Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/pandas/__init__.py: 100%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

33 statements  

1from __future__ import annotations 

2 

3__docformat__ = "restructuredtext" 

4 

5# Let users know if they're missing any of our hard dependencies 

6_hard_dependencies = ("numpy", "pytz", "dateutil") 

7_missing_dependencies = [] 

8 

9for _dependency in _hard_dependencies: 

10 try: 

11 __import__(_dependency) 

12 except ImportError as _e: # pragma: no cover 

13 _missing_dependencies.append(f"{_dependency}: {_e}") 

14 

15if _missing_dependencies: # pragma: no cover 

16 raise ImportError( 

17 "Unable to import required dependencies:\n" + "\n".join(_missing_dependencies) 

18 ) 

19del _hard_dependencies, _dependency, _missing_dependencies 

20 

21# numpy compat 

22from pandas.compat import is_numpy_dev as _is_numpy_dev # pyright: ignore # noqa:F401 

23 

24try: 

25 from pandas._libs import hashtable as _hashtable, lib as _lib, tslib as _tslib 

26except ImportError as _err: # pragma: no cover 

27 _module = _err.name 

28 raise ImportError( 

29 f"C extension: {_module} not built. If you want to import " 

30 "pandas from the source directory, you may need to run " 

31 "'python setup.py build_ext --force' to build the C extensions first." 

32 ) from _err 

33else: 

34 del _tslib, _lib, _hashtable 

35 

36from pandas._config import ( 

37 get_option, 

38 set_option, 

39 reset_option, 

40 describe_option, 

41 option_context, 

42 options, 

43) 

44 

45# let init-time option registration happen 

46import pandas.core.config_init # pyright: ignore # noqa:F401 

47 

48from pandas.core.api import ( 

49 # dtype 

50 ArrowDtype, 

51 Int8Dtype, 

52 Int16Dtype, 

53 Int32Dtype, 

54 Int64Dtype, 

55 UInt8Dtype, 

56 UInt16Dtype, 

57 UInt32Dtype, 

58 UInt64Dtype, 

59 Float32Dtype, 

60 Float64Dtype, 

61 CategoricalDtype, 

62 PeriodDtype, 

63 IntervalDtype, 

64 DatetimeTZDtype, 

65 StringDtype, 

66 BooleanDtype, 

67 # missing 

68 NA, 

69 isna, 

70 isnull, 

71 notna, 

72 notnull, 

73 # indexes 

74 Index, 

75 CategoricalIndex, 

76 RangeIndex, 

77 MultiIndex, 

78 IntervalIndex, 

79 TimedeltaIndex, 

80 DatetimeIndex, 

81 PeriodIndex, 

82 IndexSlice, 

83 # tseries 

84 NaT, 

85 Period, 

86 period_range, 

87 Timedelta, 

88 timedelta_range, 

89 Timestamp, 

90 date_range, 

91 bdate_range, 

92 Interval, 

93 interval_range, 

94 DateOffset, 

95 # conversion 

96 to_numeric, 

97 to_datetime, 

98 to_timedelta, 

99 # misc 

100 Flags, 

101 Grouper, 

102 factorize, 

103 unique, 

104 value_counts, 

105 NamedAgg, 

106 array, 

107 Categorical, 

108 set_eng_float_format, 

109 Series, 

110 DataFrame, 

111) 

112 

113from pandas.core.arrays.sparse import SparseDtype 

114 

115from pandas.tseries.api import infer_freq 

116from pandas.tseries import offsets 

117 

118from pandas.core.computation.api import eval 

119 

120from pandas.core.reshape.api import ( 

121 concat, 

122 lreshape, 

123 melt, 

124 wide_to_long, 

125 merge, 

126 merge_asof, 

127 merge_ordered, 

128 crosstab, 

129 pivot, 

130 pivot_table, 

131 get_dummies, 

132 from_dummies, 

133 cut, 

134 qcut, 

135) 

136 

137from pandas import api, arrays, errors, io, plotting, tseries 

138from pandas import testing 

139from pandas.util._print_versions import show_versions 

140 

141from pandas.io.api import ( 

142 # excel 

143 ExcelFile, 

144 ExcelWriter, 

145 read_excel, 

146 # parsers 

147 read_csv, 

148 read_fwf, 

149 read_table, 

150 # pickle 

151 read_pickle, 

152 to_pickle, 

153 # pytables 

154 HDFStore, 

155 read_hdf, 

156 # sql 

157 read_sql, 

158 read_sql_query, 

159 read_sql_table, 

160 # misc 

161 read_clipboard, 

162 read_parquet, 

163 read_orc, 

164 read_feather, 

165 read_gbq, 

166 read_html, 

167 read_xml, 

168 read_json, 

169 read_stata, 

170 read_sas, 

171 read_spss, 

172) 

173 

174from pandas.io.json._normalize import json_normalize 

175 

176from pandas.util._tester import test 

177 

178# use the closest tagged version if possible 

179from pandas._version import get_versions 

180 

181v = get_versions() 

182__version__ = v.get("closest-tag", v["version"]) 

183__git_version__ = v.get("full-revisionid") 

184del get_versions, v 

185 

186 

187# module level doc-string 

188__doc__ = """ 

189pandas - a powerful data analysis and manipulation library for Python 

190===================================================================== 

191 

192**pandas** is a Python package providing fast, flexible, and expressive data 

193structures designed to make working with "relational" or "labeled" data both 

194easy and intuitive. It aims to be the fundamental high-level building block for 

195doing practical, **real world** data analysis in Python. Additionally, it has 

196the broader goal of becoming **the most powerful and flexible open source data 

197analysis / manipulation tool available in any language**. It is already well on 

198its way toward this goal. 

199 

200Main Features 

201------------- 

202Here are just a few of the things that pandas does well: 

203 

204 - Easy handling of missing data in floating point as well as non-floating 

205 point data. 

206 - Size mutability: columns can be inserted and deleted from DataFrame and 

207 higher dimensional objects 

208 - Automatic and explicit data alignment: objects can be explicitly aligned 

209 to a set of labels, or the user can simply ignore the labels and let 

210 `Series`, `DataFrame`, etc. automatically align the data for you in 

211 computations. 

212 - Powerful, flexible group by functionality to perform split-apply-combine 

213 operations on data sets, for both aggregating and transforming data. 

214 - Make it easy to convert ragged, differently-indexed data in other Python 

215 and NumPy data structures into DataFrame objects. 

216 - Intelligent label-based slicing, fancy indexing, and subsetting of large 

217 data sets. 

218 - Intuitive merging and joining data sets. 

219 - Flexible reshaping and pivoting of data sets. 

220 - Hierarchical labeling of axes (possible to have multiple labels per tick). 

221 - Robust IO tools for loading data from flat files (CSV and delimited), 

222 Excel files, databases, and saving/loading data from the ultrafast HDF5 

223 format. 

224 - Time series-specific functionality: date range generation and frequency 

225 conversion, moving window statistics, date shifting and lagging. 

226""" 

227 

228# Use __all__ to let type checkers know what is part of the public API. 

229# Pandas is not (yet) a py.typed library: the public API is determined 

230# based on the documentation. 

231__all__ = [ 

232 "ArrowDtype", 

233 "BooleanDtype", 

234 "Categorical", 

235 "CategoricalDtype", 

236 "CategoricalIndex", 

237 "DataFrame", 

238 "DateOffset", 

239 "DatetimeIndex", 

240 "DatetimeTZDtype", 

241 "ExcelFile", 

242 "ExcelWriter", 

243 "Flags", 

244 "Float32Dtype", 

245 "Float64Dtype", 

246 "Grouper", 

247 "HDFStore", 

248 "Index", 

249 "IndexSlice", 

250 "Int16Dtype", 

251 "Int32Dtype", 

252 "Int64Dtype", 

253 "Int8Dtype", 

254 "Interval", 

255 "IntervalDtype", 

256 "IntervalIndex", 

257 "MultiIndex", 

258 "NA", 

259 "NaT", 

260 "NamedAgg", 

261 "Period", 

262 "PeriodDtype", 

263 "PeriodIndex", 

264 "RangeIndex", 

265 "Series", 

266 "SparseDtype", 

267 "StringDtype", 

268 "Timedelta", 

269 "TimedeltaIndex", 

270 "Timestamp", 

271 "UInt16Dtype", 

272 "UInt32Dtype", 

273 "UInt64Dtype", 

274 "UInt8Dtype", 

275 "api", 

276 "array", 

277 "arrays", 

278 "bdate_range", 

279 "concat", 

280 "crosstab", 

281 "cut", 

282 "date_range", 

283 "describe_option", 

284 "errors", 

285 "eval", 

286 "factorize", 

287 "get_dummies", 

288 "from_dummies", 

289 "get_option", 

290 "infer_freq", 

291 "interval_range", 

292 "io", 

293 "isna", 

294 "isnull", 

295 "json_normalize", 

296 "lreshape", 

297 "melt", 

298 "merge", 

299 "merge_asof", 

300 "merge_ordered", 

301 "notna", 

302 "notnull", 

303 "offsets", 

304 "option_context", 

305 "options", 

306 "period_range", 

307 "pivot", 

308 "pivot_table", 

309 "plotting", 

310 "qcut", 

311 "read_clipboard", 

312 "read_csv", 

313 "read_excel", 

314 "read_feather", 

315 "read_fwf", 

316 "read_gbq", 

317 "read_hdf", 

318 "read_html", 

319 "read_json", 

320 "read_orc", 

321 "read_parquet", 

322 "read_pickle", 

323 "read_sas", 

324 "read_spss", 

325 "read_sql", 

326 "read_sql_query", 

327 "read_sql_table", 

328 "read_stata", 

329 "read_table", 

330 "read_xml", 

331 "reset_option", 

332 "set_eng_float_format", 

333 "set_option", 

334 "show_versions", 

335 "test", 

336 "testing", 

337 "timedelta_range", 

338 "to_datetime", 

339 "to_numeric", 

340 "to_pickle", 

341 "to_timedelta", 

342 "tseries", 

343 "unique", 

344 "value_counts", 

345 "wide_to_long", 

346]