/src/LPM/external.protobuf/include/absl/container/internal/btree.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | // A btree implementation of the STL set and map interfaces. A btree is smaller |
16 | | // and generally also faster than STL set/map (refer to the benchmarks below). |
17 | | // The red-black tree implementation of STL set/map has an overhead of 3 |
18 | | // pointers (left, right and parent) plus the node color information for each |
19 | | // stored value. So a set<int32_t> consumes 40 bytes for each value stored in |
20 | | // 64-bit mode. This btree implementation stores multiple values on fixed |
21 | | // size nodes (usually 256 bytes) and doesn't store child pointers for leaf |
22 | | // nodes. The result is that a btree_set<int32_t> may use much less memory per |
23 | | // stored value. For the random insertion benchmark in btree_bench.cc, a |
24 | | // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. |
25 | | // |
26 | | // The packing of multiple values on to each node of a btree has another effect |
27 | | // besides better space utilization: better cache locality due to fewer cache |
28 | | // lines being accessed. Better cache locality translates into faster |
29 | | // operations. |
30 | | // |
31 | | // CAVEATS |
32 | | // |
33 | | // Insertions and deletions on a btree can cause splitting, merging or |
34 | | // rebalancing of btree nodes. And even without these operations, insertions |
35 | | // and deletions on a btree will move values around within a node. In both |
36 | | // cases, the result is that insertions and deletions can invalidate iterators |
37 | | // pointing to values other than the one being inserted/deleted. Therefore, this |
38 | | // container does not provide pointer stability. This is notably different from |
39 | | // STL set/map which takes care to not invalidate iterators on insert/erase |
40 | | // except, of course, for iterators pointing to the value being erased. A |
41 | | // partial workaround when erasing is available: erase() returns an iterator |
42 | | // pointing to the item just after the one that was erased (or end() if none |
43 | | // exists). |
44 | | |
45 | | #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ |
46 | | #define ABSL_CONTAINER_INTERNAL_BTREE_H_ |
47 | | |
48 | | #include <algorithm> |
49 | | #include <cassert> |
50 | | #include <cstddef> |
51 | | #include <cstdint> |
52 | | #include <cstring> |
53 | | #include <functional> |
54 | | #include <iterator> |
55 | | #include <limits> |
56 | | #include <new> |
57 | | #include <string> |
58 | | #include <type_traits> |
59 | | #include <utility> |
60 | | |
61 | | #include "absl/base/internal/raw_logging.h" |
62 | | #include "absl/base/macros.h" |
63 | | #include "absl/container/internal/common.h" |
64 | | #include "absl/container/internal/common_policy_traits.h" |
65 | | #include "absl/container/internal/compressed_tuple.h" |
66 | | #include "absl/container/internal/container_memory.h" |
67 | | #include "absl/container/internal/layout.h" |
68 | | #include "absl/memory/memory.h" |
69 | | #include "absl/meta/type_traits.h" |
70 | | #include "absl/strings/cord.h" |
71 | | #include "absl/strings/string_view.h" |
72 | | #include "absl/types/compare.h" |
73 | | #include "absl/utility/utility.h" |
74 | | |
75 | | namespace absl { |
76 | | ABSL_NAMESPACE_BEGIN |
77 | | namespace container_internal { |
78 | | |
79 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
80 | | #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set |
81 | | #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
82 | | defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \ |
83 | | defined(ABSL_HAVE_MEMORY_SANITIZER) |
84 | | // When compiled in sanitizer mode, we add generation integers to the nodes and |
85 | | // iterators. When iterators are used, we validate that the container has not |
86 | | // been mutated since the iterator was constructed. |
87 | | #define ABSL_BTREE_ENABLE_GENERATIONS |
88 | | #endif |
89 | | |
90 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
91 | | constexpr bool BtreeGenerationsEnabled() { return true; } |
92 | | #else |
93 | 0 | constexpr bool BtreeGenerationsEnabled() { return false; } |
94 | | #endif |
95 | | |
96 | | template <typename Compare, typename T, typename U> |
97 | | using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>; |
98 | | |
99 | | // A helper class that indicates if the Compare parameter is a key-compare-to |
100 | | // comparator. |
101 | | template <typename Compare, typename T> |
102 | | using btree_is_key_compare_to = |
103 | | std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>; |
104 | | |
105 | | struct StringBtreeDefaultLess { |
106 | | using is_transparent = void; |
107 | | |
108 | | StringBtreeDefaultLess() = default; |
109 | | |
110 | | // Compatibility constructor. |
111 | 0 | StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT |
112 | 0 | StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT |
113 | | |
114 | | // Allow converting to std::less for use in key_comp()/value_comp(). |
115 | 0 | explicit operator std::less<std::string>() const { return {}; } |
116 | 0 | explicit operator std::less<absl::string_view>() const { return {}; } |
117 | 0 | explicit operator std::less<absl::Cord>() const { return {}; } |
118 | | |
119 | | absl::weak_ordering operator()(absl::string_view lhs, |
120 | 0 | absl::string_view rhs) const { |
121 | 0 | return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); |
122 | 0 | } |
123 | 0 | StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT |
124 | | absl::weak_ordering operator()(const absl::Cord &lhs, |
125 | 0 | const absl::Cord &rhs) const { |
126 | 0 | return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
127 | 0 | } |
128 | | absl::weak_ordering operator()(const absl::Cord &lhs, |
129 | 0 | absl::string_view rhs) const { |
130 | 0 | return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
131 | 0 | } |
132 | | absl::weak_ordering operator()(absl::string_view lhs, |
133 | 0 | const absl::Cord &rhs) const { |
134 | 0 | return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); |
135 | 0 | } |
136 | | }; |
137 | | |
138 | | struct StringBtreeDefaultGreater { |
139 | | using is_transparent = void; |
140 | | |
141 | | StringBtreeDefaultGreater() = default; |
142 | | |
143 | 0 | StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT |
144 | 0 | StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT |
145 | | |
146 | | // Allow converting to std::greater for use in key_comp()/value_comp(). |
147 | 0 | explicit operator std::greater<std::string>() const { return {}; } |
148 | 0 | explicit operator std::greater<absl::string_view>() const { return {}; } |
149 | 0 | explicit operator std::greater<absl::Cord>() const { return {}; } |
150 | | |
151 | | absl::weak_ordering operator()(absl::string_view lhs, |
152 | 0 | absl::string_view rhs) const { |
153 | 0 | return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); |
154 | 0 | } |
155 | 0 | StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT |
156 | | absl::weak_ordering operator()(const absl::Cord &lhs, |
157 | 0 | const absl::Cord &rhs) const { |
158 | 0 | return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
159 | 0 | } |
160 | | absl::weak_ordering operator()(const absl::Cord &lhs, |
161 | 0 | absl::string_view rhs) const { |
162 | 0 | return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); |
163 | 0 | } |
164 | | absl::weak_ordering operator()(absl::string_view lhs, |
165 | 0 | const absl::Cord &rhs) const { |
166 | 0 | return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
167 | 0 | } |
168 | | }; |
169 | | |
170 | | // See below comments for checked_compare. |
171 | | template <typename Compare, bool is_class = std::is_class<Compare>::value> |
172 | | struct checked_compare_base : Compare { |
173 | | using Compare::Compare; |
174 | | explicit checked_compare_base(Compare c) : Compare(std::move(c)) {} |
175 | | const Compare &comp() const { return *this; } |
176 | | }; |
177 | | template <typename Compare> |
178 | | struct checked_compare_base<Compare, false> { |
179 | | explicit checked_compare_base(Compare c) : compare(std::move(c)) {} |
180 | | const Compare &comp() const { return compare; } |
181 | | Compare compare; |
182 | | }; |
183 | | |
184 | | // A mechanism for opting out of checked_compare for use only in btree_test.cc. |
185 | | struct BtreeTestOnlyCheckedCompareOptOutBase {}; |
186 | | |
187 | | // A helper class to adapt the specified comparator for two use cases: |
188 | | // (1) When using common Abseil string types with common comparison functors, |
189 | | // convert a boolean comparison into a three-way comparison that returns an |
190 | | // `absl::weak_ordering`. This helper class is specialized for |
191 | | // less<std::string>, greater<std::string>, less<string_view>, |
192 | | // greater<string_view>, less<absl::Cord>, and greater<absl::Cord>. |
193 | | // (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see |
194 | | // https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever |
195 | | // a comparison is made, we will make assertions to verify that the comparator |
196 | | // is valid. |
197 | | template <typename Compare, typename Key> |
198 | | struct key_compare_adapter { |
199 | | // Inherit from checked_compare_base to support function pointers and also |
200 | | // keep empty-base-optimization (EBO) support for classes. |
201 | | // Note: we can't use CompressedTuple here because that would interfere |
202 | | // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a |
203 | | // CompressedTuple and nested `CompressedTuple`s don't support EBO. |
204 | | // TODO(b/214288561): use CompressedTuple instead once it supports EBO for |
205 | | // nested `CompressedTuple`s. |
206 | | struct checked_compare : checked_compare_base<Compare> { |
207 | | private: |
208 | | using Base = typename checked_compare::checked_compare_base; |
209 | | using Base::comp; |
210 | | |
211 | | // If possible, returns whether `t` is equivalent to itself. We can only do |
212 | | // this for `Key`s because we can't be sure that it's safe to call |
213 | | // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a |
214 | | // compilation failure inside the implementation of the comparison operator. |
215 | | bool is_self_equivalent(const Key &k) const { |
216 | | // Note: this works for both boolean and three-way comparators. |
217 | | return comp()(k, k) == 0; |
218 | | } |
219 | | // If we can't compare `t` with itself, returns true unconditionally. |
220 | | template <typename T> |
221 | | bool is_self_equivalent(const T &) const { |
222 | | return true; |
223 | | } |
224 | | |
225 | | public: |
226 | | using Base::Base; |
227 | | checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT |
228 | | |
229 | | // Allow converting to Compare for use in key_comp()/value_comp(). |
230 | | explicit operator Compare() const { return comp(); } |
231 | | |
232 | | template <typename T, typename U, |
233 | | absl::enable_if_t< |
234 | | std::is_same<bool, compare_result_t<Compare, T, U>>::value, |
235 | | int> = 0> |
236 | | bool operator()(const T &lhs, const U &rhs) const { |
237 | | // NOTE: if any of these assertions fail, then the comparator does not |
238 | | // establish a strict-weak-ordering (see |
239 | | // https://en.cppreference.com/w/cpp/named_req/Compare). |
240 | | assert(is_self_equivalent(lhs)); |
241 | | assert(is_self_equivalent(rhs)); |
242 | | const bool lhs_comp_rhs = comp()(lhs, rhs); |
243 | | assert(!lhs_comp_rhs || !comp()(rhs, lhs)); |
244 | | return lhs_comp_rhs; |
245 | | } |
246 | | |
247 | | template < |
248 | | typename T, typename U, |
249 | | absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>, |
250 | | absl::weak_ordering>::value, |
251 | | int> = 0> |
252 | | absl::weak_ordering operator()(const T &lhs, const U &rhs) const { |
253 | | // NOTE: if any of these assertions fail, then the comparator does not |
254 | | // establish a strict-weak-ordering (see |
255 | | // https://en.cppreference.com/w/cpp/named_req/Compare). |
256 | | assert(is_self_equivalent(lhs)); |
257 | | assert(is_self_equivalent(rhs)); |
258 | | const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs); |
259 | | #ifndef NDEBUG |
260 | | const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs); |
261 | | if (lhs_comp_rhs > 0) { |
262 | | assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0"); |
263 | | } else if (lhs_comp_rhs == 0) { |
264 | | assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0"); |
265 | | } else { |
266 | | assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); |
267 | | } |
268 | | #endif |
269 | | return lhs_comp_rhs; |
270 | | } |
271 | | }; |
272 | | using type = absl::conditional_t< |
273 | | std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value, |
274 | | Compare, checked_compare>; |
275 | | }; |
276 | | |
277 | | template <> |
278 | | struct key_compare_adapter<std::less<std::string>, std::string> { |
279 | | using type = StringBtreeDefaultLess; |
280 | | }; |
281 | | |
282 | | template <> |
283 | | struct key_compare_adapter<std::greater<std::string>, std::string> { |
284 | | using type = StringBtreeDefaultGreater; |
285 | | }; |
286 | | |
287 | | template <> |
288 | | struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> { |
289 | | using type = StringBtreeDefaultLess; |
290 | | }; |
291 | | |
292 | | template <> |
293 | | struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> { |
294 | | using type = StringBtreeDefaultGreater; |
295 | | }; |
296 | | |
297 | | template <> |
298 | | struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> { |
299 | | using type = StringBtreeDefaultLess; |
300 | | }; |
301 | | |
302 | | template <> |
303 | | struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> { |
304 | | using type = StringBtreeDefaultGreater; |
305 | | }; |
306 | | |
307 | | // Detects an 'absl_btree_prefer_linear_node_search' member. This is |
308 | | // a protocol used as an opt-in or opt-out of linear search. |
309 | | // |
310 | | // For example, this would be useful for key types that wrap an integer |
311 | | // and define their own cheap operator<(). For example: |
312 | | // |
313 | | // class K { |
314 | | // public: |
315 | | // using absl_btree_prefer_linear_node_search = std::true_type; |
316 | | // ... |
317 | | // private: |
318 | | // friend bool operator<(K a, K b) { return a.k_ < b.k_; } |
319 | | // int k_; |
320 | | // }; |
321 | | // |
322 | | // btree_map<K, V> m; // Uses linear search |
323 | | // |
324 | | // If T has the preference tag, then it has a preference. |
325 | | // Btree will use the tag's truth value. |
326 | | template <typename T, typename = void> |
327 | | struct has_linear_node_search_preference : std::false_type {}; |
328 | | template <typename T, typename = void> |
329 | | struct prefers_linear_node_search : std::false_type {}; |
330 | | template <typename T> |
331 | | struct has_linear_node_search_preference< |
332 | | T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> |
333 | | : std::true_type {}; |
334 | | template <typename T> |
335 | | struct prefers_linear_node_search< |
336 | | T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> |
337 | | : T::absl_btree_prefer_linear_node_search {}; |
338 | | |
339 | | template <typename Compare, typename Key> |
340 | 0 | constexpr bool compare_has_valid_result_type() { |
341 | 0 | using compare_result_type = compare_result_t<Compare, Key, Key>; |
342 | 0 | return std::is_same<compare_result_type, bool>::value || |
343 | 0 | std::is_convertible<compare_result_type, absl::weak_ordering>::value; |
344 | 0 | } Unexecuted instantiation: bool absl::lts_20240116::container_internal::compare_has_valid_result_type<std::__1::less<int>, int>() Unexecuted instantiation: bool absl::lts_20240116::container_internal::compare_has_valid_result_type<std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::VariantKey>() |
345 | | |
346 | | template <typename original_key_compare, typename value_type> |
347 | | class map_value_compare { |
348 | | template <typename Params> |
349 | | friend class btree; |
350 | | |
351 | | // Note: this `protected` is part of the API of std::map::value_compare. See |
352 | | // https://en.cppreference.com/w/cpp/container/map/value_compare. |
353 | | protected: |
354 | | explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {} |
355 | | |
356 | | original_key_compare comp; // NOLINT |
357 | | |
358 | | public: |
359 | | auto operator()(const value_type &lhs, const value_type &rhs) const |
360 | | -> decltype(comp(lhs.first, rhs.first)) { |
361 | | return comp(lhs.first, rhs.first); |
362 | | } |
363 | | }; |
364 | | |
365 | | template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
366 | | bool IsMulti, bool IsMap, typename SlotPolicy> |
367 | | struct common_params : common_policy_traits<SlotPolicy> { |
368 | | using original_key_compare = Compare; |
369 | | |
370 | | // If Compare is a common comparator for a string-like type, then we adapt it |
371 | | // to use heterogeneous lookup and to be a key-compare-to comparator. |
372 | | // We also adapt the comparator to diagnose invalid comparators in debug mode. |
373 | | // We disable this when `Compare` is invalid in a way that will cause |
374 | | // adaptation to fail (having invalid return type) so that we can give a |
375 | | // better compilation failure in static_assert_validation. If we don't do |
376 | | // this, then there will be cascading compilation failures that are confusing |
377 | | // for users. |
378 | | using key_compare = |
379 | | absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(), |
380 | | Compare, |
381 | | typename key_compare_adapter<Compare, Key>::type>; |
382 | | |
383 | | static constexpr bool kIsKeyCompareStringAdapted = |
384 | | std::is_same<key_compare, StringBtreeDefaultLess>::value || |
385 | | std::is_same<key_compare, StringBtreeDefaultGreater>::value; |
386 | | static constexpr bool kIsKeyCompareTransparent = |
387 | | IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted; |
388 | | |
389 | | // A type which indicates if we have a key-compare-to functor or a plain old |
390 | | // key-compare functor. |
391 | | using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; |
392 | | |
393 | | using allocator_type = Alloc; |
394 | | using key_type = Key; |
395 | | using size_type = size_t; |
396 | | using difference_type = ptrdiff_t; |
397 | | |
398 | | using slot_policy = SlotPolicy; |
399 | | using slot_type = typename slot_policy::slot_type; |
400 | | using value_type = typename slot_policy::value_type; |
401 | | using init_type = typename slot_policy::mutable_value_type; |
402 | | using pointer = value_type *; |
403 | | using const_pointer = const value_type *; |
404 | | using reference = value_type &; |
405 | | using const_reference = const value_type &; |
406 | | |
407 | | using value_compare = |
408 | | absl::conditional_t<IsMap, |
409 | | map_value_compare<original_key_compare, value_type>, |
410 | | original_key_compare>; |
411 | | using is_map_container = std::integral_constant<bool, IsMap>; |
412 | | |
413 | | // For the given lookup key type, returns whether we can have multiple |
414 | | // equivalent keys in the btree. If this is a multi-container, then we can. |
415 | | // Otherwise, we can have multiple equivalent keys only if all of the |
416 | | // following conditions are met: |
417 | | // - The comparator is transparent. |
418 | | // - The lookup key type is not the same as key_type. |
419 | | // - The comparator is not a StringBtreeDefault{Less,Greater} comparator |
420 | | // that we know has the same equivalence classes for all lookup types. |
421 | | template <typename LookupKey> |
422 | | constexpr static bool can_have_multiple_equivalent_keys() { |
423 | | return IsMulti || (IsTransparent<key_compare>::value && |
424 | | !std::is_same<LookupKey, Key>::value && |
425 | | !kIsKeyCompareStringAdapted); |
426 | | } |
427 | | |
428 | | enum { |
429 | | kTargetNodeSize = TargetNodeSize, |
430 | | |
431 | | // Upper bound for the available space for slots. This is largest for leaf |
432 | | // nodes, which have overhead of at least a pointer + 4 bytes (for storing |
433 | | // 3 field_types and an enum). |
434 | | kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), |
435 | | }; |
436 | | |
437 | | // This is an integral type large enough to hold as many slots as will fit a |
438 | | // node of TargetNodeSize bytes. |
439 | | using node_count_type = |
440 | | absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) > |
441 | | (std::numeric_limits<uint8_t>::max)()), |
442 | | uint16_t, uint8_t>; // NOLINT |
443 | | }; |
444 | | |
445 | | // An adapter class that converts a lower-bound compare into an upper-bound |
446 | | // compare. Note: there is no need to make a version of this adapter specialized |
447 | | // for key-compare-to functors because the upper-bound (the first value greater |
448 | | // than the input) is never an exact match. |
449 | | template <typename Compare> |
450 | | struct upper_bound_adapter { |
451 | | explicit upper_bound_adapter(const Compare &c) : comp(c) {} |
452 | | template <typename K1, typename K2> |
453 | | bool operator()(const K1 &a, const K2 &b) const { |
454 | | // Returns true when a is not greater than b. |
455 | | return !compare_internal::compare_result_as_less_than(comp(b, a)); |
456 | | } |
457 | | |
458 | | private: |
459 | | Compare comp; |
460 | | }; |
461 | | |
462 | | enum class MatchKind : uint8_t { kEq, kNe }; |
463 | | |
464 | | template <typename V, bool IsCompareTo> |
465 | | struct SearchResult { |
466 | | V value; |
467 | | MatchKind match; |
468 | | |
469 | | static constexpr bool HasMatch() { return true; } |
470 | | bool IsEq() const { return match == MatchKind::kEq; } |
471 | | }; |
472 | | |
473 | | // When we don't use CompareTo, `match` is not present. |
474 | | // This ensures that callers can't use it accidentally when it provides no |
475 | | // useful information. |
476 | | template <typename V> |
477 | | struct SearchResult<V, false> { |
478 | | SearchResult() {} |
479 | | explicit SearchResult(V v) : value(v) {} |
480 | | SearchResult(V v, MatchKind /*match*/) : value(v) {} |
481 | | |
482 | | V value; |
483 | | |
484 | | static constexpr bool HasMatch() { return false; } |
485 | | static constexpr bool IsEq() { return false; } |
486 | | }; |
487 | | |
488 | | // A node in the btree holding. The same node type is used for both internal |
489 | | // and leaf nodes in the btree, though the nodes are allocated in such a way |
490 | | // that the children array is only valid in internal nodes. |
491 | | template <typename Params> |
492 | | class btree_node { |
493 | | using is_key_compare_to = typename Params::is_key_compare_to; |
494 | | using field_type = typename Params::node_count_type; |
495 | | using allocator_type = typename Params::allocator_type; |
496 | | using slot_type = typename Params::slot_type; |
497 | | using original_key_compare = typename Params::original_key_compare; |
498 | | |
499 | | public: |
500 | | using params_type = Params; |
501 | | using key_type = typename Params::key_type; |
502 | | using value_type = typename Params::value_type; |
503 | | using pointer = typename Params::pointer; |
504 | | using const_pointer = typename Params::const_pointer; |
505 | | using reference = typename Params::reference; |
506 | | using const_reference = typename Params::const_reference; |
507 | | using key_compare = typename Params::key_compare; |
508 | | using size_type = typename Params::size_type; |
509 | | using difference_type = typename Params::difference_type; |
510 | | |
511 | | // Btree decides whether to use linear node search as follows: |
512 | | // - If the comparator expresses a preference, use that. |
513 | | // - If the key expresses a preference, use that. |
514 | | // - If the key is arithmetic and the comparator is std::less or |
515 | | // std::greater, choose linear. |
516 | | // - Otherwise, choose binary. |
517 | | // TODO(ezb): Might make sense to add condition(s) based on node-size. |
518 | | using use_linear_search = std::integral_constant< |
519 | | bool, has_linear_node_search_preference<original_key_compare>::value |
520 | | ? prefers_linear_node_search<original_key_compare>::value |
521 | | : has_linear_node_search_preference<key_type>::value |
522 | | ? prefers_linear_node_search<key_type>::value |
523 | | : std::is_arithmetic<key_type>::value && |
524 | | (std::is_same<std::less<key_type>, |
525 | | original_key_compare>::value || |
526 | | std::is_same<std::greater<key_type>, |
527 | | original_key_compare>::value)>; |
528 | | |
529 | | // This class is organized by absl::container_internal::Layout as if it had |
530 | | // the following structure: |
531 | | // // A pointer to the node's parent. |
532 | | // btree_node *parent; |
533 | | // |
534 | | // // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a |
535 | | // // generation integer in order to check that when iterators are |
536 | | // // used, they haven't been invalidated already. Only the generation on |
537 | | // // the root is used, but we have one on each node because whether a node |
538 | | // // is root or not can change. |
539 | | // uint32_t generation; |
540 | | // |
541 | | // // The position of the node in the node's parent. |
542 | | // field_type position; |
543 | | // // The index of the first populated value in `values`. |
544 | | // // TODO(ezb): right now, `start` is always 0. Update insertion/merge |
545 | | // // logic to allow for floating storage within nodes. |
546 | | // field_type start; |
547 | | // // The index after the last populated value in `values`. Currently, this |
548 | | // // is the same as the count of values. |
549 | | // field_type finish; |
550 | | // // The maximum number of values the node can hold. This is an integer in |
551 | | // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf |
552 | | // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal |
553 | | // // nodes (even though there are still kNodeSlots values in the node). |
554 | | // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) |
555 | | // // to free extra bits for is_root, etc. |
556 | | // field_type max_count; |
557 | | // |
558 | | // // The array of values. The capacity is `max_count` for leaf nodes and |
559 | | // // kNodeSlots for internal nodes. Only the values in |
560 | | // // [start, finish) have been initialized and are valid. |
561 | | // slot_type values[max_count]; |
562 | | // |
563 | | // // The array of child pointers. The keys in children[i] are all less |
564 | | // // than key(i). The keys in children[i + 1] are all greater than key(i). |
565 | | // // There are 0 children for leaf nodes and kNodeSlots + 1 children for |
566 | | // // internal nodes. |
567 | | // btree_node *children[kNodeSlots + 1]; |
568 | | // |
569 | | // This class is only constructed by EmptyNodeType. Normally, pointers to the |
570 | | // layout above are allocated, cast to btree_node*, and de-allocated within |
571 | | // the btree implementation. |
572 | | ~btree_node() = default; |
573 | | btree_node(btree_node const &) = delete; |
574 | | btree_node &operator=(btree_node const &) = delete; |
575 | | |
576 | | protected: |
577 | | btree_node() = default; |
578 | | |
579 | | private: |
580 | | using layout_type = |
581 | | absl::container_internal::Layout<btree_node *, uint32_t, field_type, |
582 | | slot_type, btree_node *>; |
583 | 0 | constexpr static size_type SizeWithNSlots(size_type n) { |
584 | 0 | return layout_type( |
585 | 0 | /*parent*/ 1, |
586 | 0 | /*generation*/ BtreeGenerationsEnabled() ? 1 : 0, |
587 | 0 | /*position, start, finish, max_count*/ 4, |
588 | 0 | /*slots*/ n, |
589 | 0 | /*children*/ 0) |
590 | 0 | .AllocSize(); |
591 | 0 | } Unexecuted instantiation: absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<int, google::protobuf::internal::ExtensionSet::Extension, std::__1::less<int>, std::__1::allocator<std::__1::pair<int const, google::protobuf::internal::ExtensionSet::Extension> >, 256, false> >::SizeWithNSlots(unsigned long) Unexecuted instantiation: absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >::SizeWithNSlots(unsigned long) |
592 | | // A lower bound for the overhead of fields other than slots in a leaf node. |
593 | | constexpr static size_type MinimumOverhead() { |
594 | | return SizeWithNSlots(1) - sizeof(slot_type); |
595 | | } |
596 | | |
597 | | // Compute how many values we can fit onto a leaf node taking into account |
598 | | // padding. |
599 | | constexpr static size_type NodeTargetSlots(const size_type begin, |
600 | 0 | const size_type end) { |
601 | 0 | return begin == end ? begin |
602 | 0 | : SizeWithNSlots((begin + end) / 2 + 1) > |
603 | 0 | params_type::kTargetNodeSize |
604 | 0 | ? NodeTargetSlots(begin, (begin + end) / 2) |
605 | 0 | : NodeTargetSlots((begin + end) / 2 + 1, end); |
606 | 0 | } Unexecuted instantiation: absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<int, google::protobuf::internal::ExtensionSet::Extension, std::__1::less<int>, std::__1::allocator<std::__1::pair<int const, google::protobuf::internal::ExtensionSet::Extension> >, 256, false> >::NodeTargetSlots(unsigned long, unsigned long) Unexecuted instantiation: absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >::NodeTargetSlots(unsigned long, unsigned long) |
607 | | |
608 | | constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize; |
609 | | constexpr static size_type kNodeTargetSlots = |
610 | | NodeTargetSlots(0, kTargetNodeSize); |
611 | | |
612 | | // We need a minimum of 3 slots per internal node in order to perform |
613 | | // splitting (1 value for the two nodes involved in the split and 1 value |
614 | | // propagated to the parent as the delimiter for the split). For performance |
615 | | // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of |
616 | | // 1/3 (for a node, not a b-tree). |
617 | | constexpr static size_type kMinNodeSlots = 4; |
618 | | |
619 | | constexpr static size_type kNodeSlots = |
620 | | kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots; |
621 | | |
622 | | // The node is internal (i.e. is not a leaf node) if and only if `max_count` |
623 | | // has this value. |
624 | | constexpr static field_type kInternalNodeMaxCount = 0; |
625 | | |
626 | | constexpr static layout_type Layout(const size_type slot_count, |
627 | 0 | const size_type child_count) { |
628 | 0 | return layout_type( |
629 | 0 | /*parent*/ 1, |
630 | 0 | /*generation*/ BtreeGenerationsEnabled() ? 1 : 0, |
631 | 0 | /*position, start, finish, max_count*/ 4, |
632 | 0 | /*slots*/ slot_count, |
633 | 0 | /*children*/ child_count); |
634 | 0 | } |
635 | | // Leaves can have less than kNodeSlots values. |
636 | | constexpr static layout_type LeafLayout( |
637 | | const size_type slot_count = kNodeSlots) { |
638 | | return Layout(slot_count, 0); |
639 | | } |
640 | 0 | constexpr static layout_type InternalLayout() { |
641 | 0 | return Layout(kNodeSlots, kNodeSlots + 1); |
642 | 0 | } |
643 | | constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) { |
644 | | return LeafLayout(slot_count).AllocSize(); |
645 | | } |
646 | | constexpr static size_type InternalSize() { |
647 | | return InternalLayout().AllocSize(); |
648 | | } |
649 | | |
650 | | constexpr static size_type Alignment() { |
651 | | static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), |
652 | | "Alignment of all nodes must be equal."); |
653 | | return InternalLayout().Alignment(); |
654 | | } |
655 | | |
656 | | // N is the index of the type in the Layout definition. |
657 | | // ElementType<N> is the Nth type in the Layout definition. |
658 | | template <size_type N> |
659 | 0 | inline typename layout_type::template ElementType<N> *GetField() { |
660 | 0 | // We assert that we don't read from values that aren't there. |
661 | 0 | assert(N < 4 || is_internal()); |
662 | 0 | return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); |
663 | 0 | } |
664 | | template <size_type N> |
665 | 0 | inline const typename layout_type::template ElementType<N> *GetField() const { |
666 | 0 | assert(N < 4 || is_internal()); |
667 | 0 | return InternalLayout().template Pointer<N>( |
668 | 0 | reinterpret_cast<const char *>(this)); |
669 | 0 | } Unexecuted instantiation: std::__1::tuple_element<0ul, std::__1::tuple<absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*, unsigned int, unsigned char, absl::lts_20240116::container_internal::map_slot_type<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*>, absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*> >::type const* absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >::GetField<0ul>() const Unexecuted instantiation: std::__1::tuple_element<2ul, std::__1::tuple<absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*, unsigned int, unsigned char, absl::lts_20240116::container_internal::map_slot_type<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*>, absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*> >::type const* absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >::GetField<2ul>() const Unexecuted instantiation: std::__1::tuple_element<1ul, std::__1::tuple<absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*, unsigned int, unsigned char, absl::lts_20240116::container_internal::map_slot_type<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*>, absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >*> >::type const* absl::lts_20240116::container_internal::btree_node<absl::lts_20240116::container_internal::map_params<google::protobuf::internal::VariantKey, google::protobuf::internal::NodeBase*, std::__1::less<google::protobuf::internal::VariantKey>, google::protobuf::internal::MapAllocator<std::__1::pair<google::protobuf::internal::VariantKey const, google::protobuf::internal::NodeBase*> >, 256, false> >::GetField<1ul>() const |
670 | | void set_parent(btree_node *p) { *GetField<0>() = p; } |
671 | | field_type &mutable_finish() { return GetField<2>()[2]; } |
672 | 0 | slot_type *slot(size_type i) { return &GetField<3>()[i]; } |
673 | | slot_type *start_slot() { return slot(start()); } |
674 | | slot_type *finish_slot() { return slot(finish()); } |
675 | | const slot_type *slot(size_type i) const { return &GetField<3>()[i]; } |
676 | | void set_position(field_type v) { GetField<2>()[0] = v; } |
677 | | void set_start(field_type v) { GetField<2>()[1] = v; } |
678 | | void set_finish(field_type v) { GetField<2>()[2] = v; } |
679 | | // This method is only called by the node init methods. |
680 | | void set_max_count(field_type v) { GetField<2>()[3] = v; } |
681 | | |
682 | | public: |
683 | | // Whether this is a leaf node or not. This value doesn't change after the |
684 | | // node is created. |
685 | 0 | bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; } |
686 | | // Whether this is an internal node or not. This value doesn't change after |
687 | | // the node is created. |
688 | | bool is_internal() const { return !is_leaf(); } |
689 | | |
690 | | // Getter for the position of this node in its parent. |
691 | 0 | field_type position() const { return GetField<2>()[0]; } |
692 | | |
693 | | // Getter for the offset of the first value in the `values` array. |
694 | 0 | field_type start() const { |
695 | 0 | // TODO(ezb): when floating storage is implemented, return GetField<2>()[1]; |
696 | 0 | assert(GetField<2>()[1] == 0); |
697 | 0 | return 0; |
698 | 0 | } |
699 | | |
700 | | // Getter for the offset after the last value in the `values` array. |
701 | 0 | field_type finish() const { return GetField<2>()[2]; } |
702 | | |
703 | | // Getters for the number of values stored in this node. |
704 | | field_type count() const { |
705 | | assert(finish() >= start()); |
706 | | return finish() - start(); |
707 | | } |
708 | | field_type max_count() const { |
709 | | // Internal nodes have max_count==kInternalNodeMaxCount. |
710 | | // Leaf nodes have max_count in [1, kNodeSlots]. |
711 | | const field_type max_count = GetField<2>()[3]; |
712 | | return max_count == field_type{kInternalNodeMaxCount} |
713 | | ? field_type{kNodeSlots} |
714 | | : max_count; |
715 | | } |
716 | | |
717 | | // Getter for the parent of this node. |
718 | 0 | btree_node *parent() const { return *GetField<0>(); } |
719 | | // Getter for whether the node is the root of the tree. The parent of the |
720 | | // root of the tree is the leftmost node in the tree which is guaranteed to |
721 | | // be a leaf. |
722 | 0 | bool is_root() const { return parent()->is_leaf(); } |
723 | | void make_root() { |
724 | | assert(parent()->is_root()); |
725 | | set_generation(parent()->generation()); |
726 | | set_parent(parent()->parent()); |
727 | | } |
728 | | |
729 | | // Gets the root node's generation integer, which is the one used by the tree. |
730 | 0 | uint32_t *get_root_generation() const { |
731 | 0 | assert(BtreeGenerationsEnabled()); |
732 | 0 | const btree_node *curr = this; |
733 | 0 | for (; !curr->is_root(); curr = curr->parent()) continue; |
734 | 0 | return const_cast<uint32_t *>(&curr->GetField<1>()[0]); |
735 | 0 | } |
736 | | |
737 | | // Returns the generation for iterator validation. |
738 | 0 | uint32_t generation() const { |
739 | 0 | return BtreeGenerationsEnabled() ? *get_root_generation() : 0; |
740 | 0 | } |
741 | | // Updates generation. Should only be called on a root node or during node |
742 | | // initialization. |
743 | | void set_generation(uint32_t generation) { |
744 | | if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation; |
745 | | } |
746 | | // Updates the generation. We do this whenever the node is mutated. |
747 | | void next_generation() { |
748 | | if (BtreeGenerationsEnabled()) ++*get_root_generation(); |
749 | | } |
750 | | |
751 | | // Getters for the key/value at position i in the node. |
752 | | const key_type &key(size_type i) const { return params_type::key(slot(i)); } |
753 | 0 | reference value(size_type i) { return params_type::element(slot(i)); } |
754 | | const_reference value(size_type i) const { |
755 | | return params_type::element(slot(i)); |
756 | | } |
757 | | |
758 | | // Getters/setter for the child at position i in the node. |
759 | | btree_node *child(field_type i) const { return GetField<4>()[i]; } |
760 | | btree_node *start_child() const { return child(start()); } |
761 | | btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; } |
762 | | void clear_child(field_type i) { |
763 | | absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); |
764 | | } |
765 | | void set_child_noupdate_position(field_type i, btree_node *c) { |
766 | | absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); |
767 | | mutable_child(i) = c; |
768 | | } |
769 | | void set_child(field_type i, btree_node *c) { |
770 | | set_child_noupdate_position(i, c); |
771 | | c->set_position(i); |
772 | | } |
773 | | void init_child(field_type i, btree_node *c) { |
774 | | set_child(i, c); |
775 | | c->set_parent(this); |
776 | | } |
777 | | |
778 | | // Returns the position of the first value whose key is not less than k. |
779 | | template <typename K> |
780 | | SearchResult<size_type, is_key_compare_to::value> lower_bound( |
781 | | const K &k, const key_compare &comp) const { |
782 | | return use_linear_search::value ? linear_search(k, comp) |
783 | | : binary_search(k, comp); |
784 | | } |
785 | | // Returns the position of the first value whose key is greater than k. |
786 | | template <typename K> |
787 | | size_type upper_bound(const K &k, const key_compare &comp) const { |
788 | | auto upper_compare = upper_bound_adapter<key_compare>(comp); |
789 | | return use_linear_search::value ? linear_search(k, upper_compare).value |
790 | | : binary_search(k, upper_compare).value; |
791 | | } |
792 | | |
793 | | template <typename K, typename Compare> |
794 | | SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> |
795 | | linear_search(const K &k, const Compare &comp) const { |
796 | | return linear_search_impl(k, start(), finish(), comp, |
797 | | btree_is_key_compare_to<Compare, key_type>()); |
798 | | } |
799 | | |
800 | | template <typename K, typename Compare> |
801 | | SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> |
802 | | binary_search(const K &k, const Compare &comp) const { |
803 | | return binary_search_impl(k, start(), finish(), comp, |
804 | | btree_is_key_compare_to<Compare, key_type>()); |
805 | | } |
806 | | |
807 | | // Returns the position of the first value whose key is not less than k using |
808 | | // linear search performed using plain compare. |
809 | | template <typename K, typename Compare> |
810 | | SearchResult<size_type, false> linear_search_impl( |
811 | | const K &k, size_type s, const size_type e, const Compare &comp, |
812 | | std::false_type /* IsCompareTo */) const { |
813 | | while (s < e) { |
814 | | if (!comp(key(s), k)) { |
815 | | break; |
816 | | } |
817 | | ++s; |
818 | | } |
819 | | return SearchResult<size_type, false>{s}; |
820 | | } |
821 | | |
822 | | // Returns the position of the first value whose key is not less than k using |
823 | | // linear search performed using compare-to. |
824 | | template <typename K, typename Compare> |
825 | | SearchResult<size_type, true> linear_search_impl( |
826 | | const K &k, size_type s, const size_type e, const Compare &comp, |
827 | | std::true_type /* IsCompareTo */) const { |
828 | | while (s < e) { |
829 | | const absl::weak_ordering c = comp(key(s), k); |
830 | | if (c == 0) { |
831 | | return {s, MatchKind::kEq}; |
832 | | } else if (c > 0) { |
833 | | break; |
834 | | } |
835 | | ++s; |
836 | | } |
837 | | return {s, MatchKind::kNe}; |
838 | | } |
839 | | |
840 | | // Returns the position of the first value whose key is not less than k using |
841 | | // binary search performed using plain compare. |
842 | | template <typename K, typename Compare> |
843 | | SearchResult<size_type, false> binary_search_impl( |
844 | | const K &k, size_type s, size_type e, const Compare &comp, |
845 | | std::false_type /* IsCompareTo */) const { |
846 | | while (s != e) { |
847 | | const size_type mid = (s + e) >> 1; |
848 | | if (comp(key(mid), k)) { |
849 | | s = mid + 1; |
850 | | } else { |
851 | | e = mid; |
852 | | } |
853 | | } |
854 | | return SearchResult<size_type, false>{s}; |
855 | | } |
856 | | |
857 | | // Returns the position of the first value whose key is not less than k using |
858 | | // binary search performed using compare-to. |
859 | | template <typename K, typename CompareTo> |
860 | | SearchResult<size_type, true> binary_search_impl( |
861 | | const K &k, size_type s, size_type e, const CompareTo &comp, |
862 | | std::true_type /* IsCompareTo */) const { |
863 | | if (params_type::template can_have_multiple_equivalent_keys<K>()) { |
864 | | MatchKind exact_match = MatchKind::kNe; |
865 | | while (s != e) { |
866 | | const size_type mid = (s + e) >> 1; |
867 | | const absl::weak_ordering c = comp(key(mid), k); |
868 | | if (c < 0) { |
869 | | s = mid + 1; |
870 | | } else { |
871 | | e = mid; |
872 | | if (c == 0) { |
873 | | // Need to return the first value whose key is not less than k, |
874 | | // which requires continuing the binary search if there could be |
875 | | // multiple equivalent keys. |
876 | | exact_match = MatchKind::kEq; |
877 | | } |
878 | | } |
879 | | } |
880 | | return {s, exact_match}; |
881 | | } else { // Can't have multiple equivalent keys. |
882 | | while (s != e) { |
883 | | const size_type mid = (s + e) >> 1; |
884 | | const absl::weak_ordering c = comp(key(mid), k); |
885 | | if (c < 0) { |
886 | | s = mid + 1; |
887 | | } else if (c > 0) { |
888 | | e = mid; |
889 | | } else { |
890 | | return {mid, MatchKind::kEq}; |
891 | | } |
892 | | } |
893 | | return {s, MatchKind::kNe}; |
894 | | } |
895 | | } |
896 | | |
897 | | // Returns whether key i is ordered correctly with respect to the other keys |
898 | | // in the node. The motivation here is to detect comparators that violate |
899 | | // transitivity. Note: we only do comparisons of keys on this node rather than |
900 | | // the whole tree so that this is constant time. |
901 | | template <typename Compare> |
902 | | bool is_ordered_correctly(field_type i, const Compare &comp) const { |
903 | | if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, |
904 | | Compare>::value || |
905 | | params_type::kIsKeyCompareStringAdapted) { |
906 | | return true; |
907 | | } |
908 | | |
909 | | const auto compare = [&](field_type a, field_type b) { |
910 | | const absl::weak_ordering cmp = |
911 | | compare_internal::do_three_way_comparison(comp, key(a), key(b)); |
912 | | return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; |
913 | | }; |
914 | | int cmp = -1; |
915 | | constexpr bool kCanHaveEquivKeys = |
916 | | params_type::template can_have_multiple_equivalent_keys<key_type>(); |
917 | | for (field_type j = start(); j < finish(); ++j) { |
918 | | if (j == i) { |
919 | | if (cmp > 0) return false; |
920 | | continue; |
921 | | } |
922 | | int new_cmp = compare(j, i); |
923 | | if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false; |
924 | | cmp = new_cmp; |
925 | | } |
926 | | return true; |
927 | | } |
928 | | |
929 | | // Emplaces a value at position i, shifting all existing values and |
930 | | // children at positions >= i to the right by 1. |
931 | | template <typename... Args> |
932 | | void emplace_value(field_type i, allocator_type *alloc, Args &&...args); |
933 | | |
934 | | // Removes the values at positions [i, i + to_erase), shifting all existing |
935 | | // values and children after that range to the left by to_erase. Clears all |
936 | | // children between [i, i + to_erase). |
937 | | void remove_values(field_type i, field_type to_erase, allocator_type *alloc); |
938 | | |
939 | | // Rebalances a node with its right sibling. |
940 | | void rebalance_right_to_left(field_type to_move, btree_node *right, |
941 | | allocator_type *alloc); |
942 | | void rebalance_left_to_right(field_type to_move, btree_node *right, |
943 | | allocator_type *alloc); |
944 | | |
945 | | // Splits a node, moving a portion of the node's values to its right sibling. |
946 | | void split(int insert_position, btree_node *dest, allocator_type *alloc); |
947 | | |
948 | | // Merges a node with its right sibling, moving all of the values and the |
949 | | // delimiting key in the parent node onto itself, and deleting the src node. |
950 | | void merge(btree_node *src, allocator_type *alloc); |
951 | | |
952 | | // Node allocation/deletion routines. |
953 | | void init_leaf(field_type position, field_type max_count, |
954 | | btree_node *parent) { |
955 | | set_generation(0); |
956 | | set_parent(parent); |
957 | | set_position(position); |
958 | | set_start(0); |
959 | | set_finish(0); |
960 | | set_max_count(max_count); |
961 | | absl::container_internal::SanitizerPoisonMemoryRegion( |
962 | | start_slot(), max_count * sizeof(slot_type)); |
963 | | } |
964 | | void init_internal(field_type position, btree_node *parent) { |
965 | | init_leaf(position, kNodeSlots, parent); |
966 | | // Set `max_count` to a sentinel value to indicate that this node is |
967 | | // internal. |
968 | | set_max_count(kInternalNodeMaxCount); |
969 | | absl::container_internal::SanitizerPoisonMemoryRegion( |
970 | | &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); |
971 | | } |
972 | | |
973 | | static void deallocate(const size_type size, btree_node *node, |
974 | | allocator_type *alloc) { |
975 | | absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size); |
976 | | absl::container_internal::Deallocate<Alignment()>(alloc, node, size); |
977 | | } |
978 | | |
979 | | // Deletes a node and all of its children. |
980 | | static void clear_and_delete(btree_node *node, allocator_type *alloc); |
981 | | |
982 | | private: |
983 | | template <typename... Args> |
984 | | void value_init(const field_type i, allocator_type *alloc, Args &&...args) { |
985 | | next_generation(); |
986 | | absl::container_internal::SanitizerUnpoisonObject(slot(i)); |
987 | | params_type::construct(alloc, slot(i), std::forward<Args>(args)...); |
988 | | } |
989 | | void value_destroy(const field_type i, allocator_type *alloc) { |
990 | | next_generation(); |
991 | | params_type::destroy(alloc, slot(i)); |
992 | | absl::container_internal::SanitizerPoisonObject(slot(i)); |
993 | | } |
994 | | void value_destroy_n(const field_type i, const field_type n, |
995 | | allocator_type *alloc) { |
996 | | next_generation(); |
997 | | for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { |
998 | | params_type::destroy(alloc, s); |
999 | | absl::container_internal::SanitizerPoisonObject(s); |
1000 | | } |
1001 | | } |
1002 | | |
1003 | | static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { |
1004 | | absl::container_internal::SanitizerUnpoisonObject(dest); |
1005 | | params_type::transfer(alloc, dest, src); |
1006 | | absl::container_internal::SanitizerPoisonObject(src); |
1007 | | } |
1008 | | |
1009 | | // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. |
1010 | | void transfer(const size_type dest_i, const size_type src_i, |
1011 | | btree_node *src_node, allocator_type *alloc) { |
1012 | | next_generation(); |
1013 | | transfer(slot(dest_i), src_node->slot(src_i), alloc); |
1014 | | } |
1015 | | |
1016 | | // Transfers `n` values starting at value `src_i` in `src_node` into the |
1017 | | // values starting at value `dest_i` in `this`. |
1018 | | void transfer_n(const size_type n, const size_type dest_i, |
1019 | | const size_type src_i, btree_node *src_node, |
1020 | | allocator_type *alloc) { |
1021 | | next_generation(); |
1022 | | for (slot_type *src = src_node->slot(src_i), *end = src + n, |
1023 | | *dest = slot(dest_i); |
1024 | | src != end; ++src, ++dest) { |
1025 | | transfer(dest, src, alloc); |
1026 | | } |
1027 | | } |
1028 | | |
1029 | | // Same as above, except that we start at the end and work our way to the |
1030 | | // beginning. |
1031 | | void transfer_n_backward(const size_type n, const size_type dest_i, |
1032 | | const size_type src_i, btree_node *src_node, |
1033 | | allocator_type *alloc) { |
1034 | | next_generation(); |
1035 | | for (slot_type *src = src_node->slot(src_i + n), *end = src - n, |
1036 | | *dest = slot(dest_i + n); |
1037 | | src != end; --src, --dest) { |
1038 | | // If we modified the loop index calculations above to avoid the -1s here, |
1039 | | // it would result in UB in the computation of `end` (and possibly `src` |
1040 | | // as well, if n == 0), since slot() is effectively an array index and it |
1041 | | // is UB to compute the address of any out-of-bounds array element except |
1042 | | // for one-past-the-end. |
1043 | | transfer(dest - 1, src - 1, alloc); |
1044 | | } |
1045 | | } |
1046 | | |
1047 | | template <typename P> |
1048 | | friend class btree; |
1049 | | template <typename N, typename R, typename P> |
1050 | | friend class btree_iterator; |
1051 | | friend class BtreeNodePeer; |
1052 | | friend struct btree_access; |
1053 | | }; |
1054 | | |
1055 | | template <typename Node> |
1056 | | bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) { |
1057 | | // If either node is null, then give up on checking whether they're from the |
1058 | | // same container. (If exactly one is null, then we'll trigger the |
1059 | | // default-constructed assert in Equals.) |
1060 | | if (node_a == nullptr || node_b == nullptr) return true; |
1061 | | while (!node_a->is_root()) node_a = node_a->parent(); |
1062 | | while (!node_b->is_root()) node_b = node_b->parent(); |
1063 | | return node_a == node_b; |
1064 | | } |
1065 | | |
1066 | | class btree_iterator_generation_info_enabled { |
1067 | | public: |
1068 | | explicit btree_iterator_generation_info_enabled(uint32_t g) |
1069 | 0 | : generation_(g) {} |
1070 | | |
1071 | | // Updates the generation. For use internally right before we return an |
1072 | | // iterator to the user. |
1073 | | template <typename Node> |
1074 | | void update_generation(const Node *node) { |
1075 | | if (node != nullptr) generation_ = node->generation(); |
1076 | | } |
1077 | 0 | uint32_t generation() const { return generation_; } |
1078 | | |
1079 | | template <typename Node> |
1080 | | void assert_valid_generation(const Node *node) const { |
1081 | | if (node != nullptr && node->generation() != generation_) { |
1082 | | ABSL_INTERNAL_LOG( |
1083 | | FATAL, |
1084 | | "Attempting to use an invalidated iterator. The corresponding b-tree " |
1085 | | "container has been mutated since this iterator was constructed."); |
1086 | | } |
1087 | | } |
1088 | | |
1089 | | private: |
1090 | | // Used to check that the iterator hasn't been invalidated. |
1091 | | uint32_t generation_; |
1092 | | }; |
1093 | | |
1094 | | class btree_iterator_generation_info_disabled { |
1095 | | public: |
1096 | 0 | explicit btree_iterator_generation_info_disabled(uint32_t) {} |
1097 | 0 | static void update_generation(const void *) {} |
1098 | 0 | static uint32_t generation() { return 0; } |
1099 | 0 | static void assert_valid_generation(const void *) {} |
1100 | | }; |
1101 | | |
1102 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
1103 | | using btree_iterator_generation_info = btree_iterator_generation_info_enabled; |
1104 | | #else |
1105 | | using btree_iterator_generation_info = btree_iterator_generation_info_disabled; |
1106 | | #endif |
1107 | | |
1108 | | template <typename Node, typename Reference, typename Pointer> |
1109 | | class btree_iterator : private btree_iterator_generation_info { |
1110 | | using field_type = typename Node::field_type; |
1111 | | using key_type = typename Node::key_type; |
1112 | | using size_type = typename Node::size_type; |
1113 | | using params_type = typename Node::params_type; |
1114 | | using is_map_container = typename params_type::is_map_container; |
1115 | | |
1116 | | using node_type = Node; |
1117 | | using normal_node = typename std::remove_const<Node>::type; |
1118 | | using const_node = const Node; |
1119 | | using normal_pointer = typename params_type::pointer; |
1120 | | using normal_reference = typename params_type::reference; |
1121 | | using const_pointer = typename params_type::const_pointer; |
1122 | | using const_reference = typename params_type::const_reference; |
1123 | | using slot_type = typename params_type::slot_type; |
1124 | | |
1125 | | // In sets, all iterators are const. |
1126 | | using iterator = absl::conditional_t< |
1127 | | is_map_container::value, |
1128 | | btree_iterator<normal_node, normal_reference, normal_pointer>, |
1129 | | btree_iterator<normal_node, const_reference, const_pointer>>; |
1130 | | using const_iterator = |
1131 | | btree_iterator<const_node, const_reference, const_pointer>; |
1132 | | |
1133 | | public: |
1134 | | // These aliases are public for std::iterator_traits. |
1135 | | using difference_type = typename Node::difference_type; |
1136 | | using value_type = typename params_type::value_type; |
1137 | | using pointer = Pointer; |
1138 | | using reference = Reference; |
1139 | | using iterator_category = std::bidirectional_iterator_tag; |
1140 | | |
1141 | | btree_iterator() : btree_iterator(nullptr, -1) {} |
1142 | | explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {} |
1143 | | btree_iterator(Node *n, int p) |
1144 | | : btree_iterator_generation_info(n != nullptr ? n->generation() |
1145 | | : ~uint32_t{}), |
1146 | | node_(n), |
1147 | | position_(p) {} |
1148 | | |
1149 | | // NOTE: this SFINAE allows for implicit conversions from iterator to |
1150 | | // const_iterator, but it specifically avoids hiding the copy constructor so |
1151 | | // that the trivial one will be used when possible. |
1152 | | template <typename N, typename R, typename P, |
1153 | | absl::enable_if_t< |
1154 | | std::is_same<btree_iterator<N, R, P>, iterator>::value && |
1155 | | std::is_same<btree_iterator, const_iterator>::value, |
1156 | | int> = 0> |
1157 | | btree_iterator(const btree_iterator<N, R, P> other) // NOLINT |
1158 | | : btree_iterator_generation_info(other), |
1159 | | node_(other.node_), |
1160 | | position_(other.position_) {} |
1161 | | |
1162 | | bool operator==(const iterator &other) const { |
1163 | | return Equals(other); |
1164 | | } |
1165 | | bool operator==(const const_iterator &other) const { |
1166 | | return Equals(other); |
1167 | | } |
1168 | | bool operator!=(const iterator &other) const { |
1169 | | return !Equals(other); |
1170 | | } |
1171 | | bool operator!=(const const_iterator &other) const { |
1172 | | return !Equals(other); |
1173 | | } |
1174 | | |
1175 | | // Returns n such that n calls to ++other yields *this. |
1176 | | // Precondition: n exists. |
1177 | | difference_type operator-(const_iterator other) const { |
1178 | | if (node_ == other.node_) { |
1179 | | if (node_->is_leaf()) return position_ - other.position_; |
1180 | | if (position_ == other.position_) return 0; |
1181 | | } |
1182 | | return distance_slow(other); |
1183 | | } |
1184 | | |
1185 | | // Accessors for the key/value the iterator is pointing at. |
1186 | 0 | reference operator*() const { |
1187 | 0 | ABSL_HARDENING_ASSERT(node_ != nullptr); |
1188 | 0 | assert_valid_generation(node_); |
1189 | 0 | ABSL_HARDENING_ASSERT(position_ >= node_->start()); |
1190 | 0 | if (position_ >= node_->finish()) { |
1191 | 0 | ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator"); |
1192 | 0 | ABSL_HARDENING_ASSERT(position_ < node_->finish()); |
1193 | 0 | } |
1194 | 0 | return node_->value(static_cast<field_type>(position_)); |
1195 | 0 | } |
1196 | 0 | pointer operator->() const { return &operator*(); } |
1197 | | |
1198 | | btree_iterator &operator++() { |
1199 | | increment(); |
1200 | | return *this; |
1201 | | } |
1202 | | btree_iterator &operator--() { |
1203 | | decrement(); |
1204 | | return *this; |
1205 | | } |
1206 | | btree_iterator operator++(int) { |
1207 | | btree_iterator tmp = *this; |
1208 | | ++*this; |
1209 | | return tmp; |
1210 | | } |
1211 | | btree_iterator operator--(int) { |
1212 | | btree_iterator tmp = *this; |
1213 | | --*this; |
1214 | | return tmp; |
1215 | | } |
1216 | | |
1217 | | private: |
1218 | | friend iterator; |
1219 | | friend const_iterator; |
1220 | | template <typename Params> |
1221 | | friend class btree; |
1222 | | template <typename Tree> |
1223 | | friend class btree_container; |
1224 | | template <typename Tree> |
1225 | | friend class btree_set_container; |
1226 | | template <typename Tree> |
1227 | | friend class btree_map_container; |
1228 | | template <typename Tree> |
1229 | | friend class btree_multiset_container; |
1230 | | template <typename TreeType, typename CheckerType> |
1231 | | friend class base_checker; |
1232 | | friend struct btree_access; |
1233 | | |
1234 | | // This SFINAE allows explicit conversions from const_iterator to |
1235 | | // iterator, but also avoids hiding the copy constructor. |
1236 | | // NOTE: the const_cast is safe because this constructor is only called by |
1237 | | // non-const methods and the container owns the nodes. |
1238 | | template <typename N, typename R, typename P, |
1239 | | absl::enable_if_t< |
1240 | | std::is_same<btree_iterator<N, R, P>, const_iterator>::value && |
1241 | | std::is_same<btree_iterator, iterator>::value, |
1242 | | int> = 0> |
1243 | | explicit btree_iterator(const btree_iterator<N, R, P> other) |
1244 | | : btree_iterator_generation_info(other.generation()), |
1245 | | node_(const_cast<node_type *>(other.node_)), |
1246 | | position_(other.position_) {} |
1247 | | |
1248 | | bool Equals(const const_iterator other) const { |
1249 | | ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) || |
1250 | | (node_ != nullptr && other.node_ != nullptr)) && |
1251 | | "Comparing default-constructed iterator with " |
1252 | | "non-default-constructed iterator."); |
1253 | | // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this |
1254 | | // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where |
1255 | | // N/M are sizes of the containers containing node_/other.node_. |
1256 | | assert(AreNodesFromSameContainer(node_, other.node_) && |
1257 | | "Comparing iterators from different containers."); |
1258 | | assert_valid_generation(node_); |
1259 | | other.assert_valid_generation(other.node_); |
1260 | | return node_ == other.node_ && position_ == other.position_; |
1261 | | } |
1262 | | |
1263 | 0 | bool IsEndIterator() const { |
1264 | 0 | if (position_ != node_->finish()) return false; |
1265 | 0 | node_type *node = node_; |
1266 | 0 | while (!node->is_root()) { |
1267 | 0 | if (node->position() != node->parent()->finish()) return false; |
1268 | 0 | node = node->parent(); |
1269 | 0 | } |
1270 | 0 | return true; |
1271 | 0 | } |
1272 | | |
1273 | | // Returns n such that n calls to ++other yields *this. |
1274 | | // Precondition: n exists && (this->node_ != other.node_ || |
1275 | | // !this->node_->is_leaf() || this->position_ != other.position_). |
1276 | | difference_type distance_slow(const_iterator other) const; |
1277 | | |
1278 | | // Increment/decrement the iterator. |
1279 | | void increment() { |
1280 | | assert_valid_generation(node_); |
1281 | | if (node_->is_leaf() && ++position_ < node_->finish()) { |
1282 | | return; |
1283 | | } |
1284 | | increment_slow(); |
1285 | | } |
1286 | | void increment_slow(); |
1287 | | |
1288 | | void decrement() { |
1289 | | assert_valid_generation(node_); |
1290 | | if (node_->is_leaf() && --position_ >= node_->start()) { |
1291 | | return; |
1292 | | } |
1293 | | decrement_slow(); |
1294 | | } |
1295 | | void decrement_slow(); |
1296 | | |
1297 | | const key_type &key() const { |
1298 | | return node_->key(static_cast<size_type>(position_)); |
1299 | | } |
1300 | | decltype(std::declval<Node *>()->slot(0)) slot() { |
1301 | | return node_->slot(static_cast<size_type>(position_)); |
1302 | | } |
1303 | | |
1304 | | void update_generation() { |
1305 | | btree_iterator_generation_info::update_generation(node_); |
1306 | | } |
1307 | | |
1308 | | // The node in the tree the iterator is pointing at. |
1309 | | Node *node_; |
1310 | | // The position within the node of the tree the iterator is pointing at. |
1311 | | // NOTE: this is an int rather than a field_type because iterators can point |
1312 | | // to invalid positions (such as -1) in certain circumstances. |
1313 | | int position_; |
1314 | | }; |
1315 | | |
1316 | | template <typename Params> |
1317 | | class btree { |
1318 | | using node_type = btree_node<Params>; |
1319 | | using is_key_compare_to = typename Params::is_key_compare_to; |
1320 | | using field_type = typename node_type::field_type; |
1321 | | |
1322 | | // We use a static empty node for the root/leftmost/rightmost of empty btrees |
1323 | | // in order to avoid branching in begin()/end(). |
1324 | | struct EmptyNodeType : node_type { |
1325 | | using field_type = typename node_type::field_type; |
1326 | | node_type *parent; |
1327 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
1328 | | uint32_t generation = 0; |
1329 | | #endif |
1330 | | field_type position = 0; |
1331 | | field_type start = 0; |
1332 | | field_type finish = 0; |
1333 | | // max_count must be != kInternalNodeMaxCount (so that this node is regarded |
1334 | | // as a leaf node). max_count() is never called when the tree is empty. |
1335 | | field_type max_count = node_type::kInternalNodeMaxCount + 1; |
1336 | | |
1337 | | constexpr EmptyNodeType() : parent(this) {} |
1338 | | }; |
1339 | | |
1340 | | static node_type *EmptyNode() { |
1341 | | alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node; |
1342 | | return const_cast<EmptyNodeType *>(&empty_node); |
1343 | | } |
1344 | | |
1345 | | enum : uint32_t { |
1346 | | kNodeSlots = node_type::kNodeSlots, |
1347 | | kMinNodeValues = kNodeSlots / 2, |
1348 | | }; |
1349 | | |
1350 | | struct node_stats { |
1351 | | using size_type = typename Params::size_type; |
1352 | | |
1353 | | node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} |
1354 | | |
1355 | | node_stats &operator+=(const node_stats &other) { |
1356 | | leaf_nodes += other.leaf_nodes; |
1357 | | internal_nodes += other.internal_nodes; |
1358 | | return *this; |
1359 | | } |
1360 | | |
1361 | | size_type leaf_nodes; |
1362 | | size_type internal_nodes; |
1363 | | }; |
1364 | | |
1365 | | public: |
1366 | | using key_type = typename Params::key_type; |
1367 | | using value_type = typename Params::value_type; |
1368 | | using size_type = typename Params::size_type; |
1369 | | using difference_type = typename Params::difference_type; |
1370 | | using key_compare = typename Params::key_compare; |
1371 | | using original_key_compare = typename Params::original_key_compare; |
1372 | | using value_compare = typename Params::value_compare; |
1373 | | using allocator_type = typename Params::allocator_type; |
1374 | | using reference = typename Params::reference; |
1375 | | using const_reference = typename Params::const_reference; |
1376 | | using pointer = typename Params::pointer; |
1377 | | using const_pointer = typename Params::const_pointer; |
1378 | | using iterator = |
1379 | | typename btree_iterator<node_type, reference, pointer>::iterator; |
1380 | | using const_iterator = typename iterator::const_iterator; |
1381 | | using reverse_iterator = std::reverse_iterator<iterator>; |
1382 | | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
1383 | | using node_handle_type = node_handle<Params, Params, allocator_type>; |
1384 | | |
1385 | | // Internal types made public for use by btree_container types. |
1386 | | using params_type = Params; |
1387 | | using slot_type = typename Params::slot_type; |
1388 | | |
1389 | | private: |
1390 | | // Copies or moves (depending on the template parameter) the values in |
1391 | | // other into this btree in their order in other. This btree must be empty |
1392 | | // before this method is called. This method is used in copy construction, |
1393 | | // copy assignment, and move assignment. |
1394 | | template <typename Btree> |
1395 | | void copy_or_move_values_in_order(Btree &other); |
1396 | | |
1397 | | // Validates that various assumptions/requirements are true at compile time. |
1398 | | constexpr static bool static_assert_validation(); |
1399 | | |
1400 | | public: |
1401 | | btree(const key_compare &comp, const allocator_type &alloc) |
1402 | | : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {} |
1403 | | |
1404 | | btree(const btree &other) : btree(other, other.allocator()) {} |
1405 | | btree(const btree &other, const allocator_type &alloc) |
1406 | | : btree(other.key_comp(), alloc) { |
1407 | | copy_or_move_values_in_order(other); |
1408 | | } |
1409 | | btree(btree &&other) noexcept |
1410 | | : root_(absl::exchange(other.root_, EmptyNode())), |
1411 | | rightmost_(std::move(other.rightmost_)), |
1412 | | size_(absl::exchange(other.size_, 0u)) { |
1413 | | other.mutable_rightmost() = EmptyNode(); |
1414 | | } |
1415 | | btree(btree &&other, const allocator_type &alloc) |
1416 | | : btree(other.key_comp(), alloc) { |
1417 | | if (alloc == other.allocator()) { |
1418 | | swap(other); |
1419 | | } else { |
1420 | | // Move values from `other` one at a time when allocators are different. |
1421 | | copy_or_move_values_in_order(other); |
1422 | | } |
1423 | | } |
1424 | | |
1425 | | ~btree() { |
1426 | | // Put static_asserts in destructor to avoid triggering them before the type |
1427 | | // is complete. |
1428 | | static_assert(static_assert_validation(), "This call must be elided."); |
1429 | | clear(); |
1430 | | } |
1431 | | |
1432 | | // Assign the contents of other to *this. |
1433 | | btree &operator=(const btree &other); |
1434 | | btree &operator=(btree &&other) noexcept; |
1435 | | |
1436 | 0 | iterator begin() { return iterator(leftmost()); } |
1437 | | const_iterator begin() const { return const_iterator(leftmost()); } |
1438 | | iterator end() { return iterator(rightmost(), rightmost()->finish()); } |
1439 | | const_iterator end() const { |
1440 | | return const_iterator(rightmost(), rightmost()->finish()); |
1441 | | } |
1442 | | reverse_iterator rbegin() { return reverse_iterator(end()); } |
1443 | | const_reverse_iterator rbegin() const { |
1444 | | return const_reverse_iterator(end()); |
1445 | | } |
1446 | | reverse_iterator rend() { return reverse_iterator(begin()); } |
1447 | | const_reverse_iterator rend() const { |
1448 | | return const_reverse_iterator(begin()); |
1449 | | } |
1450 | | |
1451 | | // Finds the first element whose key is not less than `key`. |
1452 | | template <typename K> |
1453 | | iterator lower_bound(const K &key) { |
1454 | | return internal_end(internal_lower_bound(key).value); |
1455 | | } |
1456 | | template <typename K> |
1457 | | const_iterator lower_bound(const K &key) const { |
1458 | | return internal_end(internal_lower_bound(key).value); |
1459 | | } |
1460 | | |
1461 | | // Finds the first element whose key is not less than `key` and also returns |
1462 | | // whether that element is equal to `key`. |
1463 | | template <typename K> |
1464 | | std::pair<iterator, bool> lower_bound_equal(const K &key) const; |
1465 | | |
1466 | | // Finds the first element whose key is greater than `key`. |
1467 | | template <typename K> |
1468 | | iterator upper_bound(const K &key) { |
1469 | | return internal_end(internal_upper_bound(key)); |
1470 | | } |
1471 | | template <typename K> |
1472 | | const_iterator upper_bound(const K &key) const { |
1473 | | return internal_end(internal_upper_bound(key)); |
1474 | | } |
1475 | | |
1476 | | // Finds the range of values which compare equal to key. The first member of |
1477 | | // the returned pair is equal to lower_bound(key). The second member of the |
1478 | | // pair is equal to upper_bound(key). |
1479 | | template <typename K> |
1480 | | std::pair<iterator, iterator> equal_range(const K &key); |
1481 | | template <typename K> |
1482 | | std::pair<const_iterator, const_iterator> equal_range(const K &key) const { |
1483 | | return const_cast<btree *>(this)->equal_range(key); |
1484 | | } |
1485 | | |
1486 | | // Inserts a value into the btree only if it does not already exist. The |
1487 | | // boolean return value indicates whether insertion succeeded or failed. |
1488 | | // Requirement: if `key` already exists in the btree, does not consume `args`. |
1489 | | // Requirement: `key` is never referenced after consuming `args`. |
1490 | | template <typename K, typename... Args> |
1491 | | std::pair<iterator, bool> insert_unique(const K &key, Args &&...args); |
1492 | | |
1493 | | // Inserts with hint. Checks to see if the value should be placed immediately |
1494 | | // before `position` in the tree. If so, then the insertion will take |
1495 | | // amortized constant time. If not, the insertion will take amortized |
1496 | | // logarithmic time as if a call to insert_unique() were made. |
1497 | | // Requirement: if `key` already exists in the btree, does not consume `args`. |
1498 | | // Requirement: `key` is never referenced after consuming `args`. |
1499 | | template <typename K, typename... Args> |
1500 | | std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key, |
1501 | | Args &&...args); |
1502 | | |
1503 | | // Insert a range of values into the btree. |
1504 | | // Note: the first overload avoids constructing a value_type if the key |
1505 | | // already exists in the btree. |
1506 | | template <typename InputIterator, |
1507 | | typename = decltype(std::declval<const key_compare &>()( |
1508 | | params_type::key(*std::declval<InputIterator>()), |
1509 | | std::declval<const key_type &>()))> |
1510 | | void insert_iterator_unique(InputIterator b, InputIterator e, int); |
1511 | | // We need the second overload for cases in which we need to construct a |
1512 | | // value_type in order to compare it with the keys already in the btree. |
1513 | | template <typename InputIterator> |
1514 | | void insert_iterator_unique(InputIterator b, InputIterator e, char); |
1515 | | |
1516 | | // Inserts a value into the btree. |
1517 | | template <typename ValueType> |
1518 | | iterator insert_multi(const key_type &key, ValueType &&v); |
1519 | | |
1520 | | // Inserts a value into the btree. |
1521 | | template <typename ValueType> |
1522 | | iterator insert_multi(ValueType &&v) { |
1523 | | return insert_multi(params_type::key(v), std::forward<ValueType>(v)); |
1524 | | } |
1525 | | |
1526 | | // Insert with hint. Check to see if the value should be placed immediately |
1527 | | // before position in the tree. If it does, then the insertion will take |
1528 | | // amortized constant time. If not, the insertion will take amortized |
1529 | | // logarithmic time as if a call to insert_multi(v) were made. |
1530 | | template <typename ValueType> |
1531 | | iterator insert_hint_multi(iterator position, ValueType &&v); |
1532 | | |
1533 | | // Insert a range of values into the btree. |
1534 | | template <typename InputIterator> |
1535 | | void insert_iterator_multi(InputIterator b, |
1536 | | InputIterator e); |
1537 | | |
1538 | | // Erase the specified iterator from the btree. The iterator must be valid |
1539 | | // (i.e. not equal to end()). Return an iterator pointing to the node after |
1540 | | // the one that was erased (or end() if none exists). |
1541 | | // Requirement: does not read the value at `*iter`. |
1542 | | iterator erase(iterator iter); |
1543 | | |
1544 | | // Erases range. Returns the number of keys erased and an iterator pointing |
1545 | | // to the element after the last erased element. |
1546 | | std::pair<size_type, iterator> erase_range(iterator begin, iterator end); |
1547 | | |
1548 | | // Finds an element with key equivalent to `key` or returns `end()` if `key` |
1549 | | // is not present. |
1550 | | template <typename K> |
1551 | | iterator find(const K &key) { |
1552 | | return internal_end(internal_find(key)); |
1553 | | } |
1554 | | template <typename K> |
1555 | | const_iterator find(const K &key) const { |
1556 | | return internal_end(internal_find(key)); |
1557 | | } |
1558 | | |
1559 | | // Clear the btree, deleting all of the values it contains. |
1560 | | void clear(); |
1561 | | |
1562 | | // Swaps the contents of `this` and `other`. |
1563 | | void swap(btree &other); |
1564 | | |
1565 | | const key_compare &key_comp() const noexcept { |
1566 | | return rightmost_.template get<0>(); |
1567 | | } |
1568 | | template <typename K1, typename K2> |
1569 | | bool compare_keys(const K1 &a, const K2 &b) const { |
1570 | | return compare_internal::compare_result_as_less_than(key_comp()(a, b)); |
1571 | | } |
1572 | | |
1573 | | value_compare value_comp() const { |
1574 | | return value_compare(original_key_compare(key_comp())); |
1575 | | } |
1576 | | |
1577 | | // Verifies the structure of the btree. |
1578 | | void verify() const; |
1579 | | |
1580 | | // Size routines. |
1581 | 0 | size_type size() const { return size_; } |
1582 | | size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } |
1583 | 0 | bool empty() const { return size_ == 0; } |
1584 | | |
1585 | | // The height of the btree. An empty tree will have height 0. |
1586 | | size_type height() const { |
1587 | | size_type h = 0; |
1588 | | if (!empty()) { |
1589 | | // Count the length of the chain from the leftmost node up to the |
1590 | | // root. We actually count from the root back around to the level below |
1591 | | // the root, but the calculation is the same because of the circularity |
1592 | | // of that traversal. |
1593 | | const node_type *n = root(); |
1594 | | do { |
1595 | | ++h; |
1596 | | n = n->parent(); |
1597 | | } while (n != root()); |
1598 | | } |
1599 | | return h; |
1600 | | } |
1601 | | |
1602 | | // The number of internal, leaf and total nodes used by the btree. |
1603 | | size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } |
1604 | | size_type internal_nodes() const { |
1605 | | return internal_stats(root()).internal_nodes; |
1606 | | } |
1607 | | size_type nodes() const { |
1608 | | node_stats stats = internal_stats(root()); |
1609 | | return stats.leaf_nodes + stats.internal_nodes; |
1610 | | } |
1611 | | |
1612 | | // The total number of bytes used by the btree. |
1613 | | // TODO(b/169338300): update to support node_btree_*. |
1614 | | size_type bytes_used() const { |
1615 | | node_stats stats = internal_stats(root()); |
1616 | | if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { |
1617 | | return sizeof(*this) + node_type::LeafSize(root()->max_count()); |
1618 | | } else { |
1619 | | return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + |
1620 | | stats.internal_nodes * node_type::InternalSize(); |
1621 | | } |
1622 | | } |
1623 | | |
1624 | | // The average number of bytes used per value stored in the btree assuming |
1625 | | // random insertion order. |
1626 | | static double average_bytes_per_value() { |
1627 | | // The expected number of values per node with random insertion order is the |
1628 | | // average of the maximum and minimum numbers of values per node. |
1629 | | const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0; |
1630 | | return node_type::LeafSize() / expected_values_per_node; |
1631 | | } |
1632 | | |
1633 | | // The fullness of the btree. Computed as the number of elements in the btree |
1634 | | // divided by the maximum number of elements a tree with the current number |
1635 | | // of nodes could hold. A value of 1 indicates perfect space |
1636 | | // utilization. Smaller values indicate space wastage. |
1637 | | // Returns 0 for empty trees. |
1638 | | double fullness() const { |
1639 | | if (empty()) return 0.0; |
1640 | | return static_cast<double>(size()) / (nodes() * kNodeSlots); |
1641 | | } |
1642 | | // The overhead of the btree structure in bytes per node. Computed as the |
1643 | | // total number of bytes used by the btree minus the number of bytes used for |
1644 | | // storing elements divided by the number of elements. |
1645 | | // Returns 0 for empty trees. |
1646 | | double overhead() const { |
1647 | | if (empty()) return 0.0; |
1648 | | return (bytes_used() - size() * sizeof(value_type)) / |
1649 | | static_cast<double>(size()); |
1650 | | } |
1651 | | |
1652 | | // The allocator used by the btree. |
1653 | | allocator_type get_allocator() const { return allocator(); } |
1654 | | |
1655 | | private: |
1656 | | friend struct btree_access; |
1657 | | |
1658 | | // Internal accessor routines. |
1659 | 0 | node_type *root() { return root_; } |
1660 | | const node_type *root() const { return root_; } |
1661 | | node_type *&mutable_root() noexcept { return root_; } |
1662 | | node_type *rightmost() { return rightmost_.template get<2>(); } |
1663 | | const node_type *rightmost() const { return rightmost_.template get<2>(); } |
1664 | | node_type *&mutable_rightmost() noexcept { |
1665 | | return rightmost_.template get<2>(); |
1666 | | } |
1667 | | key_compare *mutable_key_comp() noexcept { |
1668 | | return &rightmost_.template get<0>(); |
1669 | | } |
1670 | | |
1671 | | // The leftmost node is stored as the parent of the root node. |
1672 | 0 | node_type *leftmost() { return root()->parent(); } |
1673 | | const node_type *leftmost() const { return root()->parent(); } |
1674 | | |
1675 | | // Allocator routines. |
1676 | | allocator_type *mutable_allocator() noexcept { |
1677 | | return &rightmost_.template get<1>(); |
1678 | | } |
1679 | | const allocator_type &allocator() const noexcept { |
1680 | | return rightmost_.template get<1>(); |
1681 | | } |
1682 | | |
1683 | | // Allocates a correctly aligned node of at least size bytes using the |
1684 | | // allocator. |
1685 | | node_type *allocate(size_type size) { |
1686 | | return reinterpret_cast<node_type *>( |
1687 | | absl::container_internal::Allocate<node_type::Alignment()>( |
1688 | | mutable_allocator(), size)); |
1689 | | } |
1690 | | |
1691 | | // Node creation/deletion routines. |
1692 | | node_type *new_internal_node(field_type position, node_type *parent) { |
1693 | | node_type *n = allocate(node_type::InternalSize()); |
1694 | | n->init_internal(position, parent); |
1695 | | return n; |
1696 | | } |
1697 | | node_type *new_leaf_node(field_type position, node_type *parent) { |
1698 | | node_type *n = allocate(node_type::LeafSize()); |
1699 | | n->init_leaf(position, kNodeSlots, parent); |
1700 | | return n; |
1701 | | } |
1702 | | node_type *new_leaf_root_node(field_type max_count) { |
1703 | | node_type *n = allocate(node_type::LeafSize(max_count)); |
1704 | | n->init_leaf(/*position=*/0, max_count, /*parent=*/n); |
1705 | | return n; |
1706 | | } |
1707 | | |
1708 | | // Deletion helper routines. |
1709 | | iterator rebalance_after_delete(iterator iter); |
1710 | | |
1711 | | // Rebalances or splits the node iter points to. |
1712 | | void rebalance_or_split(iterator *iter); |
1713 | | |
1714 | | // Merges the values of left, right and the delimiting key on their parent |
1715 | | // onto left, removing the delimiting key and deleting right. |
1716 | | void merge_nodes(node_type *left, node_type *right); |
1717 | | |
1718 | | // Tries to merge node with its left or right sibling, and failing that, |
1719 | | // rebalance with its left or right sibling. Returns true if a merge |
1720 | | // occurred, at which point it is no longer valid to access node. Returns |
1721 | | // false if no merging took place. |
1722 | | bool try_merge_or_rebalance(iterator *iter); |
1723 | | |
1724 | | // Tries to shrink the height of the tree by 1. |
1725 | | void try_shrink(); |
1726 | | |
1727 | | iterator internal_end(iterator iter) { |
1728 | | return iter.node_ != nullptr ? iter : end(); |
1729 | | } |
1730 | | const_iterator internal_end(const_iterator iter) const { |
1731 | | return iter.node_ != nullptr ? iter : end(); |
1732 | | } |
1733 | | |
1734 | | // Emplaces a value into the btree immediately before iter. Requires that |
1735 | | // key(v) <= iter.key() and (--iter).key() <= key(v). |
1736 | | template <typename... Args> |
1737 | | iterator internal_emplace(iterator iter, Args &&...args); |
1738 | | |
1739 | | // Returns an iterator pointing to the first value >= the value "iter" is |
1740 | | // pointing at. Note that "iter" might be pointing to an invalid location such |
1741 | | // as iter.position_ == iter.node_->finish(). This routine simply moves iter |
1742 | | // up in the tree to a valid location. Requires: iter.node_ is non-null. |
1743 | | template <typename IterType> |
1744 | | static IterType internal_last(IterType iter); |
1745 | | |
1746 | | // Returns an iterator pointing to the leaf position at which key would |
1747 | | // reside in the tree, unless there is an exact match - in which case, the |
1748 | | // result may not be on a leaf. When there's a three-way comparator, we can |
1749 | | // return whether there was an exact match. This allows the caller to avoid a |
1750 | | // subsequent comparison to determine if an exact match was made, which is |
1751 | | // important for keys with expensive comparison, such as strings. |
1752 | | template <typename K> |
1753 | | SearchResult<iterator, is_key_compare_to::value> internal_locate( |
1754 | | const K &key) const; |
1755 | | |
1756 | | // Internal routine which implements lower_bound(). |
1757 | | template <typename K> |
1758 | | SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( |
1759 | | const K &key) const; |
1760 | | |
1761 | | // Internal routine which implements upper_bound(). |
1762 | | template <typename K> |
1763 | | iterator internal_upper_bound(const K &key) const; |
1764 | | |
1765 | | // Internal routine which implements find(). |
1766 | | template <typename K> |
1767 | | iterator internal_find(const K &key) const; |
1768 | | |
1769 | | // Verifies the tree structure of node. |
1770 | | size_type internal_verify(const node_type *node, const key_type *lo, |
1771 | | const key_type *hi) const; |
1772 | | |
1773 | | node_stats internal_stats(const node_type *node) const { |
1774 | | // The root can be a static empty node. |
1775 | | if (node == nullptr || (node == root() && empty())) { |
1776 | | return node_stats(0, 0); |
1777 | | } |
1778 | | if (node->is_leaf()) { |
1779 | | return node_stats(1, 0); |
1780 | | } |
1781 | | node_stats res(0, 1); |
1782 | | for (int i = node->start(); i <= node->finish(); ++i) { |
1783 | | res += internal_stats(node->child(i)); |
1784 | | } |
1785 | | return res; |
1786 | | } |
1787 | | |
1788 | | node_type *root_; |
1789 | | |
1790 | | // A pointer to the rightmost node. Note that the leftmost node is stored as |
1791 | | // the root's parent. We use compressed tuple in order to save space because |
1792 | | // key_compare and allocator_type are usually empty. |
1793 | | absl::container_internal::CompressedTuple<key_compare, allocator_type, |
1794 | | node_type *> |
1795 | | rightmost_; |
1796 | | |
1797 | | // Number of values. |
1798 | | size_type size_; |
1799 | | }; |
1800 | | |
1801 | | //// |
1802 | | // btree_node methods |
1803 | | template <typename P> |
1804 | | template <typename... Args> |
1805 | | inline void btree_node<P>::emplace_value(const field_type i, |
1806 | | allocator_type *alloc, |
1807 | | Args &&...args) { |
1808 | | assert(i >= start()); |
1809 | | assert(i <= finish()); |
1810 | | // Shift old values to create space for new value and then construct it in |
1811 | | // place. |
1812 | | if (i < finish()) { |
1813 | | transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, |
1814 | | alloc); |
1815 | | } |
1816 | | value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...); |
1817 | | set_finish(finish() + 1); |
1818 | | |
1819 | | if (is_internal() && finish() > i + 1) { |
1820 | | for (field_type j = finish(); j > i + 1; --j) { |
1821 | | set_child(j, child(j - 1)); |
1822 | | } |
1823 | | clear_child(i + 1); |
1824 | | } |
1825 | | } |
1826 | | |
1827 | | template <typename P> |
1828 | | inline void btree_node<P>::remove_values(const field_type i, |
1829 | | const field_type to_erase, |
1830 | | allocator_type *alloc) { |
1831 | | // Transfer values after the removed range into their new places. |
1832 | | value_destroy_n(i, to_erase, alloc); |
1833 | | const field_type orig_finish = finish(); |
1834 | | const field_type src_i = i + to_erase; |
1835 | | transfer_n(orig_finish - src_i, i, src_i, this, alloc); |
1836 | | |
1837 | | if (is_internal()) { |
1838 | | // Delete all children between begin and end. |
1839 | | for (field_type j = 0; j < to_erase; ++j) { |
1840 | | clear_and_delete(child(i + j + 1), alloc); |
1841 | | } |
1842 | | // Rotate children after end into new positions. |
1843 | | for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) { |
1844 | | set_child(j - to_erase, child(j)); |
1845 | | clear_child(j); |
1846 | | } |
1847 | | } |
1848 | | set_finish(orig_finish - to_erase); |
1849 | | } |
1850 | | |
1851 | | template <typename P> |
1852 | | void btree_node<P>::rebalance_right_to_left(field_type to_move, |
1853 | | btree_node *right, |
1854 | | allocator_type *alloc) { |
1855 | | assert(parent() == right->parent()); |
1856 | | assert(position() + 1 == right->position()); |
1857 | | assert(right->count() >= count()); |
1858 | | assert(to_move >= 1); |
1859 | | assert(to_move <= right->count()); |
1860 | | |
1861 | | // 1) Move the delimiting value in the parent to the left node. |
1862 | | transfer(finish(), position(), parent(), alloc); |
1863 | | |
1864 | | // 2) Move the (to_move - 1) values from the right node to the left node. |
1865 | | transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); |
1866 | | |
1867 | | // 3) Move the new delimiting value to the parent from the right node. |
1868 | | parent()->transfer(position(), right->start() + to_move - 1, right, alloc); |
1869 | | |
1870 | | // 4) Shift the values in the right node to their correct positions. |
1871 | | right->transfer_n(right->count() - to_move, right->start(), |
1872 | | right->start() + to_move, right, alloc); |
1873 | | |
1874 | | if (is_internal()) { |
1875 | | // Move the child pointers from the right to the left node. |
1876 | | for (field_type i = 0; i < to_move; ++i) { |
1877 | | init_child(finish() + i + 1, right->child(i)); |
1878 | | } |
1879 | | for (field_type i = right->start(); i <= right->finish() - to_move; ++i) { |
1880 | | assert(i + to_move <= right->max_count()); |
1881 | | right->init_child(i, right->child(i + to_move)); |
1882 | | right->clear_child(i + to_move); |
1883 | | } |
1884 | | } |
1885 | | |
1886 | | // Fixup `finish` on the left and right nodes. |
1887 | | set_finish(finish() + to_move); |
1888 | | right->set_finish(right->finish() - to_move); |
1889 | | } |
1890 | | |
1891 | | template <typename P> |
1892 | | void btree_node<P>::rebalance_left_to_right(field_type to_move, |
1893 | | btree_node *right, |
1894 | | allocator_type *alloc) { |
1895 | | assert(parent() == right->parent()); |
1896 | | assert(position() + 1 == right->position()); |
1897 | | assert(count() >= right->count()); |
1898 | | assert(to_move >= 1); |
1899 | | assert(to_move <= count()); |
1900 | | |
1901 | | // Values in the right node are shifted to the right to make room for the |
1902 | | // new to_move values. Then, the delimiting value in the parent and the |
1903 | | // other (to_move - 1) values in the left node are moved into the right node. |
1904 | | // Lastly, a new delimiting value is moved from the left node into the |
1905 | | // parent, and the remaining empty left node entries are destroyed. |
1906 | | |
1907 | | // 1) Shift existing values in the right node to their correct positions. |
1908 | | right->transfer_n_backward(right->count(), right->start() + to_move, |
1909 | | right->start(), right, alloc); |
1910 | | |
1911 | | // 2) Move the delimiting value in the parent to the right node. |
1912 | | right->transfer(right->start() + to_move - 1, position(), parent(), alloc); |
1913 | | |
1914 | | // 3) Move the (to_move - 1) values from the left node to the right node. |
1915 | | right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, |
1916 | | alloc); |
1917 | | |
1918 | | // 4) Move the new delimiting value to the parent from the left node. |
1919 | | parent()->transfer(position(), finish() - to_move, this, alloc); |
1920 | | |
1921 | | if (is_internal()) { |
1922 | | // Move the child pointers from the left to the right node. |
1923 | | for (field_type i = right->finish() + 1; i > right->start(); --i) { |
1924 | | right->init_child(i - 1 + to_move, right->child(i - 1)); |
1925 | | right->clear_child(i - 1); |
1926 | | } |
1927 | | for (field_type i = 1; i <= to_move; ++i) { |
1928 | | right->init_child(i - 1, child(finish() - to_move + i)); |
1929 | | clear_child(finish() - to_move + i); |
1930 | | } |
1931 | | } |
1932 | | |
1933 | | // Fixup the counts on the left and right nodes. |
1934 | | set_finish(finish() - to_move); |
1935 | | right->set_finish(right->finish() + to_move); |
1936 | | } |
1937 | | |
1938 | | template <typename P> |
1939 | | void btree_node<P>::split(const int insert_position, btree_node *dest, |
1940 | | allocator_type *alloc) { |
1941 | | assert(dest->count() == 0); |
1942 | | assert(max_count() == kNodeSlots); |
1943 | | assert(position() + 1 == dest->position()); |
1944 | | assert(parent() == dest->parent()); |
1945 | | |
1946 | | // We bias the split based on the position being inserted. If we're |
1947 | | // inserting at the beginning of the left node then bias the split to put |
1948 | | // more values on the right node. If we're inserting at the end of the |
1949 | | // right node then bias the split to put more values on the left node. |
1950 | | if (insert_position == start()) { |
1951 | | dest->set_finish(dest->start() + finish() - 1); |
1952 | | } else if (insert_position == kNodeSlots) { |
1953 | | dest->set_finish(dest->start()); |
1954 | | } else { |
1955 | | dest->set_finish(dest->start() + count() / 2); |
1956 | | } |
1957 | | set_finish(finish() - dest->count()); |
1958 | | assert(count() >= 1); |
1959 | | |
1960 | | // Move values from the left sibling to the right sibling. |
1961 | | dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); |
1962 | | |
1963 | | // The split key is the largest value in the left sibling. |
1964 | | --mutable_finish(); |
1965 | | parent()->emplace_value(position(), alloc, finish_slot()); |
1966 | | value_destroy(finish(), alloc); |
1967 | | parent()->set_child_noupdate_position(position() + 1, dest); |
1968 | | |
1969 | | if (is_internal()) { |
1970 | | for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish(); |
1971 | | ++i, ++j) { |
1972 | | assert(child(j) != nullptr); |
1973 | | dest->init_child(i, child(j)); |
1974 | | clear_child(j); |
1975 | | } |
1976 | | } |
1977 | | } |
1978 | | |
1979 | | template <typename P> |
1980 | | void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { |
1981 | | assert(parent() == src->parent()); |
1982 | | assert(position() + 1 == src->position()); |
1983 | | |
1984 | | // Move the delimiting value to the left node. |
1985 | | value_init(finish(), alloc, parent()->slot(position())); |
1986 | | |
1987 | | // Move the values from the right to the left node. |
1988 | | transfer_n(src->count(), finish() + 1, src->start(), src, alloc); |
1989 | | |
1990 | | if (is_internal()) { |
1991 | | // Move the child pointers from the right to the left node. |
1992 | | for (field_type i = src->start(), j = finish() + 1; i <= src->finish(); |
1993 | | ++i, ++j) { |
1994 | | init_child(j, src->child(i)); |
1995 | | src->clear_child(i); |
1996 | | } |
1997 | | } |
1998 | | |
1999 | | // Fixup `finish` on the src and dest nodes. |
2000 | | set_finish(start() + 1 + count() + src->count()); |
2001 | | src->set_finish(src->start()); |
2002 | | |
2003 | | // Remove the value on the parent node and delete the src node. |
2004 | | parent()->remove_values(position(), /*to_erase=*/1, alloc); |
2005 | | } |
2006 | | |
2007 | | template <typename P> |
2008 | | void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { |
2009 | | if (node->is_leaf()) { |
2010 | | node->value_destroy_n(node->start(), node->count(), alloc); |
2011 | | deallocate(LeafSize(node->max_count()), node, alloc); |
2012 | | return; |
2013 | | } |
2014 | | if (node->count() == 0) { |
2015 | | deallocate(InternalSize(), node, alloc); |
2016 | | return; |
2017 | | } |
2018 | | |
2019 | | // The parent of the root of the subtree we are deleting. |
2020 | | btree_node *delete_root_parent = node->parent(); |
2021 | | |
2022 | | // Navigate to the leftmost leaf under node, and then delete upwards. |
2023 | | while (node->is_internal()) node = node->start_child(); |
2024 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
2025 | | // When generations are enabled, we delete the leftmost leaf last in case it's |
2026 | | // the parent of the root and we need to check whether it's a leaf before we |
2027 | | // can update the root's generation. |
2028 | | // TODO(ezb): if we change btree_node::is_root to check a bool inside the node |
2029 | | // instead of checking whether the parent is a leaf, we can remove this logic. |
2030 | | btree_node *leftmost_leaf = node; |
2031 | | #endif |
2032 | | // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, |
2033 | | // which isn't guaranteed to be a valid `field_type`. |
2034 | | size_type pos = node->position(); |
2035 | | btree_node *parent = node->parent(); |
2036 | | for (;;) { |
2037 | | // In each iteration of the next loop, we delete one leaf node and go right. |
2038 | | assert(pos <= parent->finish()); |
2039 | | do { |
2040 | | node = parent->child(static_cast<field_type>(pos)); |
2041 | | if (node->is_internal()) { |
2042 | | // Navigate to the leftmost leaf under node. |
2043 | | while (node->is_internal()) node = node->start_child(); |
2044 | | pos = node->position(); |
2045 | | parent = node->parent(); |
2046 | | } |
2047 | | node->value_destroy_n(node->start(), node->count(), alloc); |
2048 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
2049 | | if (leftmost_leaf != node) |
2050 | | #endif |
2051 | | deallocate(LeafSize(node->max_count()), node, alloc); |
2052 | | ++pos; |
2053 | | } while (pos <= parent->finish()); |
2054 | | |
2055 | | // Once we've deleted all children of parent, delete parent and go up/right. |
2056 | | assert(pos > parent->finish()); |
2057 | | do { |
2058 | | node = parent; |
2059 | | pos = node->position(); |
2060 | | parent = node->parent(); |
2061 | | node->value_destroy_n(node->start(), node->count(), alloc); |
2062 | | deallocate(InternalSize(), node, alloc); |
2063 | | if (parent == delete_root_parent) { |
2064 | | #ifdef ABSL_BTREE_ENABLE_GENERATIONS |
2065 | | deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc); |
2066 | | #endif |
2067 | | return; |
2068 | | } |
2069 | | ++pos; |
2070 | | } while (pos > parent->finish()); |
2071 | | } |
2072 | | } |
2073 | | |
2074 | | //// |
2075 | | // btree_iterator methods |
2076 | | |
2077 | | // Note: the implementation here is based on btree_node::clear_and_delete. |
2078 | | template <typename N, typename R, typename P> |
2079 | | auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const |
2080 | | -> difference_type { |
2081 | | const_iterator begin = other; |
2082 | | const_iterator end = *this; |
2083 | | assert(begin.node_ != end.node_ || !begin.node_->is_leaf() || |
2084 | | begin.position_ != end.position_); |
2085 | | |
2086 | | const node_type *node = begin.node_; |
2087 | | // We need to compensate for double counting if begin.node_ is a leaf node. |
2088 | | difference_type count = node->is_leaf() ? -begin.position_ : 0; |
2089 | | |
2090 | | // First navigate to the leftmost leaf node past begin. |
2091 | | if (node->is_internal()) { |
2092 | | ++count; |
2093 | | node = node->child(begin.position_ + 1); |
2094 | | } |
2095 | | while (node->is_internal()) node = node->start_child(); |
2096 | | |
2097 | | // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, |
2098 | | // which isn't guaranteed to be a valid `field_type`. |
2099 | | size_type pos = node->position(); |
2100 | | const node_type *parent = node->parent(); |
2101 | | for (;;) { |
2102 | | // In each iteration of the next loop, we count one leaf node and go right. |
2103 | | assert(pos <= parent->finish()); |
2104 | | do { |
2105 | | node = parent->child(static_cast<field_type>(pos)); |
2106 | | if (node->is_internal()) { |
2107 | | // Navigate to the leftmost leaf under node. |
2108 | | while (node->is_internal()) node = node->start_child(); |
2109 | | pos = node->position(); |
2110 | | parent = node->parent(); |
2111 | | } |
2112 | | if (node == end.node_) return count + end.position_; |
2113 | | if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) |
2114 | | return count + node->count(); |
2115 | | // +1 is for the next internal node value. |
2116 | | count += node->count() + 1; |
2117 | | ++pos; |
2118 | | } while (pos <= parent->finish()); |
2119 | | |
2120 | | // Once we've counted all children of parent, go up/right. |
2121 | | assert(pos > parent->finish()); |
2122 | | do { |
2123 | | node = parent; |
2124 | | pos = node->position(); |
2125 | | parent = node->parent(); |
2126 | | // -1 because we counted the value at end and shouldn't. |
2127 | | if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) |
2128 | | return count - 1; |
2129 | | ++pos; |
2130 | | } while (pos > parent->finish()); |
2131 | | } |
2132 | | } |
2133 | | |
2134 | | template <typename N, typename R, typename P> |
2135 | | void btree_iterator<N, R, P>::increment_slow() { |
2136 | | if (node_->is_leaf()) { |
2137 | | assert(position_ >= node_->finish()); |
2138 | | btree_iterator save(*this); |
2139 | | while (position_ == node_->finish() && !node_->is_root()) { |
2140 | | assert(node_->parent()->child(node_->position()) == node_); |
2141 | | position_ = node_->position(); |
2142 | | node_ = node_->parent(); |
2143 | | } |
2144 | | // TODO(ezb): assert we aren't incrementing end() instead of handling. |
2145 | | if (position_ == node_->finish()) { |
2146 | | *this = save; |
2147 | | } |
2148 | | } else { |
2149 | | assert(position_ < node_->finish()); |
2150 | | node_ = node_->child(static_cast<field_type>(position_ + 1)); |
2151 | | while (node_->is_internal()) { |
2152 | | node_ = node_->start_child(); |
2153 | | } |
2154 | | position_ = node_->start(); |
2155 | | } |
2156 | | } |
2157 | | |
2158 | | template <typename N, typename R, typename P> |
2159 | | void btree_iterator<N, R, P>::decrement_slow() { |
2160 | | if (node_->is_leaf()) { |
2161 | | assert(position_ <= -1); |
2162 | | btree_iterator save(*this); |
2163 | | while (position_ < node_->start() && !node_->is_root()) { |
2164 | | assert(node_->parent()->child(node_->position()) == node_); |
2165 | | position_ = node_->position() - 1; |
2166 | | node_ = node_->parent(); |
2167 | | } |
2168 | | // TODO(ezb): assert we aren't decrementing begin() instead of handling. |
2169 | | if (position_ < node_->start()) { |
2170 | | *this = save; |
2171 | | } |
2172 | | } else { |
2173 | | assert(position_ >= node_->start()); |
2174 | | node_ = node_->child(static_cast<field_type>(position_)); |
2175 | | while (node_->is_internal()) { |
2176 | | node_ = node_->child(node_->finish()); |
2177 | | } |
2178 | | position_ = node_->finish() - 1; |
2179 | | } |
2180 | | } |
2181 | | |
2182 | | //// |
2183 | | // btree methods |
2184 | | template <typename P> |
2185 | | template <typename Btree> |
2186 | | void btree<P>::copy_or_move_values_in_order(Btree &other) { |
2187 | | static_assert(std::is_same<btree, Btree>::value || |
2188 | | std::is_same<const btree, Btree>::value, |
2189 | | "Btree type must be same or const."); |
2190 | | assert(empty()); |
2191 | | |
2192 | | // We can avoid key comparisons because we know the order of the |
2193 | | // values is the same order we'll store them in. |
2194 | | auto iter = other.begin(); |
2195 | | if (iter == other.end()) return; |
2196 | | insert_multi(iter.slot()); |
2197 | | ++iter; |
2198 | | for (; iter != other.end(); ++iter) { |
2199 | | // If the btree is not empty, we can just insert the new value at the end |
2200 | | // of the tree. |
2201 | | internal_emplace(end(), iter.slot()); |
2202 | | } |
2203 | | } |
2204 | | |
2205 | | template <typename P> |
2206 | | constexpr bool btree<P>::static_assert_validation() { |
2207 | | static_assert(std::is_nothrow_copy_constructible<key_compare>::value, |
2208 | | "Key comparison must be nothrow copy constructible"); |
2209 | | static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, |
2210 | | "Allocator must be nothrow copy constructible"); |
2211 | | static_assert(std::is_trivially_copyable<iterator>::value, |
2212 | | "iterator not trivially copyable."); |
2213 | | |
2214 | | // Note: We assert that kTargetValues, which is computed from |
2215 | | // Params::kTargetNodeSize, must fit the node_type::field_type. |
2216 | | static_assert( |
2217 | | kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), |
2218 | | "target node size too large"); |
2219 | | |
2220 | | // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. |
2221 | | static_assert( |
2222 | | compare_has_valid_result_type<key_compare, key_type>(), |
2223 | | "key comparison function must return absl::{weak,strong}_ordering or " |
2224 | | "bool."); |
2225 | | |
2226 | | // Test the assumption made in setting kNodeSlotSpace. |
2227 | | static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, |
2228 | | "node space assumption incorrect"); |
2229 | | |
2230 | | return true; |
2231 | | } |
2232 | | |
2233 | | template <typename P> |
2234 | | template <typename K> |
2235 | | auto btree<P>::lower_bound_equal(const K &key) const |
2236 | | -> std::pair<iterator, bool> { |
2237 | | const SearchResult<iterator, is_key_compare_to::value> res = |
2238 | | internal_lower_bound(key); |
2239 | | const iterator lower = iterator(internal_end(res.value)); |
2240 | | const bool equal = res.HasMatch() |
2241 | | ? res.IsEq() |
2242 | | : lower != end() && !compare_keys(key, lower.key()); |
2243 | | return {lower, equal}; |
2244 | | } |
2245 | | |
2246 | | template <typename P> |
2247 | | template <typename K> |
2248 | | auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { |
2249 | | const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); |
2250 | | const iterator lower = lower_and_equal.first; |
2251 | | if (!lower_and_equal.second) { |
2252 | | return {lower, lower}; |
2253 | | } |
2254 | | |
2255 | | const iterator next = std::next(lower); |
2256 | | if (!params_type::template can_have_multiple_equivalent_keys<K>()) { |
2257 | | // The next iterator after lower must point to a key greater than `key`. |
2258 | | // Note: if this assert fails, then it may indicate that the comparator does |
2259 | | // not meet the equivalence requirements for Compare |
2260 | | // (see https://en.cppreference.com/w/cpp/named_req/Compare). |
2261 | | assert(next == end() || compare_keys(key, next.key())); |
2262 | | return {lower, next}; |
2263 | | } |
2264 | | // Try once more to avoid the call to upper_bound() if there's only one |
2265 | | // equivalent key. This should prevent all calls to upper_bound() in cases of |
2266 | | // unique-containers with heterogeneous comparators in which all comparison |
2267 | | // operators have the same equivalence classes. |
2268 | | if (next == end() || compare_keys(key, next.key())) return {lower, next}; |
2269 | | |
2270 | | // In this case, we need to call upper_bound() to avoid worst case O(N) |
2271 | | // behavior if we were to iterate over equal keys. |
2272 | | return {lower, upper_bound(key)}; |
2273 | | } |
2274 | | |
2275 | | template <typename P> |
2276 | | template <typename K, typename... Args> |
2277 | | auto btree<P>::insert_unique(const K &key, Args &&...args) |
2278 | | -> std::pair<iterator, bool> { |
2279 | | if (empty()) { |
2280 | | mutable_root() = mutable_rightmost() = new_leaf_root_node(1); |
2281 | | } |
2282 | | |
2283 | | SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); |
2284 | | iterator iter = res.value; |
2285 | | |
2286 | | if (res.HasMatch()) { |
2287 | | if (res.IsEq()) { |
2288 | | // The key already exists in the tree, do nothing. |
2289 | | return {iter, false}; |
2290 | | } |
2291 | | } else { |
2292 | | iterator last = internal_last(iter); |
2293 | | if (last.node_ && !compare_keys(key, last.key())) { |
2294 | | // The key already exists in the tree, do nothing. |
2295 | | return {last, false}; |
2296 | | } |
2297 | | } |
2298 | | return {internal_emplace(iter, std::forward<Args>(args)...), true}; |
2299 | | } |
2300 | | |
2301 | | template <typename P> |
2302 | | template <typename K, typename... Args> |
2303 | | inline auto btree<P>::insert_hint_unique(iterator position, const K &key, |
2304 | | Args &&...args) |
2305 | | -> std::pair<iterator, bool> { |
2306 | | if (!empty()) { |
2307 | | if (position == end() || compare_keys(key, position.key())) { |
2308 | | if (position == begin() || compare_keys(std::prev(position).key(), key)) { |
2309 | | // prev.key() < key < position.key() |
2310 | | return {internal_emplace(position, std::forward<Args>(args)...), true}; |
2311 | | } |
2312 | | } else if (compare_keys(position.key(), key)) { |
2313 | | ++position; |
2314 | | if (position == end() || compare_keys(key, position.key())) { |
2315 | | // {original `position`}.key() < key < {current `position`}.key() |
2316 | | return {internal_emplace(position, std::forward<Args>(args)...), true}; |
2317 | | } |
2318 | | } else { |
2319 | | // position.key() == key |
2320 | | return {position, false}; |
2321 | | } |
2322 | | } |
2323 | | return insert_unique(key, std::forward<Args>(args)...); |
2324 | | } |
2325 | | |
2326 | | template <typename P> |
2327 | | template <typename InputIterator, typename> |
2328 | | void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { |
2329 | | for (; b != e; ++b) { |
2330 | | insert_hint_unique(end(), params_type::key(*b), *b); |
2331 | | } |
2332 | | } |
2333 | | |
2334 | | template <typename P> |
2335 | | template <typename InputIterator> |
2336 | | void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { |
2337 | | for (; b != e; ++b) { |
2338 | | // Use a node handle to manage a temp slot. |
2339 | | auto node_handle = |
2340 | | CommonAccess::Construct<node_handle_type>(get_allocator(), *b); |
2341 | | slot_type *slot = CommonAccess::GetSlot(node_handle); |
2342 | | insert_hint_unique(end(), params_type::key(slot), slot); |
2343 | | } |
2344 | | } |
2345 | | |
2346 | | template <typename P> |
2347 | | template <typename ValueType> |
2348 | | auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { |
2349 | | if (empty()) { |
2350 | | mutable_root() = mutable_rightmost() = new_leaf_root_node(1); |
2351 | | } |
2352 | | |
2353 | | iterator iter = internal_upper_bound(key); |
2354 | | if (iter.node_ == nullptr) { |
2355 | | iter = end(); |
2356 | | } |
2357 | | return internal_emplace(iter, std::forward<ValueType>(v)); |
2358 | | } |
2359 | | |
2360 | | template <typename P> |
2361 | | template <typename ValueType> |
2362 | | auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { |
2363 | | if (!empty()) { |
2364 | | const key_type &key = params_type::key(v); |
2365 | | if (position == end() || !compare_keys(position.key(), key)) { |
2366 | | if (position == begin() || |
2367 | | !compare_keys(key, std::prev(position).key())) { |
2368 | | // prev.key() <= key <= position.key() |
2369 | | return internal_emplace(position, std::forward<ValueType>(v)); |
2370 | | } |
2371 | | } else { |
2372 | | ++position; |
2373 | | if (position == end() || !compare_keys(position.key(), key)) { |
2374 | | // {original `position`}.key() < key < {current `position`}.key() |
2375 | | return internal_emplace(position, std::forward<ValueType>(v)); |
2376 | | } |
2377 | | } |
2378 | | } |
2379 | | return insert_multi(std::forward<ValueType>(v)); |
2380 | | } |
2381 | | |
2382 | | template <typename P> |
2383 | | template <typename InputIterator> |
2384 | | void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { |
2385 | | for (; b != e; ++b) { |
2386 | | insert_hint_multi(end(), *b); |
2387 | | } |
2388 | | } |
2389 | | |
2390 | | template <typename P> |
2391 | | auto btree<P>::operator=(const btree &other) -> btree & { |
2392 | | if (this != &other) { |
2393 | | clear(); |
2394 | | |
2395 | | *mutable_key_comp() = other.key_comp(); |
2396 | | if (absl::allocator_traits< |
2397 | | allocator_type>::propagate_on_container_copy_assignment::value) { |
2398 | | *mutable_allocator() = other.allocator(); |
2399 | | } |
2400 | | |
2401 | | copy_or_move_values_in_order(other); |
2402 | | } |
2403 | | return *this; |
2404 | | } |
2405 | | |
2406 | | template <typename P> |
2407 | | auto btree<P>::operator=(btree &&other) noexcept -> btree & { |
2408 | | if (this != &other) { |
2409 | | clear(); |
2410 | | |
2411 | | using std::swap; |
2412 | | if (absl::allocator_traits< |
2413 | | allocator_type>::propagate_on_container_move_assignment::value) { |
2414 | | swap(root_, other.root_); |
2415 | | // Note: `rightmost_` also contains the allocator and the key comparator. |
2416 | | swap(rightmost_, other.rightmost_); |
2417 | | swap(size_, other.size_); |
2418 | | } else { |
2419 | | if (allocator() == other.allocator()) { |
2420 | | swap(mutable_root(), other.mutable_root()); |
2421 | | swap(*mutable_key_comp(), *other.mutable_key_comp()); |
2422 | | swap(mutable_rightmost(), other.mutable_rightmost()); |
2423 | | swap(size_, other.size_); |
2424 | | } else { |
2425 | | // We aren't allowed to propagate the allocator and the allocator is |
2426 | | // different so we can't take over its memory. We must move each element |
2427 | | // individually. We need both `other` and `this` to have `other`s key |
2428 | | // comparator while moving the values so we can't swap the key |
2429 | | // comparators. |
2430 | | *mutable_key_comp() = other.key_comp(); |
2431 | | copy_or_move_values_in_order(other); |
2432 | | } |
2433 | | } |
2434 | | } |
2435 | | return *this; |
2436 | | } |
2437 | | |
2438 | | template <typename P> |
2439 | | auto btree<P>::erase(iterator iter) -> iterator { |
2440 | | iter.node_->value_destroy(static_cast<field_type>(iter.position_), |
2441 | | mutable_allocator()); |
2442 | | iter.update_generation(); |
2443 | | |
2444 | | const bool internal_delete = iter.node_->is_internal(); |
2445 | | if (internal_delete) { |
2446 | | // Deletion of a value on an internal node. First, transfer the largest |
2447 | | // value from our left child here, then erase/rebalance from that position. |
2448 | | // We can get to the largest value from our left child by decrementing iter. |
2449 | | iterator internal_iter(iter); |
2450 | | --iter; |
2451 | | assert(iter.node_->is_leaf()); |
2452 | | internal_iter.node_->transfer( |
2453 | | static_cast<size_type>(internal_iter.position_), |
2454 | | static_cast<size_type>(iter.position_), iter.node_, |
2455 | | mutable_allocator()); |
2456 | | } else { |
2457 | | // Shift values after erased position in leaf. In the internal case, we |
2458 | | // don't need to do this because the leaf position is the end of the node. |
2459 | | const field_type transfer_from = |
2460 | | static_cast<field_type>(iter.position_ + 1); |
2461 | | const field_type num_to_transfer = iter.node_->finish() - transfer_from; |
2462 | | iter.node_->transfer_n(num_to_transfer, |
2463 | | static_cast<size_type>(iter.position_), |
2464 | | transfer_from, iter.node_, mutable_allocator()); |
2465 | | } |
2466 | | // Update node finish and container size. |
2467 | | iter.node_->set_finish(iter.node_->finish() - 1); |
2468 | | --size_; |
2469 | | |
2470 | | // We want to return the next value after the one we just erased. If we |
2471 | | // erased from an internal node (internal_delete == true), then the next |
2472 | | // value is ++(++iter). If we erased from a leaf node (internal_delete == |
2473 | | // false) then the next value is ++iter. Note that ++iter may point to an |
2474 | | // internal node and the value in the internal node may move to a leaf node |
2475 | | // (iter.node_) when rebalancing is performed at the leaf level. |
2476 | | |
2477 | | iterator res = rebalance_after_delete(iter); |
2478 | | |
2479 | | // If we erased from an internal node, advance the iterator. |
2480 | | if (internal_delete) { |
2481 | | ++res; |
2482 | | } |
2483 | | return res; |
2484 | | } |
2485 | | |
2486 | | template <typename P> |
2487 | | auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { |
2488 | | // Merge/rebalance as we walk back up the tree. |
2489 | | iterator res(iter); |
2490 | | bool first_iteration = true; |
2491 | | for (;;) { |
2492 | | if (iter.node_ == root()) { |
2493 | | try_shrink(); |
2494 | | if (empty()) { |
2495 | | return end(); |
2496 | | } |
2497 | | break; |
2498 | | } |
2499 | | if (iter.node_->count() >= kMinNodeValues) { |
2500 | | break; |
2501 | | } |
2502 | | bool merged = try_merge_or_rebalance(&iter); |
2503 | | // On the first iteration, we should update `res` with `iter` because `res` |
2504 | | // may have been invalidated. |
2505 | | if (first_iteration) { |
2506 | | res = iter; |
2507 | | first_iteration = false; |
2508 | | } |
2509 | | if (!merged) { |
2510 | | break; |
2511 | | } |
2512 | | iter.position_ = iter.node_->position(); |
2513 | | iter.node_ = iter.node_->parent(); |
2514 | | } |
2515 | | res.update_generation(); |
2516 | | |
2517 | | // Adjust our return value. If we're pointing at the end of a node, advance |
2518 | | // the iterator. |
2519 | | if (res.position_ == res.node_->finish()) { |
2520 | | res.position_ = res.node_->finish() - 1; |
2521 | | ++res; |
2522 | | } |
2523 | | |
2524 | | return res; |
2525 | | } |
2526 | | |
2527 | | // Note: we tried implementing this more efficiently by erasing all of the |
2528 | | // elements in [begin, end) at once and then doing rebalancing once at the end |
2529 | | // (rather than interleaving deletion and rebalancing), but that adds a lot of |
2530 | | // complexity, which seems to outweigh the performance win. |
2531 | | template <typename P> |
2532 | | auto btree<P>::erase_range(iterator begin, iterator end) |
2533 | | -> std::pair<size_type, iterator> { |
2534 | | size_type count = static_cast<size_type>(end - begin); |
2535 | | assert(count >= 0); |
2536 | | |
2537 | | if (count == 0) { |
2538 | | return {0, begin}; |
2539 | | } |
2540 | | |
2541 | | if (static_cast<size_type>(count) == size_) { |
2542 | | clear(); |
2543 | | return {count, this->end()}; |
2544 | | } |
2545 | | |
2546 | | if (begin.node_ == end.node_) { |
2547 | | assert(end.position_ > begin.position_); |
2548 | | begin.node_->remove_values( |
2549 | | static_cast<field_type>(begin.position_), |
2550 | | static_cast<field_type>(end.position_ - begin.position_), |
2551 | | mutable_allocator()); |
2552 | | size_ -= count; |
2553 | | return {count, rebalance_after_delete(begin)}; |
2554 | | } |
2555 | | |
2556 | | const size_type target_size = size_ - count; |
2557 | | while (size_ > target_size) { |
2558 | | if (begin.node_->is_leaf()) { |
2559 | | const size_type remaining_to_erase = size_ - target_size; |
2560 | | const size_type remaining_in_node = |
2561 | | static_cast<size_type>(begin.node_->finish() - begin.position_); |
2562 | | const field_type to_erase = static_cast<field_type>( |
2563 | | (std::min)(remaining_to_erase, remaining_in_node)); |
2564 | | begin.node_->remove_values(static_cast<field_type>(begin.position_), |
2565 | | to_erase, mutable_allocator()); |
2566 | | size_ -= to_erase; |
2567 | | begin = rebalance_after_delete(begin); |
2568 | | } else { |
2569 | | begin = erase(begin); |
2570 | | } |
2571 | | } |
2572 | | begin.update_generation(); |
2573 | | return {count, begin}; |
2574 | | } |
2575 | | |
2576 | | template <typename P> |
2577 | | void btree<P>::clear() { |
2578 | | if (!empty()) { |
2579 | | node_type::clear_and_delete(root(), mutable_allocator()); |
2580 | | } |
2581 | | mutable_root() = mutable_rightmost() = EmptyNode(); |
2582 | | size_ = 0; |
2583 | | } |
2584 | | |
2585 | | template <typename P> |
2586 | | void btree<P>::swap(btree &other) { |
2587 | | using std::swap; |
2588 | | if (absl::allocator_traits< |
2589 | | allocator_type>::propagate_on_container_swap::value) { |
2590 | | // Note: `rightmost_` also contains the allocator and the key comparator. |
2591 | | swap(rightmost_, other.rightmost_); |
2592 | | } else { |
2593 | | // It's undefined behavior if the allocators are unequal here. |
2594 | | assert(allocator() == other.allocator()); |
2595 | | swap(mutable_rightmost(), other.mutable_rightmost()); |
2596 | | swap(*mutable_key_comp(), *other.mutable_key_comp()); |
2597 | | } |
2598 | | swap(mutable_root(), other.mutable_root()); |
2599 | | swap(size_, other.size_); |
2600 | | } |
2601 | | |
2602 | | template <typename P> |
2603 | | void btree<P>::verify() const { |
2604 | | assert(root() != nullptr); |
2605 | | assert(leftmost() != nullptr); |
2606 | | assert(rightmost() != nullptr); |
2607 | | assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); |
2608 | | assert(leftmost() == (++const_iterator(root(), -1)).node_); |
2609 | | assert(rightmost() == (--const_iterator(root(), root()->finish())).node_); |
2610 | | assert(leftmost()->is_leaf()); |
2611 | | assert(rightmost()->is_leaf()); |
2612 | | } |
2613 | | |
2614 | | template <typename P> |
2615 | | void btree<P>::rebalance_or_split(iterator *iter) { |
2616 | | node_type *&node = iter->node_; |
2617 | | int &insert_position = iter->position_; |
2618 | | assert(node->count() == node->max_count()); |
2619 | | assert(kNodeSlots == node->max_count()); |
2620 | | |
2621 | | // First try to make room on the node by rebalancing. |
2622 | | node_type *parent = node->parent(); |
2623 | | if (node != root()) { |
2624 | | if (node->position() > parent->start()) { |
2625 | | // Try rebalancing with our left sibling. |
2626 | | node_type *left = parent->child(node->position() - 1); |
2627 | | assert(left->max_count() == kNodeSlots); |
2628 | | if (left->count() < kNodeSlots) { |
2629 | | // We bias rebalancing based on the position being inserted. If we're |
2630 | | // inserting at the end of the right node then we bias rebalancing to |
2631 | | // fill up the left node. |
2632 | | field_type to_move = |
2633 | | (kNodeSlots - left->count()) / |
2634 | | (1 + (static_cast<field_type>(insert_position) < kNodeSlots)); |
2635 | | to_move = (std::max)(field_type{1}, to_move); |
2636 | | |
2637 | | if (static_cast<field_type>(insert_position) - to_move >= |
2638 | | node->start() || |
2639 | | left->count() + to_move < kNodeSlots) { |
2640 | | left->rebalance_right_to_left(to_move, node, mutable_allocator()); |
2641 | | |
2642 | | assert(node->max_count() - node->count() == to_move); |
2643 | | insert_position = static_cast<int>( |
2644 | | static_cast<field_type>(insert_position) - to_move); |
2645 | | if (insert_position < node->start()) { |
2646 | | insert_position = insert_position + left->count() + 1; |
2647 | | node = left; |
2648 | | } |
2649 | | |
2650 | | assert(node->count() < node->max_count()); |
2651 | | return; |
2652 | | } |
2653 | | } |
2654 | | } |
2655 | | |
2656 | | if (node->position() < parent->finish()) { |
2657 | | // Try rebalancing with our right sibling. |
2658 | | node_type *right = parent->child(node->position() + 1); |
2659 | | assert(right->max_count() == kNodeSlots); |
2660 | | if (right->count() < kNodeSlots) { |
2661 | | // We bias rebalancing based on the position being inserted. If we're |
2662 | | // inserting at the beginning of the left node then we bias rebalancing |
2663 | | // to fill up the right node. |
2664 | | field_type to_move = (kNodeSlots - right->count()) / |
2665 | | (1 + (insert_position > node->start())); |
2666 | | to_move = (std::max)(field_type{1}, to_move); |
2667 | | |
2668 | | if (static_cast<field_type>(insert_position) <= |
2669 | | node->finish() - to_move || |
2670 | | right->count() + to_move < kNodeSlots) { |
2671 | | node->rebalance_left_to_right(to_move, right, mutable_allocator()); |
2672 | | |
2673 | | if (insert_position > node->finish()) { |
2674 | | insert_position = insert_position - node->count() - 1; |
2675 | | node = right; |
2676 | | } |
2677 | | |
2678 | | assert(node->count() < node->max_count()); |
2679 | | return; |
2680 | | } |
2681 | | } |
2682 | | } |
2683 | | |
2684 | | // Rebalancing failed, make sure there is room on the parent node for a new |
2685 | | // value. |
2686 | | assert(parent->max_count() == kNodeSlots); |
2687 | | if (parent->count() == kNodeSlots) { |
2688 | | iterator parent_iter(parent, node->position()); |
2689 | | rebalance_or_split(&parent_iter); |
2690 | | parent = node->parent(); |
2691 | | } |
2692 | | } else { |
2693 | | // Rebalancing not possible because this is the root node. |
2694 | | // Create a new root node and set the current root node as the child of the |
2695 | | // new root. |
2696 | | parent = new_internal_node(/*position=*/0, parent); |
2697 | | parent->set_generation(root()->generation()); |
2698 | | parent->init_child(parent->start(), node); |
2699 | | mutable_root() = parent; |
2700 | | // If the former root was a leaf node, then it's now the rightmost node. |
2701 | | assert(parent->start_child()->is_internal() || |
2702 | | parent->start_child() == rightmost()); |
2703 | | } |
2704 | | |
2705 | | // Split the node. |
2706 | | node_type *split_node; |
2707 | | if (node->is_leaf()) { |
2708 | | split_node = new_leaf_node(node->position() + 1, parent); |
2709 | | node->split(insert_position, split_node, mutable_allocator()); |
2710 | | if (rightmost() == node) mutable_rightmost() = split_node; |
2711 | | } else { |
2712 | | split_node = new_internal_node(node->position() + 1, parent); |
2713 | | node->split(insert_position, split_node, mutable_allocator()); |
2714 | | } |
2715 | | |
2716 | | if (insert_position > node->finish()) { |
2717 | | insert_position = insert_position - node->count() - 1; |
2718 | | node = split_node; |
2719 | | } |
2720 | | } |
2721 | | |
2722 | | template <typename P> |
2723 | | void btree<P>::merge_nodes(node_type *left, node_type *right) { |
2724 | | left->merge(right, mutable_allocator()); |
2725 | | if (rightmost() == right) mutable_rightmost() = left; |
2726 | | } |
2727 | | |
2728 | | template <typename P> |
2729 | | bool btree<P>::try_merge_or_rebalance(iterator *iter) { |
2730 | | node_type *parent = iter->node_->parent(); |
2731 | | if (iter->node_->position() > parent->start()) { |
2732 | | // Try merging with our left sibling. |
2733 | | node_type *left = parent->child(iter->node_->position() - 1); |
2734 | | assert(left->max_count() == kNodeSlots); |
2735 | | if (1U + left->count() + iter->node_->count() <= kNodeSlots) { |
2736 | | iter->position_ += 1 + left->count(); |
2737 | | merge_nodes(left, iter->node_); |
2738 | | iter->node_ = left; |
2739 | | return true; |
2740 | | } |
2741 | | } |
2742 | | if (iter->node_->position() < parent->finish()) { |
2743 | | // Try merging with our right sibling. |
2744 | | node_type *right = parent->child(iter->node_->position() + 1); |
2745 | | assert(right->max_count() == kNodeSlots); |
2746 | | if (1U + iter->node_->count() + right->count() <= kNodeSlots) { |
2747 | | merge_nodes(iter->node_, right); |
2748 | | return true; |
2749 | | } |
2750 | | // Try rebalancing with our right sibling. We don't perform rebalancing if |
2751 | | // we deleted the first element from iter->node_ and the node is not |
2752 | | // empty. This is a small optimization for the common pattern of deleting |
2753 | | // from the front of the tree. |
2754 | | if (right->count() > kMinNodeValues && |
2755 | | (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) { |
2756 | | field_type to_move = (right->count() - iter->node_->count()) / 2; |
2757 | | to_move = |
2758 | | (std::min)(to_move, static_cast<field_type>(right->count() - 1)); |
2759 | | iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator()); |
2760 | | return false; |
2761 | | } |
2762 | | } |
2763 | | if (iter->node_->position() > parent->start()) { |
2764 | | // Try rebalancing with our left sibling. We don't perform rebalancing if |
2765 | | // we deleted the last element from iter->node_ and the node is not |
2766 | | // empty. This is a small optimization for the common pattern of deleting |
2767 | | // from the back of the tree. |
2768 | | node_type *left = parent->child(iter->node_->position() - 1); |
2769 | | if (left->count() > kMinNodeValues && |
2770 | | (iter->node_->count() == 0 || |
2771 | | iter->position_ < iter->node_->finish())) { |
2772 | | field_type to_move = (left->count() - iter->node_->count()) / 2; |
2773 | | to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1)); |
2774 | | left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator()); |
2775 | | iter->position_ += to_move; |
2776 | | return false; |
2777 | | } |
2778 | | } |
2779 | | return false; |
2780 | | } |
2781 | | |
2782 | | template <typename P> |
2783 | | void btree<P>::try_shrink() { |
2784 | | node_type *orig_root = root(); |
2785 | | if (orig_root->count() > 0) { |
2786 | | return; |
2787 | | } |
2788 | | // Deleted the last item on the root node, shrink the height of the tree. |
2789 | | if (orig_root->is_leaf()) { |
2790 | | assert(size() == 0); |
2791 | | mutable_root() = mutable_rightmost() = EmptyNode(); |
2792 | | } else { |
2793 | | node_type *child = orig_root->start_child(); |
2794 | | child->make_root(); |
2795 | | mutable_root() = child; |
2796 | | } |
2797 | | node_type::clear_and_delete(orig_root, mutable_allocator()); |
2798 | | } |
2799 | | |
2800 | | template <typename P> |
2801 | | template <typename IterType> |
2802 | | inline IterType btree<P>::internal_last(IterType iter) { |
2803 | | assert(iter.node_ != nullptr); |
2804 | | while (iter.position_ == iter.node_->finish()) { |
2805 | | iter.position_ = iter.node_->position(); |
2806 | | iter.node_ = iter.node_->parent(); |
2807 | | if (iter.node_->is_leaf()) { |
2808 | | iter.node_ = nullptr; |
2809 | | break; |
2810 | | } |
2811 | | } |
2812 | | iter.update_generation(); |
2813 | | return iter; |
2814 | | } |
2815 | | |
2816 | | template <typename P> |
2817 | | template <typename... Args> |
2818 | | inline auto btree<P>::internal_emplace(iterator iter, Args &&...args) |
2819 | | -> iterator { |
2820 | | if (iter.node_->is_internal()) { |
2821 | | // We can't insert on an internal node. Instead, we'll insert after the |
2822 | | // previous value which is guaranteed to be on a leaf node. |
2823 | | --iter; |
2824 | | ++iter.position_; |
2825 | | } |
2826 | | const field_type max_count = iter.node_->max_count(); |
2827 | | allocator_type *alloc = mutable_allocator(); |
2828 | | |
2829 | | const auto transfer_and_delete = [&](node_type *old_node, |
2830 | | node_type *new_node) { |
2831 | | new_node->transfer_n(old_node->count(), new_node->start(), |
2832 | | old_node->start(), old_node, alloc); |
2833 | | new_node->set_finish(old_node->finish()); |
2834 | | old_node->set_finish(old_node->start()); |
2835 | | new_node->set_generation(old_node->generation()); |
2836 | | node_type::clear_and_delete(old_node, alloc); |
2837 | | }; |
2838 | | const auto replace_leaf_root_node = [&](field_type new_node_size) { |
2839 | | assert(iter.node_ == root()); |
2840 | | node_type *old_root = iter.node_; |
2841 | | node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size); |
2842 | | transfer_and_delete(old_root, new_root); |
2843 | | mutable_root() = mutable_rightmost() = new_root; |
2844 | | }; |
2845 | | |
2846 | | bool replaced_node = false; |
2847 | | if (iter.node_->count() == max_count) { |
2848 | | // Make room in the leaf for the new item. |
2849 | | if (max_count < kNodeSlots) { |
2850 | | // Insertion into the root where the root is smaller than the full node |
2851 | | // size. Simply grow the size of the root node. |
2852 | | replace_leaf_root_node(static_cast<field_type>( |
2853 | | (std::min)(static_cast<int>(kNodeSlots), 2 * max_count))); |
2854 | | replaced_node = true; |
2855 | | } else { |
2856 | | rebalance_or_split(&iter); |
2857 | | } |
2858 | | } |
2859 | | (void)replaced_node; |
2860 | | #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
2861 | | defined(ABSL_HAVE_HWADDRESS_SANITIZER) |
2862 | | if (!replaced_node) { |
2863 | | assert(iter.node_->is_leaf()); |
2864 | | if (iter.node_->is_root()) { |
2865 | | replace_leaf_root_node(max_count); |
2866 | | } else { |
2867 | | node_type *old_node = iter.node_; |
2868 | | const bool was_rightmost = rightmost() == old_node; |
2869 | | const bool was_leftmost = leftmost() == old_node; |
2870 | | node_type *parent = old_node->parent(); |
2871 | | const field_type position = old_node->position(); |
2872 | | node_type *new_node = iter.node_ = new_leaf_node(position, parent); |
2873 | | parent->set_child_noupdate_position(position, new_node); |
2874 | | transfer_and_delete(old_node, new_node); |
2875 | | if (was_rightmost) mutable_rightmost() = new_node; |
2876 | | // The leftmost node is stored as the parent of the root node. |
2877 | | if (was_leftmost) root()->set_parent(new_node); |
2878 | | } |
2879 | | } |
2880 | | #endif |
2881 | | iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc, |
2882 | | std::forward<Args>(args)...); |
2883 | | assert( |
2884 | | iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_), |
2885 | | original_key_compare(key_comp())) && |
2886 | | "If this assert fails, then either (1) the comparator may violate " |
2887 | | "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see " |
2888 | | "https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a " |
2889 | | "key may have been mutated after it was inserted into the tree."); |
2890 | | ++size_; |
2891 | | iter.update_generation(); |
2892 | | return iter; |
2893 | | } |
2894 | | |
2895 | | template <typename P> |
2896 | | template <typename K> |
2897 | | inline auto btree<P>::internal_locate(const K &key) const |
2898 | | -> SearchResult<iterator, is_key_compare_to::value> { |
2899 | | iterator iter(const_cast<node_type *>(root())); |
2900 | | for (;;) { |
2901 | | SearchResult<size_type, is_key_compare_to::value> res = |
2902 | | iter.node_->lower_bound(key, key_comp()); |
2903 | | iter.position_ = static_cast<int>(res.value); |
2904 | | if (res.IsEq()) { |
2905 | | return {iter, MatchKind::kEq}; |
2906 | | } |
2907 | | // Note: in the non-key-compare-to case, we don't need to walk all the way |
2908 | | // down the tree if the keys are equal, but determining equality would |
2909 | | // require doing an extra comparison on each node on the way down, and we |
2910 | | // will need to go all the way to the leaf node in the expected case. |
2911 | | if (iter.node_->is_leaf()) { |
2912 | | break; |
2913 | | } |
2914 | | iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
2915 | | } |
2916 | | // Note: in the non-key-compare-to case, the key may actually be equivalent |
2917 | | // here (and the MatchKind::kNe is ignored). |
2918 | | return {iter, MatchKind::kNe}; |
2919 | | } |
2920 | | |
2921 | | template <typename P> |
2922 | | template <typename K> |
2923 | | auto btree<P>::internal_lower_bound(const K &key) const |
2924 | | -> SearchResult<iterator, is_key_compare_to::value> { |
2925 | | if (!params_type::template can_have_multiple_equivalent_keys<K>()) { |
2926 | | SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); |
2927 | | ret.value = internal_last(ret.value); |
2928 | | return ret; |
2929 | | } |
2930 | | iterator iter(const_cast<node_type *>(root())); |
2931 | | SearchResult<size_type, is_key_compare_to::value> res; |
2932 | | bool seen_eq = false; |
2933 | | for (;;) { |
2934 | | res = iter.node_->lower_bound(key, key_comp()); |
2935 | | iter.position_ = static_cast<int>(res.value); |
2936 | | if (iter.node_->is_leaf()) { |
2937 | | break; |
2938 | | } |
2939 | | seen_eq = seen_eq || res.IsEq(); |
2940 | | iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
2941 | | } |
2942 | | if (res.IsEq()) return {iter, MatchKind::kEq}; |
2943 | | return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; |
2944 | | } |
2945 | | |
2946 | | template <typename P> |
2947 | | template <typename K> |
2948 | | auto btree<P>::internal_upper_bound(const K &key) const -> iterator { |
2949 | | iterator iter(const_cast<node_type *>(root())); |
2950 | | for (;;) { |
2951 | | iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp())); |
2952 | | if (iter.node_->is_leaf()) { |
2953 | | break; |
2954 | | } |
2955 | | iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
2956 | | } |
2957 | | return internal_last(iter); |
2958 | | } |
2959 | | |
2960 | | template <typename P> |
2961 | | template <typename K> |
2962 | | auto btree<P>::internal_find(const K &key) const -> iterator { |
2963 | | SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); |
2964 | | if (res.HasMatch()) { |
2965 | | if (res.IsEq()) { |
2966 | | return res.value; |
2967 | | } |
2968 | | } else { |
2969 | | const iterator iter = internal_last(res.value); |
2970 | | if (iter.node_ != nullptr && !compare_keys(key, iter.key())) { |
2971 | | return iter; |
2972 | | } |
2973 | | } |
2974 | | return {nullptr, 0}; |
2975 | | } |
2976 | | |
2977 | | template <typename P> |
2978 | | typename btree<P>::size_type btree<P>::internal_verify( |
2979 | | const node_type *node, const key_type *lo, const key_type *hi) const { |
2980 | | assert(node->count() > 0); |
2981 | | assert(node->count() <= node->max_count()); |
2982 | | if (lo) { |
2983 | | assert(!compare_keys(node->key(node->start()), *lo)); |
2984 | | } |
2985 | | if (hi) { |
2986 | | assert(!compare_keys(*hi, node->key(node->finish() - 1))); |
2987 | | } |
2988 | | for (int i = node->start() + 1; i < node->finish(); ++i) { |
2989 | | assert(!compare_keys(node->key(i), node->key(i - 1))); |
2990 | | } |
2991 | | size_type count = node->count(); |
2992 | | if (node->is_internal()) { |
2993 | | for (field_type i = node->start(); i <= node->finish(); ++i) { |
2994 | | assert(node->child(i) != nullptr); |
2995 | | assert(node->child(i)->parent() == node); |
2996 | | assert(node->child(i)->position() == i); |
2997 | | count += internal_verify(node->child(i), |
2998 | | i == node->start() ? lo : &node->key(i - 1), |
2999 | | i == node->finish() ? hi : &node->key(i)); |
3000 | | } |
3001 | | } |
3002 | | return count; |
3003 | | } |
3004 | | |
3005 | | struct btree_access { |
3006 | | template <typename BtreeContainer, typename Pred> |
3007 | | static auto erase_if(BtreeContainer &container, Pred pred) -> |
3008 | | typename BtreeContainer::size_type { |
3009 | | const auto initial_size = container.size(); |
3010 | | auto &tree = container.tree_; |
3011 | | auto *alloc = tree.mutable_allocator(); |
3012 | | for (auto it = container.begin(); it != container.end();) { |
3013 | | if (!pred(*it)) { |
3014 | | ++it; |
3015 | | continue; |
3016 | | } |
3017 | | auto *node = it.node_; |
3018 | | if (node->is_internal()) { |
3019 | | // Handle internal nodes normally. |
3020 | | it = container.erase(it); |
3021 | | continue; |
3022 | | } |
3023 | | // If this is a leaf node, then we do all the erases from this node |
3024 | | // at once before doing rebalancing. |
3025 | | |
3026 | | // The current position to transfer slots to. |
3027 | | int to_pos = it.position_; |
3028 | | node->value_destroy(it.position_, alloc); |
3029 | | while (++it.position_ < node->finish()) { |
3030 | | it.update_generation(); |
3031 | | if (pred(*it)) { |
3032 | | node->value_destroy(it.position_, alloc); |
3033 | | } else { |
3034 | | node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc); |
3035 | | } |
3036 | | } |
3037 | | const int num_deleted = node->finish() - to_pos; |
3038 | | tree.size_ -= num_deleted; |
3039 | | node->set_finish(to_pos); |
3040 | | it.position_ = to_pos; |
3041 | | it = tree.rebalance_after_delete(it); |
3042 | | } |
3043 | | return initial_size - container.size(); |
3044 | | } |
3045 | | }; |
3046 | | |
3047 | | #undef ABSL_BTREE_ENABLE_GENERATIONS |
3048 | | |
3049 | | } // namespace container_internal |
3050 | | ABSL_NAMESPACE_END |
3051 | | } // namespace absl |
3052 | | |
3053 | | #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ |