Coverage Report

Created: 2025-04-27 06:20

/src/LPM/external.protobuf/include/absl/hash/hash.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines the Abseil `hash` library and the Abseil hashing
20
// framework. This framework consists of the following:
21
//
22
//   * The `absl::Hash` functor, which is used to invoke the hasher within the
23
//     Abseil hashing framework. `absl::Hash<T>` supports most basic types and
24
//     a number of Abseil types out of the box.
25
//   * `AbslHashValue`, an extension point that allows you to extend types to
26
//     support Abseil hashing without requiring you to define a hashing
27
//     algorithm.
28
//   * `HashState`, a type-erased class which implements the manipulation of the
29
//     hash state (H) itself; contains member functions `combine()`,
30
//     `combine_contiguous()`, and `combine_unordered()`; and which you can use
31
//     to contribute to an existing hash state when hashing your types.
32
//
33
// Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
34
// provides most of its utility by abstracting away the hash algorithm (and its
35
// implementation) entirely. Instead, a type invokes the Abseil hashing
36
// framework by simply combining its state with the state of known, hashable
37
// types. Hashing of that combined state is separately done by `absl::Hash`.
38
//
39
// One should assume that a hash algorithm is chosen randomly at the start of
40
// each process.  E.g., `absl::Hash<int>{}(9)` in one process and
41
// `absl::Hash<int>{}(9)` in another process are likely to differ.
42
//
43
// `absl::Hash` may also produce different values from different dynamically
44
// loaded libraries. For this reason, `absl::Hash` values must never cross
45
// boundaries in dynamically loaded libraries (including when used in types like
46
// hash containers.)
47
//
48
// `absl::Hash` is intended to strongly mix input bits with a target of passing
49
// an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect).
50
//
51
// Example:
52
//
53
//   // Suppose we have a class `Circle` for which we want to add hashing:
54
//   class Circle {
55
//    public:
56
//     ...
57
//    private:
58
//     std::pair<int, int> center_;
59
//     int radius_;
60
//   };
61
//
62
//   // To add hashing support to `Circle`, we simply need to add a free
63
//   // (non-member) function `AbslHashValue()`, and return the combined hash
64
//   // state of the existing hash state and the class state. You can add such a
65
//   // free function using a friend declaration within the body of the class:
66
//   class Circle {
67
//    public:
68
//     ...
69
//     template <typename H>
70
//     friend H AbslHashValue(H h, const Circle& c) {
71
//       return H::combine(std::move(h), c.center_, c.radius_);
72
//     }
73
//     ...
74
//   };
75
//
76
// For more information, see Adding Type Support to `absl::Hash` below.
77
//
78
#ifndef ABSL_HASH_HASH_H_
79
#define ABSL_HASH_HASH_H_
80
81
#include <tuple>
82
#include <utility>
83
84
#include "absl/functional/function_ref.h"
85
#include "absl/hash/internal/hash.h"
86
87
namespace absl {
88
ABSL_NAMESPACE_BEGIN
89
90
// -----------------------------------------------------------------------------
91
// `absl::Hash`
92
// -----------------------------------------------------------------------------
93
//
94
// `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T`
95
// satisfying any of the following conditions (in order):
96
//
97
//  * T is an arithmetic or pointer type
98
//  * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
99
//    hash state `H`.
100
//  - T defines a specialization of `std::hash<T>`
101
//
102
// `absl::Hash` intrinsically supports the following types:
103
//
104
//   * All integral types (including bool)
105
//   * All enum types
106
//   * All floating-point types (although hashing them is discouraged)
107
//   * All pointer types, including nullptr_t
108
//   * std::pair<T1, T2>, if T1 and T2 are hashable
109
//   * std::tuple<Ts...>, if all the Ts... are hashable
110
//   * std::unique_ptr and std::shared_ptr
111
//   * All string-like types including:
112
//     * absl::Cord
113
//     * std::string (as well as any instance of std::basic_string that
114
//       uses one of {char, wchar_t, char16_t, char32_t} and its associated
115
//       std::char_traits)
116
//     * std::string_view (as well as any instance of std::basic_string_view
117
//       that uses one of {char, wchar_t, char16_t, char32_t} and its associated
118
//       std::char_traits)
119
//  * All the standard sequence containers (provided the elements are hashable)
120
//  * All the standard associative containers (provided the elements are
121
//    hashable)
122
//  * absl types such as the following:
123
//    * absl::string_view
124
//    * absl::uint128
125
//    * absl::Time, absl::Duration, and absl::TimeZone
126
//  * absl containers (provided the elements are hashable) such as the
127
//    following:
128
//    * absl::flat_hash_set, absl::node_hash_set, absl::btree_set
129
//    * absl::flat_hash_map, absl::node_hash_map, absl::btree_map
130
//    * absl::btree_multiset, absl::btree_multimap
131
//    * absl::InlinedVector
132
//    * absl::FixedArray
133
//
134
// When absl::Hash is used to hash an unordered container with a custom hash
135
// functor, the elements are hashed using default absl::Hash semantics, not
136
// the custom hash functor.  This is consistent with the behavior of
137
// operator==() on unordered containers, which compares elements pairwise with
138
// operator==() rather than the custom equality functor.  It is usually a
139
// mistake to use either operator==() or absl::Hash on unordered collections
140
// that use functors incompatible with operator==() equality.
141
//
142
// Note: the list above is not meant to be exhaustive. Additional type support
143
// may be added, in which case the above list will be updated.
144
//
145
// -----------------------------------------------------------------------------
146
// absl::Hash Invocation Evaluation
147
// -----------------------------------------------------------------------------
148
//
149
// When invoked, `absl::Hash<T>` searches for supplied hash functions in the
150
// following order:
151
//
152
//   * Natively supported types out of the box (see above)
153
//   * Types for which an `AbslHashValue()` overload is provided (such as
154
//     user-defined types). See "Adding Type Support to `absl::Hash`" below.
155
//   * Types which define a `std::hash<T>` specialization
156
//
157
// The fallback to legacy hash functions exists mainly for backwards
158
// compatibility. If you have a choice, prefer defining an `AbslHashValue`
159
// overload instead of specializing any legacy hash functors.
160
//
161
// -----------------------------------------------------------------------------
162
// The Hash State Concept, and using `HashState` for Type Erasure
163
// -----------------------------------------------------------------------------
164
//
165
// The `absl::Hash` framework relies on the Concept of a "hash state." Such a
166
// hash state is used in several places:
167
//
168
// * Within existing implementations of `absl::Hash<T>` to store the hashed
169
//   state of an object. Note that it is up to the implementation how it stores
170
//   such state. A hash table, for example, may mix the state to produce an
171
//   integer value; a testing framework may simply hold a vector of that state.
172
// * Within implementations of `AbslHashValue()` used to extend user-defined
173
//   types. (See "Adding Type Support to absl::Hash" below.)
174
// * Inside a `HashState`, providing type erasure for the concept of a hash
175
//   state, which you can use to extend the `absl::Hash` framework for types
176
//   that are otherwise difficult to extend using `AbslHashValue()`. (See the
177
//   `HashState` class below.)
178
//
179
// The "hash state" concept contains three member functions for mixing hash
180
// state:
181
//
182
// * `H::combine(state, values...)`
183
//
184
//   Combines an arbitrary number of values into a hash state, returning the
185
//   updated state. Note that the existing hash state is move-only and must be
186
//   passed by value.
187
//
188
//   Each of the value types T must be hashable by H.
189
//
190
//   NOTE:
191
//
192
//     state = H::combine(std::move(state), value1, value2, value3);
193
//
194
//   must be guaranteed to produce the same hash expansion as
195
//
196
//     state = H::combine(std::move(state), value1);
197
//     state = H::combine(std::move(state), value2);
198
//     state = H::combine(std::move(state), value3);
199
//
200
// * `H::combine_contiguous(state, data, size)`
201
//
202
//    Combines a contiguous array of `size` elements into a hash state,
203
//    returning the updated state. Note that the existing hash state is
204
//    move-only and must be passed by value.
205
//
206
//    NOTE:
207
//
208
//      state = H::combine_contiguous(std::move(state), data, size);
209
//
210
//    need NOT be guaranteed to produce the same hash expansion as a loop
211
//    (it may perform internal optimizations). If you need this guarantee, use a
212
//    loop instead.
213
//
214
// * `H::combine_unordered(state, begin, end)`
215
//
216
//    Combines a set of elements denoted by an iterator pair into a hash
217
//    state, returning the updated state.  Note that the existing hash
218
//    state is move-only and must be passed by value.
219
//
220
//    Unlike the other two methods, the hashing is order-independent.
221
//    This can be used to hash unordered collections.
222
//
223
// -----------------------------------------------------------------------------
224
// Adding Type Support to `absl::Hash`
225
// -----------------------------------------------------------------------------
226
//
227
// To add support for your user-defined type, add a proper `AbslHashValue()`
228
// overload as a free (non-member) function. The overload will take an
229
// existing hash state and should combine that state with state from the type.
230
//
231
// Example:
232
//
233
//   template <typename H>
234
//   H AbslHashValue(H state, const MyType& v) {
235
//     return H::combine(std::move(state), v.field1, ..., v.fieldN);
236
//   }
237
//
238
// where `(field1, ..., fieldN)` are the members you would use on your
239
// `operator==` to define equality.
240
//
241
// Notice that `AbslHashValue` is not a class member, but an ordinary function.
242
// An `AbslHashValue` overload for a type should only be declared in the same
243
// file and namespace as said type. The proper `AbslHashValue` implementation
244
// for a given type will be discovered via ADL.
245
//
246
// Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
247
// only be extended by adding `AbslHashValue()` overloads.
248
//
249
template <typename T>
250
using Hash = absl::hash_internal::Hash<T>;
251
252
// HashOf
253
//
254
// absl::HashOf() is a helper that generates a hash from the values of its
255
// arguments.  It dispatches to absl::Hash directly, as follows:
256
//  * HashOf(t) == absl::Hash<T>{}(t)
257
//  * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c))
258
//
259
// HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when
260
//  * The argument lists have pairwise identical C++ types
261
//  * a1 == b1 && a2 == b2 && ...
262
//
263
// The requirement that the arguments match in both type and value is critical.
264
// It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if
265
// `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`.
266
template <int&... ExplicitArgumentBarrier, typename... Types>
267
0
size_t HashOf(const Types&... values) {
268
0
  auto tuple = std::tie(values...);
269
0
  return absl::Hash<decltype(tuple)>{}(tuple);
270
0
}
Unexecuted instantiation: _ZN4absl12lts_202401166HashOfITpTnRiJEJjNS0_11string_viewEEEEmDpRKT0_
Unexecuted instantiation: _ZN4absl12lts_202401166HashOfITpTnRiJEJmEEEmDpRKT0_
Unexecuted instantiation: _ZN4absl12lts_202401166HashOfITpTnRiJEJmPN6google8protobuf8internal13TableEntryPtrEPKvEEEmDpRKT0_
271
272
// HashState
273
//
274
// A type erased version of the hash state concept, for use in user-defined
275
// `AbslHashValue` implementations that can't use templates (such as PImpl
276
// classes, virtual functions, etc.). The type erasure adds overhead so it
277
// should be avoided unless necessary.
278
//
279
// Note: This wrapper will only erase calls to
280
//     combine_contiguous(H, const unsigned char*, size_t)
281
//     RunCombineUnordered(H, CombinerF)
282
//
283
// All other calls will be handled internally and will not invoke overloads
284
// provided by the wrapped class.
285
//
286
// Users of this class should still define a template `AbslHashValue` function,
287
// but can use `absl::HashState::Create(&state)` to erase the type of the hash
288
// state and dispatch to their private hashing logic.
289
//
290
// This state can be used like any other hash state. In particular, you can call
291
// `HashState::combine()` and `HashState::combine_contiguous()` on it.
292
//
293
// Example:
294
//
295
//   class Interface {
296
//    public:
297
//     template <typename H>
298
//     friend H AbslHashValue(H state, const Interface& value) {
299
//       state = H::combine(std::move(state), std::type_index(typeid(*this)));
300
//       value.HashValue(absl::HashState::Create(&state));
301
//       return state;
302
//     }
303
//    private:
304
//     virtual void HashValue(absl::HashState state) const = 0;
305
//   };
306
//
307
//   class Impl : Interface {
308
//    private:
309
//     void HashValue(absl::HashState state) const override {
310
//       absl::HashState::combine(std::move(state), v1_, v2_);
311
//     }
312
//     int v1_;
313
//     std::string v2_;
314
//   };
315
class HashState : public hash_internal::HashStateBase<HashState> {
316
 public:
317
  // HashState::Create()
318
  //
319
  // Create a new `HashState` instance that wraps `state`. All calls to
320
  // `combine()` and `combine_contiguous()` on the new instance will be
321
  // redirected to the original `state` object. The `state` object must outlive
322
  // the `HashState` instance.
323
  template <typename T>
324
  static HashState Create(T* state) {
325
    HashState s;
326
    s.Init(state);
327
    return s;
328
  }
329
330
  HashState(const HashState&) = delete;
331
  HashState& operator=(const HashState&) = delete;
332
  HashState(HashState&&) = default;
333
  HashState& operator=(HashState&&) = default;
334
335
  // HashState::combine()
336
  //
337
  // Combines an arbitrary number of values into a hash state, returning the
338
  // updated state.
339
  using HashState::HashStateBase::combine;
340
341
  // HashState::combine_contiguous()
342
  //
343
  // Combines a contiguous array of `size` elements into a hash state, returning
344
  // the updated state.
345
  static HashState combine_contiguous(HashState hash_state,
346
0
                                      const unsigned char* first, size_t size) {
347
0
    hash_state.combine_contiguous_(hash_state.state_, first, size);
348
0
    return hash_state;
349
0
  }
350
  using HashState::HashStateBase::combine_contiguous;
351
352
 private:
353
  HashState() = default;
354
355
  friend class HashState::HashStateBase;
356
357
  template <typename T>
358
  static void CombineContiguousImpl(void* p, const unsigned char* first,
359
                                    size_t size) {
360
    T& state = *static_cast<T*>(p);
361
    state = T::combine_contiguous(std::move(state), first, size);
362
  }
363
364
  template <typename T>
365
  void Init(T* state) {
366
    state_ = state;
367
    combine_contiguous_ = &CombineContiguousImpl<T>;
368
    run_combine_unordered_ = &RunCombineUnorderedImpl<T>;
369
  }
370
371
  template <typename HS>
372
  struct CombineUnorderedInvoker {
373
    template <typename T, typename ConsumerT>
374
    void operator()(T inner_state, ConsumerT inner_cb) {
375
      f(HashState::Create(&inner_state),
376
        [&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); });
377
    }
378
379
    absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f;
380
  };
381
382
  template <typename T>
383
  static HashState RunCombineUnorderedImpl(
384
      HashState state,
385
      absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>
386
          f) {
387
    // Note that this implementation assumes that inner_state and outer_state
388
    // are the same type.  This isn't true in the SpyHash case, but SpyHash
389
    // types are move-convertible to each other, so this still works.
390
    T& real_state = state.Real<T>();
391
    real_state = T::RunCombineUnordered(
392
        std::move(real_state), CombineUnorderedInvoker<HashState>{f});
393
    return state;
394
  }
395
396
  template <typename CombinerT>
397
  static HashState RunCombineUnordered(HashState state, CombinerT combiner) {
398
    auto* run = state.run_combine_unordered_;
399
    return run(std::move(state), std::ref(combiner));
400
  }
401
402
  // Do not erase an already erased state.
403
0
  void Init(HashState* state) {
404
0
    state_ = state->state_;
405
0
    combine_contiguous_ = state->combine_contiguous_;
406
0
    run_combine_unordered_ = state->run_combine_unordered_;
407
0
  }
408
409
  template <typename T>
410
  T& Real() {
411
    return *static_cast<T*>(state_);
412
  }
413
414
  void* state_;
415
  void (*combine_contiguous_)(void*, const unsigned char*, size_t);
416
  HashState (*run_combine_unordered_)(
417
      HashState state,
418
      absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>);
419
};
420
421
ABSL_NAMESPACE_END
422
}  // namespace absl
423
424
#endif  // ABSL_HASH_HASH_H_