different axes of the op argument. The first iterator is used in the 

514 outermost loop, the last in the innermost loop. Advancing one will change 

515 the subsequent iterators to point at its new element. 

516 

517 Parameters 

518 ---------- 

519 op : ndarray or sequence of array_like 

520 The array(s) to iterate over. 

521 

522 axes : list of list of int 

523 Each item is used as an "op_axes" argument to an nditer 

524 

525 flags, op_flags, op_dtypes, order, casting, buffersize (optional) 

526 See `nditer` parameters of the same name 

527 

528 Returns 

529 ------- 

530 iters : tuple of nditer 

531 An nditer for each item in `axes`, outermost first 

532 

533 See Also 

534 -------- 

535 nditer 

536 

537 Examples 

538 -------- 

539 

540 Basic usage. Note how y is the "flattened" version of 

541 [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified 

542 the first iter's axes as [1] 

543 

544 >>> a = np.arange(12).reshape(2, 3, 2) 

545 >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"]) 

546 >>> for x in i: 

547 ... print(i.multi_index) 

548 ... for y in j: 

549 ... print('', j.multi_index, y) 

550 (0,) 

551 (0, 0) 0 

552 (0, 1) 1 

553 (1, 0) 6 

554 (1, 1) 7 

555 (1,) 

556 (0, 0) 2 

557 (0, 1) 3 

558 (1, 0) 8 

559 (1, 1) 9 

560 (2,) 

561 (0, 0) 4 

562 (0, 1) 5 

563 (1, 0) 10 

564 (1, 1) 11 

565 

566 """) 

567 

568add_newdoc('numpy.core', 'nditer', ('close', 

569 """ 

570 close() 

571 

572 Resolve all writeback semantics in writeable operands. 

573 

574 .. versionadded:: 1.15.0 

575 

576 See Also 

577 -------- 

578 

579 :ref:`nditer-context-manager` 

580 

581 """)) 

582 

583 

584############################################################################### 

585# 

586# broadcast 

587# 

588############################################################################### 

589 

590add_newdoc('numpy.core', 'broadcast', 

591 """ 

592 Produce an object that mimics broadcasting. 

593 

594 Parameters 

595 ---------- 

596 in1, in2, ... : array_like 

597 Input parameters. 

598 

599 Returns 

600 ------- 

601 b : broadcast object 

602 Broadcast the input parameters against one another, and 

603 return an object that encapsulates the result. 

604 Amongst others, it has ``shape`` and ``nd`` properties, and 

605 may be used as an iterator. 

606 

607 See Also 

608 -------- 

609 broadcast_arrays 

610 broadcast_to 

611 broadcast_shapes 

612 

613 Examples 

614 -------- 

615 

616 Manually adding two vectors, using broadcasting: 

617 

618 >>> x = np.array([[1], [2], [3]]) 

619 >>> y = np.array([4, 5, 6]) 

620 >>> b = np.broadcast(x, y) 

621 

622 >>> out = np.empty(b.shape) 

623 >>> out.flat = [u+v for (u,v) in b] 

624 >>> out 

625 array([[5., 6., 7.], 

626 [6., 7., 8.], 

627 [7., 8., 9.]]) 

628 

629 Compare against built-in broadcasting: 

630 

631 >>> x + y 

632 array([[5, 6, 7], 

633 [6, 7, 8], 

634 [7, 8, 9]]) 

635 

636 """) 

637 

638# attributes 

639 

640add_newdoc('numpy.core', 'broadcast', ('index', 

641 """ 

642 current index in broadcasted result 

643 

644 Examples 

645 -------- 

646 >>> x = np.array([[1], [2], [3]]) 

647 >>> y = np.array([4, 5, 6]) 

648 >>> b = np.broadcast(x, y) 

649 >>> b.index 

650 0 

651 >>> next(b), next(b), next(b) 

652 ((1, 4), (1, 5), (1, 6)) 

653 >>> b.index 

654 3 

655 

656 """)) 

657 

658add_newdoc('numpy.core', 'broadcast', ('iters', 

659 """ 

660 tuple of iterators along ``self``'s "components." 

661 

662 Returns a tuple of `numpy.flatiter` objects, one for each "component" 

663 of ``self``. 

664 

665 See Also 

666 -------- 

667 numpy.flatiter 

668 

669 Examples 

670 -------- 

671 >>> x = np.array([1, 2, 3]) 

672 >>> y = np.array([[4], [5], [6]]) 

673 >>> b = np.broadcast(x, y) 

674 >>> row, col = b.iters 

675 >>> next(row), next(col) 

676 (1, 4) 

677 

678 """)) 

679 

680add_newdoc('numpy.core', 'broadcast', ('ndim', 

681 """ 

682 Number of dimensions of broadcasted result. Alias for `nd`. 

683 

684 .. versionadded:: 1.12.0 

685 

686 Examples 

687 -------- 

688 >>> x = np.array([1, 2, 3]) 

689 >>> y = np.array([[4], [5], [6]]) 

690 >>> b = np.broadcast(x, y) 

691 >>> b.ndim 

692 2 

693 

694 """)) 

695 

696add_newdoc('numpy.core', 'broadcast', ('nd', 

697 """ 

698 Number of dimensions of broadcasted result. For code intended for NumPy 

699 1.12.0 and later the more consistent `ndim` is preferred. 

700 

701 Examples 

702 -------- 

703 >>> x = np.array([1, 2, 3]) 

704 >>> y = np.array([[4], [5], [6]]) 

705 >>> b = np.broadcast(x, y) 

706 >>> b.nd 

707 2 

708 

709 """)) 

710 

711add_newdoc('numpy.core', 'broadcast', ('numiter', 

712 """ 

713 Number of iterators possessed by the broadcasted result. 

714 

715 Examples 

716 -------- 

717 >>> x = np.array([1, 2, 3]) 

718 >>> y = np.array([[4], [5], [6]]) 

719 >>> b = np.broadcast(x, y) 

720 >>> b.numiter 

721 2 

722 

723 """)) 

724 

725add_newdoc('numpy.core', 'broadcast', ('shape', 

726 """ 

727 Shape of broadcasted result. 

728 

729 Examples 

730 -------- 

731 >>> x = np.array([1, 2, 3]) 

732 >>> y = np.array([[4], [5], [6]]) 

733 >>> b = np.broadcast(x, y) 

734 >>> b.shape 

735 (3, 3) 

736 

737 """)) 

738 

739add_newdoc('numpy.core', 'broadcast', ('size', 

740 """ 

741 Total size of broadcasted result. 

742 

743 Examples 

744 -------- 

745 >>> x = np.array([1, 2, 3]) 

746 >>> y = np.array([[4], [5], [6]]) 

747 >>> b = np.broadcast(x, y) 

748 >>> b.size 

749 9 

750 

751 """)) 

752 

753add_newdoc('numpy.core', 'broadcast', ('reset', 

754 """ 

755 reset() 

756 

757 Reset the broadcasted result's iterator(s). 

758 

759 Parameters 

760 ---------- 

761 None 

762 

763 Returns 

764 ------- 

765 None 

766 

767 Examples 

768 -------- 

769 >>> x = np.array([1, 2, 3]) 

770 >>> y = np.array([[4], [5], [6]]) 

771 >>> b = np.broadcast(x, y) 

772 >>> b.index 

773 0 

774 >>> next(b), next(b), next(b) 

775 ((1, 4), (2, 4), (3, 4)) 

776 >>> b.index 

777 3 

778 >>> b.reset() 

779 >>> b.index 

780 0 

781 

782 """)) 

783 

784############################################################################### 

785# 

786# numpy functions 

787# 

788############################################################################### 

789 

790add_newdoc('numpy.core.multiarray', 'array', 

791 """ 

792 array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, 

793 like=None) 

794 

795 Create an array. 

796 

797 Parameters 

798 ---------- 

799 object : array_like 

800 An array, any object exposing the array interface, an object whose 

801 __array__ method returns an array, or any (nested) sequence. 

802 If object is a scalar, a 0-dimensional array containing object is 

803 returned. 

804 dtype : data-type, optional 

805 The desired data-type for the array. If not given, then the type will 

806 be determined as the minimum type required to hold the objects in the 

807 sequence. 

808 copy : bool, optional 

809 If true (default), then the object is copied. Otherwise, a copy will 

810 only be made if __array__ returns a copy, if obj is a nested sequence, 

811 or if a copy is needed to satisfy any of the other requirements 

812 (`dtype`, `order`, etc.). 

813 order : {'K', 'A', 'C', 'F'}, optional 

814 Specify the memory layout of the array. If object is not an array, the 

815 newly created array will be in C order (row major) unless 'F' is 

816 specified, in which case it will be in Fortran order (column major). 

817 If object is an array the following holds. 

818 

819 ===== ========= =================================================== 

820 order no copy copy=True 

821 ===== ========= =================================================== 

822 'K' unchanged F & C order preserved, otherwise most similar order 

823 'A' unchanged F order if input is F and not C, otherwise C order 

824 'C' C order C order 

825 'F' F order F order 

826 ===== ========= =================================================== 

827 

828 When ``copy=False`` and a copy is made for other reasons, the result is 

829 the same as if ``copy=True``, with some exceptions for 'A', see the 

830 Notes section. The default order is 'K'. 

831 subok : bool, optional 

832 If True, then sub-classes will be passed-through, otherwise 

833 the returned array will be forced to be a base-class array (default). 

834 ndmin : int, optional 

835 Specifies the minimum number of dimensions that the resulting 

836 array should have. Ones will be prepended to the shape as 

837 needed to meet this requirement. 

838 ${ARRAY_FUNCTION_LIKE} 

839 

840 .. versionadded:: 1.20.0 

841 

842 Returns 

843 ------- 

844 out : ndarray 

845 An array object satisfying the specified requirements. 

846 

847 See Also 

848 -------- 

849 empty_like : Return an empty array with shape and type of input. 

850 ones_like : Return an array of ones with shape and type of input. 

851 zeros_like : Return an array of zeros with shape and type of input. 

852 full_like : Return a new array with shape of input filled with value. 

853 empty : Return a new uninitialized array. 

854 ones : Return a new array setting values to one. 

855 zeros : Return a new array setting values to zero. 

856 full : Return a new array of given shape filled with value. 

857 

858 

859 Notes 

860 ----- 

861 When order is 'A' and `object` is an array in neither 'C' nor 'F' order, 

862 and a copy is forced by a change in dtype, then the order of the result is 

863 not necessarily 'C' as expected. This is likely a bug. 

864 

865 Examples 

866 -------- 

867 >>> np.array([1, 2, 3]) 

868 array([1, 2, 3]) 

869 

870 Upcasting: 

871 

872 >>> np.array([1, 2, 3.0]) 

873 array([ 1., 2., 3.]) 

874 

875 More than one dimension: 

876 

877 >>> np.array([[1, 2], [3, 4]]) 

878 array([[1, 2], 

879 [3, 4]]) 

880 

881 Minimum dimensions 2: 

882 

883 >>> np.array([1, 2, 3], ndmin=2) 

884 array([[1, 2, 3]]) 

885 

886 Type provided: 

887 

888 >>> np.array([1, 2, 3], dtype=complex) 

889 array([ 1.+0.j, 2.+0.j, 3.+0.j]) 

890 

891 Data-type consisting of more than one element: 

892 

893 >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) 

894 >>> x['a'] 

895 array([1, 3]) 

896 

897 Creating an array from sub-classes: 

898 

899 >>> np.array(np.mat('1 2; 3 4')) 

900 array([[1, 2], 

901 [3, 4]]) 

902 

903 >>> np.array(np.mat('1 2; 3 4'), subok=True) 

904 matrix([[1, 2], 

905 [3, 4]]) 

906 

907 """.replace( 

908 "${ARRAY_FUNCTION_LIKE}", 

909 array_function_like_doc, 

910 )) 

911 

912add_newdoc('numpy.core.multiarray', 'asarray', 

913 """ 

914 asarray(a, dtype=None, order=None, *, like=None) 

915 

916 Convert the input to an array. 

917 

918 Parameters 

919 ---------- 

920 a : array_like 

921 Input data, in any form that can be converted to an array. This 

922 includes lists, lists of tuples, tuples, tuples of tuples, tuples 

923 of lists and ndarrays. 

924 dtype : data-type, optional 

925 By default, the data-type is inferred from the input data. 

926 order : {'C', 'F', 'A', 'K'}, optional 

927 Memory layout. 'A' and 'K' depend on the order of input array a. 

928 'C' row-major (C-style), 

929 'F' column-major (Fortran-style) memory representation. 

930 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise 

931 'K' (keep) preserve input order 

932 Defaults to 'K'. 

933 ${ARRAY_FUNCTION_LIKE} 

934 

935 .. versionadded:: 1.20.0 

936 

937 Returns 

938 ------- 

939 out : ndarray 

940 Array interpretation of `a`. No copy is performed if the input 

941 is already an ndarray with matching dtype and order. If `a` is a 

942 subclass of ndarray, a base class ndarray is returned. 

943 

944 See Also 

945 -------- 

946 asanyarray : Similar function which passes through subclasses. 

947 ascontiguousarray : Convert input to a contiguous array. 

948 asfarray : Convert input to a floating point ndarray. 

949 asfortranarray : Convert input to an ndarray with column-major 

950 memory order. 

951 asarray_chkfinite : Similar function which checks input for NaNs and Infs. 

952 fromiter : Create an array from an iterator. 

953 fromfunction : Construct an array by executing a function on grid 

954 positions. 

955 

956 Examples 

957 -------- 

958 Convert a list into an array: 

959 

960 >>> a = [1, 2] 

961 >>> np.asarray(a) 

962 array([1, 2]) 

963 

964 Existing arrays are not copied: 

965 

966 >>> a = np.array([1, 2]) 

967 >>> np.asarray(a) is a 

968 True 

969 

970 If `dtype` is set, array is copied only if dtype does not match: 

971 

972 >>> a = np.array([1, 2], dtype=np.float32) 

973 >>> np.asarray(a, dtype=np.float32) is a 

974 True 

975 >>> np.asarray(a, dtype=np.float64) is a 

976 False 

977 

978 Contrary to `asanyarray`, ndarray subclasses are not passed through: 

979 

980 >>> issubclass(np.recarray, np.ndarray) 

981 True 

982 >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) 

983 >>> np.asarray(a) is a 

984 False 

985 >>> np.asanyarray(a) is a 

986 True 

987 

988 """.replace( 

989 "${ARRAY_FUNCTION_LIKE}", 

990 array_function_like_doc, 

991 )) 

992 

993add_newdoc('numpy.core.multiarray', 'asanyarray', 

994 """ 

995 asanyarray(a, dtype=None, order=None, *, like=None) 

996 

997 Convert the input to an ndarray, but pass ndarray subclasses through. 

998 

999 Parameters 

1000 ---------- 

1001 a : array_like 

1002 Input data, in any form that can be converted to an array. This 

1003 includes scalars, lists, lists of tuples, tuples, tuples of tuples, 

1004 tuples of lists, and ndarrays. 

1005 dtype : data-type, optional 

1006 By default, the data-type is inferred from the input data. 

1007 order : {'C', 'F', 'A', 'K'}, optional 

1008 Memory layout. 'A' and 'K' depend on the order of input array a. 

1009 'C' row-major (C-style), 

1010 'F' column-major (Fortran-style) memory representation. 

1011 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise 

1012 'K' (keep) preserve input order 

1013 Defaults to 'C'. 

1014 ${ARRAY_FUNCTION_LIKE} 

1015 

1016 .. versionadded:: 1.20.0 

1017 

1018 Returns 

1019 ------- 

1020 out : ndarray or an ndarray subclass 

1021 Array interpretation of `a`. If `a` is an ndarray or a subclass 

1022 of ndarray, it is returned as-is and no copy is performed. 

1023 

1024 See Also 

1025 -------- 

1026 asarray : Similar function which always returns ndarrays. 

1027 ascontiguousarray : Convert input to a contiguous array. 

1028 asfarray : Convert input to a floating point ndarray. 

1029 asfortranarray : Convert input to an ndarray with column-major 

1030 memory order. 

1031 asarray_chkfinite : Similar function which checks input for NaNs and 

1032 Infs. 

1033 fromiter : Create an array from an iterator. 

1034 fromfunction : Construct an array by executing a function on grid 

1035 positions. 

1036 

1037 Examples 

1038 -------- 

1039 Convert a list into an array: 

1040 

1041 >>> a = [1, 2] 

1042 >>> np.asanyarray(a) 

1043 array([1, 2]) 

1044 

1045 Instances of `ndarray` subclasses are passed through as-is: 

1046 

1047 >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) 

1048 >>> np.asanyarray(a) is a 

1049 True 

1050 

1051 """.replace( 

1052 "${ARRAY_FUNCTION_LIKE}", 

1053 array_function_like_doc, 

1054 )) 

1055 

1056add_newdoc('numpy.core.multiarray', 'ascontiguousarray', 

1057 """ 

1058 ascontiguousarray(a, dtype=None, *, like=None) 

1059 

1060 Return a contiguous array (ndim >= 1) in memory (C order). 

1061 

1062 Parameters 

1063 ---------- 

1064 a : array_like 

1065 Input array. 

1066 dtype : str or dtype object, optional 

1067 Data-type of returned array. 

1068 ${ARRAY_FUNCTION_LIKE} 

1069 

1070 .. versionadded:: 1.20.0 

1071 

1072 Returns 

1073 ------- 

1074 out : ndarray 

1075 Contiguous array of same shape and content as `a`, with type `dtype` 

1076 if specified. 

1077 

1078 See Also 

1079 -------- 

1080 asfortranarray : Convert input to an ndarray with column-major 

1081 memory order. 

1082 require : Return an ndarray that satisfies requirements. 

1083 ndarray.flags : Information about the memory layout of the array. 

1084 

1085 Examples 

1086 -------- 

1087 Starting with a Fortran-contiguous array: 

1088 

1089 >>> x = np.ones((2, 3), order='F') 

1090 >>> x.flags['F_CONTIGUOUS'] 

1091 True 

1092 

1093 Calling ``ascontiguousarray`` makes a C-contiguous copy: 

1094 

1095 >>> y = np.ascontiguousarray(x) 

1096 >>> y.flags['C_CONTIGUOUS'] 

1097 True 

1098 >>> np.may_share_memory(x, y) 

1099 False 

1100 

1101 Now, starting with a C-contiguous array: 

1102 

1103 >>> x = np.ones((2, 3), order='C') 

1104 >>> x.flags['C_CONTIGUOUS'] 

1105 True 

1106 

1107 Then, calling ``ascontiguousarray`` returns the same object: 

1108 

1109 >>> y = np.ascontiguousarray(x) 

1110 >>> x is y 

1111 True 

1112 

1113 Note: This function returns an array with at least one-dimension (1-d) 

1114 so it will not preserve 0-d arrays. 

1115 

1116 """.replace( 

1117 "${ARRAY_FUNCTION_LIKE}", 

1118 array_function_like_doc, 

1119 )) 

1120 

1121add_newdoc('numpy.core.multiarray', 'asfortranarray', 

1122 """ 

1123 asfortranarray(a, dtype=None, *, like=None) 

1124 

1125 Return an array (ndim >= 1) laid out in Fortran order in memory. 

1126 

1127 Parameters 

1128 ---------- 

1129 a : array_like 

1130 Input array. 

1131 dtype : str or dtype object, optional 

1132 By default, the data-type is inferred from the input data. 

1133 ${ARRAY_FUNCTION_LIKE} 

1134 

1135 .. versionadded:: 1.20.0 

1136 

1137 Returns 

1138 ------- 

1139 out : ndarray 

1140 The input `a` in Fortran, or column-major, order. 

1141 

1142 See Also 

1143 -------- 

1144 ascontiguousarray : Convert input to a contiguous (C order) array. 

1145 asanyarray : Convert input to an ndarray with either row or 

1146 column-major memory order. 

1147 require : Return an ndarray that satisfies requirements. 

1148 ndarray.flags : Information about the memory layout of the array. 

1149 

1150 Examples 

1151 -------- 

1152 Starting with a C-contiguous array: 

1153 

1154 >>> x = np.ones((2, 3), order='C') 

1155 >>> x.flags['C_CONTIGUOUS'] 

1156 True 

1157 

1158 Calling ``asfortranarray`` makes a Fortran-contiguous copy: 

1159 

1160 >>> y = np.asfortranarray(x) 

1161 >>> y.flags['F_CONTIGUOUS'] 

1162 True 

1163 >>> np.may_share_memory(x, y) 

1164 False 

1165 

1166 Now, starting with a Fortran-contiguous array: 

1167 

1168 >>> x = np.ones((2, 3), order='F') 

1169 >>> x.flags['F_CONTIGUOUS'] 

1170 True 

1171 

1172 Then, calling ``asfortranarray`` returns the same object: 

1173 

1174 >>> y = np.asfortranarray(x) 

1175 >>> x is y 

1176 True 

1177 

1178 Note: This function returns an array with at least one-dimension (1-d) 

1179 so it will not preserve 0-d arrays. 

1180 

1181 """.replace( 

1182 "${ARRAY_FUNCTION_LIKE}", 

1183 array_function_like_doc, 

1184 )) 

1185 

1186add_newdoc('numpy.core.multiarray', 'empty', 

1187 """ 

1188 empty(shape, dtype=float, order='C', *, like=None) 

1189 

1190 Return a new array of given shape and type, without initializing entries. 

1191 

1192 Parameters 

1193 ---------- 

1194 shape : int or tuple of int 

1195 Shape of the empty array, e.g., ``(2, 3)`` or ``2``. 

1196 dtype : data-type, optional 

1197 Desired output data-type for the array, e.g, `numpy.int8`. Default is 

1198 `numpy.float64`. 

1199 order : {'C', 'F'}, optional, default: 'C' 

1200 Whether to store multi-dimensional data in row-major 

1201 (C-style) or column-major (Fortran-style) order in 

1202 memory. 

1203 ${ARRAY_FUNCTION_LIKE} 

1204 

1205 .. versionadded:: 1.20.0 

1206 

1207 Returns 

1208 ------- 

1209 out : ndarray 

1210 Array of uninitialized (arbitrary) data of the given shape, dtype, and 

1211 order. Object arrays will be initialized to None. 

1212 

1213 See Also 

1214 -------- 

1215 empty_like : Return an empty array with shape and type of input. 

1216 ones : Return a new array setting values to one. 

1217 zeros : Return a new array setting values to zero. 

1218 full : Return a new array of given shape filled with value. 

1219 

1220 

1221 Notes 

1222 ----- 

1223 `empty`, unlike `zeros`, does not set the array values to zero, 

1224 and may therefore be marginally faster. On the other hand, it requires 

1225 the user to manually set all the values in the array, and should be 

1226 used with caution. 

1227 

1228 Examples 

1229 -------- 

1230 >>> np.empty([2, 2]) 

1231 array([[ -9.74499359e+001, 6.69583040e-309], 

1232 [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized 

1233 

1234 >>> np.empty([2, 2], dtype=int) 

1235 array([[-1073741821, -1067949133], 

1236 [ 496041986, 19249760]]) #uninitialized 

1237 

1238 """.replace( 

1239 "${ARRAY_FUNCTION_LIKE}", 

1240 array_function_like_doc, 

1241 )) 

1242 

1243add_newdoc('numpy.core.multiarray', 'scalar', 

1244 """ 

1245 scalar(dtype, obj) 

1246 

1247 Return a new scalar array of the given type initialized with obj. 

1248 

1249 This function is meant mainly for pickle support. `dtype` must be a 

1250 valid data-type descriptor. If `dtype` corresponds to an object 

1251 descriptor, then `obj` can be any object, otherwise `obj` must be a 

1252 string. If `obj` is not given, it will be interpreted as None for object 

1253 type and as zeros for all other types. 

1254 

1255 """) 

1256 

1257add_newdoc('numpy.core.multiarray', 'zeros', 

1258 """ 

1259 zeros(shape, dtype=float, order='C', *, like=None) 

1260 

1261 Return a new array of given shape and type, filled with zeros. 

1262 

1263 Parameters 

1264 ---------- 

1265 shape : int or tuple of ints 

1266 Shape of the new array, e.g., ``(2, 3)`` or ``2``. 

1267 dtype : data-type, optional 

1268 The desired data-type for the array, e.g., `numpy.int8`. Default is 

1269 `numpy.float64`. 

1270 order : {'C', 'F'}, optional, default: 'C' 

1271 Whether to store multi-dimensional data in row-major 

1272 (C-style) or column-major (Fortran-style) order in 

1273 memory. 

1274 ${ARRAY_FUNCTION_LIKE} 

1275 

1276 .. versionadded:: 1.20.0 

1277 

1278 Returns 

1279 ------- 

1280 out : ndarray 

1281 Array of zeros with the given shape, dtype, and order. 

1282 

1283 See Also 

1284 -------- 

1285 zeros_like : Return an array of zeros with shape and type of input. 

1286 empty : Return a new uninitialized array. 

1287 ones : Return a new array setting values to one. 

1288 full : Return a new array of given shape filled with value. 

1289 

1290 Examples 

1291 -------- 

1292 >>> np.zeros(5) 

1293 array([ 0., 0., 0., 0., 0.]) 

1294 

1295 >>> np.zeros((5,), dtype=int) 

1296 array([0, 0, 0, 0, 0]) 

1297 

1298 >>> np.zeros((2, 1)) 

1299 array([[ 0.], 

1300 [ 0.]]) 

1301 

1302 >>> s = (2,2) 

1303 >>> np.zeros(s) 

1304 array([[ 0., 0.], 

1305 [ 0., 0.]]) 

1306 

1307 >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype 

1308 array([(0, 0), (0, 0)], 

1309 dtype=[('x', '<i4'), ('y', '<i4')]) 

1310 

1311 """.replace( 

1312 "${ARRAY_FUNCTION_LIKE}", 

1313 array_function_like_doc, 

1314 )) 

1315 

1316add_newdoc('numpy.core.multiarray', 'set_typeDict', 

1317 """set_typeDict(dict) 

1318 

1319 Set the internal dictionary that can look up an array type using a 

1320 registered code. 

1321 

1322 """) 

1323 

1324add_newdoc('numpy.core.multiarray', 'fromstring', 

1325 """ 

1326 fromstring(string, dtype=float, count=-1, *, sep, like=None) 

1327 

1328 A new 1-D array initialized from text data in a string. 

1329 

1330 Parameters 

1331 ---------- 

1332 string : str 

1333 A string containing the data. 

1334 dtype : data-type, optional 

1335 The data type of the array; default: float. For binary input data, 

1336 the data must be in exactly this format. Most builtin numeric types are 

1337 supported and extension types may be supported. 

1338 

1339 .. versionadded:: 1.18.0 

1340 Complex dtypes. 

1341 

1342 count : int, optional 

1343 Read this number of `dtype` elements from the data. If this is 

1344 negative (the default), the count will be determined from the 

1345 length of the data. 

1346 sep : str, optional 

1347 The string separating numbers in the data; extra whitespace between 

1348 elements is also ignored. 

1349 

1350 .. deprecated:: 1.14 

1351 Passing ``sep=''``, the default, is deprecated since it will 

1352 trigger the deprecated binary mode of this function. This mode 

1353 interprets `string` as binary bytes, rather than ASCII text with 

1354 decimal numbers, an operation which is better spelt 

1355 ``frombuffer(string, dtype, count)``. If `string` contains unicode 

1356 text, the binary mode of `fromstring` will first encode it into 

1357 bytes using utf-8, which will not produce sane results. 

1358 

1359 ${ARRAY_FUNCTION_LIKE} 

1360 

1361 .. versionadded:: 1.20.0 

1362 

1363 Returns 

1364 ------- 

1365 arr : ndarray 

1366 The constructed array. 

1367 

1368 Raises 

1369 ------ 

1370 ValueError 

1371 If the string is not the correct size to satisfy the requested 

1372 `dtype` and `count`. 

1373 

1374 See Also 

1375 -------- 

1376 frombuffer, fromfile, fromiter 

1377 

1378 Examples 

1379 -------- 

1380 >>> np.fromstring('1 2', dtype=int, sep=' ') 

1381 array([1, 2]) 

1382 >>> np.fromstring('1, 2', dtype=int, sep=',') 

1383 array([1, 2]) 

1384 

1385 """.replace( 

1386 "${ARRAY_FUNCTION_LIKE}", 

1387 array_function_like_doc, 

1388 )) 

1389 

1390add_newdoc('numpy.core.multiarray', 'compare_chararrays', 

1391 """ 

1392 compare_chararrays(a1, a2, cmp, rstrip) 

1393 

1394 Performs element-wise comparison of two string arrays using the 

1395 comparison operator specified by `cmp_op`. 

1396 

1397 Parameters 

1398 ---------- 

1399 a1, a2 : array_like 

1400 Arrays to be compared. 

1401 cmp : {"<", "<=", "==", ">=", ">", "!="} 

1402 Type of comparison. 

1403 rstrip : Boolean 

1404 If True, the spaces at the end of Strings are removed before the comparison. 

1405 

1406 Returns 

1407 ------- 

1408 out : ndarray 

1409 The output array of type Boolean with the same shape as a and b. 

1410 

1411 Raises 

1412 ------ 

1413 ValueError 

1414 If `cmp_op` is not valid. 

1415 TypeError 

1416 If at least one of `a` or `b` is a non-string array 

1417 

1418 Examples 

1419 -------- 

1420 >>> a = np.array(["a", "b", "cde"]) 

1421 >>> b = np.array(["a", "a", "dec"]) 

1422 >>> np.compare_chararrays(a, b, ">", True) 

1423 array([False, True, False]) 

1424 

1425 """) 

1426 

1427add_newdoc('numpy.core.multiarray', 'fromiter', 

1428 """ 

1429 fromiter(iter, dtype, count=-1, *, like=None) 

1430 

1431 Create a new 1-dimensional array from an iterable object. 

1432 

1433 Parameters 

1434 ---------- 

1435 iter : iterable object 

1436 An iterable object providing data for the array. 

1437 dtype : data-type 

1438 The data-type of the returned array. 

1439 

1440 .. versionchanged:: 1.23 

1441 Object and subarray dtypes are now supported (note that the final 

1442 result is not 1-D for a subarray dtype). 

1443 

1444 count : int, optional 

1445 The number of items to read from *iterable*. The default is -1, 

1446 which means all data is read. 

1447 ${ARRAY_FUNCTION_LIKE} 

1448 

1449 .. versionadded:: 1.20.0 

1450 

1451 Returns 

1452 ------- 

1453 out : ndarray 

1454 The output array. 

1455 

1456 Notes 

1457 ----- 

1458 Specify `count` to improve performance. It allows ``fromiter`` to 

1459 pre-allocate the output array, instead of resizing it on demand. 

1460 

1461 Examples 

1462 -------- 

1463 >>> iterable = (x*x for x in range(5)) 

1464 >>> np.fromiter(iterable, float) 

1465 array([ 0., 1., 4., 9., 16.]) 

1466 

1467 A carefully constructed subarray dtype will lead to higher dimensional 

1468 results: 

1469 

1470 >>> iterable = ((x+1, x+2) for x in range(5)) 

1471 >>> np.fromiter(iterable, dtype=np.dtype((int, 2))) 

1472 array([[1, 2], 

1473 [2, 3], 

1474 [3, 4], 

1475 [4, 5], 

1476 [5, 6]]) 

1477 

1478 

1479 """.replace( 

1480 "${ARRAY_FUNCTION_LIKE}", 

1481 array_function_like_doc, 

1482 )) 

1483 

1484add_newdoc('numpy.core.multiarray', 'fromfile', 

1485 """ 

1486 fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None) 

1487 

1488 Construct an array from data in a text or binary file. 

1489 

1490 A highly efficient way of reading binary data with a known data-type, 

1491 as well as parsing simply formatted text files. Data written using the 

1492 `tofile` method can be read using this function. 

1493 

1494 Parameters 

1495 ---------- 

1496 file : file or str or Path 

1497 Open file object or filename. 

1498 

1499 .. versionchanged:: 1.17.0 

1500 `pathlib.Path` objects are now accepted. 

1501 

1502 dtype : data-type 

1503 Data type of the returned array. 

1504 For binary files, it is used to determine the size and byte-order 

1505 of the items in the file. 

1506 Most builtin numeric types are supported and extension types may be supported. 

1507 

1508 .. versionadded:: 1.18.0 

1509 Complex dtypes. 

1510 

1511 count : int 

1512 Number of items to read. ``-1`` means all items (i.e., the complete 

1513 file). 

1514 sep : str 

1515 Separator between items if file is a text file. 

1516 Empty ("") separator means the file should be treated as binary. 

1517 Spaces (" ") in the separator match zero or more whitespace characters. 

1518 A separator consisting only of spaces must match at least one 

1519 whitespace. 

1520 offset : int 

1521 The offset (in bytes) from the file's current position. Defaults to 0. 

1522 Only permitted for binary files. 

1523 

1524 .. versionadded:: 1.17.0 

1525 ${ARRAY_FUNCTION_LIKE} 

1526 

1527 .. versionadded:: 1.20.0 

1528 

1529 See also 

1530 -------- 

1531 load, save 

1532 ndarray.tofile 

1533 loadtxt : More flexible way of loading data from a text file. 

1534 

1535 Notes 

1536 ----- 

1537 Do not rely on the combination of `tofile` and `fromfile` for 

1538 data storage, as the binary files generated are not platform 

1539 independent. In particular, no byte-order or data-type information is 

1540 saved. Data can be stored in the platform independent ``.npy`` format 

1541 using `save` and `load` instead. 

1542 

1543 Examples 

1544 -------- 

1545 Construct an ndarray: 

1546 

1547 >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]), 

1548 ... ('temp', float)]) 

1549 >>> x = np.zeros((1,), dtype=dt) 

1550 >>> x['time']['min'] = 10; x['temp'] = 98.25 

1551 >>> x 

1552 array([((10, 0), 98.25)], 

1553 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')]) 

1554 

1555 Save the raw data to disk: 

1556 

1557 >>> import tempfile 

1558 >>> fname = tempfile.mkstemp()[1] 

1559 >>> x.tofile(fname) 

1560 

1561 Read the raw data from disk: 

1562 

1563 >>> np.fromfile(fname, dtype=dt) 

1564 array([((10, 0), 98.25)], 

1565 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')]) 

1566 

1567 The recommended way to store and load data: 

1568 

1569 >>> np.save(fname, x) 

1570 >>> np.load(fname + '.npy') 

1571 array([((10, 0), 98.25)], 

1572 dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')]) 

1573 

1574 """.replace( 

1575 "${ARRAY_FUNCTION_LIKE}", 

1576 array_function_like_doc, 

1577 )) 

1578 

1579add_newdoc('numpy.core.multiarray', 'frombuffer', 

1580 """ 

1581 frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None) 

1582 

1583 Interpret a buffer as a 1-dimensional array. 

1584 

1585 Parameters 

1586 ---------- 

1587 buffer : buffer_like 

1588 An object that exposes the buffer interface. 

1589 dtype : data-type, optional 

1590 Data-type of the returned array; default: float. 

1591 count : int, optional 

1592 Number of items to read. ``-1`` means all data in the buffer. 

1593 offset : int, optional 

1594 Start reading the buffer from this offset (in bytes); default: 0. 

1595 ${ARRAY_FUNCTION_LIKE} 

1596 

1597 .. versionadded:: 1.20.0 

1598 

1599 Returns 

1600 ------- 

1601 out : ndarray 

1602 

1603 See also 

1604 -------- 

1605 ndarray.tobytes 

1606 Inverse of this operation, construct Python bytes from the raw data 

1607 bytes in the array. 

1608 

1609 Notes 

1610 ----- 

1611 If the buffer has data that is not in machine byte-order, this should 

1612 be specified as part of the data-type, e.g.:: 

1613 

1614 >>> dt = np.dtype(int) 

1615 >>> dt = dt.newbyteorder('>') 

1616 >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP 

1617 

1618 The data of the resulting array will not be byteswapped, but will be 

1619 interpreted correctly. 

1620 

1621 This function creates a view into the original object. This should be safe 

1622 in general, but it may make sense to copy the result when the original 

1623 object is mutable or untrusted. 

1624 

1625 Examples 

1626 -------- 

1627 >>> s = b'hello world' 

1628 >>> np.frombuffer(s, dtype='S1', count=5, offset=6) 

1629 array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1') 

1630 

1631 >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8) 

1632 array([1, 2], dtype=uint8) 

1633 >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) 

1634 array([1, 2, 3], dtype=uint8) 

1635 

1636 """.replace( 

1637 "${ARRAY_FUNCTION_LIKE}", 

1638 array_function_like_doc, 

1639 )) 

1640 

1641add_newdoc('numpy.core.multiarray', 'from_dlpack', 

1642 """ 

1643 from_dlpack(x, /) 

1644 

1645 Create a NumPy array from an object implementing the ``__dlpack__`` 

1646 protocol. Generally, the returned NumPy array is a read-only view 

1647 of the input object. See [1]_ and [2]_ for more details. 

1648 

1649 Parameters 

1650 ---------- 

1651 x : object 

1652 A Python object that implements the ``__dlpack__`` and 

1653 ``__dlpack_device__`` methods. 

1654 

1655 Returns 

1656 ------- 

1657 out : ndarray 

1658 

1659 References 

1660 ---------- 

1661 .. [1] Array API documentation, 

1662 https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack 

1663 

1664 .. [2] Python specification for DLPack, 

1665 https://dmlc.github.io/dlpack/latest/python_spec.html 

1666 

1667 Examples 

1668 -------- 

1669 >>> import torch 

1670 >>> x = torch.arange(10) 

1671 >>> # create a view of the torch tensor "x" in NumPy 

1672 >>> y = np.from_dlpack(x) 

1673 """) 

1674 

1675add_newdoc('numpy.core', 'fastCopyAndTranspose', 

1676 """ 

1677 fastCopyAndTranspose(a) 

1678 

1679 .. deprecated:: 1.24 

1680 

1681 fastCopyAndTranspose is deprecated and will be removed. Use the copy and 

1682 transpose methods instead, e.g. ``arr.T.copy()`` 

1683 """) 

1684 

1685add_newdoc('numpy.core.multiarray', 'correlate', 

1686 """cross_correlate(a,v, mode=0)""") 

1687 

1688add_newdoc('numpy.core.multiarray', 'arange', 

1689 """ 

1690 arange([start,] stop[, step,], dtype=None, *, like=None) 

1691 

1692 Return evenly spaced values within a given interval. 

1693 

1694 ``arange`` can be called with a varying number of positional arguments: 

1695 

1696 * ``arange(stop)``: Values are generated within the half-open interval 

1697 ``[0, stop)`` (in other words, the interval including `start` but 

1698 excluding `stop`). 

1699 * ``arange(start, stop)``: Values are generated within the half-open 

1700 interval ``[start, stop)``. 

1701 * ``arange(start, stop, step)`` Values are generated within the half-open 

1702 interval ``[start, stop)``, with spacing between values given by 

1703 ``step``. 

1704 

1705 For integer arguments the function is roughly equivalent to the Python 

1706 built-in :py:class:`range`, but returns an ndarray rather than a ``range`` 

1707 instance. 

1708 

1709 When using a non-integer step, such as 0.1, it is often better to use 

1710 `numpy.linspace`. 

1711 

1712 See the Warning sections below for more information. 

1713 

1714 Parameters 

1715 ---------- 

1716 start : integer or real, optional 

1717 Start of interval. The interval includes this value. The default 

1718 start value is 0. 

1719 stop : integer or real 

1720 End of interval. The interval does not include this value, except 

1721 in some cases where `step` is not an integer and floating point 

1722 round-off affects the length of `out`. 

1723 step : integer or real, optional 

1724 Spacing between values. For any output `out`, this is the distance 

1725 between two adjacent values, ``out[i+1] - out[i]``. The default 

1726 step size is 1. If `step` is specified as a position argument, 

1727 `start` must also be given. 

1728 dtype : dtype, optional 

1729 The type of the output array. If `dtype` is not given, infer the data 

1730 type from the other input arguments. 

1731 ${ARRAY_FUNCTION_LIKE} 

1732 

1733 .. versionadded:: 1.20.0 

1734 

1735 Returns 

1736 ------- 

1737 arange : ndarray 

1738 Array of evenly spaced values. 

1739 

1740 For floating point arguments, the length of the result is 

1741 ``ceil((stop - start)/step)``. Because of floating point overflow, 

1742 this rule may result in the last element of `out` being greater 

1743 than `stop`. 

1744 

1745 Warnings 

1746 -------- 

1747 The length of the output might not be numerically stable. 

1748 

1749 Another stability issue is due to the internal implementation of 

1750 `numpy.arange`. 

1751 The actual step value used to populate the array is 

1752 ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss 

1753 can occur here, due to casting or due to using floating points when 

1754 `start` is much larger than `step`. This can lead to unexpected 

1755 behaviour. For example:: 

1756 

1757 >>> np.arange(0, 5, 0.5, dtype=int) 

1758 array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) 

1759 >>> np.arange(-3, 3, 0.5, dtype=int) 

1760 array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) 

1761 

1762 In such cases, the use of `numpy.linspace` should be preferred. 

1763 

1764 The built-in :py:class:`range` generates :std:doc:`Python built-in integers 

1765 that have arbitrary size <python:c-api/long>`, while `numpy.arange` 

1766 produces `numpy.int32` or `numpy.int64` numbers. This may result in 

1767 incorrect results for large integer values:: 

1768 

1769 >>> power = 40 

1770 >>> modulo = 10000 

1771 >>> x1 = [(n ** power) % modulo for n in range(8)] 

1772 >>> x2 = [(n ** power) % modulo for n in np.arange(8)] 

1773 >>> print(x1) 

1774 [0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct 

1775 >>> print(x2) 

1776 [0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect 

1777 

1778 See Also 

1779 -------- 

1780 numpy.linspace : Evenly spaced numbers with careful handling of endpoints. 

1781 numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions. 

1782 numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. 

1783 :ref:`how-to-partition` 

1784 

1785 Examples 

1786 -------- 

1787 >>> np.arange(3) 

1788 array([0, 1, 2]) 

1789 >>> np.arange(3.0) 

1790 array([ 0., 1., 2.]) 

1791 >>> np.arange(3,7) 

1792 array([3, 4, 5, 6]) 

1793 >>> np.arange(3,7,2) 

1794 array([3, 5]) 

1795 

1796 """.replace( 

1797 "${ARRAY_FUNCTION_LIKE}", 

1798 array_function_like_doc, 

1799 )) 

1800 

1801add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version', 

1802 """_get_ndarray_c_version() 

1803 

1804 Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number. 

1805 

1806 """) 

1807 

1808add_newdoc('numpy.core.multiarray', '_reconstruct', 

1809 """_reconstruct(subtype, shape, dtype) 

1810 

1811 Construct an empty array. Used by Pickles. 

1812 

1813 """) 

1814 

1815 

1816add_newdoc('numpy.core.multiarray', 'set_string_function', 

1817 """ 

1818 set_string_function(f, repr=1) 

1819 

1820 Internal method to set a function to be used when pretty printing arrays. 

1821 

1822 """) 

1823 

1824add_newdoc('numpy.core.multiarray', 'set_numeric_ops', 

1825 """ 

1826 set_numeric_ops(op1=func1, op2=func2, ...) 

1827 

1828 Set numerical operators for array objects. 

1829 

1830 .. deprecated:: 1.16 

1831 

1832 For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`. 

1833 For ndarray subclasses, define the ``__array_ufunc__`` method and 

1834 override the relevant ufunc. 

1835 

1836 Parameters 

1837 ---------- 

1838 op1, op2, ... : callable 

1839 Each ``op = func`` pair describes an operator to be replaced. 

1840 For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace 

1841 addition by modulus 5 addition. 

1842 

1843 Returns 

1844 ------- 

1845 saved_ops : list of callables 

1846 A list of all operators, stored before making replacements. 

1847 

1848 Notes 

1849 ----- 

1850 .. warning:: 

1851 Use with care! Incorrect usage may lead to memory errors. 

1852 

1853 A function replacing an operator cannot make use of that operator. 

1854 For example, when replacing add, you may not use ``+``. Instead, 

1855 directly call ufuncs. 

1856 

1857 Examples 

1858 -------- 

1859 >>> def add_mod5(x, y): 

1860 ... return np.add(x, y) % 5 

1861 ... 

1862 >>> old_funcs = np.set_numeric_ops(add=add_mod5) 

1863 

1864 >>> x = np.arange(12).reshape((3, 4)) 

1865 >>> x + x 

1866 array([[0, 2, 4, 1], 

1867 [3, 0, 2, 4], 

1868 [1, 3, 0, 2]]) 

1869 

1870 >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators 

1871 

1872 """) 

1873 

1874add_newdoc('numpy.core.multiarray', 'promote_types', 

1875 """ 

1876 promote_types(type1, type2) 

1877 

1878 Returns the data type with the smallest size and smallest scalar 

1879 kind to which both ``type1`` and ``type2`` may be safely cast. 

1880 The returned data type is always considered "canonical", this mainly 

1881 means that the promoted dtype will always be in native byte order. 

1882 

1883 This function is symmetric, but rarely associative. 

1884 

1885 Parameters 

1886 ---------- 

1887 type1 : dtype or dtype specifier 

1888 First data type. 

1889 type2 : dtype or dtype specifier 

1890 Second data type. 

1891 

1892 Returns 

1893 ------- 

1894 out : dtype 

1895 The promoted data type. 

1896 

1897 Notes 

1898 ----- 

1899 Please see `numpy.result_type` for additional information about promotion. 

1900 

1901 .. versionadded:: 1.6.0 

1902 

1903 Starting in NumPy 1.9, promote_types function now returns a valid string 

1904 length when given an integer or float dtype as one argument and a string 

1905 dtype as another argument. Previously it always returned the input string 

1906 dtype, even if it wasn't long enough to store the max integer/float value 

1907 converted to a string. 

1908 

1909 .. versionchanged:: 1.23.0 

1910 

1911 NumPy now supports promotion for more structured dtypes. It will now 

1912 remove unnecessary padding from a structure dtype and promote included 

1913 fields individually. 

1914 

1915 See Also 

1916 -------- 

1917 result_type, dtype, can_cast 

1918 

1919 Examples 

1920 -------- 

1921 >>> np.promote_types('f4', 'f8') 

1922 dtype('float64') 

1923 

1924 >>> np.promote_types('i8', 'f4') 

1925 dtype('float64') 

1926 

1927 >>> np.promote_types('>i8', '<c8') 

1928 dtype('complex128') 

1929 

1930 >>> np.promote_types('i4', 'S8') 

1931 dtype('S11') 

1932 

1933 An example of a non-associative case: 

1934 

1935 >>> p = np.promote_types 

1936 >>> p('S', p('i1', 'u1')) 

1937 dtype('S6') 

1938 >>> p(p('S', 'i1'), 'u1') 

1939 dtype('S4') 

1940 

1941 """) 

1942 

1943add_newdoc('numpy.core.multiarray', 'c_einsum', 

1944 """ 

1945 c_einsum(subscripts, *operands, out=None, dtype=None, order='K', 

1946 casting='safe') 

1947 

1948 *This documentation shadows that of the native python implementation of the `einsum` function, 

1949 except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.* 

1950 

1951 Evaluates the Einstein summation convention on the operands. 

1952 

1953 Using the Einstein summation convention, many common multi-dimensional, 

1954 linear algebraic array operations can be represented in a simple fashion. 

1955 In *implicit* mode `einsum` computes these values. 

1956 

1957 In *explicit* mode, `einsum` provides further flexibility to compute 

1958 other array operations that might not be considered classical Einstein 

1959 summation operations, by disabling, or forcing summation over specified 

1960 subscript labels. 

1961 

1962 See the notes and examples for clarification. 

1963 

1964 Parameters 

1965 ---------- 

1966 subscripts : str 

1967 Specifies the subscripts for summation as comma separated list of 

1968 subscript labels. An implicit (classical Einstein summation) 

1969 calculation is performed unless the explicit indicator '->' is 

1970 included as well as subscript labels of the precise output form. 

1971 operands : list of array_like 

1972 These are the arrays for the operation. 

1973 out : ndarray, optional 

1974 If provided, the calculation is done into this array. 

1975 dtype : {data-type, None}, optional 

1976 If provided, forces the calculation to use the data type specified. 

1977 Note that you may have to also give a more liberal `casting` 

1978 parameter to allow the conversions. Default is None. 

1979 order : {'C', 'F', 'A', 'K'}, optional 

1980 Controls the memory layout of the output. 'C' means it should 

1981 be C contiguous. 'F' means it should be Fortran contiguous, 

1982 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. 

1983 'K' means it should be as close to the layout of the inputs as 

1984 is possible, including arbitrarily permuted axes. 

1985 Default is 'K'. 

1986 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

1987 Controls what kind of data casting may occur. Setting this to 

1988 'unsafe' is not recommended, as it can adversely affect accumulations. 

1989 

1990 * 'no' means the data types should not be cast at all. 

1991 * 'equiv' means only byte-order changes are allowed. 

1992 * 'safe' means only casts which can preserve values are allowed. 

1993 * 'same_kind' means only safe casts or casts within a kind, 

1994 like float64 to float32, are allowed. 

1995 * 'unsafe' means any data conversions may be done. 

1996 

1997 Default is 'safe'. 

1998 optimize : {False, True, 'greedy', 'optimal'}, optional 

1999 Controls if intermediate optimization should occur. No optimization 

2000 will occur if False and True will default to the 'greedy' algorithm. 

2001 Also accepts an explicit contraction list from the ``np.einsum_path`` 

2002 function. See ``np.einsum_path`` for more details. Defaults to False. 

2003 

2004 Returns 

2005 ------- 

2006 output : ndarray 

2007 The calculation based on the Einstein summation convention. 

2008 

2009 See Also 

2010 -------- 

2011 einsum_path, dot, inner, outer, tensordot, linalg.multi_dot 

2012 

2013 Notes 

2014 ----- 

2015 .. versionadded:: 1.6.0 

2016 

2017 The Einstein summation convention can be used to compute 

2018 many multi-dimensional, linear algebraic array operations. `einsum` 

2019 provides a succinct way of representing these. 

2020 

2021 A non-exhaustive list of these operations, 

2022 which can be computed by `einsum`, is shown below along with examples: 

2023 

2024 * Trace of an array, :py:func:`numpy.trace`. 

2025 * Return a diagonal, :py:func:`numpy.diag`. 

2026 * Array axis summations, :py:func:`numpy.sum`. 

2027 * Transpositions and permutations, :py:func:`numpy.transpose`. 

2028 * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. 

2029 * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. 

2030 * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. 

2031 * Tensor contractions, :py:func:`numpy.tensordot`. 

2032 * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. 

2033 

2034 The subscripts string is a comma-separated list of subscript labels, 

2035 where each label refers to a dimension of the corresponding operand. 

2036 Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` 

2037 is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label 

2038 appears only once, it is not summed, so ``np.einsum('i', a)`` produces a 

2039 view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` 

2040 describes traditional matrix multiplication and is equivalent to 

2041 :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one 

2042 operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent 

2043 to :py:func:`np.trace(a) <numpy.trace>`. 

2044 

2045 In *implicit mode*, the chosen subscripts are important 

2046 since the axes of the output are reordered alphabetically. This 

2047 means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while 

2048 ``np.einsum('ji', a)`` takes its transpose. Additionally, 

2049 ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, 

2050 ``np.einsum('ij,jh', a, b)`` returns the transpose of the 

2051 multiplication since subscript 'h' precedes subscript 'i'. 

2052 

2053 In *explicit mode* the output can be directly controlled by 

2054 specifying output subscript labels. This requires the 

2055 identifier '->' as well as the list of output subscript labels. 

2056 This feature increases the flexibility of the function since 

2057 summing can be disabled or forced when required. The call 

2058 ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`, 

2059 and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`. 

2060 The difference is that `einsum` does not allow broadcasting by default. 

2061 Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the 

2062 order of the output subscript labels and therefore returns matrix 

2063 multiplication, unlike the example above in implicit mode. 

2064 

2065 To enable and control broadcasting, use an ellipsis. Default 

2066 NumPy-style broadcasting is done by adding an ellipsis 

2067 to the left of each term, like ``np.einsum('...ii->...i', a)``. 

2068 To take the trace along the first and last axes, 

2069 you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix 

2070 product with the left-most indices instead of rightmost, one can do 

2071 ``np.einsum('ij...,jk...->ik...', a, b)``. 

2072 

2073 When there is only one operand, no axes are summed, and no output 

2074 parameter is provided, a view into the operand is returned instead 

2075 of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` 

2076 produces a view (changed in version 1.10.0). 

2077 

2078 `einsum` also provides an alternative way to provide the subscripts 

2079 and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. 

2080 If the output shape is not provided in this format `einsum` will be 

2081 calculated in implicit mode, otherwise it will be performed explicitly. 

2082 The examples below have corresponding `einsum` calls with the two 

2083 parameter methods. 

2084 

2085 .. versionadded:: 1.10.0 

2086 

2087 Views returned from einsum are now writeable whenever the input array 

2088 is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now 

2089 have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>` 

2090 and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal 

2091 of a 2D array. 

2092 

2093 Examples 

2094 -------- 

2095 >>> a = np.arange(25).reshape(5,5) 

2096 >>> b = np.arange(5) 

2097 >>> c = np.arange(6).reshape(2,3) 

2098 

2099 Trace of a matrix: 

2100 

2101 >>> np.einsum('ii', a) 

2102 60 

2103 >>> np.einsum(a, [0,0]) 

2104 60 

2105 >>> np.trace(a) 

2106 60 

2107 

2108 Extract the diagonal (requires explicit form): 

2109 

2110 >>> np.einsum('ii->i', a) 

2111 array([ 0, 6, 12, 18, 24]) 

2112 >>> np.einsum(a, [0,0], [0]) 

2113 array([ 0, 6, 12, 18, 24]) 

2114 >>> np.diag(a) 

2115 array([ 0, 6, 12, 18, 24]) 

2116 

2117 Sum over an axis (requires explicit form): 

2118 

2119 >>> np.einsum('ij->i', a) 

2120 array([ 10, 35, 60, 85, 110]) 

2121 >>> np.einsum(a, [0,1], [0]) 

2122 array([ 10, 35, 60, 85, 110]) 

2123 >>> np.sum(a, axis=1) 

2124 array([ 10, 35, 60, 85, 110]) 

2125 

2126 For higher dimensional arrays summing a single axis can be done with ellipsis: 

2127 

2128 >>> np.einsum('...j->...', a) 

2129 array([ 10, 35, 60, 85, 110]) 

2130 >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) 

2131 array([ 10, 35, 60, 85, 110]) 

2132 

2133 Compute a matrix transpose, or reorder any number of axes: 

2134 

2135 >>> np.einsum('ji', c) 

2136 array([[0, 3], 

2137 [1, 4], 

2138 [2, 5]]) 

2139 >>> np.einsum('ij->ji', c) 

2140 array([[0, 3], 

2141 [1, 4], 

2142 [2, 5]]) 

2143 >>> np.einsum(c, [1,0]) 

2144 array([[0, 3], 

2145 [1, 4], 

2146 [2, 5]]) 

2147 >>> np.transpose(c) 

2148 array([[0, 3], 

2149 [1, 4], 

2150 [2, 5]]) 

2151 

2152 Vector inner products: 

2153 

2154 >>> np.einsum('i,i', b, b) 

2155 30 

2156 >>> np.einsum(b, [0], b, [0]) 

2157 30 

2158 >>> np.inner(b,b) 

2159 30 

2160 

2161 Matrix vector multiplication: 

2162 

2163 >>> np.einsum('ij,j', a, b) 

2164 array([ 30, 80, 130, 180, 230]) 

2165 >>> np.einsum(a, [0,1], b, [1]) 

2166 array([ 30, 80, 130, 180, 230]) 

2167 >>> np.dot(a, b) 

2168 array([ 30, 80, 130, 180, 230]) 

2169 >>> np.einsum('...j,j', a, b) 

2170 array([ 30, 80, 130, 180, 230]) 

2171 

2172 Broadcasting and scalar multiplication: 

2173 

2174 >>> np.einsum('..., ...', 3, c) 

2175 array([[ 0, 3, 6], 

2176 [ 9, 12, 15]]) 

2177 >>> np.einsum(',ij', 3, c) 

2178 array([[ 0, 3, 6], 

2179 [ 9, 12, 15]]) 

2180 >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) 

2181 array([[ 0, 3, 6], 

2182 [ 9, 12, 15]]) 

2183 >>> np.multiply(3, c) 

2184 array([[ 0, 3, 6], 

2185 [ 9, 12, 15]]) 

2186 

2187 Vector outer product: 

2188 

2189 >>> np.einsum('i,j', np.arange(2)+1, b) 

2190 array([[0, 1, 2, 3, 4], 

2191 [0, 2, 4, 6, 8]]) 

2192 >>> np.einsum(np.arange(2)+1, [0], b, [1]) 

2193 array([[0, 1, 2, 3, 4], 

2194 [0, 2, 4, 6, 8]]) 

2195 >>> np.outer(np.arange(2)+1, b) 

2196 array([[0, 1, 2, 3, 4], 

2197 [0, 2, 4, 6, 8]]) 

2198 

2199 Tensor contraction: 

2200 

2201 >>> a = np.arange(60.).reshape(3,4,5) 

2202 >>> b = np.arange(24.).reshape(4,3,2) 

2203 >>> np.einsum('ijk,jil->kl', a, b) 

2204 array([[ 4400., 4730.], 

2205 [ 4532., 4874.], 

2206 [ 4664., 5018.], 

2207 [ 4796., 5162.], 

2208 [ 4928., 5306.]]) 

2209 >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) 

2210 array([[ 4400., 4730.], 

2211 [ 4532., 4874.], 

2212 [ 4664., 5018.], 

2213 [ 4796., 5162.], 

2214 [ 4928., 5306.]]) 

2215 >>> np.tensordot(a,b, axes=([1,0],[0,1])) 

2216 array([[ 4400., 4730.], 

2217 [ 4532., 4874.], 

2218 [ 4664., 5018.], 

2219 [ 4796., 5162.], 

2220 [ 4928., 5306.]]) 

2221 

2222 Writeable returned arrays (since version 1.10.0): 

2223 

2224 >>> a = np.zeros((3, 3)) 

2225 >>> np.einsum('ii->i', a)[:] = 1 

2226 >>> a 

2227 array([[ 1., 0., 0.], 

2228 [ 0., 1., 0.], 

2229 [ 0., 0., 1.]]) 

2230 

2231 Example of ellipsis use: 

2232 

2233 >>> a = np.arange(6).reshape((3,2)) 

2234 >>> b = np.arange(12).reshape((4,3)) 

2235 >>> np.einsum('ki,jk->ij', a, b) 

2236 array([[10, 28, 46, 64], 

2237 [13, 40, 67, 94]]) 

2238 >>> np.einsum('ki,...k->i...', a, b) 

2239 array([[10, 28, 46, 64], 

2240 [13, 40, 67, 94]]) 

2241 >>> np.einsum('k...,jk', a, b) 

2242 array([[10, 28, 46, 64], 

2243 [13, 40, 67, 94]]) 

2244 

2245 """) 

2246 

2247 

2248############################################################################## 

2249# 

2250# Documentation for ndarray attributes and methods 

2251# 

2252############################################################################## 

2253 

2254 

2255############################################################################## 

2256# 

2257# ndarray object 

2258# 

2259############################################################################## 

2260 

2261 

2262add_newdoc('numpy.core.multiarray', 'ndarray', 

2263 """ 

2264 ndarray(shape, dtype=float, buffer=None, offset=0, 

2265 strides=None, order=None) 

2266 

2267 An array object represents a multidimensional, homogeneous array 

2268 of fixed-size items. An associated data-type object describes the 

2269 format of each element in the array (its byte-order, how many bytes it 

2270 occupies in memory, whether it is an integer, a floating point number, 

2271 or something else, etc.) 

2272 

2273 Arrays should be constructed using `array`, `zeros` or `empty` (refer 

2274 to the See Also section below). The parameters given here refer to 

2275 a low-level method (`ndarray(...)`) for instantiating an array. 

2276 

2277 For more information, refer to the `numpy` module and examine the 

2278 methods and attributes of an array. 

2279 

2280 Parameters 

2281 ---------- 

2282 (for the __new__ method; see Notes below) 

2283 

2284 shape : tuple of ints 

2285 Shape of created array. 

2286 dtype : data-type, optional 

2287 Any object that can be interpreted as a numpy data type. 

2288 buffer : object exposing buffer interface, optional 

2289 Used to fill the array with data. 

2290 offset : int, optional 

2291 Offset of array data in buffer. 

2292 strides : tuple of ints, optional 

2293 Strides of data in memory. 

2294 order : {'C', 'F'}, optional 

2295 Row-major (C-style) or column-major (Fortran-style) order. 

2296 

2297 Attributes 

2298 ---------- 

2299 T : ndarray 

2300 Transpose of the array. 

2301 data : buffer 

2302 The array's elements, in memory. 

2303 dtype : dtype object 

2304 Describes the format of the elements in the array. 

2305 flags : dict 

2306 Dictionary containing information related to memory use, e.g., 

2307 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. 

2308 flat : numpy.flatiter object 

2309 Flattened version of the array as an iterator. The iterator 

2310 allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for 

2311 assignment examples; TODO). 

2312 imag : ndarray 

2313 Imaginary part of the array. 

2314 real : ndarray 

2315 Real part of the array. 

2316 size : int 

2317 Number of elements in the array. 

2318 itemsize : int 

2319 The memory use of each array element in bytes. 

2320 nbytes : int 

2321 The total number of bytes required to store the array data, 

2322 i.e., ``itemsize * size``. 

2323 ndim : int 

2324 The array's number of dimensions. 

2325 shape : tuple of ints 

2326 Shape of the array. 

2327 strides : tuple of ints 

2328 The step-size required to move from one element to the next in 

2329 memory. For example, a contiguous ``(3, 4)`` array of type 

2330 ``int16`` in C-order has strides ``(8, 2)``. This implies that 

2331 to move from element to element in memory requires jumps of 2 bytes. 

2332 To move from row-to-row, one needs to jump 8 bytes at a time 

2333 (``2 * 4``). 

2334 ctypes : ctypes object 

2335 Class containing properties of the array needed for interaction 

2336 with ctypes. 

2337 base : ndarray 

2338 If the array is a view into another array, that array is its `base` 

2339 (unless that array is also a view). The `base` array is where the 

2340 array data is actually stored. 

2341 

2342 See Also 

2343 -------- 

2344 array : Construct an array. 

2345 zeros : Create an array, each element of which is zero. 

2346 empty : Create an array, but leave its allocated memory unchanged (i.e., 

2347 it contains "garbage"). 

2348 dtype : Create a data-type. 

2349 numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>` 

2350 w.r.t. its `dtype.type <numpy.dtype.type>`. 

2351 

2352 Notes 

2353 ----- 

2354 There are two modes of creating an array using ``__new__``: 

2355 

2356 1. If `buffer` is None, then only `shape`, `dtype`, and `order` 

2357 are used. 

2358 2. If `buffer` is an object exposing the buffer interface, then 

2359 all keywords are interpreted. 

2360 

2361 No ``__init__`` method is needed because the array is fully initialized 

2362 after the ``__new__`` method. 

2363 

2364 Examples 

2365 -------- 

2366 These examples illustrate the low-level `ndarray` constructor. Refer 

2367 to the `See Also` section above for easier ways of constructing an 

2368 ndarray. 

2369 

2370 First mode, `buffer` is None: 

2371 

2372 >>> np.ndarray(shape=(2,2), dtype=float, order='F') 

2373 array([[0.0e+000, 0.0e+000], # random 

2374 [ nan, 2.5e-323]]) 

2375 

2376 Second mode: 

2377 

2378 >>> np.ndarray((2,), buffer=np.array([1,2,3]), 

2379 ... offset=np.int_().itemsize, 

2380 ... dtype=int) # offset = 1*itemsize, i.e. skip first element 

2381 array([2, 3]) 

2382 

2383 """) 

2384 

2385 

2386############################################################################## 

2387# 

2388# ndarray attributes 

2389# 

2390############################################################################## 

2391 

2392 

2393add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', 

2394 """Array protocol: Python side.""")) 

2395 

2396 

2397add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', 

2398 """Array priority.""")) 

2399 

2400 

2401add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', 

2402 """Array protocol: C-struct side.""")) 

2403 

2404add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack__', 

2405 """a.__dlpack__(*, stream=None) 

2406 

2407 DLPack Protocol: Part of the Array API.""")) 

2408 

2409add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack_device__', 

2410 """a.__dlpack_device__() 

2411 

2412 DLPack Protocol: Part of the Array API.""")) 

2413 

2414add_newdoc('numpy.core.multiarray', 'ndarray', ('base', 

2415 """ 

2416 Base object if memory is from some other object. 

2417 

2418 Examples 

2419 -------- 

2420 The base of an array that owns its memory is None: 

2421 

2422 >>> x = np.array([1,2,3,4]) 

2423 >>> x.base is None 

2424 True 

2425 

2426 Slicing creates a view, whose memory is shared with x: 

2427 

2428 >>> y = x[2:] 

2429 >>> y.base is x 

2430 True 

2431 

2432 """)) 

2433 

2434 

2435add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', 

2436 """ 

2437 An object to simplify the interaction of the array with the ctypes 

2438 module. 

2439 

2440 This attribute creates an object that makes it easier to use arrays 

2441 when calling shared libraries with the ctypes module. The returned 

2442 object has, among others, data, shape, and strides attributes (see 

2443 Notes below) which themselves return ctypes objects that can be used 

2444 as arguments to a shared library. 

2445 

2446 Parameters 

2447 ---------- 

2448 None 

2449 

2450 Returns 

2451 ------- 

2452 c : Python object 

2453 Possessing attributes data, shape, strides, etc. 

2454 

2455 See Also 

2456 -------- 

2457 numpy.ctypeslib 

2458 

2459 Notes 

2460 ----- 

2461 Below are the public attributes of this object which were documented 

2462 in "Guide to NumPy" (we have omitted undocumented public attributes, 

2463 as well as documented private attributes): 

2464 

2465 .. autoattribute:: numpy.core._internal._ctypes.data 

2466 :noindex: 

2467 

2468 .. autoattribute:: numpy.core._internal._ctypes.shape 

2469 :noindex: 

2470 

2471 .. autoattribute:: numpy.core._internal._ctypes.strides 

2472 :noindex: 

2473 

2474 .. automethod:: numpy.core._internal._ctypes.data_as 

2475 :noindex: 

2476 

2477 .. automethod:: numpy.core._internal._ctypes.shape_as 

2478 :noindex: 

2479 

2480 .. automethod:: numpy.core._internal._ctypes.strides_as 

2481 :noindex: 

2482 

2483 If the ctypes module is not available, then the ctypes attribute 

2484 of array objects still returns something useful, but ctypes objects 

2485 are not returned and errors may be raised instead. In particular, 

2486 the object will still have the ``as_parameter`` attribute which will 

2487 return an integer equal to the data attribute. 

2488 

2489 Examples 

2490 -------- 

2491 >>> import ctypes 

2492 >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32) 

2493 >>> x 

2494 array([[0, 1], 

2495 [2, 3]], dtype=int32) 

2496 >>> x.ctypes.data 

2497 31962608 # may vary 

2498 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)) 

2499 <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary 

2500 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents 

2501 c_uint(0) 

2502 >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents 

2503 c_ulong(4294967296) 

2504 >>> x.ctypes.shape 

2505 <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary 

2506 >>> x.ctypes.strides 

2507 <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary 

2508 

2509 """)) 

2510 

2511 

2512add_newdoc('numpy.core.multiarray', 'ndarray', ('data', 

2513 """Python buffer object pointing to the start of the array's data.""")) 

2514 

2515 

2516add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', 

2517 """ 

2518 Data-type of the array's elements. 

2519 

2520 .. warning:: 

2521 

2522 Setting ``arr.dtype`` is discouraged and may be deprecated in the 

2523 future. Setting will replace the ``dtype`` without modifying the 

2524 memory (see also `ndarray.view` and `ndarray.astype`). 

2525 

2526 Parameters 

2527 ---------- 

2528 None 

2529 

2530 Returns 

2531 ------- 

2532 d : numpy dtype object 

2533 

2534 See Also 

2535 -------- 

2536 ndarray.astype : Cast the values contained in the array to a new data-type. 

2537 ndarray.view : Create a view of the same data but a different data-type. 

2538 numpy.dtype 

2539 

2540 Examples 

2541 -------- 

2542 >>> x 

2543 array([[0, 1], 

2544 [2, 3]]) 

2545 >>> x.dtype 

2546 dtype('int32') 

2547 >>> type(x.dtype) 

2548 <type 'numpy.dtype'> 

2549 

2550 """)) 

2551 

2552 

2553add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', 

2554 """ 

2555 The imaginary part of the array. 

2556 

2557 Examples 

2558 -------- 

2559 >>> x = np.sqrt([1+0j, 0+1j]) 

2560 >>> x.imag 

2561 array([ 0. , 0.70710678]) 

2562 >>> x.imag.dtype 

2563 dtype('float64') 

2564 

2565 """)) 

2566 

2567 

2568add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', 

2569 """ 

2570 Length of one array element in bytes. 

2571 

2572 Examples 

2573 -------- 

2574 >>> x = np.array([1,2,3], dtype=np.float64) 

2575 >>> x.itemsize 

2576 8 

2577 >>> x = np.array([1,2,3], dtype=np.complex128) 

2578 >>> x.itemsize 

2579 16 

2580 

2581 """)) 

2582 

2583 

2584add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', 

2585 """ 

2586 Information about the memory layout of the array. 

2587 

2588 Attributes 

2589 ---------- 

2590 C_CONTIGUOUS (C) 

2591 The data is in a single, C-style contiguous segment. 

2592 F_CONTIGUOUS (F) 

2593 The data is in a single, Fortran-style contiguous segment. 

2594 OWNDATA (O) 

2595 The array owns the memory it uses or borrows it from another object. 

2596 WRITEABLE (W) 

2597 The data area can be written to. Setting this to False locks 

2598 the data, making it read-only. A view (slice, etc.) inherits WRITEABLE 

2599 from its base array at creation time, but a view of a writeable 

2600 array may be subsequently locked while the base array remains writeable. 

2601 (The opposite is not true, in that a view of a locked array may not 

2602 be made writeable. However, currently, locking a base object does not 

2603 lock any views that already reference it, so under that circumstance it 

2604 is possible to alter the contents of a locked array via a previously 

2605 created writeable view onto it.) Attempting to change a non-writeable 

2606 array raises a RuntimeError exception. 

2607 ALIGNED (A) 

2608 The data and all elements are aligned appropriately for the hardware. 

2609 WRITEBACKIFCOPY (X) 

2610 This array is a copy of some other array. The C-API function 

2611 PyArray_ResolveWritebackIfCopy must be called before deallocating 

2612 to the base array will be updated with the contents of this array. 

2613 FNC 

2614 F_CONTIGUOUS and not C_CONTIGUOUS. 

2615 FORC 

2616 F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). 

2617 BEHAVED (B) 

2618 ALIGNED and WRITEABLE. 

2619 CARRAY (CA) 

2620 BEHAVED and C_CONTIGUOUS. 

2621 FARRAY (FA) 

2622 BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS. 

2623 

2624 Notes 

2625 ----- 

2626 The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``), 

2627 or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag 

2628 names are only supported in dictionary access. 

2629 

2630 Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be 

2631 changed by the user, via direct assignment to the attribute or dictionary 

2632 entry, or by calling `ndarray.setflags`. 

2633 

2634 The array flags cannot be set arbitrarily: 

2635 

2636 - WRITEBACKIFCOPY can only be set ``False``. 

2637 - ALIGNED can only be set ``True`` if the data is truly aligned. 

2638 - WRITEABLE can only be set ``True`` if the array owns its own memory 

2639 or the ultimate owner of the memory exposes a writeable buffer 

2640 interface or is a string. 

2641 

2642 Arrays can be both C-style and Fortran-style contiguous simultaneously. 

2643 This is clear for 1-dimensional arrays, but can also be true for higher 

2644 dimensional arrays. 

2645 

2646 Even for contiguous arrays a stride for a given dimension 

2647 ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1`` 

2648 or the array has no elements. 

2649 It does *not* generally hold that ``self.strides[-1] == self.itemsize`` 

2650 for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for 

2651 Fortran-style contiguous arrays is true. 

2652 """)) 

2653 

2654 

2655add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', 

2656 """ 

2657 A 1-D iterator over the array. 

2658 

2659 This is a `numpy.flatiter` instance, which acts similarly to, but is not 

2660 a subclass of, Python's built-in iterator object. 

2661 

2662 See Also 

2663 -------- 

2664 flatten : Return a copy of the array collapsed into one dimension. 

2665 

2666 flatiter 

2667 

2668 Examples 

2669 -------- 

2670 >>> x = np.arange(1, 7).reshape(2, 3) 

2671 >>> x 

2672 array([[1, 2, 3], 

2673 [4, 5, 6]]) 

2674 >>> x.flat[3] 

2675 4 

2676 >>> x.T 

2677 array([[1, 4], 

2678 [2, 5], 

2679 [3, 6]]) 

2680 >>> x.T.flat[3] 

2681 5 

2682 >>> type(x.flat) 

2683 <class 'numpy.flatiter'> 

2684 

2685 An assignment example: 

2686 

2687 >>> x.flat = 3; x 

2688 array([[3, 3, 3], 

2689 [3, 3, 3]]) 

2690 >>> x.flat[[1,4]] = 1; x 

2691 array([[3, 1, 3], 

2692 [3, 1, 3]]) 

2693 

2694 """)) 

2695 

2696 

2697add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', 

2698 """ 

2699 Total bytes consumed by the elements of the array. 

2700 

2701 Notes 

2702 ----- 

2703 Does not include memory consumed by non-element attributes of the 

2704 array object. 

2705 

2706 Examples 

2707 -------- 

2708 >>> x = np.zeros((3,5,2), dtype=np.complex128) 

2709 >>> x.nbytes 

2710 480 

2711 >>> np.prod(x.shape) * x.itemsize 

2712 480 

2713 

2714 """)) 

2715 

2716 

2717add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', 

2718 """ 

2719 Number of array dimensions. 

2720 

2721 Examples 

2722 -------- 

2723 >>> x = np.array([1, 2, 3]) 

2724 >>> x.ndim 

2725 1 

2726 >>> y = np.zeros((2, 3, 4)) 

2727 >>> y.ndim 

2728 3 

2729 

2730 """)) 

2731 

2732 

2733add_newdoc('numpy.core.multiarray', 'ndarray', ('real', 

2734 """ 

2735 The real part of the array. 

2736 

2737 Examples 

2738 -------- 

2739 >>> x = np.sqrt([1+0j, 0+1j]) 

2740 >>> x.real 

2741 array([ 1. , 0.70710678]) 

2742 >>> x.real.dtype 

2743 dtype('float64') 

2744 

2745 See Also 

2746 -------- 

2747 numpy.real : equivalent function 

2748 

2749 """)) 

2750 

2751 

2752add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', 

2753 """ 

2754 Tuple of array dimensions. 

2755 

2756 The shape property is usually used to get the current shape of an array, 

2757 but may also be used to reshape the array in-place by assigning a tuple of 

2758 array dimensions to it. As with `numpy.reshape`, one of the new shape 

2759 dimensions can be -1, in which case its value is inferred from the size of 

2760 the array and the remaining dimensions. Reshaping an array in-place will 

2761 fail if a copy is required. 

2762 

2763 .. warning:: 

2764 

2765 Setting ``arr.shape`` is discouraged and may be deprecated in the 

2766 future. Using `ndarray.reshape` is the preferred approach. 

2767 

2768 Examples 

2769 -------- 

2770 >>> x = np.array([1, 2, 3, 4]) 

2771 >>> x.shape 

2772 (4,) 

2773 >>> y = np.zeros((2, 3, 4)) 

2774 >>> y.shape 

2775 (2, 3, 4) 

2776 >>> y.shape = (3, 8) 

2777 >>> y 

2778 array([[ 0., 0., 0., 0., 0., 0., 0., 0.], 

2779 [ 0., 0., 0., 0., 0., 0., 0., 0.], 

2780 [ 0., 0., 0., 0., 0., 0., 0., 0.]]) 

2781 >>> y.shape = (3, 6) 

2782 Traceback (most recent call last): 

2783 File "<stdin>", line 1, in <module> 

2784 ValueError: total size of new array must be unchanged 

2785 >>> np.zeros((4,2))[::2].shape = (-1,) 

2786 Traceback (most recent call last): 

2787 File "<stdin>", line 1, in <module> 

2788 AttributeError: Incompatible shape for in-place modification. Use 

2789 `.reshape()` to make a copy with the desired shape. 

2790 

2791 See Also 

2792 -------- 

2793 numpy.shape : Equivalent getter function. 

2794 numpy.reshape : Function similar to setting ``shape``. 

2795 ndarray.reshape : Method similar to setting ``shape``. 

2796 

2797 """)) 

2798 

2799 

2800add_newdoc('numpy.core.multiarray', 'ndarray', ('size', 

2801 """ 

2802 Number of elements in the array. 

2803 

2804 Equal to ``np.prod(a.shape)``, i.e., the product of the array's 

2805 dimensions. 

2806 

2807 Notes 

2808 ----- 

2809 `a.size` returns a standard arbitrary precision Python integer. This 

2810 may not be the case with other methods of obtaining the same value 

2811 (like the suggested ``np.prod(a.shape)``, which returns an instance 

2812 of ``np.int_``), and may be relevant if the value is used further in 

2813 calculations that may overflow a fixed size integer type. 

2814 

2815 Examples 

2816 -------- 

2817 >>> x = np.zeros((3, 5, 2), dtype=np.complex128) 

2818 >>> x.size 

2819 30 

2820 >>> np.prod(x.shape) 

2821 30 

2822 

2823 """)) 

2824 

2825 

2826add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', 

2827 """ 

2828 Tuple of bytes to step in each dimension when traversing an array. 

2829 

2830 The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a` 

2831 is:: 

2832 

2833 offset = sum(np.array(i) * a.strides) 

2834 

2835 A more detailed explanation of strides can be found in the 

2836 "ndarray.rst" file in the NumPy reference guide. 

2837 

2838 .. warning:: 

2839 

2840 Setting ``arr.strides`` is discouraged and may be deprecated in the 

2841 future. `numpy.lib.stride_tricks.as_strided` should be preferred 

2842 to create a new view of the same data in a safer way. 

2843 

2844 Notes 

2845 ----- 

2846 Imagine an array of 32-bit integers (each 4 bytes):: 

2847 

2848 x = np.array([[0, 1, 2, 3, 4], 

2849 [5, 6, 7, 8, 9]], dtype=np.int32) 

2850 

2851 This array is stored in memory as 40 bytes, one after the other 

2852 (known as a contiguous block of memory). The strides of an array tell 

2853 us how many bytes we have to skip in memory to move to the next position 

2854 along a certain axis. For example, we have to skip 4 bytes (1 value) to 

2855 move to the next column, but 20 bytes (5 values) to get to the same 

2856 position in the next row. As such, the strides for the array `x` will be 

2857 ``(20, 4)``. 

2858 

2859 See Also 

2860 -------- 

2861 numpy.lib.stride_tricks.as_strided 

2862 

2863 Examples 

2864 -------- 

2865 >>> y = np.reshape(np.arange(2*3*4), (2,3,4)) 

2866 >>> y 

2867 array([[[ 0, 1, 2, 3], 

2868 [ 4, 5, 6, 7], 

2869 [ 8, 9, 10, 11]], 

2870 [[12, 13, 14, 15], 

2871 [16, 17, 18, 19], 

2872 [20, 21, 22, 23]]]) 

2873 >>> y.strides 

2874 (48, 16, 4) 

2875 >>> y[1,1,1] 

2876 17 

2877 >>> offset=sum(y.strides * np.array((1,1,1))) 

2878 >>> offset/y.itemsize 

2879 17 

2880 

2881 >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) 

2882 >>> x.strides 

2883 (32, 4, 224, 1344) 

2884 >>> i = np.array([3,5,2,2]) 

2885 >>> offset = sum(i * x.strides) 

2886 >>> x[3,5,2,2] 

2887 813 

2888 >>> offset / x.itemsize 

2889 813 

2890 

2891 """)) 

2892 

2893 

2894add_newdoc('numpy.core.multiarray', 'ndarray', ('T', 

2895 """ 

2896 View of the transposed array. 

2897 

2898 Same as ``self.transpose()``. 

2899 

2900 Examples 

2901 -------- 

2902 >>> a = np.array([[1, 2], [3, 4]]) 

2903 >>> a 

2904 array([[1, 2], 

2905 [3, 4]]) 

2906 >>> a.T 

2907 array([[1, 3], 

2908 [2, 4]]) 

2909 

2910 >>> a = np.array([1, 2, 3, 4]) 

2911 >>> a 

2912 array([1, 2, 3, 4]) 

2913 >>> a.T 

2914 array([1, 2, 3, 4]) 

2915 

2916 See Also 

2917 -------- 

2918 transpose 

2919 

2920 """)) 

2921 

2922 

2923############################################################################## 

2924# 

2925# ndarray methods 

2926# 

2927############################################################################## 

2928 

2929 

2930add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', 

2931 """ a.__array__([dtype], /) -> reference if type unchanged, copy otherwise. 

2932 

2933 Returns either a new reference to self if dtype is not given or a new array 

2934 of provided data type if dtype is different from the current dtype of the 

2935 array. 

2936 

2937 """)) 

2938 

2939 

2940add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', 

2941 """a.__array_finalize__(obj, /) 

2942 

2943 Present so subclasses can call super. Does nothing. 

2944 

2945 """)) 

2946 

2947 

2948add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__', 

2949 """a.__array_prepare__(array[, context], /) 

2950 

2951 Returns a view of `array` with the same type as self. 

2952 

2953 """)) 

2954 

2955 

2956add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', 

2957 """a.__array_wrap__(array[, context], /) 

2958 

2959 Returns a view of `array` with the same type as self. 

2960 

2961 """)) 

2962 

2963 

2964add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', 

2965 """a.__copy__() 

2966 

2967 Used if :func:`copy.copy` is called on an array. Returns a copy of the array. 

2968 

2969 Equivalent to ``a.copy(order='K')``. 

2970 

2971 """)) 

2972 

2973 

2974add_newdoc('numpy.core.multiarray', 'ndarray', ('__class_getitem__', 

2975 """a.__class_getitem__(item, /) 

2976 

2977 Return a parametrized wrapper around the `~numpy.ndarray` type. 

2978 

2979 .. versionadded:: 1.22 

2980 

2981 Returns 

2982 ------- 

2983 alias : types.GenericAlias 

2984 A parametrized `~numpy.ndarray` type. 

2985 

2986 Examples 

2987 -------- 

2988 >>> from typing import Any 

2989 >>> import numpy as np 

2990 

2991 >>> np.ndarray[Any, np.dtype[Any]] 

2992 numpy.ndarray[typing.Any, numpy.dtype[typing.Any]] 

2993 

2994 Notes 

2995 ----- 

2996 This method is only available for python 3.9 and later. 

2997 

2998 See Also 

2999 -------- 

3000 :pep:`585` : Type hinting generics in standard collections. 

3001 numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>` 

3002 w.r.t. its `dtype.type <numpy.dtype.type>`. 

3003 

3004 """)) 

3005 

3006 

3007add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', 

3008 """a.__deepcopy__(memo, /) -> Deep copy of array. 

3009 

3010 Used if :func:`copy.deepcopy` is called on an array. 

3011 

3012 """)) 

3013 

3014 

3015add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', 

3016 """a.__reduce__() 

3017 

3018 For pickling. 

3019 

3020 """)) 

3021 

3022 

3023add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', 

3024 """a.__setstate__(state, /) 

3025 

3026 For unpickling. 

3027 

3028 The `state` argument must be a sequence that contains the following 

3029 elements: 

3030 

3031 Parameters 

3032 ---------- 

3033 version : int 

3034 optional pickle version. If omitted defaults to 0. 

3035 shape : tuple 

3036 dtype : data-type 

3037 isFortran : bool 

3038 rawdata : string or list 

3039 a binary string with the data (or a list if 'a' is an object array) 

3040 

3041 """)) 

3042 

3043 

3044add_newdoc('numpy.core.multiarray', 'ndarray', ('all', 

3045 """ 

3046 a.all(axis=None, out=None, keepdims=False, *, where=True) 

3047 

3048 Returns True if all elements evaluate to True. 

3049 

3050 Refer to `numpy.all` for full documentation. 

3051 

3052 See Also 

3053 -------- 

3054 numpy.all : equivalent function 

3055 

3056 """)) 

3057 

3058 

3059add_newdoc('numpy.core.multiarray', 'ndarray', ('any', 

3060 """ 

3061 a.any(axis=None, out=None, keepdims=False, *, where=True) 

3062 

3063 Returns True if any of the elements of `a` evaluate to True. 

3064 

3065 Refer to `numpy.any` for full documentation. 

3066 

3067 See Also 

3068 -------- 

3069 numpy.any : equivalent function 

3070 

3071 """)) 

3072 

3073 

3074add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', 

3075 """ 

3076 a.argmax(axis=None, out=None, *, keepdims=False) 

3077 

3078 Return indices of the maximum values along the given axis. 

3079 

3080 Refer to `numpy.argmax` for full documentation. 

3081 

3082 See Also 

3083 -------- 

3084 numpy.argmax : equivalent function 

3085 

3086 """)) 

3087 

3088 

3089add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', 

3090 """ 

3091 a.argmin(axis=None, out=None, *, keepdims=False) 

3092 

3093 Return indices of the minimum values along the given axis. 

3094 

3095 Refer to `numpy.argmin` for detailed documentation. 

3096 

3097 See Also 

3098 -------- 

3099 numpy.argmin : equivalent function 

3100 

3101 """)) 

3102 

3103 

3104add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', 

3105 """ 

3106 a.argsort(axis=-1, kind=None, order=None) 

3107 

3108 Returns the indices that would sort this array. 

3109 

3110 Refer to `numpy.argsort` for full documentation. 

3111 

3112 See Also 

3113 -------- 

3114 numpy.argsort : equivalent function 

3115 

3116 """)) 

3117 

3118 

3119add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition', 

3120 """ 

3121 a.argpartition(kth, axis=-1, kind='introselect', order=None) 

3122 

3123 Returns the indices that would partition this array. 

3124 

3125 Refer to `numpy.argpartition` for full documentation. 

3126 

3127 .. versionadded:: 1.8.0 

3128 

3129 See Also 

3130 -------- 

3131 numpy.argpartition : equivalent function 

3132 

3133 """)) 

3134 

3135 

3136add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', 

3137 """ 

3138 a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) 

3139 

3140 Copy of the array, cast to a specified type. 

3141 

3142 Parameters 

3143 ---------- 

3144 dtype : str or dtype 

3145 Typecode or data-type to which the array is cast. 

3146 order : {'C', 'F', 'A', 'K'}, optional 

3147 Controls the memory layout order of the result. 

3148 'C' means C order, 'F' means Fortran order, 'A' 

3149 means 'F' order if all the arrays are Fortran contiguous, 

3150 'C' order otherwise, and 'K' means as close to the 

3151 order the array elements appear in memory as possible. 

3152 Default is 'K'. 

3153 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

3154 Controls what kind of data casting may occur. Defaults to 'unsafe' 

3155 for backwards compatibility. 

3156 

3157 * 'no' means the data types should not be cast at all. 

3158 * 'equiv' means only byte-order changes are allowed. 

3159 * 'safe' means only casts which can preserve values are allowed. 

3160 * 'same_kind' means only safe casts or casts within a kind, 

3161 like float64 to float32, are allowed. 

3162 * 'unsafe' means any data conversions may be done. 

3163 subok : bool, optional 

3164 If True, then sub-classes will be passed-through (default), otherwise 

3165 the returned array will be forced to be a base-class array. 

3166 copy : bool, optional 

3167 By default, astype always returns a newly allocated array. If this 

3168 is set to false, and the `dtype`, `order`, and `subok` 

3169 requirements are satisfied, the input array is returned instead 

3170 of a copy. 

3171 

3172 Returns 

3173 ------- 

3174 arr_t : ndarray 

3175 Unless `copy` is False and the other conditions for returning the input 

3176 array are satisfied (see description for `copy` input parameter), `arr_t` 

3177 is a new array of the same shape as the input array, with dtype, order 

3178 given by `dtype`, `order`. 

3179 

3180 Notes 

3181 ----- 

3182 .. versionchanged:: 1.17.0 

3183 Casting between a simple data type and a structured one is possible only 

3184 for "unsafe" casting. Casting to multiple fields is allowed, but 

3185 casting from multiple fields is not. 

3186 

3187 .. versionchanged:: 1.9.0 

3188 Casting from numeric to string types in 'safe' casting mode requires 

3189 that the string dtype length is long enough to store the max 

3190 integer/float value converted. 

3191 

3192 Raises 

3193 ------ 

3194 ComplexWarning 

3195 When casting from complex to float or int. To avoid this, 

3196 one should use ``a.real.astype(t)``. 

3197 

3198 Examples 

3199 -------- 

3200 >>> x = np.array([1, 2, 2.5]) 

3201 >>> x 

3202 array([1. , 2. , 2.5]) 

3203 

3204 >>> x.astype(int) 

3205 array([1, 2, 2]) 

3206 

3207 """)) 

3208 

3209 

3210add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', 

3211 """ 

3212 a.byteswap(inplace=False) 

3213 

3214 Swap the bytes of the array elements 

3215 

3216 Toggle between low-endian and big-endian data representation by 

3217 returning a byteswapped array, optionally swapped in-place. 

3218 Arrays of byte-strings are not swapped. The real and imaginary 

3219 parts of a complex number are swapped individually. 

3220 

3221 Parameters 

3222 ---------- 

3223 inplace : bool, optional 

3224 If ``True``, swap bytes in-place, default is ``False``. 

3225 

3226 Returns 

3227 ------- 

3228 out : ndarray 

3229 The byteswapped array. If `inplace` is ``True``, this is 

3230 a view to self. 

3231 

3232 Examples 

3233 -------- 

3234 >>> A = np.array([1, 256, 8755], dtype=np.int16) 

3235 >>> list(map(hex, A)) 

3236 ['0x1', '0x100', '0x2233'] 

3237 >>> A.byteswap(inplace=True) 

3238 array([ 256, 1, 13090], dtype=int16) 

3239 >>> list(map(hex, A)) 

3240 ['0x100', '0x1', '0x3322'] 

3241 

3242 Arrays of byte-strings are not swapped 

3243 

3244 >>> A = np.array([b'ceg', b'fac']) 

3245 >>> A.byteswap() 

3246 array([b'ceg', b'fac'], dtype='|S3') 

3247 

3248 ``A.newbyteorder().byteswap()`` produces an array with the same values 

3249 but different representation in memory 

3250 

3251 >>> A = np.array([1, 2, 3]) 

3252 >>> A.view(np.uint8) 

3253 array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 

3254 0, 0], dtype=uint8) 

3255 >>> A.newbyteorder().byteswap(inplace=True) 

3256 array([1, 2, 3]) 

3257 >>> A.view(np.uint8) 

3258 array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 

3259 0, 3], dtype=uint8) 

3260 

3261 """)) 

3262 

3263 

3264add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', 

3265 """ 

3266 a.choose(choices, out=None, mode='raise') 

3267 

3268 Use an index array to construct a new array from a set of choices. 

3269 

3270 Refer to `numpy.choose` for full documentation. 

3271 

3272 See Also 

3273 -------- 

3274 numpy.choose : equivalent function 

3275 

3276 """)) 

3277 

3278 

3279add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', 

3280 """ 

3281 a.clip(min=None, max=None, out=None, **kwargs) 

3282 

3283 Return an array whose values are limited to ``[min, max]``. 

3284 One of max or min must be given. 

3285 

3286 Refer to `numpy.clip` for full documentation. 

3287 

3288 See Also 

3289 -------- 

3290 numpy.clip : equivalent function 

3291 

3292 """)) 

3293 

3294 

3295add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', 

3296 """ 

3297 a.compress(condition, axis=None, out=None) 

3298 

3299 Return selected slices of this array along given axis. 

3300 

3301 Refer to `numpy.compress` for full documentation. 

3302 

3303 See Also 

3304 -------- 

3305 numpy.compress : equivalent function 

3306 

3307 """)) 

3308 

3309 

3310add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', 

3311 """ 

3312 a.conj() 

3313 

3314 Complex-conjugate all elements. 

3315 

3316 Refer to `numpy.conjugate` for full documentation. 

3317 

3318 See Also 

3319 -------- 

3320 numpy.conjugate : equivalent function 

3321 

3322 """)) 

3323 

3324 

3325add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', 

3326 """ 

3327 a.conjugate() 

3328 

3329 Return the complex conjugate, element-wise. 

3330 

3331 Refer to `numpy.conjugate` for full documentation. 

3332 

3333 See Also 

3334 -------- 

3335 numpy.conjugate : equivalent function 

3336 

3337 """)) 

3338 

3339 

3340add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', 

3341 """ 

3342 a.copy(order='C') 

3343 

3344 Return a copy of the array. 

3345 

3346 Parameters 

3347 ---------- 

3348 order : {'C', 'F', 'A', 'K'}, optional 

3349 Controls the memory layout of the copy. 'C' means C-order, 

3350 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

3351 'C' otherwise. 'K' means match the layout of `a` as closely 

3352 as possible. (Note that this function and :func:`numpy.copy` are very 

3353 similar but have different default values for their order= 

3354 arguments, and this function always passes sub-classes through.) 

3355 

3356 See also 

3357 -------- 

3358 numpy.copy : Similar function with different default behavior 

3359 numpy.copyto 

3360 

3361 Notes 

3362 ----- 

3363 This function is the preferred method for creating an array copy. The 

3364 function :func:`numpy.copy` is similar, but it defaults to using order 'K', 

3365 and will not pass sub-classes through by default. 

3366 

3367 Examples 

3368 -------- 

3369 >>> x = np.array([[1,2,3],[4,5,6]], order='F') 

3370 

3371 >>> y = x.copy() 

3372 

3373 >>> x.fill(0) 

3374 

3375 >>> x 

3376 array([[0, 0, 0], 

3377 [0, 0, 0]]) 

3378 

3379 >>> y 

3380 array([[1, 2, 3], 

3381 [4, 5, 6]]) 

3382 

3383 >>> y.flags['C_CONTIGUOUS'] 

3384 True 

3385 

3386 """)) 

3387 

3388 

3389add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', 

3390 """ 

3391 a.cumprod(axis=None, dtype=None, out=None) 

3392 

3393 Return the cumulative product of the elements along the given axis. 

3394 

3395 Refer to `numpy.cumprod` for full documentation. 

3396 

3397 See Also 

3398 -------- 

3399 numpy.cumprod : equivalent function 

3400 

3401 """)) 

3402 

3403 

3404add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', 

3405 """ 

3406 a.cumsum(axis=None, dtype=None, out=None) 

3407 

3408 Return the cumulative sum of the elements along the given axis. 

3409 

3410 Refer to `numpy.cumsum` for full documentation. 

3411 

3412 See Also 

3413 -------- 

3414 numpy.cumsum : equivalent function 

3415 

3416 """)) 

3417 

3418 

3419add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', 

3420 """ 

3421 a.diagonal(offset=0, axis1=0, axis2=1) 

3422 

3423 Return specified diagonals. In NumPy 1.9 the returned array is a 

3424 read-only view instead of a copy as in previous NumPy versions. In 

3425 a future version the read-only restriction will be removed. 

3426 

3427 Refer to :func:`numpy.diagonal` for full documentation. 

3428 

3429 See Also 

3430 -------- 

3431 numpy.diagonal : equivalent function 

3432 

3433 """)) 

3434 

3435 

3436add_newdoc('numpy.core.multiarray', 'ndarray', ('dot')) 

3437 

3438 

3439add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', 

3440 """a.dump(file) 

3441 

3442 Dump a pickle of the array to the specified file. 

3443 The array can be read back with pickle.load or numpy.load. 

3444 

3445 Parameters 

3446 ---------- 

3447 file : str or Path 

3448 A string naming the dump file. 

3449 

3450 .. versionchanged:: 1.17.0 

3451 `pathlib.Path` objects are now accepted. 

3452 

3453 """)) 

3454 

3455 

3456add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', 

3457 """ 

3458 a.dumps() 

3459 

3460 Returns the pickle of the array as a string. 

3461 pickle.loads will convert the string back to an array. 

3462 

3463 Parameters 

3464 ---------- 

3465 None 

3466 

3467 """)) 

3468 

3469 

3470add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', 

3471 """ 

3472 a.fill(value) 

3473 

3474 Fill the array with a scalar value. 

3475 

3476 Parameters 

3477 ---------- 

3478 value : scalar 

3479 All elements of `a` will be assigned this value. 

3480 

3481 Examples 

3482 -------- 

3483 >>> a = np.array([1, 2]) 

3484 >>> a.fill(0) 

3485 >>> a 

3486 array([0, 0]) 

3487 >>> a = np.empty(2) 

3488 >>> a.fill(1) 

3489 >>> a 

3490 array([1., 1.]) 

3491 

3492 Fill expects a scalar value and always behaves the same as assigning 

3493 to a single array element. The following is a rare example where this 

3494 distinction is important: 

3495 

3496 >>> a = np.array([None, None], dtype=object) 

3497 >>> a[0] = np.array(3) 

3498 >>> a 

3499 array([array(3), None], dtype=object) 

3500 >>> a.fill(np.array(3)) 

3501 >>> a 

3502 array([array(3), array(3)], dtype=object) 

3503 

3504 Where other forms of assignments will unpack the array being assigned: 

3505 

3506 >>> a[...] = np.array(3) 

3507 >>> a 

3508 array([3, 3], dtype=object) 

3509 

3510 """)) 

3511 

3512 

3513add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', 

3514 """ 

3515 a.flatten(order='C') 

3516 

3517 Return a copy of the array collapsed into one dimension. 

3518 

3519 Parameters 

3520 ---------- 

3521 order : {'C', 'F', 'A', 'K'}, optional 

3522 'C' means to flatten in row-major (C-style) order. 

3523 'F' means to flatten in column-major (Fortran- 

3524 style) order. 'A' means to flatten in column-major 

3525 order if `a` is Fortran *contiguous* in memory, 

3526 row-major order otherwise. 'K' means to flatten 

3527 `a` in the order the elements occur in memory. 

3528 The default is 'C'. 

3529 

3530 Returns 

3531 ------- 

3532 y : ndarray 

3533 A copy of the input array, flattened to one dimension. 

3534 

3535 See Also 

3536 -------- 

3537 ravel : Return a flattened array. 

3538 flat : A 1-D flat iterator over the array. 

3539 

3540 Examples 

3541 -------- 

3542 >>> a = np.array([[1,2], [3,4]]) 

3543 >>> a.flatten() 

3544 array([1, 2, 3, 4]) 

3545 >>> a.flatten('F') 

3546 array([1, 3, 2, 4]) 

3547 

3548 """)) 

3549 

3550 

3551add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', 

3552 """ 

3553 a.getfield(dtype, offset=0) 

3554 

3555 Returns a field of the given array as a certain type. 

3556 

3557 A field is a view of the array data with a given data-type. The values in 

3558 the view are determined by the given type and the offset into the current 

3559 array in bytes. The offset needs to be such that the view dtype fits in the 

3560 array dtype; for example an array of dtype complex128 has 16-byte elements. 

3561 If taking a view with a 32-bit integer (4 bytes), the offset needs to be 

3562 between 0 and 12 bytes. 

3563 

3564 Parameters 

3565 ---------- 

3566 dtype : str or dtype 

3567 The data type of the view. The dtype size of the view can not be larger 

3568 than that of the array itself. 

3569 offset : int 

3570 Number of bytes to skip before beginning the element view. 

3571 

3572 Examples 

3573 -------- 

3574 >>> x = np.diag([1.+1.j]*2) 

3575 >>> x[1, 1] = 2 + 4.j 

3576 >>> x 

3577 array([[1.+1.j, 0.+0.j], 

3578 [0.+0.j, 2.+4.j]]) 

3579 >>> x.getfield(np.float64) 

3580 array([[1., 0.], 

3581 [0., 2.]]) 

3582 

3583 By choosing an offset of 8 bytes we can select the complex part of the 

3584 array for our view: 

3585 

3586 >>> x.getfield(np.float64, offset=8) 

3587 array([[1., 0.], 

3588 [0., 4.]]) 

3589 

3590 """)) 

3591 

3592 

3593add_newdoc('numpy.core.multiarray', 'ndarray', ('item', 

3594 """ 

3595 a.item(*args) 

3596 

3597 Copy an element of an array to a standard Python scalar and return it. 

3598 

3599 Parameters 

3600 ---------- 

3601 \\*args : Arguments (variable number and type) 

3602 

3603 * none: in this case, the method only works for arrays 

3604 with one element (`a.size == 1`), which element is 

3605 copied into a standard Python scalar object and returned. 

3606 

3607 * int_type: this argument is interpreted as a flat index into 

3608 the array, specifying which element to copy and return. 

3609 

3610 * tuple of int_types: functions as does a single int_type argument, 

3611 except that the argument is interpreted as an nd-index into the 

3612 array. 

3613 

3614 Returns 

3615 ------- 

3616 z : Standard Python scalar object 

3617 A copy of the specified element of the array as a suitable 

3618 Python scalar 

3619 

3620 Notes 

3621 ----- 

3622 When the data type of `a` is longdouble or clongdouble, item() returns 

3623 a scalar array object because there is no available Python scalar that 

3624 would not lose information. Void arrays return a buffer object for item(), 

3625 unless fields are defined, in which case a tuple is returned. 

3626 

3627 `item` is very similar to a[args], except, instead of an array scalar, 

3628 a standard Python scalar is returned. This can be useful for speeding up 

3629 access to elements of the array and doing arithmetic on elements of the 

3630 array using Python's optimized math. 

3631 

3632 Examples 

3633 -------- 

3634 >>> np.random.seed(123) 

3635 >>> x = np.random.randint(9, size=(3, 3)) 

3636 >>> x 

3637 array([[2, 2, 6], 

3638 [1, 3, 6], 

3639 [1, 0, 1]]) 

3640 >>> x.item(3) 

3641 1 

3642 >>> x.item(7) 

3643 0 

3644 >>> x.item((0, 1)) 

3645 2 

3646 >>> x.item((2, 2)) 

3647 1 

3648 

3649 """)) 

3650 

3651 

3652add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset', 

3653 """ 

3654 a.itemset(*args) 

3655 

3656 Insert scalar into an array (scalar is cast to array's dtype, if possible) 

3657 

3658 There must be at least 1 argument, and define the last argument 

3659 as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster 

3660 than ``a[args] = item``. The item should be a scalar value and `args` 

3661 must select a single item in the array `a`. 

3662 

3663 Parameters 

3664 ---------- 

3665 \\*args : Arguments 

3666 If one argument: a scalar, only used in case `a` is of size 1. 

3667 If two arguments: the last argument is the value to be set 

3668 and must be a scalar, the first argument specifies a single array 

3669 element location. It is either an int or a tuple. 

3670 

3671 Notes 

3672 ----- 

3673 Compared to indexing syntax, `itemset` provides some speed increase 

3674 for placing a scalar into a particular location in an `ndarray`, 

3675 if you must do this. However, generally this is discouraged: 

3676 among other problems, it complicates the appearance of the code. 

3677 Also, when using `itemset` (and `item`) inside a loop, be sure 

3678 to assign the methods to a local variable to avoid the attribute 

3679 look-up at each loop iteration. 

3680 

3681 Examples 

3682 -------- 

3683 >>> np.random.seed(123) 

3684 >>> x = np.random.randint(9, size=(3, 3)) 

3685 >>> x 

3686 array([[2, 2, 6], 

3687 [1, 3, 6], 

3688 [1, 0, 1]]) 

3689 >>> x.itemset(4, 0) 

3690 >>> x.itemset((2, 2), 9) 

3691 >>> x 

3692 array([[2, 2, 6], 

3693 [1, 0, 6], 

3694 [1, 0, 9]]) 

3695 

3696 """)) 

3697 

3698 

3699add_newdoc('numpy.core.multiarray', 'ndarray', ('max', 

3700 """ 

3701 a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True) 

3702 

3703 Return the maximum along a given axis. 

3704 

3705 Refer to `numpy.amax` for full documentation. 

3706 

3707 See Also 

3708 -------- 

3709 numpy.amax : equivalent function 

3710 

3711 """)) 

3712 

3713 

3714add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', 

3715 """ 

3716 a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True) 

3717 

3718 Returns the average of the array elements along given axis. 

3719 

3720 Refer to `numpy.mean` for full documentation. 

3721 

3722 See Also 

3723 -------- 

3724 numpy.mean : equivalent function 

3725 

3726 """)) 

3727 

3728 

3729add_newdoc('numpy.core.multiarray', 'ndarray', ('min', 

3730 """ 

3731 a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True) 

3732 

3733 Return the minimum along a given axis. 

3734 

3735 Refer to `numpy.amin` for full documentation. 

3736 

3737 See Also 

3738 -------- 

3739 numpy.amin : equivalent function 

3740 

3741 """)) 

3742 

3743 

3744add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', 

3745 """ 

3746 arr.newbyteorder(new_order='S', /) 

3747 

3748 Return the array with the same data viewed with a different byte order. 

3749 

3750 Equivalent to:: 

3751 

3752 arr.view(arr.dtype.newbytorder(new_order)) 

3753 

3754 Changes are also made in all fields and sub-arrays of the array data 

3755 type. 

3756 

3757 

3758 

3759 Parameters 

3760 ---------- 

3761 new_order : string, optional 

3762 Byte order to force; a value from the byte order specifications 

3763 below. `new_order` codes can be any of: 

3764 

3765 * 'S' - swap dtype from current to opposite endian 

3766 * {'<', 'little'} - little endian 

3767 * {'>', 'big'} - big endian 

3768 * {'=', 'native'} - native order, equivalent to `sys.byteorder` 

3769 * {'|', 'I'} - ignore (no change to byte order) 

3770 

3771 The default value ('S') results in swapping the current 

3772 byte order. 

3773 

3774 

3775 Returns 

3776 ------- 

3777 new_arr : array 

3778 New array object with the dtype reflecting given change to the 

3779 byte order. 

3780 

3781 """)) 

3782 

3783 

3784add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', 

3785 """ 

3786 a.nonzero() 

3787 

3788 Return the indices of the elements that are non-zero. 

3789 

3790 Refer to `numpy.nonzero` for full documentation. 

3791 

3792 See Also 

3793 -------- 

3794 numpy.nonzero : equivalent function 

3795 

3796 """)) 

3797 

3798 

3799add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', 

3800 """ 

3801 a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True) 

3802 

3803 Return the product of the array elements over the given axis 

3804 

3805 Refer to `numpy.prod` for full documentation. 

3806 

3807 See Also 

3808 -------- 

3809 numpy.prod : equivalent function 

3810 

3811 """)) 

3812 

3813 

3814add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', 

3815 """ 

3816 a.ptp(axis=None, out=None, keepdims=False) 

3817 

3818 Peak to peak (maximum - minimum) value along a given axis. 

3819 

3820 Refer to `numpy.ptp` for full documentation. 

3821 

3822 See Also 

3823 -------- 

3824 numpy.ptp : equivalent function 

3825 

3826 """)) 

3827 

3828 

3829add_newdoc('numpy.core.multiarray', 'ndarray', ('put', 

3830 """ 

3831 a.put(indices, values, mode='raise') 

3832 

3833 Set ``a.flat[n] = values[n]`` for all `n` in indices. 

3834 

3835 Refer to `numpy.put` for full documentation. 

3836 

3837 See Also 

3838 -------- 

3839 numpy.put : equivalent function 

3840 

3841 """)) 

3842 

3843 

3844add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', 

3845 """ 

3846 a.ravel([order]) 

3847 

3848 Return a flattened array. 

3849 

3850 Refer to `numpy.ravel` for full documentation. 

3851 

3852 See Also 

3853 -------- 

3854 numpy.ravel : equivalent function 

3855 

3856 ndarray.flat : a flat iterator on the array. 

3857 

3858 """)) 

3859 

3860 

3861add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', 

3862 """ 

3863 a.repeat(repeats, axis=None) 

3864 

3865 Repeat elements of an array. 

3866 

3867 Refer to `numpy.repeat` for full documentation. 

3868 

3869 See Also 

3870 -------- 

3871 numpy.repeat : equivalent function 

3872 

3873 """)) 

3874 

3875 

3876add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', 

3877 """ 

3878 a.reshape(shape, order='C') 

3879 

3880 Returns an array containing the same data with a new shape. 

3881 

3882 Refer to `numpy.reshape` for full documentation. 

3883 

3884 See Also 

3885 -------- 

3886 numpy.reshape : equivalent function 

3887 

3888 Notes 

3889 ----- 

3890 Unlike the free function `numpy.reshape`, this method on `ndarray` allows 

3891 the elements of the shape parameter to be passed in as separate arguments. 

3892 For example, ``a.reshape(10, 11)`` is equivalent to 

3893 ``a.reshape((10, 11))``. 

3894 

3895 """)) 

3896 

3897 

3898add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', 

3899 """ 

3900 a.resize(new_shape, refcheck=True) 

3901 

3902 Change shape and size of array in-place. 

3903 

3904 Parameters 

3905 ---------- 

3906 new_shape : tuple of ints, or `n` ints 

3907 Shape of resized array. 

3908 refcheck : bool, optional 

3909 If False, reference count will not be checked. Default is True. 

3910 

3911 Returns 

3912 ------- 

3913 None 

3914 

3915 Raises 

3916 ------ 

3917 ValueError 

3918 If `a` does not own its own data or references or views to it exist, 

3919 and the data memory must be changed. 

3920 PyPy only: will always raise if the data memory must be changed, since 

3921 there is no reliable way to determine if references or views to it 

3922 exist. 

3923 

3924 SystemError 

3925 If the `order` keyword argument is specified. This behaviour is a 

3926 bug in NumPy. 

3927 

3928 See Also 

3929 -------- 

3930 resize : Return a new array with the specified shape. 

3931 

3932 Notes 

3933 ----- 

3934 This reallocates space for the data area if necessary. 

3935 

3936 Only contiguous arrays (data elements consecutive in memory) can be 

3937 resized. 

3938 

3939 The purpose of the reference count check is to make sure you 

3940 do not use this array as a buffer for another Python object and then 

3941 reallocate the memory. However, reference counts can increase in 

3942 other ways so if you are sure that you have not shared the memory 

3943 for this array with another Python object, then you may safely set 

3944 `refcheck` to False. 

3945 

3946 Examples 

3947 -------- 

3948 Shrinking an array: array is flattened (in the order that the data are 

3949 stored in memory), resized, and reshaped: 

3950 

3951 >>> a = np.array([[0, 1], [2, 3]], order='C') 

3952 >>> a.resize((2, 1)) 

3953 >>> a 

3954 array([[0], 

3955 [1]]) 

3956 

3957 >>> a = np.array([[0, 1], [2, 3]], order='F') 

3958 >>> a.resize((2, 1)) 

3959 >>> a 

3960 array([[0], 

3961 [2]]) 

3962 

3963 Enlarging an array: as above, but missing entries are filled with zeros: 

3964 

3965 >>> b = np.array([[0, 1], [2, 3]]) 

3966 >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple 

3967 >>> b 

3968 array([[0, 1, 2], 

3969 [3, 0, 0]]) 

3970 

3971 Referencing an array prevents resizing... 

3972 

3973 >>> c = a 

3974 >>> a.resize((1, 1)) 

3975 Traceback (most recent call last): 

3976 ... 

3977 ValueError: cannot resize an array that references or is referenced ... 

3978 

3979 Unless `refcheck` is False: 

3980 

3981 >>> a.resize((1, 1), refcheck=False) 

3982 >>> a 

3983 array([[0]]) 

3984 >>> c 

3985 array([[0]]) 

3986 

3987 """)) 

3988 

3989 

3990add_newdoc('numpy.core.multiarray', 'ndarray', ('round', 

3991 """ 

3992 a.round(decimals=0, out=None) 

3993 

3994 Return `a` with each element rounded to the given number of decimals. 

3995 

3996 Refer to `numpy.around` for full documentation. 

3997 

3998 See Also 

3999 -------- 

4000 numpy.around : equivalent function 

4001 

4002 """)) 

4003 

4004 

4005add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', 

4006 """ 

4007 a.searchsorted(v, side='left', sorter=None) 

4008 

4009 Find indices where elements of v should be inserted in a to maintain order. 

4010 

4011 For full documentation, see `numpy.searchsorted` 

4012 

4013 See Also 

4014 -------- 

4015 numpy.searchsorted : equivalent function 

4016 

4017 """)) 

4018 

4019 

4020add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', 

4021 """ 

4022 a.setfield(val, dtype, offset=0) 

4023 

4024 Put a value into a specified place in a field defined by a data-type. 

4025 

4026 Place `val` into `a`'s field defined by `dtype` and beginning `offset` 

4027 bytes into the field. 

4028 

4029 Parameters 

4030 ---------- 

4031 val : object 

4032 Value to be placed in field. 

4033 dtype : dtype object 

4034 Data-type of the field in which to place `val`. 

4035 offset : int, optional 

4036 The number of bytes into the field at which to place `val`. 

4037 

4038 Returns 

4039 ------- 

4040 None 

4041 

4042 See Also 

4043 -------- 

4044 getfield 

4045 

4046 Examples 

4047 -------- 

4048 >>> x = np.eye(3) 

4049 >>> x.getfield(np.float64) 

4050 array([[1., 0., 0.], 

4051 [0., 1., 0.], 

4052 [0., 0., 1.]]) 

4053 >>> x.setfield(3, np.int32) 

4054 >>> x.getfield(np.int32) 

4055 array([[3, 3, 3], 

4056 [3, 3, 3], 

4057 [3, 3, 3]], dtype=int32) 

4058 >>> x 

4059 array([[1.0e+000, 1.5e-323, 1.5e-323], 

4060 [1.5e-323, 1.0e+000, 1.5e-323], 

4061 [1.5e-323, 1.5e-323, 1.0e+000]]) 

4062 >>> x.setfield(np.eye(3), np.int32) 

4063 >>> x 

4064 array([[1., 0., 0.], 

4065 [0., 1., 0.], 

4066 [0., 0., 1.]]) 

4067 

4068 """)) 

4069 

4070 

4071add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', 

4072 """ 

4073 a.setflags(write=None, align=None, uic=None) 

4074 

4075 Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, 

4076 respectively. 

4077 

4078 These Boolean-valued flags affect how numpy interprets the memory 

4079 area used by `a` (see Notes below). The ALIGNED flag can only 

4080 be set to True if the data is actually aligned according to the type. 

4081 The WRITEBACKIFCOPY and flag can never be set 

4082 to True. The flag WRITEABLE can only be set to True if the array owns its 

4083 own memory, or the ultimate owner of the memory exposes a writeable buffer 

4084 interface, or is a string. (The exception for string is made so that 

4085 unpickling can be done without copying memory.) 

4086 

4087 Parameters 

4088 ---------- 

4089 write : bool, optional 

4090 Describes whether or not `a` can be written to. 

4091 align : bool, optional 

4092 Describes whether or not `a` is aligned properly for its type. 

4093 uic : bool, optional 

4094 Describes whether or not `a` is a copy of another "base" array. 

4095 

4096 Notes 

4097 ----- 

4098 Array flags provide information about how the memory area used 

4099 for the array is to be interpreted. There are 7 Boolean flags 

4100 in use, only four of which can be changed by the user: 

4101 WRITEBACKIFCOPY, WRITEABLE, and ALIGNED. 

4102 

4103 WRITEABLE (W) the data area can be written to; 

4104 

4105 ALIGNED (A) the data and strides are aligned appropriately for the hardware 

4106 (as determined by the compiler); 

4107 

4108 WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced 

4109 by .base). When the C-API function PyArray_ResolveWritebackIfCopy is 

4110 called, the base array will be updated with the contents of this array. 

4111 

4112 All flags can be accessed using the single (upper case) letter as well 

4113 as the full name. 

4114 

4115 Examples 

4116 -------- 

4117 >>> y = np.array([[3, 1, 7], 

4118 ... [2, 0, 0], 

4119 ... [8, 5, 9]]) 

4120 >>> y 

4121 array([[3, 1, 7], 

4122 [2, 0, 0], 

4123 [8, 5, 9]]) 

4124 >>> y.flags 

4125 C_CONTIGUOUS : True 

4126 F_CONTIGUOUS : False 

4127 OWNDATA : True 

4128 WRITEABLE : True 

4129 ALIGNED : True 

4130 WRITEBACKIFCOPY : False 

4131 >>> y.setflags(write=0, align=0) 

4132 >>> y.flags 

4133 C_CONTIGUOUS : True 

4134 F_CONTIGUOUS : False 

4135 OWNDATA : True 

4136 WRITEABLE : False 

4137 ALIGNED : False 

4138 WRITEBACKIFCOPY : False 

4139 >>> y.setflags(uic=1) 

4140 Traceback (most recent call last): 

4141 File "<stdin>", line 1, in <module> 

4142 ValueError: cannot set WRITEBACKIFCOPY flag to True 

4143 

4144 """)) 

4145 

4146 

4147add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', 

4148 """ 

4149 a.sort(axis=-1, kind=None, order=None) 

4150 

4151 Sort an array in-place. Refer to `numpy.sort` for full documentation. 

4152 

4153 Parameters 

4154 ---------- 

4155 axis : int, optional 

4156 Axis along which to sort. Default is -1, which means sort along the 

4157 last axis. 

4158 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

4159 Sorting algorithm. The default is 'quicksort'. Note that both 'stable' 

4160 and 'mergesort' use timsort under the covers and, in general, the 

4161 actual implementation will vary with datatype. The 'mergesort' option 

4162 is retained for backwards compatibility. 

4163 

4164 .. versionchanged:: 1.15.0 

4165 The 'stable' option was added. 

4166 

4167 order : str or list of str, optional 

4168 When `a` is an array with fields defined, this argument specifies 

4169 which fields to compare first, second, etc. A single field can 

4170 be specified as a string, and not all fields need be specified, 

4171 but unspecified fields will still be used, in the order in which 

4172 they come up in the dtype, to break ties. 

4173 

4174 See Also 

4175 -------- 

4176 numpy.sort : Return a sorted copy of an array. 

4177 numpy.argsort : Indirect sort. 

4178 numpy.lexsort : Indirect stable sort on multiple keys. 

4179 numpy.searchsorted : Find elements in sorted array. 

4180 numpy.partition: Partial sort. 

4181 

4182 Notes 

4183 ----- 

4184 See `numpy.sort` for notes on the different sorting algorithms. 

4185 

4186 Examples 

4187 -------- 

4188 >>> a = np.array([[1,4], [3,1]]) 

4189 >>> a.sort(axis=1) 

4190 >>> a 

4191 array([[1, 4], 

4192 [1, 3]]) 

4193 >>> a.sort(axis=0) 

4194 >>> a 

4195 array([[1, 3], 

4196 [1, 4]]) 

4197 

4198 Use the `order` keyword to specify a field to use when sorting a 

4199 structured array: 

4200 

4201 >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) 

4202 >>> a.sort(order='y') 

4203 >>> a 

4204 array([(b'c', 1), (b'a', 2)], 

4205 dtype=[('x', 'S1'), ('y', '<i8')]) 

4206 

4207 """)) 

4208 

4209 

4210add_newdoc('numpy.core.multiarray', 'ndarray', ('partition', 

4211 """ 

4212 a.partition(kth, axis=-1, kind='introselect', order=None) 

4213 

4214 Rearranges the elements in the array in such a way that the value of the 

4215 element in kth position is in the position it would be in a sorted array. 

4216 All elements smaller than the kth element are moved before this element and 

4217 all equal or greater are moved behind it. The ordering of the elements in 

4218 the two partitions is undefined. 

4219 

4220 .. versionadded:: 1.8.0 

4221 

4222 Parameters 

4223 ---------- 

4224 kth : int or sequence of ints 

4225 Element index to partition by. The kth element value will be in its 

4226 final sorted position and all smaller elements will be moved before it 

4227 and all equal or greater elements behind it. 

4228 The order of all elements in the partitions is undefined. 

4229 If provided with a sequence of kth it will partition all elements 

4230 indexed by kth of them into their sorted position at once. 

4231 

4232 .. deprecated:: 1.22.0 

4233 Passing booleans as index is deprecated. 

4234 axis : int, optional 

4235 Axis along which to sort. Default is -1, which means sort along the 

4236 last axis. 

4237 kind : {'introselect'}, optional 

4238 Selection algorithm. Default is 'introselect'. 

4239 order : str or list of str, optional 

4240 When `a` is an array with fields defined, this argument specifies 

4241 which fields to compare first, second, etc. A single field can 

4242 be specified as a string, and not all fields need to be specified, 

4243 but unspecified fields will still be used, in the order in which 

4244 they come up in the dtype, to break ties. 

4245 

4246 See Also 

4247 -------- 

4248 numpy.partition : Return a partitioned copy of an array. 

4249 argpartition : Indirect partition. 

4250 sort : Full sort. 

4251 

4252 Notes 

4253 ----- 

4254 See ``np.partition`` for notes on the different algorithms. 

4255 

4256 Examples 

4257 -------- 

4258 >>> a = np.array([3, 4, 2, 1]) 

4259 >>> a.partition(3) 

4260 >>> a 

4261 array([2, 1, 3, 4]) 

4262 

4263 >>> a.partition((1, 3)) 

4264 >>> a 

4265 array([1, 2, 3, 4]) 

4266 """)) 

4267 

4268 

4269add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', 

4270 """ 

4271 a.squeeze(axis=None) 

4272 

4273 Remove axes of length one from `a`. 

4274 

4275 Refer to `numpy.squeeze` for full documentation. 

4276 

4277 See Also 

4278 -------- 

4279 numpy.squeeze : equivalent function 

4280 

4281 """)) 

4282 

4283 

4284add_newdoc('numpy.core.multiarray', 'ndarray', ('std', 

4285 """ 

4286 a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) 

4287 

4288 Returns the standard deviation of the array elements along given axis. 

4289 

4290 Refer to `numpy.std` for full documentation. 

4291 

4292 See Also 

4293 -------- 

4294 numpy.std : equivalent function 

4295 

4296 """)) 

4297 

4298 

4299add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', 

4300 """ 

4301 a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True) 

4302 

4303 Return the sum of the array elements over the given axis. 

4304 

4305 Refer to `numpy.sum` for full documentation. 

4306 

4307 See Also 

4308 -------- 

4309 numpy.sum : equivalent function 

4310 

4311 """)) 

4312 

4313 

4314add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', 

4315 """ 

4316 a.swapaxes(axis1, axis2) 

4317 

4318 Return a view of the array with `axis1` and `axis2` interchanged. 

4319 

4320 Refer to `numpy.swapaxes` for full documentation. 

4321 

4322 See Also 

4323 -------- 

4324 numpy.swapaxes : equivalent function 

4325 

4326 """)) 

4327 

4328 

4329add_newdoc('numpy.core.multiarray', 'ndarray', ('take', 

4330 """ 

4331 a.take(indices, axis=None, out=None, mode='raise') 

4332 

4333 Return an array formed from the elements of `a` at the given indices. 

4334 

4335 Refer to `numpy.take` for full documentation. 

4336 

4337 See Also 

4338 -------- 

4339 numpy.take : equivalent function 

4340 

4341 """)) 

4342 

4343 

4344add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', 

4345 """ 

4346 a.tofile(fid, sep="", format="%s") 

4347 

4348 Write array to a file as text or binary (default). 

4349 

4350 Data is always written in 'C' order, independent of the order of `a`. 

4351 The data produced by this method can be recovered using the function 

4352 fromfile(). 

4353 

4354 Parameters 

4355 ---------- 

4356 fid : file or str or Path 

4357 An open file object, or a string containing a filename. 

4358 

4359 .. versionchanged:: 1.17.0 

4360 `pathlib.Path` objects are now accepted. 

4361 

4362 sep : str 

4363 Separator between array items for text output. 

4364 If "" (empty), a binary file is written, equivalent to 

4365 ``file.write(a.tobytes())``. 

4366 format : str 

4367 Format string for text file output. 

4368 Each entry in the array is formatted to text by first converting 

4369 it to the closest Python type, and then using "format" % item. 

4370 

4371 Notes 

4372 ----- 

4373 This is a convenience function for quick storage of array data. 

4374 Information on endianness and precision is lost, so this method is not a 

4375 good choice for files intended to archive data or transport data between 

4376 machines with different endianness. Some of these problems can be overcome 

4377 by outputting the data as text files, at the expense of speed and file 

4378 size. 

4379 

4380 When fid is a file object, array contents are directly written to the 

4381 file, bypassing the file object's ``write`` method. As a result, tofile 

4382 cannot be used with files objects supporting compression (e.g., GzipFile) 

4383 or file-like objects that do not support ``fileno()`` (e.g., BytesIO). 

4384 

4385 """)) 

4386 

4387 

4388add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', 

4389 """ 

4390 a.tolist() 

4391 

4392 Return the array as an ``a.ndim``-levels deep nested list of Python scalars. 

4393 

4394 Return a copy of the array data as a (nested) Python list. 

4395 Data items are converted to the nearest compatible builtin Python type, via 

4396 the `~numpy.ndarray.item` function. 

4397 

4398 If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will 

4399 not be a list at all, but a simple Python scalar. 

4400 

4401 Parameters 

4402 ---------- 

4403 none 

4404 

4405 Returns 

4406 ------- 

4407 y : object, or list of object, or list of list of object, or ... 

4408 The possibly nested list of array elements. 

4409 

4410 Notes 

4411 ----- 

4412 The array may be recreated via ``a = np.array(a.tolist())``, although this 

4413 may sometimes lose precision. 

4414 

4415 Examples 

4416 -------- 

4417 For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``, 

4418 except that ``tolist`` changes numpy scalars to Python scalars: 

4419 

4420 >>> a = np.uint32([1, 2]) 

4421 >>> a_list = list(a) 

4422 >>> a_list 

4423 [1, 2] 

4424 >>> type(a_list[0]) 

4425 <class 'numpy.uint32'> 

4426 >>> a_tolist = a.tolist() 

4427 >>> a_tolist 

4428 [1, 2] 

4429 >>> type(a_tolist[0]) 

4430 <class 'int'> 

4431 

4432 Additionally, for a 2D array, ``tolist`` applies recursively: 

4433 

4434 >>> a = np.array([[1, 2], [3, 4]]) 

4435 >>> list(a) 

4436 [array([1, 2]), array([3, 4])] 

4437 >>> a.tolist() 

4438 [[1, 2], [3, 4]] 

4439 

4440 The base case for this recursion is a 0D array: 

4441 

4442 >>> a = np.array(1) 

4443 >>> list(a) 

4444 Traceback (most recent call last): 

4445 ... 

4446 TypeError: iteration over a 0-d array 

4447 >>> a.tolist() 

4448 1 

4449 """)) 

4450 

4451 

4452add_newdoc('numpy.core.multiarray', 'ndarray', ('tobytes', """ 

4453 a.tobytes(order='C') 

4454 

4455 Construct Python bytes containing the raw data bytes in the array. 

4456 

4457 Constructs Python bytes showing a copy of the raw contents of 

4458 data memory. The bytes object is produced in C-order by default. 

4459 This behavior is controlled by the ``order`` parameter. 

4460 

4461 .. versionadded:: 1.9.0 

4462 

4463 Parameters 

4464 ---------- 

4465 order : {'C', 'F', 'A'}, optional 

4466 Controls the memory layout of the bytes object. 'C' means C-order, 

4467 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is 

4468 Fortran contiguous, 'C' otherwise. Default is 'C'. 

4469 

4470 Returns 

4471 ------- 

4472 s : bytes 

4473 Python bytes exhibiting a copy of `a`'s raw data. 

4474 

4475 See also 

4476 -------- 

4477 frombuffer 

4478 Inverse of this operation, construct a 1-dimensional array from Python 

4479 bytes. 

4480 

4481 Examples 

4482 -------- 

4483 >>> x = np.array([[0, 1], [2, 3]], dtype='<u2') 

4484 >>> x.tobytes() 

4485 b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00' 

4486 >>> x.tobytes('C') == x.tobytes() 

4487 True 

4488 >>> x.tobytes('F') 

4489 b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00' 

4490 

4491 """)) 

4492 

4493 

4494add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', r""" 

4495 a.tostring(order='C') 

4496 

4497 A compatibility alias for `tobytes`, with exactly the same behavior. 

4498 

4499 Despite its name, it returns `bytes` not `str`\ s. 

4500 

4501 .. deprecated:: 1.19.0 

4502 """)) 

4503 

4504 

4505add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', 

4506 """ 

4507 a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) 

4508 

4509 Return the sum along diagonals of the array. 

4510 

4511 Refer to `numpy.trace` for full documentation. 

4512 

4513 See Also 

4514 -------- 

4515 numpy.trace : equivalent function 

4516 

4517 """)) 

4518 

4519 

4520add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', 

4521 """ 

4522 a.transpose(*axes) 

4523 

4524 Returns a view of the array with axes transposed. 

4525 

4526 Refer to `numpy.transpose` for full documentation. 

4527 

4528 Parameters 

4529 ---------- 

4530 axes : None, tuple of ints, or `n` ints 

4531 

4532 * None or no argument: reverses the order of the axes. 

4533 

4534 * tuple of ints: `i` in the `j`-th place in the tuple means that the 

4535 array's `i`-th axis becomes the transposed array's `j`-th axis. 

4536 

4537 * `n` ints: same as an n-tuple of the same ints (this form is 

4538 intended simply as a "convenience" alternative to the tuple form). 

4539 

4540 Returns 

4541 ------- 

4542 p : ndarray 

4543 View of the array with its axes suitably permuted. 

4544 

4545 See Also 

4546 -------- 

4547 transpose : Equivalent function. 

4548 ndarray.T : Array property returning the array transposed. 

4549 ndarray.reshape : Give a new shape to an array without changing its data. 

4550 

4551 Examples 

4552 -------- 

4553 >>> a = np.array([[1, 2], [3, 4]]) 

4554 >>> a 

4555 array([[1, 2], 

4556 [3, 4]]) 

4557 >>> a.transpose() 

4558 array([[1, 3], 

4559 [2, 4]]) 

4560 >>> a.transpose((1, 0)) 

4561 array([[1, 3], 

4562 [2, 4]]) 

4563 >>> a.transpose(1, 0) 

4564 array([[1, 3], 

4565 [2, 4]]) 

4566 

4567 >>> a = np.array([1, 2, 3, 4]) 

4568 >>> a 

4569 array([1, 2, 3, 4]) 

4570 >>> a.transpose() 

4571 array([1, 2, 3, 4]) 

4572 

4573 """)) 

4574 

4575 

4576add_newdoc('numpy.core.multiarray', 'ndarray', ('var', 

4577 """ 

4578 a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) 

4579 

4580 Returns the variance of the array elements, along given axis. 

4581 

4582 Refer to `numpy.var` for full documentation. 

4583 

4584 See Also 

4585 -------- 

4586 numpy.var : equivalent function 

4587 

4588 """)) 

4589 

4590 

4591add_newdoc('numpy.core.multiarray', 'ndarray', ('view', 

4592 """ 

4593 a.view([dtype][, type]) 

4594 

4595 New view of array with the same data. 

4596 

4597 .. note:: 

4598 Passing None for ``dtype`` is different from omitting the parameter, 

4599 since the former invokes ``dtype(None)`` which is an alias for 

4600 ``dtype('float_')``. 

4601 

4602 Parameters 

4603 ---------- 

4604 dtype : data-type or ndarray sub-class, optional 

4605 Data-type descriptor of the returned view, e.g., float32 or int16. 

4606 Omitting it results in the view having the same data-type as `a`. 

4607 This argument can also be specified as an ndarray sub-class, which 

4608 then specifies the type of the returned object (this is equivalent to 

4609 setting the ``type`` parameter). 

4610 type : Python type, optional 

4611 Type of the returned view, e.g., ndarray or matrix. Again, omission 

4612 of the parameter results in type preservation. 

4613 

4614 Notes 

4615 ----- 

4616 ``a.view()`` is used two different ways: 

4617 

4618 ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view 

4619 of the array's memory with a different data-type. This can cause a 

4620 reinterpretation of the bytes of memory. 

4621 

4622 ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just 

4623 returns an instance of `ndarray_subclass` that looks at the same array 

4624 (same shape, dtype, etc.) This does not cause a reinterpretation of the 

4625 memory. 

4626 

4627 For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of 

4628 bytes per entry than the previous dtype (for example, converting a regular 

4629 array to a structured array), then the last axis of ``a`` must be 

4630 contiguous. This axis will be resized in the result. 

4631 

4632 .. versionchanged:: 1.23.0 

4633 Only the last axis needs to be contiguous. Previously, the entire array 

4634 had to be C-contiguous. 

4635 

4636 Examples 

4637 -------- 

4638 >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) 

4639 

4640 Viewing array data using a different type and dtype: 

4641 

4642 >>> y = x.view(dtype=np.int16, type=np.matrix) 

4643 >>> y 

4644 matrix([[513]], dtype=int16) 

4645 >>> print(type(y)) 

4646 <class 'numpy.matrix'> 

4647 

4648 Creating a view on a structured array so it can be used in calculations 

4649 

4650 >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) 

4651 >>> xv = x.view(dtype=np.int8).reshape(-1,2) 

4652 >>> xv 

4653 array([[1, 2], 

4654 [3, 4]], dtype=int8) 

4655 >>> xv.mean(0) 

4656 array([2., 3.]) 

4657 

4658 Making changes to the view changes the underlying array 

4659 

4660 >>> xv[0,1] = 20 

4661 >>> x 

4662 array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')]) 

4663 

4664 Using a view to convert an array to a recarray: 

4665 

4666 >>> z = x.view(np.recarray) 

4667 >>> z.a 

4668 array([1, 3], dtype=int8) 

4669 

4670 Views share data: 

4671 

4672 >>> x[0] = (9, 10) 

4673 >>> z[0] 

4674 (9, 10) 

4675 

4676 Views that change the dtype size (bytes per entry) should normally be 

4677 avoided on arrays defined by slices, transposes, fortran-ordering, etc.: 

4678 

4679 >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16) 

4680 >>> y = x[:, ::2] 

4681 >>> y 

4682 array([[1, 3], 

4683 [4, 6]], dtype=int16) 

4684 >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) 

4685 Traceback (most recent call last): 

4686 ... 

4687 ValueError: To change to a dtype of a different size, the last axis must be contiguous 

4688 >>> z = y.copy() 

4689 >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) 

4690 array([[(1, 3)], 

4691 [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')]) 

4692 

4693 However, views that change dtype are totally fine for arrays with a 

4694 contiguous last axis, even if the rest of the axes are not C-contiguous: 

4695 

4696 >>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4) 

4697 >>> x.transpose(1, 0, 2).view(np.int16) 

4698 array([[[ 256, 770], 

4699 [3340, 3854]], 

4700 <BLANKLINE> 

4701 [[1284, 1798], 

4702 [4368, 4882]], 

4703 <BLANKLINE> 

4704 [[2312, 2826], 

4705 [5396, 5910]]], dtype=int16) 

4706 

4707 """)) 

4708 

4709 

4710############################################################################## 

4711# 

4712# umath functions 

4713# 

4714############################################################################## 

4715 

4716add_newdoc('numpy.core.umath', 'frompyfunc', 

4717 """ 

4718 frompyfunc(func, /, nin, nout, *[, identity]) 

4719 

4720 Takes an arbitrary Python function and returns a NumPy ufunc. 

4721 

4722 Can be used, for example, to add broadcasting to a built-in Python 

4723 function (see Examples section). 

4724 

4725 Parameters 

4726 ---------- 

4727 func : Python function object 

4728 An arbitrary Python function. 

4729 nin : int 

4730 The number of input arguments. 

4731 nout : int 

4732 The number of objects returned by `func`. 

4733 identity : object, optional 

4734 The value to use for the `~numpy.ufunc.identity` attribute of the resulting 

4735 object. If specified, this is equivalent to setting the underlying 

4736 C ``identity`` field to ``PyUFunc_IdentityValue``. 

4737 If omitted, the identity is set to ``PyUFunc_None``. Note that this is 

4738 _not_ equivalent to setting the identity to ``None``, which implies the 

4739 operation is reorderable. 

4740 

4741 Returns 

4742 ------- 

4743 out : ufunc 

4744 Returns a NumPy universal function (``ufunc``) object. 

4745 

4746 See Also 

4747 -------- 

4748 vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy. 

4749 

4750 Notes 

4751 ----- 

4752 The returned ufunc always returns PyObject arrays. 

4753 

4754 Examples 

4755 -------- 

4756 Use frompyfunc to add broadcasting to the Python function ``oct``: 

4757 

4758 >>> oct_array = np.frompyfunc(oct, 1, 1) 

4759 >>> oct_array(np.array((10, 30, 100))) 

4760 array(['0o12', '0o36', '0o144'], dtype=object) 

4761 >>> np.array((oct(10), oct(30), oct(100))) # for comparison 

4762 array(['0o12', '0o36', '0o144'], dtype='<U5') 

4763 

4764 """) 

4765 

4766add_newdoc('numpy.core.umath', 'geterrobj', 

4767 """ 

4768 geterrobj() 

4769 

4770 Return the current object that defines floating-point error handling. 

4771 

4772 The error object contains all information that defines the error handling 

4773 behavior in NumPy. `geterrobj` is used internally by the other 

4774 functions that get and set error handling behavior (`geterr`, `seterr`, 

4775 `geterrcall`, `seterrcall`). 

4776 

4777 Returns 

4778 ------- 

4779 errobj : list 

4780 The error object, a list containing three elements: 

4781 [internal numpy buffer size, error mask, error callback function]. 

4782 

4783 The error mask is a single integer that holds the treatment information 

4784 on all four floating point errors. The information for each error type 

4785 is contained in three bits of the integer. If we print it in base 8, we 

4786 can see what treatment is set for "invalid", "under", "over", and 

4787 "divide" (in that order). The printed string can be interpreted with 

4788 

4789 * 0 : 'ignore' 

4790 * 1 : 'warn' 

4791 * 2 : 'raise' 

4792 * 3 : 'call' 

4793 * 4 : 'print' 

4794 * 5 : 'log' 

4795 

4796 See Also 

4797 -------- 

4798 seterrobj, seterr, geterr, seterrcall, geterrcall 

4799 getbufsize, setbufsize 

4800 

4801 Notes 

4802 ----- 

4803 For complete documentation of the types of floating-point exceptions and 

4804 treatment options, see `seterr`. 

4805 

4806 Examples 

4807 -------- 

4808 >>> np.geterrobj() # first get the defaults 

4809 [8192, 521, None] 

4810 

4811 >>> def err_handler(type, flag): 

4812 ... print("Floating point error (%s), with flag %s" % (type, flag)) 

4813 ... 

4814 >>> old_bufsize = np.setbufsize(20000) 

4815 >>> old_err = np.seterr(divide='raise') 

4816 >>> old_handler = np.seterrcall(err_handler) 

4817 >>> np.geterrobj() 

4818 [8192, 521, <function err_handler at 0x91dcaac>] 

4819 

4820 >>> old_err = np.seterr(all='ignore') 

4821 >>> np.base_repr(np.geterrobj()[1], 8) 

4822 '0' 

4823 >>> old_err = np.seterr(divide='warn', over='log', under='call', 

4824 ... invalid='print') 

4825 >>> np.base_repr(np.geterrobj()[1], 8) 

4826 '4351' 

4827 

4828 """) 

4829 

4830add_newdoc('numpy.core.umath', 'seterrobj', 

4831 """ 

4832 seterrobj(errobj, /) 

4833 

4834 Set the object that defines floating-point error handling. 

4835 

4836 The error object contains all information that defines the error handling 

4837 behavior in NumPy. `seterrobj` is used internally by the other 

4838 functions that set error handling behavior (`seterr`, `seterrcall`). 

4839 

4840 Parameters 

4841 ---------- 

4842 errobj : list 

4843 The error object, a list containing three elements: 

4844 [internal numpy buffer size, error mask, error callback function]. 

4845 

4846 The error mask is a single integer that holds the treatment information 

4847 on all four floating point errors. The information for each error type 

4848 is contained in three bits of the integer. If we print it in base 8, we 

4849 can see what treatment is set for "invalid", "under", "over", and 

4850 "divide" (in that order). The printed string can be interpreted with 

4851 

4852 * 0 : 'ignore' 

4853 * 1 : 'warn' 

4854 * 2 : 'raise' 

4855 * 3 : 'call' 

4856 * 4 : 'print' 

4857 * 5 : 'log' 

4858 

4859 See Also 

4860 -------- 

4861 geterrobj, seterr, geterr, seterrcall, geterrcall 

4862 getbufsize, setbufsize 

4863 

4864 Notes 

4865 ----- 

4866 For complete documentation of the types of floating-point exceptions and 

4867 treatment options, see `seterr`. 

4868 

4869 Examples 

4870 -------- 

4871 >>> old_errobj = np.geterrobj() # first get the defaults 

4872 >>> old_errobj 

4873 [8192, 521, None] 

4874 

4875 >>> def err_handler(type, flag): 

4876 ... print("Floating point error (%s), with flag %s" % (type, flag)) 

4877 ... 

4878 >>> new_errobj = [20000, 12, err_handler] 

4879 >>> np.seterrobj(new_errobj) 

4880 >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn') 

4881 '14' 

4882 >>> np.geterr() 

4883 {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'} 

4884 >>> np.geterrcall() is err_handler 

4885 True 

4886 

4887 """) 

4888 

4889 

4890############################################################################## 

4891# 

4892# compiled_base functions 

4893# 

4894############################################################################## 

4895 

4896add_newdoc('numpy.core.multiarray', 'add_docstring', 

4897 """ 

4898 add_docstring(obj, docstring) 

4899 

4900 Add a docstring to a built-in obj if possible. 

4901 If the obj already has a docstring raise a RuntimeError 

4902 If this routine does not know how to add a docstring to the object 

4903 raise a TypeError 

4904 """) 

4905 

4906add_newdoc('numpy.core.umath', '_add_newdoc_ufunc', 

4907 """ 

4908 add_ufunc_docstring(ufunc, new_docstring) 

4909 

4910 Replace the docstring for a ufunc with new_docstring. 

4911 This method will only work if the current docstring for 

4912 the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.) 

4913 

4914 Parameters 

4915 ---------- 

4916 ufunc : numpy.ufunc 

4917 A ufunc whose current doc is NULL. 

4918 new_docstring : string 

4919 The new docstring for the ufunc. 

4920 

4921 Notes 

4922 ----- 

4923 This method allocates memory for new_docstring on 

4924 the heap. Technically this creates a mempory leak, since this 

4925 memory will not be reclaimed until the end of the program 

4926 even if the ufunc itself is removed. However this will only 

4927 be a problem if the user is repeatedly creating ufuncs with 

4928 no documentation, adding documentation via add_newdoc_ufunc, 

4929 and then throwing away the ufunc. 

4930 """) 

4931 

4932add_newdoc('numpy.core.multiarray', 'get_handler_name', 

4933 """ 

4934 get_handler_name(a: ndarray) -> str,None 

4935 

4936 Return the name of the memory handler used by `a`. If not provided, return 

4937 the name of the memory handler that will be used to allocate data for the 

4938 next `ndarray` in this context. May return None if `a` does not own its 

4939 memory, in which case you can traverse ``a.base`` for a memory handler. 

4940 """) 

4941 

4942add_newdoc('numpy.core.multiarray', 'get_handler_version', 

4943 """ 

4944 get_handler_version(a: ndarray) -> int,None 

4945 

4946 Return the version of the memory handler used by `a`. If not provided, 

4947 return the version of the memory handler that will be used to allocate data 

4948 for the next `ndarray` in this context. May return None if `a` does not own 

4949 its memory, in which case you can traverse ``a.base`` for a memory handler. 

4950 """) 

4951 

4952add_newdoc('numpy.core.multiarray', '_get_madvise_hugepage', 

4953 """ 

4954 _get_madvise_hugepage() -> bool 

4955 

4956 Get use of ``madvise (2)`` MADV_HUGEPAGE support when 

4957 allocating the array data. Returns the currently set value. 

4958 See `global_state` for more information. 

4959 """) 

4960 

4961add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage', 

4962 """ 

4963 _set_madvise_hugepage(enabled: bool) -> bool 

4964 

4965 Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when 

4966 allocating the array data. Returns the previously set value. 

4967 See `global_state` for more information. 

4968 """) 

4969 

4970add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g', 

4971 """ 

4972 format_float_OSprintf_g(val, precision) 

4973 

4974 Print a floating point scalar using the system's printf function, 

4975 equivalent to: 

4976 

4977 printf("%.*g", precision, val); 

4978 

4979 for half/float/double, or replacing 'g' by 'Lg' for longdouble. This 

4980 method is designed to help cross-validate the format_float_* methods. 

4981 

4982 Parameters 

4983 ---------- 

4984 val : python float or numpy floating scalar 

4985 Value to format. 

4986 

4987 precision : non-negative integer, optional 

4988 Precision given to printf. 

4989 

4990 Returns 

4991 ------- 

4992 rep : string 

4993 The string representation of the floating point value 

4994 

4995 See Also 

4996 -------- 

4997 format_float_scientific 

4998 format_float_positional 

4999 """) 

5000 

5001 

5002############################################################################## 

5003# 

5004# Documentation for ufunc attributes and methods 

5005# 

5006############################################################################## 

5007 

5008 

5009############################################################################## 

5010# 

5011# ufunc object 

5012# 

5013############################################################################## 

5014 

5015add_newdoc('numpy.core', 'ufunc', 

5016 """ 

5017 Functions that operate element by element on whole arrays. 

5018 

5019 To see the documentation for a specific ufunc, use `info`. For 

5020 example, ``np.info(np.sin)``. Because ufuncs are written in C 

5021 (for speed) and linked into Python with NumPy's ufunc facility, 

5022 Python's help() function finds this page whenever help() is called 

5023 on a ufunc. 

5024 

5025 A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`. 

5026 

5027 **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)`` 

5028 

5029 Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. 

5030 

5031 The broadcasting rules are: 

5032 

5033 * Dimensions of length 1 may be prepended to either array. 

5034 * Arrays may be repeated along dimensions of length 1. 

5035 

5036 Parameters 

5037 ---------- 

5038 *x : array_like 

5039 Input arrays. 

5040 out : ndarray, None, or tuple of ndarray and None, optional 

5041 Alternate array object(s) in which to put the result; if provided, it 

5042 must have a shape that the inputs broadcast to. A tuple of arrays 

5043 (possible only as a keyword argument) must have length equal to the 

5044 number of outputs; use None for uninitialized outputs to be 

5045 allocated by the ufunc. 

5046 where : array_like, optional 

5047 This condition is broadcast over the input. At locations where the 

5048 condition is True, the `out` array will be set to the ufunc result. 

5049 Elsewhere, the `out` array will retain its original value. 

5050 Note that if an uninitialized `out` array is created via the default 

5051 ``out=None``, locations within it where the condition is False will 

5052 remain uninitialized. 

5053 **kwargs 

5054 For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. 

5055 

5056 Returns 

5057 ------- 

5058 r : ndarray or tuple of ndarray 

5059 `r` will have the shape that the arrays in `x` broadcast to; if `out` is 

5060 provided, it will be returned. If not, `r` will be allocated and 

5061 may contain uninitialized values. If the function has more than one 

5062 output, then the result will be a tuple of arrays. 

5063 

5064 """) 

5065 

5066 

5067############################################################################## 

5068# 

5069# ufunc attributes 

5070# 

5071############################################################################## 

5072 

5073add_newdoc('numpy.core', 'ufunc', ('identity', 

5074 """ 

5075 The identity value. 

5076 

5077 Data attribute containing the identity element for the ufunc, if it has one. 

5078 If it does not, the attribute value is None. 

5079 

5080 Examples 

5081 -------- 

5082 >>> np.add.identity 

5083 0 

5084 >>> np.multiply.identity 

5085 1 

5086 >>> np.power.identity 

5087 1 

5088 >>> print(np.exp.identity) 

5089 None 

5090 """)) 

5091 

5092add_newdoc('numpy.core', 'ufunc', ('nargs', 

5093 """ 

5094 The number of arguments. 

5095 

5096 Data attribute containing the number of arguments the ufunc takes, including 

5097 optional ones. 

5098 

5099 Notes 

5100 ----- 

5101 Typically this value will be one more than what you might expect because all 

5102 ufuncs take the optional "out" argument. 

5103 

5104 Examples 

5105 -------- 

5106 >>> np.add.nargs 

5107 3 

5108 >>> np.multiply.nargs 

5109 3 

5110 >>> np.power.nargs 

5111 3 

5112 >>> np.exp.nargs 

5113 2 

5114 """)) 

5115 

5116add_newdoc('numpy.core', 'ufunc', ('nin', 

5117 """ 

5118 The number of inputs. 

5119 

5120 Data attribute containing the number of arguments the ufunc treats as input. 

5121 

5122 Examples 

5123 -------- 

5124 >>> np.add.nin 

5125 2 

5126 >>> np.multiply.nin 

5127 2 

5128 >>> np.power.nin 

5129 2 

5130 >>> np.exp.nin 

5131 1 

5132 """)) 

5133 

5134add_newdoc('numpy.core', 'ufunc', ('nout', 

5135 """ 

5136 The number of outputs. 

5137 

5138 Data attribute containing the number of arguments the ufunc treats as output. 

5139 

5140 Notes 

5141 ----- 

5142 Since all ufuncs can take output arguments, this will always be (at least) 1. 

5143 

5144 Examples 

5145 -------- 

5146 >>> np.add.nout 

5147 1 

5148 >>> np.multiply.nout 

5149 1 

5150 >>> np.power.nout 

5151 1 

5152 >>> np.exp.nout 

5153 1 

5154 

5155 """)) 

5156 

5157add_newdoc('numpy.core', 'ufunc', ('ntypes', 

5158 """ 

5159 The number of types. 

5160 

5161 The number of numerical NumPy types - of which there are 18 total - on which 

5162 the ufunc can operate. 

5163 

5164 See Also 

5165 -------- 

5166 numpy.ufunc.types 

5167 

5168 Examples 

5169 -------- 

5170 >>> np.add.ntypes 

5171 18 

5172 >>> np.multiply.ntypes 

5173 18 

5174 >>> np.power.ntypes 

5175 17 

5176 >>> np.exp.ntypes 

5177 7 

5178 >>> np.remainder.ntypes 

5179 14 

5180 

5181 """)) 

5182 

5183add_newdoc('numpy.core', 'ufunc', ('types', 

5184 """ 

5185 Returns a list with types grouped input->output. 

5186 

5187 Data attribute listing the data-type "Domain-Range" groupings the ufunc can 

5188 deliver. The data-types are given using the character codes. 

5189 

5190 See Also 

5191 -------- 

5192 numpy.ufunc.ntypes 

5193 

5194 Examples 

5195 -------- 

5196 >>> np.add.types 

5197 ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 

5198 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 

5199 'GG->G', 'OO->O'] 

5200 

5201 >>> np.multiply.types 

5202 ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 

5203 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 

5204 'GG->G', 'OO->O'] 

5205 

5206 >>> np.power.types 

5207 ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 

5208 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G', 

5209 'OO->O'] 

5210 

5211 >>> np.exp.types 

5212 ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O'] 

5213 

5214 >>> np.remainder.types 

5215 ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 

5216 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O'] 

5217 

5218 """)) 

5219 

5220add_newdoc('numpy.core', 'ufunc', ('signature', 

5221 """ 

5222 Definition of the core elements a generalized ufunc operates on. 

5223 

5224 The signature determines how the dimensions of each input/output array 

5225 are split into core and loop dimensions: 

5226 

5227 1. Each dimension in the signature is matched to a dimension of the 

5228 corresponding passed-in array, starting from the end of the shape tuple. 

5229 2. Core dimensions assigned to the same label in the signature must have 

5230 exactly matching sizes, no broadcasting is performed. 

5231 3. The core dimensions are removed from all inputs and the remaining 

5232 dimensions are broadcast together, defining the loop dimensions. 

5233 

5234 Notes 

5235 ----- 

5236 Generalized ufuncs are used internally in many linalg functions, and in 

5237 the testing suite; the examples below are taken from these. 

5238 For ufuncs that operate on scalars, the signature is None, which is 

5239 equivalent to '()' for every argument. 

5240 

5241 Examples 

5242 -------- 

5243 >>> np.core.umath_tests.matrix_multiply.signature 

5244 '(m,n),(n,p)->(m,p)' 

5245 >>> np.linalg._umath_linalg.det.signature 

5246 '(m,m)->()' 

5247 >>> np.add.signature is None 

5248 True # equivalent to '(),()->()' 

5249 """)) 

5250 

5251############################################################################## 

5252# 

5253# ufunc methods 

5254# 

5255############################################################################## 

5256 

5257add_newdoc('numpy.core', 'ufunc', ('reduce', 

5258 """ 

5259 reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True) 

5260 

5261 Reduces `array`'s dimension by one, by applying ufunc along one axis. 

5262 

5263 Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then 

5264 :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` = 

5265 the result of iterating `j` over :math:`range(N_i)`, cumulatively applying 

5266 ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`. 

5267 For a one-dimensional array, reduce produces results equivalent to: 

5268 :: 

5269 

5270 r = op.identity # op = ufunc 

5271 for i in range(len(A)): 

5272 r = op(r, A[i]) 

5273 return r 

5274 

5275 For example, add.reduce() is equivalent to sum(). 

5276 

5277 Parameters 

5278 ---------- 

5279 array : array_like 

5280 The array to act on. 

5281 axis : None or int or tuple of ints, optional 

5282 Axis or axes along which a reduction is performed. 

5283 The default (`axis` = 0) is perform a reduction over the first 

5284 dimension of the input array. `axis` may be negative, in 

5285 which case it counts from the last to the first axis. 

5286 

5287 .. versionadded:: 1.7.0 

5288 

5289 If this is None, a reduction is performed over all the axes. 

5290 If this is a tuple of ints, a reduction is performed on multiple 

5291 axes, instead of a single axis or all the axes as before. 

5292 

5293 For operations which are either not commutative or not associative, 

5294 doing a reduction over multiple axes is not well-defined. The 

5295 ufuncs do not currently raise an exception in this case, but will 

5296 likely do so in the future. 

5297 dtype : data-type code, optional 

5298 The type used to represent the intermediate results. Defaults 

5299 to the data-type of the output array if this is provided, or 

5300 the data-type of the input array if no output array is provided. 

5301 out : ndarray, None, or tuple of ndarray and None, optional 

5302 A location into which the result is stored. If not provided or None, 

5303 a freshly-allocated array is returned. For consistency with 

5304 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a 

5305 1-element tuple. 

5306 

5307 .. versionchanged:: 1.13.0 

5308 Tuples are allowed for keyword argument. 

5309 keepdims : bool, optional 

5310 If this is set to True, the axes which are reduced are left 

5311 in the result as dimensions with size one. With this option, 

5312 the result will broadcast correctly against the original `array`. 

5313 

5314 .. versionadded:: 1.7.0 

5315 initial : scalar, optional 

5316 The value with which to start the reduction. 

5317 If the ufunc has no identity or the dtype is object, this defaults 

5318 to None - otherwise it defaults to ufunc.identity. 

5319 If ``None`` is given, the first element of the reduction is used, 

5320 and an error is thrown if the reduction is empty. 

5321 

5322 .. versionadded:: 1.15.0 

5323 

5324 where : array_like of bool, optional 

5325 A boolean array which is broadcasted to match the dimensions 

5326 of `array`, and selects elements to include in the reduction. Note 

5327 that for ufuncs like ``minimum`` that do not have an identity 

5328 defined, one has to pass in also ``initial``. 

5329 

5330 .. versionadded:: 1.17.0 

5331 

5332 Returns 

5333 ------- 

5334 r : ndarray 

5335 The reduced array. If `out` was supplied, `r` is a reference to it. 

5336 

5337 Examples 

5338 -------- 

5339 >>> np.multiply.reduce([2,3,5]) 

5340 30 

5341 

5342 A multi-dimensional array example: 

5343 

5344 >>> X = np.arange(8).reshape((2,2,2)) 

5345 >>> X 

5346 array([[[0, 1], 

5347 [2, 3]], 

5348 [[4, 5], 

5349 [6, 7]]]) 

5350 >>> np.add.reduce(X, 0) 

5351 array([[ 4, 6], 

5352 [ 8, 10]]) 

5353 >>> np.add.reduce(X) # confirm: default axis value is 0 

5354 array([[ 4, 6], 

5355 [ 8, 10]]) 

5356 >>> np.add.reduce(X, 1) 

5357 array([[ 2, 4], 

5358 [10, 12]]) 

5359 >>> np.add.reduce(X, 2) 

5360 array([[ 1, 5], 

5361 [ 9, 13]]) 

5362 

5363 You can use the ``initial`` keyword argument to initialize the reduction 

5364 with a different value, and ``where`` to select specific elements to include: 

5365 

5366 >>> np.add.reduce([10], initial=5) 

5367 15 

5368 >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10) 

5369 array([14., 14.]) 

5370 >>> a = np.array([10., np.nan, 10]) 

5371 >>> np.add.reduce(a, where=~np.isnan(a)) 

5372 20.0 

5373 

5374 Allows reductions of empty arrays where they would normally fail, i.e. 

5375 for ufuncs without an identity. 

5376 

5377 >>> np.minimum.reduce([], initial=np.inf) 

5378 inf 

5379 >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False]) 

5380 array([ 1., 10.]) 

5381 >>> np.minimum.reduce([]) 

5382 Traceback (most recent call last): 

5383 ... 

5384 ValueError: zero-size array to reduction operation minimum which has no identity 

5385 """)) 

5386 

5387add_newdoc('numpy.core', 'ufunc', ('accumulate', 

5388 """ 

5389 accumulate(array, axis=0, dtype=None, out=None) 

5390 

5391 Accumulate the result of applying the operator to all elements. 

5392 

5393 For a one-dimensional array, accumulate produces results equivalent to:: 

5394 

5395 r = np.empty(len(A)) 

5396 t = op.identity # op = the ufunc being applied to A's elements 

5397 for i in range(len(A)): 

5398 t = op(t, A[i]) 

5399 r[i] = t 

5400 return r 

5401 

5402 For example, add.accumulate() is equivalent to np.cumsum(). 

5403 

5404 For a multi-dimensional array, accumulate is applied along only one 

5405 axis (axis zero by default; see Examples below) so repeated use is 

5406 necessary if one wants to accumulate over multiple axes. 

5407 

5408 Parameters 

5409 ---------- 

5410 array : array_like 

5411 The array to act on. 

5412 axis : int, optional 

5413 The axis along which to apply the accumulation; default is zero. 

5414 dtype : data-type code, optional 

5415 The data-type used to represent the intermediate results. Defaults 

5416 to the data-type of the output array if such is provided, or the 

5417 data-type of the input array if no output array is provided. 

5418 out : ndarray, None, or tuple of ndarray and None, optional 

5419 A location into which the result is stored. If not provided or None, 

5420 a freshly-allocated array is returned. For consistency with 

5421 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a 

5422 1-element tuple. 

5423 

5424 .. versionchanged:: 1.13.0 

5425 Tuples are allowed for keyword argument. 

5426 

5427 Returns 

5428 ------- 

5429 r : ndarray 

5430 The accumulated values. If `out` was supplied, `r` is a reference to 

5431 `out`. 

5432 

5433 Examples 

5434 -------- 

5435 1-D array examples: 

5436 

5437 >>> np.add.accumulate([2, 3, 5]) 

5438 array([ 2, 5, 10]) 

5439 >>> np.multiply.accumulate([2, 3, 5]) 

5440 array([ 2, 6, 30]) 

5441 

5442 2-D array examples: 

5443 

5444 >>> I = np.eye(2) 

5445 >>> I 

5446 array([[1., 0.], 

5447 [0., 1.]]) 

5448 

5449 Accumulate along axis 0 (rows), down columns: 

5450 

5451 >>> np.add.accumulate(I, 0) 

5452 array([[1., 0.], 

5453 [1., 1.]]) 

5454 >>> np.add.accumulate(I) # no axis specified = axis zero 

5455 array([[1., 0.], 

5456 [1., 1.]]) 

5457 

5458 Accumulate along axis 1 (columns), through rows: 

5459 

5460 >>> np.add.accumulate(I, 1) 

5461 array([[1., 1.], 

5462 [0., 1.]]) 

5463 

5464 """)) 

5465 

5466add_newdoc('numpy.core', 'ufunc', ('reduceat', 

5467 """ 

5468 reduceat(array, indices, axis=0, dtype=None, out=None) 

5469 

5470 Performs a (local) reduce with specified slices over a single axis. 

5471 

5472 For i in ``range(len(indices))``, `reduceat` computes 

5473 ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th 

5474 generalized "row" parallel to `axis` in the final result (i.e., in a 

5475 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if 

5476 `axis = 1`, it becomes the i-th column). There are three exceptions to this: 

5477 

5478 * when ``i = len(indices) - 1`` (so for the last index), 

5479 ``indices[i+1] = array.shape[axis]``. 

5480 * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is 

5481 simply ``array[indices[i]]``. 

5482 * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised. 

5483 

5484 The shape of the output depends on the size of `indices`, and may be 

5485 larger than `array` (this happens if ``len(indices) > array.shape[axis]``). 

5486 

5487 Parameters 

5488 ---------- 

5489 array : array_like 

5490 The array to act on. 

5491 indices : array_like 

5492 Paired indices, comma separated (not colon), specifying slices to 

5493 reduce. 

5494 axis : int, optional 

5495 The axis along which to apply the reduceat. 

5496 dtype : data-type code, optional 

5497 The type used to represent the intermediate results. Defaults 

5498 to the data type of the output array if this is provided, or 

5499 the data type of the input array if no output array is provided. 

5500 out : ndarray, None, or tuple of ndarray and None, optional 

5501 A location into which the result is stored. If not provided or None, 

5502 a freshly-allocated array is returned. For consistency with 

5503 ``ufunc.__call__``, if given as a keyword, this may be wrapped in a 

5504 1-element tuple. 

5505 

5506 .. versionchanged:: 1.13.0 

5507 Tuples are allowed for keyword argument. 

5508 

5509 Returns 

5510 ------- 

5511 r : ndarray 

5512 The reduced values. If `out` was supplied, `r` is a reference to 

5513 `out`. 

5514 

5515 Notes 

5516 ----- 

5517 A descriptive example: 

5518 

5519 If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as 

5520 ``ufunc.reduceat(array, indices)[::2]`` where `indices` is 

5521 ``range(len(array) - 1)`` with a zero placed 

5522 in every other element: 

5523 ``indices = zeros(2 * len(array) - 1)``, 

5524 ``indices[1::2] = range(1, len(array))``. 

5525 

5526 Don't be fooled by this attribute's name: `reduceat(array)` is not 

5527 necessarily smaller than `array`. 

5528 

5529 Examples 

5530 -------- 

5531 To take the running sum of four successive values: 

5532 

5533 >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] 

5534 array([ 6, 10, 14, 18]) 

5535 

5536 A 2-D example: 

5537 

5538 >>> x = np.linspace(0, 15, 16).reshape(4,4) 

5539 >>> x 

5540 array([[ 0., 1., 2., 3.], 

5541 [ 4., 5., 6., 7.], 

5542 [ 8., 9., 10., 11.], 

5543 [12., 13., 14., 15.]]) 

5544 

5545 :: 

5546 

5547 # reduce such that the result has the following five rows: 

5548 # [row1 + row2 + row3] 

5549 # [row4] 

5550 # [row2] 

5551 # [row3] 

5552 # [row1 + row2 + row3 + row4] 

5553 

5554 >>> np.add.reduceat(x, [0, 3, 1, 2, 0]) 

5555 array([[12., 15., 18., 21.], 

5556 [12., 13., 14., 15.], 

5557 [ 4., 5., 6., 7.], 

5558 [ 8., 9., 10., 11.], 

5559 [24., 28., 32., 36.]]) 

5560 

5561 :: 

5562 

5563 # reduce such that result has the following two columns: 

5564 # [col1 * col2 * col3, col4] 

5565 

5566 >>> np.multiply.reduceat(x, [0, 3], 1) 

5567 array([[ 0., 3.], 

5568 [ 120., 7.], 

5569 [ 720., 11.], 

5570 [2184., 15.]]) 

5571 

5572 """)) 

5573 

5574add_newdoc('numpy.core', 'ufunc', ('outer', 

5575 r""" 

5576 outer(A, B, /, **kwargs) 

5577 

5578 Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. 

5579 

5580 Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of 

5581 ``op.outer(A, B)`` is an array of dimension M + N such that: 

5582 

5583 .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = 

5584 op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}]) 

5585 

5586 For `A` and `B` one-dimensional, this is equivalent to:: 

5587 

5588 r = empty(len(A),len(B)) 

5589 for i in range(len(A)): 

5590 for j in range(len(B)): 

5591 r[i,j] = op(A[i], B[j]) # op = ufunc in question 

5592 

5593 Parameters 

5594 ---------- 

5595 A : array_like 

5596 First array 

5597 B : array_like 

5598 Second array 

5599 kwargs : any 

5600 Arguments to pass on to the ufunc. Typically `dtype` or `out`. 

5601 See `ufunc` for a comprehensive overview of all available arguments. 

5602 

5603 Returns 

5604 ------- 

5605 r : ndarray 

5606 Output array 

5607 

5608 See Also 

5609 -------- 

5610 numpy.outer : A less powerful version of ``np.multiply.outer`` 

5611 that `ravel`\ s all inputs to 1D. This exists 

5612 primarily for compatibility with old code. 

5613 

5614 tensordot : ``np.tensordot(a, b, axes=((), ()))`` and 

5615 ``np.multiply.outer(a, b)`` behave same for all 

5616 dimensions of a and b. 

5617 

5618 Examples 

5619 -------- 

5620 >>> np.multiply.outer([1, 2, 3], [4, 5, 6]) 

5621 array([[ 4, 5, 6], 

5622 [ 8, 10, 12], 

5623 [12, 15, 18]]) 

5624 

5625 A multi-dimensional example: 

5626 

5627 >>> A = np.array([[1, 2, 3], [4, 5, 6]]) 

5628 >>> A.shape 

5629 (2, 3) 

5630 >>> B = np.array([[1, 2, 3, 4]]) 

5631 >>> B.shape 

5632 (1, 4) 

5633 >>> C = np.multiply.outer(A, B) 

5634 >>> C.shape; C 

5635 (2, 3, 1, 4) 

5636 array([[[[ 1, 2, 3, 4]], 

5637 [[ 2, 4, 6, 8]], 

5638 [[ 3, 6, 9, 12]]], 

5639 [[[ 4, 8, 12, 16]], 

5640 [[ 5, 10, 15, 20]], 

5641 [[ 6, 12, 18, 24]]]]) 

5642 

5643 """)) 

5644 

5645add_newdoc('numpy.core', 'ufunc', ('at', 

5646 """ 

5647 at(a, indices, b=None, /) 

5648 

5649 Performs unbuffered in place operation on operand 'a' for elements 

5650 specified by 'indices'. For addition ufunc, this method is equivalent to 

5651 ``a[indices] += b``, except that results are accumulated for elements that 

5652 are indexed more than once. For example, ``a[[0,0]] += 1`` will only 

5653 increment the first element once because of buffering, whereas 

5654 ``add.at(a, [0,0], 1)`` will increment the first element twice. 

5655 

5656 .. versionadded:: 1.8.0 

5657 

5658 Parameters 

5659 ---------- 

5660 a : array_like 

5661 The array to perform in place operation on. 

5662 indices : array_like or tuple 

5663 Array like index object or slice object for indexing into first 

5664 operand. If first operand has multiple dimensions, indices can be a 

5665 tuple of array like index objects or slice objects. 

5666 b : array_like 

5667 Second operand for ufuncs requiring two operands. Operand must be 

5668 broadcastable over first operand after indexing or slicing. 

5669 

5670 Examples 

5671 -------- 

5672 Set items 0 and 1 to their negative values: 

5673 

5674 >>> a = np.array([1, 2, 3, 4]) 

5675 >>> np.negative.at(a, [0, 1]) 

5676 >>> a 

5677 array([-1, -2, 3, 4]) 

5678 

5679 Increment items 0 and 1, and increment item 2 twice: 

5680 

5681 >>> a = np.array([1, 2, 3, 4]) 

5682 >>> np.add.at(a, [0, 1, 2, 2], 1) 

5683 >>> a 

5684 array([2, 3, 5, 4]) 

5685 

5686 Add items 0 and 1 in first array to second array, 

5687 and store results in first array: 

5688 

5689 >>> a = np.array([1, 2, 3, 4]) 

5690 >>> b = np.array([1, 2]) 

5691 >>> np.add.at(a, [0, 1], b) 

5692 >>> a 

5693 array([2, 4, 3, 4]) 

5694 

5695 """)) 

5696 

5697add_newdoc('numpy.core', 'ufunc', ('resolve_dtypes', 

5698 """ 

5699 resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False) 

5700 

5701 Find the dtypes NumPy will use for the operation. Both input and 

5702 output dtypes are returned and may differ from those provided. 

5703 

5704 .. note:: 

5705 

5706 This function always applies NEP 50 rules since it is not provided 

5707 any actual values. The Python types ``int``, ``float``, and 

5708 ``complex`` thus behave weak and should be passed for "untyped" 

5709 Python input. 

5710 

5711 Parameters 

5712 ---------- 

5713 dtypes : tuple of dtypes, None, or literal int, float, complex 

5714 The input dtypes for each operand. Output operands can be 

5715 None, indicating that the dtype must be found. 

5716 signature : tuple of DTypes or None, optional 

5717 If given, enforces exact DType (classes) of the specific operand. 

5718 The ufunc ``dtype`` argument is equivalent to passing a tuple with 

5719 only output dtypes set. 

5720 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

5721 The casting mode when casting is necessary. This is identical to 

5722 the ufunc call casting modes. 

5723 reduction : boolean 

5724 If given, the resolution assumes a reduce operation is happening 

5725 which slightly changes the promotion and type resolution rules. 

5726 `dtypes` is usually something like ``(None, np.dtype("i2"), None)`` 

5727 for reductions (first input is also the output). 

5728 

5729 .. note:: 

5730 

5731 The default casting mode is "same_kind", however, as of 

5732 NumPy 1.24, NumPy uses "unsafe" for reductions. 

5733 

5734 Returns 

5735 ------- 

5736 dtypes : tuple of dtypes 

5737 The dtypes which NumPy would use for the calculation. Note that 

5738 dtypes may not match the passed in ones (casting is necessary). 

5739 

5740 See Also 

5741 -------- 

5742 numpy.ufunc._resolve_dtypes_and_context : 

5743 Similar function to this, but returns additional information which 

5744 give access to the core C functionality of NumPy. 

5745 

5746 Examples 

5747 -------- 

5748 This API requires passing dtypes, define them for convenience: 

5749 

5750 >>> int32 = np.dtype("int32") 

5751 >>> float32 = np.dtype("float32") 

5752 

5753 The typical ufunc call does not pass an output dtype. `np.add` has two 

5754 inputs and one output, so leave the output as ``None`` (not provided): 

5755 

5756 >>> np.add.resolve_dtypes((int32, float32, None)) 

5757 (dtype('float64'), dtype('float64'), dtype('float64')) 

5758 

5759 The loop found uses "float64" for all operands (including the output), the 

5760 first input would be cast. 

5761 

5762 ``resolve_dtypes`` supports "weak" handling for Python scalars by passing 

5763 ``int``, ``float``, or ``complex``: 

5764 

5765 >>> np.add.resolve_dtypes((float32, float, None)) 

5766 (dtype('float32'), dtype('float32'), dtype('float32')) 

5767 

5768 Where the Python ``float`` behaves samilar to a Python value ``0.0`` 

5769 in a ufunc call. (See :ref:`NEP 50 <NEP50>` for details.) 

5770 

5771 """)) 

5772 

5773add_newdoc('numpy.core', 'ufunc', ('_resolve_dtypes_and_context', 

5774 """ 

5775 _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False) 

5776 

5777 See `numpy.ufunc.resolve_dtypes` for parameter information. This 

5778 function is considered *unstable*. You may use it, but the returned 

5779 information is NumPy version specific and expected to change. 

5780 Large API/ABI changes are not expected, but a new NumPy version is 

5781 expected to require updating code using this functionality. 

5782 

5783 This function is designed to be used in conjunction with 

5784 `numpy.ufunc._get_strided_loop`. The calls are split to mirror the C API 

5785 and allow future improvements. 

5786 

5787 Returns 

5788 ------- 

5789 dtypes : tuple of dtypes 

5790 call_info : 

5791 PyCapsule with all necessary information to get access to low level 

5792 C calls. See `numpy.ufunc._get_strided_loop` for more information. 

5793 

5794 """)) 

5795 

5796add_newdoc('numpy.core', 'ufunc', ('_get_strided_loop', 

5797 """ 

5798 _get_strided_loop(call_info, /, *, fixed_strides=None) 

5799 

5800 This function fills in the ``call_info`` capsule to include all 

5801 information necessary to call the low-level strided loop from NumPy. 

5802 

5803 See notes for more information. 

5804 

5805 Parameters 

5806 ---------- 

5807 call_info : PyCapsule 

5808 The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`. 

5809 fixed_strides : tuple of int or None, optional 

5810 A tuple with fixed byte strides of all input arrays. NumPy may use 

5811 this information to find specialized loops, so any call must follow 

5812 the given stride. Use ``None`` to indicate that the stride is not 

5813 known (or not fixed) for all calls. 

5814 

5815 Notes 

5816 ----- 

5817 Together with `numpy.ufunc._resolve_dtypes_and_context` this function 

5818 gives low-level access to the NumPy ufunc loops. 

5819 The first function does general preparation and returns the required 

5820 information. It returns this as a C capsule with the version specific 

5821 name ``numpy_1.24_ufunc_call_info``. 

5822 The NumPy 1.24 ufunc call info capsule has the following layout:: 

5823 

5824 typedef struct { 

5825 PyArrayMethod_StridedLoop *strided_loop; 

5826 PyArrayMethod_Context *context; 

5827 NpyAuxData *auxdata; 

5828 

5829 /* Flag information (expected to change) */ 

5830 npy_bool requires_pyapi; /* GIL is required by loop */ 

5831 

5832 /* Loop doesn't set FPE flags; if not set check FPE flags */ 

5833 npy_bool no_floatingpoint_errors; 

5834 } ufunc_call_info; 

5835 

5836 Note that the first call only fills in the ``context``. The call to 

5837 ``_get_strided_loop`` fills in all other data. 

5838 Please see the ``numpy/experimental_dtype_api.h`` header for exact 

5839 call information; the main thing to note is that the new-style loops 

5840 return 0 on success, -1 on failure. They are passed context as new 

5841 first input and ``auxdata`` as (replaced) last. 

5842 

5843 Only the ``strided_loop``signature is considered guaranteed stable 

5844 for NumPy bug-fix releases. All other API is tied to the experimental 

5845 API versioning. 

5846 

5847 The reason for the split call is that cast information is required to 

5848 decide what the fixed-strides will be. 

5849 

5850 NumPy ties the lifetime of the ``auxdata`` information to the capsule. 

5851 

5852 """)) 

5853 

5854 

5855 

5856############################################################################## 

5857# 

5858# Documentation for dtype attributes and methods 

5859# 

5860############################################################################## 

5861 

5862############################################################################## 

5863# 

5864# dtype object 

5865# 

5866############################################################################## 

5867 

5868add_newdoc('numpy.core.multiarray', 'dtype', 

5869 """ 

5870 dtype(dtype, align=False, copy=False, [metadata]) 

5871 

5872 Create a data type object. 

5873 

5874 A numpy array is homogeneous, and contains elements described by a 

5875 dtype object. A dtype object can be constructed from different 

5876 combinations of fundamental numeric types. 

5877 

5878 Parameters 

5879 ---------- 

5880 dtype 

5881 Object to be converted to a data type object. 

5882 align : bool, optional 

5883 Add padding to the fields to match what a C compiler would output 

5884 for a similar C-struct. Can be ``True`` only if `obj` is a dictionary 

5885 or a comma-separated string. If a struct dtype is being created, 

5886 this also sets a sticky alignment flag ``isalignedstruct``. 

5887 copy : bool, optional 

5888 Make a new copy of the data-type object. If ``False``, the result 

5889 may just be a reference to a built-in data-type object. 

5890 metadata : dict, optional 

5891 An optional dictionary with dtype metadata. 

5892 

5893 See also 

5894 -------- 

5895 result_type 

5896 

5897 Examples 

5898 -------- 

5899 Using array-scalar type: 

5900 

5901 >>> np.dtype(np.int16) 

5902 dtype('int16') 

5903 

5904 Structured type, one field name 'f1', containing int16: 

5905 

5906 >>> np.dtype([('f1', np.int16)]) 

5907 dtype([('f1', '<i2')]) 

5908 

5909 Structured type, one field named 'f1', in itself containing a structured 

5910 type with one field: 

5911 

5912 >>> np.dtype([('f1', [('f1', np.int16)])]) 

5913 dtype([('f1', [('f1', '<i2')])]) 

5914 

5915 Structured type, two fields: the first field contains an unsigned int, the 

5916 second an int32: 

5917 

5918 >>> np.dtype([('f1', np.uint64), ('f2', np.int32)]) 

5919 dtype([('f1', '<u8'), ('f2', '<i4')]) 

5920 

5921 Using array-protocol type strings: 

5922 

5923 >>> np.dtype([('a','f8'),('b','S10')]) 

5924 dtype([('a', '<f8'), ('b', 'S10')]) 

5925 

5926 Using comma-separated field formats. The shape is (2,3): 

5927 

5928 >>> np.dtype("i4, (2,3)f8") 

5929 dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) 

5930 

5931 Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` 

5932 is a flexible type, here of size 10: 

5933 

5934 >>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)]) 

5935 dtype([('hello', '<i8', (3,)), ('world', 'V10')]) 

5936 

5937 Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are 

5938 the offsets in bytes: 

5939 

5940 >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) 

5941 dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')])) 

5942 

5943 Using dictionaries. Two fields named 'gender' and 'age': 

5944 

5945 >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) 

5946 dtype([('gender', 'S1'), ('age', 'u1')]) 

5947 

5948 Offsets in bytes, here 0 and 25: 

5949 

5950 >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) 

5951 dtype([('surname', 'S25'), ('age', 'u1')]) 

5952 

5953 """) 

5954 

5955############################################################################## 

5956# 

5957# dtype attributes 

5958# 

5959############################################################################## 

5960 

5961add_newdoc('numpy.core.multiarray', 'dtype', ('alignment', 

5962 """ 

5963 The required alignment (bytes) of this data-type according to the compiler. 

5964 

5965 More information is available in the C-API section of the manual. 

5966 

5967 Examples 

5968 -------- 

5969 

5970 >>> x = np.dtype('i4') 

5971 >>> x.alignment 

5972 4 

5973 

5974 >>> x = np.dtype(float) 

5975 >>> x.alignment 

5976 8 

5977 

5978 """)) 

5979 

5980add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder', 

5981 """ 

5982 A character indicating the byte-order of this data-type object. 

5983 

5984 One of: 

5985 

5986 === ============== 

5987 '=' native 

5988 '<' little-endian 

5989 '>' big-endian 

5990 '|' not applicable 

5991 === ============== 

5992 

5993 All built-in data-type objects have byteorder either '=' or '|'. 

5994 

5995 Examples 

5996 -------- 

5997 

5998 >>> dt = np.dtype('i2') 

5999 >>> dt.byteorder 

6000 '=' 

6001 >>> # endian is not relevant for 8 bit numbers 

6002 >>> np.dtype('i1').byteorder 

6003 '|' 

6004 >>> # or ASCII strings 

6005 >>> np.dtype('S2').byteorder 

6006 '|' 

6007 >>> # Even if specific code is given, and it is native 

6008 >>> # '=' is the byteorder 

6009 >>> import sys 

6010 >>> sys_is_le = sys.byteorder == 'little' 

6011 >>> native_code = sys_is_le and '<' or '>' 

6012 >>> swapped_code = sys_is_le and '>' or '<' 

6013 >>> dt = np.dtype(native_code + 'i2') 

6014 >>> dt.byteorder 

6015 '=' 

6016 >>> # Swapped code shows up as itself 

6017 >>> dt = np.dtype(swapped_code + 'i2') 

6018 >>> dt.byteorder == swapped_code 

6019 True 

6020 

6021 """)) 

6022 

6023add_newdoc('numpy.core.multiarray', 'dtype', ('char', 

6024 """A unique character code for each of the 21 different built-in types. 

6025 

6026 Examples 

6027 -------- 

6028 

6029 >>> x = np.dtype(float) 

6030 >>> x.char 

6031 'd' 

6032 

6033 """)) 

6034 

6035add_newdoc('numpy.core.multiarray', 'dtype', ('descr', 

6036 """ 

6037 `__array_interface__` description of the data-type. 

6038 

6039 The format is that required by the 'descr' key in the 

6040 `__array_interface__` attribute. 

6041 

6042 Warning: This attribute exists specifically for `__array_interface__`, 

6043 and passing it directly to `np.dtype` will not accurately reconstruct 

6044 some dtypes (e.g., scalar and subarray dtypes). 

6045 

6046 Examples 

6047 -------- 

6048 

6049 >>> x = np.dtype(float) 

6050 >>> x.descr 

6051 [('', '<f8')] 

6052 

6053 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

6054 >>> dt.descr 

6055 [('name', '<U16'), ('grades', '<f8', (2,))] 

6056 

6057 """)) 

6058 

6059add_newdoc('numpy.core.multiarray', 'dtype', ('fields', 

6060 """ 

6061 Dictionary of named fields defined for this data type, or ``None``. 

6062 

6063 The dictionary is indexed by keys that are the names of the fields. 

6064 Each entry in the dictionary is a tuple fully describing the field:: 

6065 

6066 (dtype, offset[, title]) 

6067 

6068 Offset is limited to C int, which is signed and usually 32 bits. 

6069 If present, the optional title can be any object (if it is a string 

6070 or unicode then it will also be a key in the fields dictionary, 

6071 otherwise it's meta-data). Notice also that the first two elements 

6072 of the tuple can be passed directly as arguments to the ``ndarray.getfield`` 

6073 and ``ndarray.setfield`` methods. 

6074 

6075 See Also 

6076 -------- 

6077 ndarray.getfield, ndarray.setfield 

6078 

6079 Examples 

6080 -------- 

6081 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

6082 >>> print(dt.fields) 

6083 {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)} 

6084 

6085 """)) 

6086 

6087add_newdoc('numpy.core.multiarray', 'dtype', ('flags', 

6088 """ 

6089 Bit-flags describing how this data type is to be interpreted. 

6090 

6091 Bit-masks are in `numpy.core.multiarray` as the constants 

6092 `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`, 

6093 `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation 

6094 of these flags is in C-API documentation; they are largely useful 

6095 for user-defined data-types. 

6096 

6097 The following example demonstrates that operations on this particular 

6098 dtype requires Python C-API. 

6099 

6100 Examples 

6101 -------- 

6102 

6103 >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) 

6104 >>> x.flags 

6105 16 

6106 >>> np.core.multiarray.NEEDS_PYAPI 

6107 16 

6108 

6109 """)) 

6110 

6111add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject', 

6112 """ 

6113 Boolean indicating whether this dtype contains any reference-counted 

6114 objects in any fields or sub-dtypes. 

6115 

6116 Recall that what is actually in the ndarray memory representing 

6117 the Python object is the memory address of that object (a pointer). 

6118 Special handling may be required, and this attribute is useful for 

6119 distinguishing data types that may contain arbitrary Python objects 

6120 and data-types that won't. 

6121 

6122 """)) 

6123 

6124add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', 

6125 """ 

6126 Integer indicating how this dtype relates to the built-in dtypes. 

6127 

6128 Read-only. 

6129 

6130 = ======================================================================== 

6131 0 if this is a structured array type, with fields 

6132 1 if this is a dtype compiled into numpy (such as ints, floats etc) 

6133 2 if the dtype is for a user-defined numpy type 

6134 A user-defined type uses the numpy C-API machinery to extend 

6135 numpy to handle a new array type. See 

6136 :ref:`user.user-defined-data-types` in the NumPy manual. 

6137 = ======================================================================== 

6138 

6139 Examples 

6140 -------- 

6141 >>> dt = np.dtype('i2') 

6142 >>> dt.isbuiltin 

6143 1 

6144 >>> dt = np.dtype('f8') 

6145 >>> dt.isbuiltin 

6146 1 

6147 >>> dt = np.dtype([('field1', 'f8')]) 

6148 >>> dt.isbuiltin 

6149 0 

6150 

6151 """)) 

6152 

6153add_newdoc('numpy.core.multiarray', 'dtype', ('isnative', 

6154 """ 

6155 Boolean indicating whether the byte order of this dtype is native 

6156 to the platform. 

6157 

6158 """)) 

6159 

6160add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct', 

6161 """ 

6162 Boolean indicating whether the dtype is a struct which maintains 

6163 field alignment. This flag is sticky, so when combining multiple 

6164 structs together, it is preserved and produces new dtypes which 

6165 are also aligned. 

6166 

6167 """)) 

6168 

6169add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize', 

6170 """ 

6171 The element size of this data-type object. 

6172 

6173 For 18 of the 21 types this number is fixed by the data-type. 

6174 For the flexible data-types, this number can be anything. 

6175 

6176 Examples 

6177 -------- 

6178 

6179 >>> arr = np.array([[1, 2], [3, 4]]) 

6180 >>> arr.dtype 

6181 dtype('int64') 

6182 >>> arr.itemsize 

6183 8 

6184 

6185 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

6186 >>> dt.itemsize 

6187 80 

6188 

6189 """)) 

6190 

6191add_newdoc('numpy.core.multiarray', 'dtype', ('kind', 

6192 """ 

6193 A character code (one of 'biufcmMOSUV') identifying the general kind of data. 

6194 

6195 = ====================== 

6196 b boolean 

6197 i signed integer 

6198 u unsigned integer 

6199 f floating-point 

6200 c complex floating-point 

6201 m timedelta 

6202 M datetime 

6203 O object 

6204 S (byte-)string 

6205 U Unicode 

6206 V void 

6207 = ====================== 

6208 

6209 Examples 

6210 -------- 

6211 

6212 >>> dt = np.dtype('i4') 

6213 >>> dt.kind 

6214 'i' 

6215 >>> dt = np.dtype('f8') 

6216 >>> dt.kind 

6217 'f' 

6218 >>> dt = np.dtype([('field1', 'f8')]) 

6219 >>> dt.kind 

6220 'V' 

6221 

6222 """)) 

6223 

6224add_newdoc('numpy.core.multiarray', 'dtype', ('metadata', 

6225 """ 

6226 Either ``None`` or a readonly dictionary of metadata (mappingproxy). 

6227 

6228 The metadata field can be set using any dictionary at data-type 

6229 creation. NumPy currently has no uniform approach to propagating 

6230 metadata; although some array operations preserve it, there is no 

6231 guarantee that others will. 

6232 

6233 .. warning:: 

6234 

6235 Although used in certain projects, this feature was long undocumented 

6236 and is not well supported. Some aspects of metadata propagation 

6237 are expected to change in the future. 

6238 

6239 Examples 

6240 -------- 

6241 

6242 >>> dt = np.dtype(float, metadata={"key": "value"}) 

6243 >>> dt.metadata["key"] 

6244 'value' 

6245 >>> arr = np.array([1, 2, 3], dtype=dt) 

6246 >>> arr.dtype.metadata 

6247 mappingproxy({'key': 'value'}) 

6248 

6249 Adding arrays with identical datatypes currently preserves the metadata: 

6250 

6251 >>> (arr + arr).dtype.metadata 

6252 mappingproxy({'key': 'value'}) 

6253 

6254 But if the arrays have different dtype metadata, the metadata may be 

6255 dropped: 

6256 

6257 >>> dt2 = np.dtype(float, metadata={"key2": "value2"}) 

6258 >>> arr2 = np.array([3, 2, 1], dtype=dt2) 

6259 >>> (arr + arr2).dtype.metadata is None 

6260 True # The metadata field is cleared so None is returned 

6261 """)) 

6262 

6263add_newdoc('numpy.core.multiarray', 'dtype', ('name', 

6264 """ 

6265 A bit-width name for this data-type. 

6266 

6267 Un-sized flexible data-type objects do not have this attribute. 

6268 

6269 Examples 

6270 -------- 

6271 

6272 >>> x = np.dtype(float) 

6273 >>> x.name 

6274 'float64' 

6275 >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) 

6276 >>> x.name 

6277 'void640' 

6278 

6279 """)) 

6280 

6281add_newdoc('numpy.core.multiarray', 'dtype', ('names', 

6282 """ 

6283 Ordered list of field names, or ``None`` if there are no fields. 

6284 

6285 The names are ordered according to increasing byte offset. This can be 

6286 used, for example, to walk through all of the named fields in offset order. 

6287 

6288 Examples 

6289 -------- 

6290 >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

6291 >>> dt.names 

6292 ('name', 'grades') 

6293 

6294 """)) 

6295 

6296add_newdoc('numpy.core.multiarray', 'dtype', ('num', 

6297 """ 

6298 A unique number for each of the 21 different built-in types. 

6299 

6300 These are roughly ordered from least-to-most precision. 

6301 

6302 Examples 

6303 -------- 

6304 

6305 >>> dt = np.dtype(str) 

6306 >>> dt.num 

6307 19 

6308 

6309 >>> dt = np.dtype(float) 

6310 >>> dt.num 

6311 12 

6312 

6313 """)) 

6314 

6315add_newdoc('numpy.core.multiarray', 'dtype', ('shape', 

6316 """ 

6317 Shape tuple of the sub-array if this data type describes a sub-array, 

6318 and ``()`` otherwise. 

6319 

6320 Examples 

6321 -------- 

6322 

6323 >>> dt = np.dtype(('i4', 4)) 

6324 >>> dt.shape 

6325 (4,) 

6326 

6327 >>> dt = np.dtype(('i4', (2, 3))) 

6328 >>> dt.shape 

6329 (2, 3) 

6330 

6331 """)) 

6332 

6333add_newdoc('numpy.core.multiarray', 'dtype', ('ndim', 

6334 """ 

6335 Number of dimensions of the sub-array if this data type describes a 

6336 sub-array, and ``0`` otherwise. 

6337 

6338 .. versionadded:: 1.13.0 

6339 

6340 Examples 

6341 -------- 

6342 >>> x = np.dtype(float) 

6343 >>> x.ndim 

6344 0 

6345 

6346 >>> x = np.dtype((float, 8)) 

6347 >>> x.ndim 

6348 1 

6349 

6350 >>> x = np.dtype(('i4', (3, 4))) 

6351 >>> x.ndim 

6352 2 

6353 

6354 """)) 

6355 

6356add_newdoc('numpy.core.multiarray', 'dtype', ('str', 

6357 """The array-protocol typestring of this data-type object.""")) 

6358 

6359add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype', 

6360 """ 

6361 Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and 

6362 None otherwise. 

6363 

6364 The *shape* is the fixed shape of the sub-array described by this 

6365 data type, and *item_dtype* the data type of the array. 

6366 

6367 If a field whose dtype object has this attribute is retrieved, 

6368 then the extra dimensions implied by *shape* are tacked on to 

6369 the end of the retrieved array. 

6370 

6371 See Also 

6372 -------- 

6373 dtype.base 

6374 

6375 Examples 

6376 -------- 

6377 >>> x = numpy.dtype('8f') 

6378 >>> x.subdtype 

6379 (dtype('float32'), (8,)) 

6380 

6381 >>> x = numpy.dtype('i2') 

6382 >>> x.subdtype 

6383 >>> 

6384 

6385 """)) 

6386 

6387add_newdoc('numpy.core.multiarray', 'dtype', ('base', 

6388 """ 

6389 Returns dtype for the base element of the subarrays, 

6390 regardless of their dimension or shape. 

6391 

6392 See Also 

6393 -------- 

6394 dtype.subdtype 

6395 

6396 Examples 

6397 -------- 

6398 >>> x = numpy.dtype('8f') 

6399 >>> x.base 

6400 dtype('float32') 

6401 

6402 >>> x = numpy.dtype('i2') 

6403 >>> x.base 

6404 dtype('int16') 

6405 

6406 """)) 

6407 

6408add_newdoc('numpy.core.multiarray', 'dtype', ('type', 

6409 """The type object used to instantiate a scalar of this data-type.""")) 

6410 

6411############################################################################## 

6412# 

6413# dtype methods 

6414# 

6415############################################################################## 

6416 

6417add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder', 

6418 """ 

6419 newbyteorder(new_order='S', /) 

6420 

6421 Return a new dtype with a different byte order. 

6422 

6423 Changes are also made in all fields and sub-arrays of the data type. 

6424 

6425 Parameters 

6426 ---------- 

6427 new_order : string, optional 

6428 Byte order to force; a value from the byte order specifications 

6429 below. The default value ('S') results in swapping the current 

6430 byte order. `new_order` codes can be any of: 

6431 

6432 * 'S' - swap dtype from current to opposite endian 

6433 * {'<', 'little'} - little endian 

6434 * {'>', 'big'} - big endian 

6435 * {'=', 'native'} - native order 

6436 * {'|', 'I'} - ignore (no change to byte order) 

6437 

6438 Returns 

6439 ------- 

6440 new_dtype : dtype 

6441 New dtype object with the given change to the byte order. 

6442 

6443 Notes 

6444 ----- 

6445 Changes are also made in all fields and sub-arrays of the data type. 

6446 

6447 Examples 

6448 -------- 

6449 >>> import sys 

6450 >>> sys_is_le = sys.byteorder == 'little' 

6451 >>> native_code = sys_is_le and '<' or '>' 

6452 >>> swapped_code = sys_is_le and '>' or '<' 

6453 >>> native_dt = np.dtype(native_code+'i2') 

6454 >>> swapped_dt = np.dtype(swapped_code+'i2') 

6455 >>> native_dt.newbyteorder('S') == swapped_dt 

6456 True 

6457 >>> native_dt.newbyteorder() == swapped_dt 

6458 True 

6459 >>> native_dt == swapped_dt.newbyteorder('S') 

6460 True 

6461 >>> native_dt == swapped_dt.newbyteorder('=') 

6462 True 

6463 >>> native_dt == swapped_dt.newbyteorder('N') 

6464 True 

6465 >>> native_dt == native_dt.newbyteorder('|') 

6466 True 

6467 >>> np.dtype('<i2') == native_dt.newbyteorder('<') 

6468 True 

6469 >>> np.dtype('<i2') == native_dt.newbyteorder('L') 

6470 True 

6471 >>> np.dtype('>i2') == native_dt.newbyteorder('>') 

6472 True 

6473 >>> np.dtype('>i2') == native_dt.newbyteorder('B') 

6474 True 

6475 

6476 """)) 

6477 

6478add_newdoc('numpy.core.multiarray', 'dtype', ('__class_getitem__', 

6479 """ 

6480 __class_getitem__(item, /) 

6481 

6482 Return a parametrized wrapper around the `~numpy.dtype` type. 

6483 

6484 .. versionadded:: 1.22 

6485 

6486 Returns 

6487 ------- 

6488 alias : types.GenericAlias 

6489 A parametrized `~numpy.dtype` type. 

6490 

6491 Examples 

6492 -------- 

6493 >>> import numpy as np 

6494 

6495 >>> np.dtype[np.int64] 

6496 numpy.dtype[numpy.int64] 

6497 

6498 Notes 

6499 ----- 

6500 This method is only available for python 3.9 and later. 

6501 

6502 See Also 

6503 -------- 

6504 :pep:`585` : Type hinting generics in standard collections. 

6505 

6506 """)) 

6507 

6508add_newdoc('numpy.core.multiarray', 'dtype', ('__ge__', 

6509 """ 

6510 __ge__(value, /) 

6511 

6512 Return ``self >= value``. 

6513 

6514 Equivalent to ``np.can_cast(value, self, casting="safe")``. 

6515 

6516 See Also 

6517 -------- 

6518 can_cast : Returns True if cast between data types can occur according to 

6519 the casting rule. 

6520 

6521 """)) 

6522 

6523add_newdoc('numpy.core.multiarray', 'dtype', ('__le__', 

6524 """ 

6525 __le__(value, /) 

6526 

6527 Return ``self <= value``. 

6528 

6529 Equivalent to ``np.can_cast(self, value, casting="safe")``. 

6530 

6531 See Also 

6532 -------- 

6533 can_cast : Returns True if cast between data types can occur according to 

6534 the casting rule. 

6535 

6536 """)) 

6537 

6538add_newdoc('numpy.core.multiarray', 'dtype', ('__gt__', 

6539 """ 

6540 __ge__(value, /) 

6541 

6542 Return ``self > value``. 

6543 

6544 Equivalent to 

6545 ``self != value and np.can_cast(value, self, casting="safe")``. 

6546 

6547 See Also 

6548 -------- 

6549 can_cast : Returns True if cast between data types can occur according to 

6550 the casting rule. 

6551 

6552 """)) 

6553 

6554add_newdoc('numpy.core.multiarray', 'dtype', ('__lt__', 

6555 """ 

6556 __lt__(value, /) 

6557 

6558 Return ``self < value``. 

6559 

6560 Equivalent to 

6561 ``self != value and np.can_cast(self, value, casting="safe")``. 

6562 

6563 See Also 

6564 -------- 

6565 can_cast : Returns True if cast between data types can occur according to 

6566 the casting rule. 

6567 

6568 """)) 

6569 

6570############################################################################## 

6571# 

6572# Datetime-related Methods 

6573# 

6574############################################################################## 

6575 

6576add_newdoc('numpy.core.multiarray', 'busdaycalendar', 

6577 """ 

6578 busdaycalendar(weekmask='1111100', holidays=None) 

6579 

6580 A business day calendar object that efficiently stores information 

6581 defining valid days for the busday family of functions. 

6582 

6583 The default valid days are Monday through Friday ("business days"). 

6584 A busdaycalendar object can be specified with any set of weekly 

6585 valid days, plus an optional "holiday" dates that always will be invalid. 

6586 

6587 Once a busdaycalendar object is created, the weekmask and holidays 

6588 cannot be modified. 

6589 

6590 .. versionadded:: 1.7.0 

6591 

6592 Parameters 

6593 ---------- 

6594 weekmask : str or array_like of bool, optional 

6595 A seven-element array indicating which of Monday through Sunday are 

6596 valid days. May be specified as a length-seven list or array, like 

6597 [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

6598 like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

6599 weekdays, optionally separated by white space. Valid abbreviations 

6600 are: Mon Tue Wed Thu Fri Sat Sun 

6601 holidays : array_like of datetime64[D], optional 

6602 An array of dates to consider as invalid dates, no matter which 

6603 weekday they fall upon. Holiday dates may be specified in any 

6604 order, and NaT (not-a-time) dates are ignored. This list is 

6605 saved in a normalized form that is suited for fast calculations 

6606 of valid days. 

6607 

6608 Returns 

6609 ------- 

6610 out : busdaycalendar 

6611 A business day calendar object containing the specified 

6612 weekmask and holidays values. 

6613 

6614 See Also 

6615 -------- 

6616 is_busday : Returns a boolean array indicating valid days. 

6617 busday_offset : Applies an offset counted in valid days. 

6618 busday_count : Counts how many valid days are in a half-open date range. 

6619 

6620 Attributes 

6621 ---------- 

6622 Note: once a busdaycalendar object is created, you cannot modify the 

6623 weekmask or holidays. The attributes return copies of internal data. 

6624 weekmask : (copy) seven-element array of bool 

6625 holidays : (copy) sorted array of datetime64[D] 

6626 

6627 Examples 

6628 -------- 

6629 >>> # Some important days in July 

6630 ... bdd = np.busdaycalendar( 

6631 ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) 

6632 >>> # Default is Monday to Friday weekdays 

6633 ... bdd.weekmask 

6634 array([ True, True, True, True, True, False, False]) 

6635 >>> # Any holidays already on the weekend are removed 

6636 ... bdd.holidays 

6637 array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]') 

6638 """) 

6639 

6640add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask', 

6641 """A copy of the seven-element boolean mask indicating valid days.""")) 

6642 

6643add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays', 

6644 """A copy of the holiday array indicating additional invalid days.""")) 

6645 

6646add_newdoc('numpy.core.multiarray', 'normalize_axis_index', 

6647 """ 

6648 normalize_axis_index(axis, ndim, msg_prefix=None) 

6649 

6650 Normalizes an axis index, `axis`, such that is a valid positive index into 

6651 the shape of array with `ndim` dimensions. Raises an AxisError with an 

6652 appropriate message if this is not possible. 

6653 

6654 Used internally by all axis-checking logic. 

6655 

6656 .. versionadded:: 1.13.0 

6657 

6658 Parameters 

6659 ---------- 

6660 axis : int 

6661 The un-normalized index of the axis. Can be negative 

6662 ndim : int 

6663 The number of dimensions of the array that `axis` should be normalized 

6664 against 

6665 msg_prefix : str 

6666 A prefix to put before the message, typically the name of the argument 

6667 

6668 Returns 

6669 ------- 

6670 normalized_axis : int 

6671 The normalized axis index, such that `0 <= normalized_axis < ndim` 

6672 

6673 Raises 

6674 ------ 

6675 AxisError 

6676 If the axis index is invalid, when `-ndim <= axis < ndim` is false. 

6677 

6678 Examples 

6679 -------- 

6680 >>> normalize_axis_index(0, ndim=3) 

6681 0 

6682 >>> normalize_axis_index(1, ndim=3) 

6683 1 

6684 >>> normalize_axis_index(-1, ndim=3) 

6685 2 

6686 

6687 >>> normalize_axis_index(3, ndim=3) 

6688 Traceback (most recent call last): 

6689 ... 

6690 AxisError: axis 3 is out of bounds for array of dimension 3 

6691 >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg') 

6692 Traceback (most recent call last): 

6693 ... 

6694 AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3 

6695 """) 

6696 

6697add_newdoc('numpy.core.multiarray', 'datetime_data', 

6698 """ 

6699 datetime_data(dtype, /) 

6700 

6701 Get information about the step size of a date or time type. 

6702 

6703 The returned tuple can be passed as the second argument of `numpy.datetime64` and 

6704 `numpy.timedelta64`. 

6705 

6706 Parameters 

6707 ---------- 

6708 dtype : dtype 

6709 The dtype object, which must be a `datetime64` or `timedelta64` type. 

6710 

6711 Returns 

6712 ------- 

6713 unit : str 

6714 The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype 

6715 is based. 

6716 count : int 

6717 The number of base units in a step. 

6718 

6719 Examples 

6720 -------- 

6721 >>> dt_25s = np.dtype('timedelta64[25s]') 

6722 >>> np.datetime_data(dt_25s) 

6723 ('s', 25) 

6724 >>> np.array(10, dt_25s).astype('timedelta64[s]') 

6725 array(250, dtype='timedelta64[s]') 

6726 

6727 The result can be used to construct a datetime that uses the same units 

6728 as a timedelta 

6729 

6730 >>> np.datetime64('2010', np.datetime_data(dt_25s)) 

6731 numpy.datetime64('2010-01-01T00:00:00','25s') 

6732 """) 

6733 

6734 

6735############################################################################## 

6736# 

6737# Documentation for `generic` attributes and methods 

6738# 

6739############################################################################## 

6740 

6741add_newdoc('numpy.core.numerictypes', 'generic', 

6742 """ 

6743 Base class for numpy scalar types. 

6744 

6745 Class from which most (all?) numpy scalar types are derived. For 

6746 consistency, exposes the same API as `ndarray`, despite many 

6747 consequent attributes being either "get-only," or completely irrelevant. 

6748 This is the class from which it is strongly suggested users should derive 

6749 custom scalar types. 

6750 

6751 """) 

6752 

6753# Attributes 

6754 

6755def refer_to_array_attribute(attr, method=True): 

6756 docstring = """ 

6757 Scalar {} identical to the corresponding array attribute. 

6758 

6759 Please see `ndarray.{}`. 

6760 """ 

6761 

6762 return attr, docstring.format("method" if method else "attribute", attr) 

6763 

6764 

6765add_newdoc('numpy.core.numerictypes', 'generic', 

6766 refer_to_array_attribute('T', method=False)) 

6767 

6768add_newdoc('numpy.core.numerictypes', 'generic', 

6769 refer_to_array_attribute('base', method=False)) 

6770 

6771add_newdoc('numpy.core.numerictypes', 'generic', ('data', 

6772 """Pointer to start of data.""")) 

6773 

6774add_newdoc('numpy.core.numerictypes', 'generic', ('dtype', 

6775 """Get array data-descriptor.""")) 

6776 

6777add_newdoc('numpy.core.numerictypes', 'generic', ('flags', 

6778 """The integer value of flags.""")) 

6779 

6780add_newdoc('numpy.core.numerictypes', 'generic', ('flat', 

6781 """A 1-D view of the scalar.""")) 

6782 

6783add_newdoc('numpy.core.numerictypes', 'generic', ('imag', 

6784 """The imaginary part of the scalar.""")) 

6785 

6786add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize', 

6787 """The length of one element in bytes.""")) 

6788 

6789add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes', 

6790 """The length of the scalar in bytes.""")) 

6791 

6792add_newdoc('numpy.core.numerictypes', 'generic', ('ndim', 

6793 """The number of array dimensions.""")) 

6794 

6795add_newdoc('numpy.core.numerictypes', 'generic', ('real', 

6796 """The real part of the scalar.""")) 

6797 

6798add_newdoc('numpy.core.numerictypes', 'generic', ('shape', 

6799 """Tuple of array dimensions.""")) 

6800 

6801add_newdoc('numpy.core.numerictypes', 'generic', ('size', 

6802 """The number of elements in the gentype.""")) 

6803 

6804add_newdoc('numpy.core.numerictypes', 'generic', ('strides', 

6805 """Tuple of bytes steps in each dimension.""")) 

6806 

6807# Methods 

6808 

6809add_newdoc('numpy.core.numerictypes', 'generic', 

6810 refer_to_array_attribute('all')) 

6811 

6812add_newdoc('numpy.core.numerictypes', 'generic', 

6813 refer_to_array_attribute('any')) 

6814 

6815add_newdoc('numpy.core.numerictypes', 'generic', 

6816 refer_to_array_attribute('argmax')) 

6817 

6818add_newdoc('numpy.core.numerictypes', 'generic', 

6819 refer_to_array_attribute('argmin')) 

6820 

6821add_newdoc('numpy.core.numerictypes', 'generic', 

6822 refer_to_array_attribute('argsort')) 

6823 

6824add_newdoc('numpy.core.numerictypes', 'generic', 

6825 refer_to_array_attribute('astype')) 

6826 

6827add_newdoc('numpy.core.numerictypes', 'generic', 

6828 refer_to_array_attribute('byteswap')) 

6829 

6830add_newdoc('numpy.core.numerictypes', 'generic', 

6831 refer_to_array_attribute('choose')) 

6832 

6833add_newdoc('numpy.core.numerictypes', 'generic', 

6834 refer_to_array_attribute('clip')) 

6835 

6836add_newdoc('numpy.core.numerictypes', 'generic', 

6837 refer_to_array_attribute('compress')) 

6838 

6839add_newdoc('numpy.core.numerictypes', 'generic', 

6840 refer_to_array_attribute('conjugate')) 

6841 

6842add_newdoc('numpy.core.numerictypes', 'generic', 

6843 refer_to_array_attribute('copy')) 

6844 

6845add_newdoc('numpy.core.numerictypes', 'generic', 

6846 refer_to_array_attribute('cumprod')) 

6847 

6848add_newdoc('numpy.core.numerictypes', 'generic', 

6849 refer_to_array_attribute('cumsum')) 

6850 

6851add_newdoc('numpy.core.numerictypes', 'generic', 

6852 refer_to_array_attribute('diagonal')) 

6853 

6854add_newdoc('numpy.core.numerictypes', 'generic', 

6855 refer_to_array_attribute('dump')) 

6856 

6857add_newdoc('numpy.core.numerictypes', 'generic', 

6858 refer_to_array_attribute('dumps')) 

6859 

6860add_newdoc('numpy.core.numerictypes', 'generic', 

6861 refer_to_array_attribute('fill')) 

6862 

6863add_newdoc('numpy.core.numerictypes', 'generic', 

6864 refer_to_array_attribute('flatten')) 

6865 

6866add_newdoc('numpy.core.numerictypes', 'generic', 

6867 refer_to_array_attribute('getfield')) 

6868 

6869add_newdoc('numpy.core.numerictypes', 'generic', 

6870 refer_to_array_attribute('item')) 

6871 

6872add_newdoc('numpy.core.numerictypes', 'generic', 

6873 refer_to_array_attribute('itemset')) 

6874 

6875add_newdoc('numpy.core.numerictypes', 'generic', 

6876 refer_to_array_attribute('max')) 

6877 

6878add_newdoc('numpy.core.numerictypes', 'generic', 

6879 refer_to_array_attribute('mean')) 

6880 

6881add_newdoc('numpy.core.numerictypes', 'generic', 

6882 refer_to_array_attribute('min')) 

6883 

6884add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder', 

6885 """ 

6886 newbyteorder(new_order='S', /) 

6887 

6888 Return a new `dtype` with a different byte order. 

6889 

6890 Changes are also made in all fields and sub-arrays of the data type. 

6891 

6892 The `new_order` code can be any from the following: 

6893 

6894 * 'S' - swap dtype from current to opposite endian 

6895 * {'<', 'little'} - little endian 

6896 * {'>', 'big'} - big endian 

6897 * {'=', 'native'} - native order 

6898 * {'|', 'I'} - ignore (no change to byte order) 

6899 

6900 Parameters 

6901 ---------- 

6902 new_order : str, optional 

6903 Byte order to force; a value from the byte order specifications 

6904 above. The default value ('S') results in swapping the current 

6905 byte order. 

6906 

6907 

6908 Returns 

6909 ------- 

6910 new_dtype : dtype 

6911 New `dtype` object with the given change to the byte order. 

6912 

6913 """)) 

6914 

6915add_newdoc('numpy.core.numerictypes', 'generic', 

6916 refer_to_array_attribute('nonzero')) 

6917 

6918add_newdoc('numpy.core.numerictypes', 'generic', 

6919 refer_to_array_attribute('prod')) 

6920 

6921add_newdoc('numpy.core.numerictypes', 'generic', 

6922 refer_to_array_attribute('ptp')) 

6923 

6924add_newdoc('numpy.core.numerictypes', 'generic', 

6925 refer_to_array_attribute('put')) 

6926 

6927add_newdoc('numpy.core.numerictypes', 'generic', 

6928 refer_to_array_attribute('ravel')) 

6929 

6930add_newdoc('numpy.core.numerictypes', 'generic', 

6931 refer_to_array_attribute('repeat')) 

6932 

6933add_newdoc('numpy.core.numerictypes', 'generic', 

6934 refer_to_array_attribute('reshape')) 

6935 

6936add_newdoc('numpy.core.numerictypes', 'generic', 

6937 refer_to_array_attribute('resize')) 

6938 

6939add_newdoc('numpy.core.numerictypes', 'generic', 

6940 refer_to_array_attribute('round')) 

6941 

6942add_newdoc('numpy.core.numerictypes', 'generic', 

6943 refer_to_array_attribute('searchsorted')) 

6944 

6945add_newdoc('numpy.core.numerictypes', 'generic', 

6946 refer_to_array_attribute('setfield')) 

6947 

6948add_newdoc('numpy.core.numerictypes', 'generic', 

6949 refer_to_array_attribute('setflags')) 

6950 

6951add_newdoc('numpy.core.numerictypes', 'generic', 

6952 refer_to_array_attribute('sort')) 

6953 

6954add_newdoc('numpy.core.numerictypes', 'generic', 

6955 refer_to_array_attribute('squeeze')) 

6956 

6957add_newdoc('numpy.core.numerictypes', 'generic', 

6958 refer_to_array_attribute('std')) 

6959 

6960add_newdoc('numpy.core.numerictypes', 'generic', 

6961 refer_to_array_attribute('sum')) 

6962 

6963add_newdoc('numpy.core.numerictypes', 'generic', 

6964 refer_to_array_attribute('swapaxes')) 

6965 

6966add_newdoc('numpy.core.numerictypes', 'generic', 

6967 refer_to_array_attribute('take')) 

6968 

6969add_newdoc('numpy.core.numerictypes', 'generic', 

6970 refer_to_array_attribute('tofile')) 

6971 

6972add_newdoc('numpy.core.numerictypes', 'generic', 

6973 refer_to_array_attribute('tolist')) 

6974 

6975add_newdoc('numpy.core.numerictypes', 'generic', 

6976 refer_to_array_attribute('tostring')) 

6977 

6978add_newdoc('numpy.core.numerictypes', 'generic', 

6979 refer_to_array_attribute('trace')) 

6980 

6981add_newdoc('numpy.core.numerictypes', 'generic', 

6982 refer_to_array_attribute('transpose')) 

6983 

6984add_newdoc('numpy.core.numerictypes', 'generic', 

6985 refer_to_array_attribute('var')) 

6986 

6987add_newdoc('numpy.core.numerictypes', 'generic', 

6988 refer_to_array_attribute('view')) 

6989 

6990add_newdoc('numpy.core.numerictypes', 'number', ('__class_getitem__', 

6991 """ 

6992 __class_getitem__(item, /) 

6993 

6994 Return a parametrized wrapper around the `~numpy.number` type. 

6995 

6996 .. versionadded:: 1.22 

6997 

6998 Returns 

6999 ------- 

7000 alias : types.GenericAlias 

7001 A parametrized `~numpy.number` type. 

7002 

7003 Examples 

7004 -------- 

7005 >>> from typing import Any 

7006 >>> import numpy as np 

7007 

7008 >>> np.signedinteger[Any] 

7009 numpy.signedinteger[typing.Any] 

7010 

7011 Notes 

7012 ----- 

7013 This method is only available for python 3.9 and later. 

7014 

7015 See Also 

7016 -------- 

7017 :pep:`585` : Type hinting generics in standard collections. 

7018 

7019 """)) 

7020 

7021############################################################################## 

7022# 

7023# Documentation for scalar type abstract base classes in type hierarchy 

7024# 

7025############################################################################## 

7026 

7027 

7028add_newdoc('numpy.core.numerictypes', 'number', 

7029 """ 

7030 Abstract base class of all numeric scalar types. 

7031 

7032 """) 

7033 

7034add_newdoc('numpy.core.numerictypes', 'integer', 

7035 """ 

7036 Abstract base class of all integer scalar types. 

7037 

7038 """) 

7039 

7040add_newdoc('numpy.core.numerictypes', 'signedinteger', 

7041 """ 

7042 Abstract base class of all signed integer scalar types. 

7043 

7044 """) 

7045 

7046add_newdoc('numpy.core.numerictypes', 'unsignedinteger', 

7047 """ 

7048 Abstract base class of all unsigned integer scalar types. 

7049 

7050 """) 

7051 

7052add_newdoc('numpy.core.numerictypes', 'inexact', 

7053 """ 

7054 Abstract base class of all numeric scalar types with a (potentially) 

7055 inexact representation of the values in its range, such as 

7056 floating-point numbers. 

7057 

7058 """) 

7059 

7060add_newdoc('numpy.core.numerictypes', 'floating', 

7061 """ 

7062 Abstract base class of all floating-point scalar types. 

7063 

7064 """) 

7065 

7066add_newdoc('numpy.core.numerictypes', 'complexfloating', 

7067 """ 

7068 Abstract base class of all complex number scalar types that are made up of 

7069 floating-point numbers. 

7070 

7071 """) 

7072 

7073add_newdoc('numpy.core.numerictypes', 'flexible', 

7074 """ 

7075 Abstract base class of all scalar types without predefined length. 

7076 The actual size of these types depends on the specific `np.dtype` 

7077 instantiation. 

7078 

7079 """) 

7080 

7081add_newdoc('numpy.core.numerictypes', 'character', 

7082 """ 

7083 Abstract base class of all character string scalar types. 

7084 

7085 """)