Coverage Report

Created: 2025-04-27 06:20

/src/LPM/external.protobuf/include/absl/hash/internal/hash.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
#ifndef ABSL_HASH_INTERNAL_HASH_H_
20
#define ABSL_HASH_INTERNAL_HASH_H_
21
22
#ifdef __APPLE__
23
#include <Availability.h>
24
#include <TargetConditionals.h>
25
#endif
26
27
#include <algorithm>
28
#include <array>
29
#include <bitset>
30
#include <cmath>
31
#include <cstddef>
32
#include <cstring>
33
#include <deque>
34
#include <forward_list>
35
#include <functional>
36
#include <iterator>
37
#include <limits>
38
#include <list>
39
#include <map>
40
#include <memory>
41
#include <set>
42
#include <string>
43
#include <tuple>
44
#include <type_traits>
45
#include <unordered_map>
46
#include <unordered_set>
47
#include <utility>
48
#include <vector>
49
50
#include "absl/base/config.h"
51
#include "absl/base/internal/unaligned_access.h"
52
#include "absl/base/port.h"
53
#include "absl/container/fixed_array.h"
54
#include "absl/hash/internal/city.h"
55
#include "absl/hash/internal/low_level_hash.h"
56
#include "absl/meta/type_traits.h"
57
#include "absl/numeric/bits.h"
58
#include "absl/numeric/int128.h"
59
#include "absl/strings/string_view.h"
60
#include "absl/types/optional.h"
61
#include "absl/types/variant.h"
62
#include "absl/utility/utility.h"
63
64
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L && \
65
    !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY)
66
#include <filesystem>  // NOLINT
67
#endif
68
69
#ifdef ABSL_HAVE_STD_STRING_VIEW
70
#include <string_view>
71
#endif
72
73
namespace absl {
74
ABSL_NAMESPACE_BEGIN
75
76
class HashState;
77
78
namespace hash_internal {
79
80
// Internal detail: Large buffers are hashed in smaller chunks.  This function
81
// returns the size of these chunks.
82
0
constexpr size_t PiecewiseChunkSize() { return 1024; }
83
84
// PiecewiseCombiner
85
//
86
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
87
// buffer of `char` or `unsigned char` as though it were contiguous.  This class
88
// provides two methods:
89
//
90
//   H add_buffer(state, data, size)
91
//   H finalize(state)
92
//
93
// `add_buffer` can be called zero or more times, followed by a single call to
94
// `finalize`.  This will produce the same hash expansion as concatenating each
95
// buffer piece into a single contiguous buffer, and passing this to
96
// `H::combine_contiguous`.
97
//
98
//  Example usage:
99
//    PiecewiseCombiner combiner;
100
//    for (const auto& piece : pieces) {
101
//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
102
//    }
103
//    return combiner.finalize(std::move(state));
104
class PiecewiseCombiner {
105
 public:
106
0
  PiecewiseCombiner() : position_(0) {}
107
  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
108
  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
109
110
  // PiecewiseCombiner::add_buffer()
111
  //
112
  // Appends the given range of bytes to the sequence to be hashed, which may
113
  // modify the provided hash state.
114
  template <typename H>
115
  H add_buffer(H state, const unsigned char* data, size_t size);
116
  template <typename H>
117
0
  H add_buffer(H state, const char* data, size_t size) {
118
0
    return add_buffer(std::move(state),
119
0
                      reinterpret_cast<const unsigned char*>(data), size);
120
0
  }
121
122
  // PiecewiseCombiner::finalize()
123
  //
124
  // Finishes combining the hash sequence, which may may modify the provided
125
  // hash state.
126
  //
127
  // Once finalize() is called, add_buffer() may no longer be called. The
128
  // resulting hash state will be the same as if the pieces passed to
129
  // add_buffer() were concatenated into a single flat buffer, and then provided
130
  // to H::combine_contiguous().
131
  template <typename H>
132
  H finalize(H state);
133
134
 private:
135
  unsigned char buf_[PiecewiseChunkSize()];
136
  size_t position_;
137
};
138
139
// is_hashable()
140
//
141
// Trait class which returns true if T is hashable by the absl::Hash framework.
142
// Used for the AbslHashValue implementations for composite types below.
143
template <typename T>
144
struct is_hashable;
145
146
// HashStateBase
147
//
148
// An internal implementation detail that contains common implementation details
149
// for all of the "hash state objects" objects generated by Abseil.  This is not
150
// a public API; users should not create classes that inherit from this.
151
//
152
// A hash state object is the template argument `H` passed to `AbslHashValue`.
153
// It represents an intermediate state in the computation of an unspecified hash
154
// algorithm. `HashStateBase` provides a CRTP style base class for hash state
155
// implementations. Developers adding type support for `absl::Hash` should not
156
// rely on any parts of the state object other than the following member
157
// functions:
158
//
159
//   * HashStateBase::combine()
160
//   * HashStateBase::combine_contiguous()
161
//   * HashStateBase::combine_unordered()
162
//
163
// A derived hash state class of type `H` must provide a public member function
164
// with a signature similar to the following:
165
//
166
//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
167
//
168
// It must also provide a private template method named RunCombineUnordered.
169
//
170
// A "consumer" is a 1-arg functor returning void.  Its argument is a reference
171
// to an inner hash state object, and it may be called multiple times.  When
172
// called, the functor consumes the entropy from the provided state object,
173
// and resets that object to its empty state.
174
//
175
// A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
176
// an inner hash state object and an ElementStateConsumer functor.  A combiner
177
// uses the provided inner hash state object to hash each element of the
178
// container, passing the inner hash state object to the consumer after hashing
179
// each element.
180
//
181
// Given these definitions, a derived hash state class of type H
182
// must provide a private template method with a signature similar to the
183
// following:
184
//
185
//    `template <typename CombinerT>`
186
//    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
187
//
188
// This function is responsible for constructing the inner state object and
189
// providing a consumer to the combiner.  It uses side effects of the consumer
190
// and combiner to mix the state of each element in an order-independent manner,
191
// and uses this to return an updated value of `outer_state`.
192
//
193
// This inside-out approach generates efficient object code in the normal case,
194
// but allows us to use stack storage to implement the absl::HashState type
195
// erasure mechanism (avoiding heap allocations while hashing).
196
//
197
// `HashStateBase` will provide a complete implementation for a hash state
198
// object in terms of these two methods.
199
//
200
// Example:
201
//
202
//   // Use CRTP to define your derived class.
203
//   struct MyHashState : HashStateBase<MyHashState> {
204
//       static H combine_contiguous(H state, const unsigned char*, size_t);
205
//       using MyHashState::HashStateBase::combine;
206
//       using MyHashState::HashStateBase::combine_contiguous;
207
//       using MyHashState::HashStateBase::combine_unordered;
208
//     private:
209
//       template <typename CombinerT>
210
//       static H RunCombineUnordered(H state, CombinerT combiner);
211
//   };
212
template <typename H>
213
class HashStateBase {
214
 public:
215
  // HashStateBase::combine()
216
  //
217
  // Combines an arbitrary number of values into a hash state, returning the
218
  // updated state.
219
  //
220
  // Each of the value types `T` must be separately hashable by the Abseil
221
  // hashing framework.
222
  //
223
  // NOTE:
224
  //
225
  //   state = H::combine(std::move(state), value1, value2, value3);
226
  //
227
  // is guaranteed to produce the same hash expansion as:
228
  //
229
  //   state = H::combine(std::move(state), value1);
230
  //   state = H::combine(std::move(state), value2);
231
  //   state = H::combine(std::move(state), value3);
232
  template <typename T, typename... Ts>
233
  static H combine(H state, const T& value, const Ts&... values);
234
0
  static H combine(H state) { return state; }
235
236
  // HashStateBase::combine_contiguous()
237
  //
238
  // Combines a contiguous array of `size` elements into a hash state, returning
239
  // the updated state.
240
  //
241
  // NOTE:
242
  //
243
  //   state = H::combine_contiguous(std::move(state), data, size);
244
  //
245
  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
246
  // perform internal optimizations).  If you need this guarantee, use the
247
  // for-loop instead.
248
  template <typename T>
249
  static H combine_contiguous(H state, const T* data, size_t size);
250
251
  template <typename I>
252
  static H combine_unordered(H state, I begin, I end);
253
254
  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
255
256
  template <typename T>
257
  using is_hashable = absl::hash_internal::is_hashable<T>;
258
259
 private:
260
  // Common implementation of the iteration step of a "combiner", as described
261
  // above.
262
  template <typename I>
263
  struct CombineUnorderedCallback {
264
    I begin;
265
    I end;
266
267
    template <typename InnerH, typename ElementStateConsumer>
268
    void operator()(InnerH inner_state, ElementStateConsumer cb) {
269
      for (; begin != end; ++begin) {
270
        inner_state = H::combine(std::move(inner_state), *begin);
271
        cb(inner_state);
272
      }
273
    }
274
  };
275
};
276
277
// is_uniquely_represented
278
//
279
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
280
// is uniquely represented.
281
//
282
// A type is "uniquely represented" if two equal values of that type are
283
// guaranteed to have the same bytes in their underlying storage. In other
284
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
285
// zero. This property cannot be detected automatically, so this trait is false
286
// by default, but can be specialized by types that wish to assert that they are
287
// uniquely represented. This makes them eligible for certain optimizations.
288
//
289
// If you have any doubt whatsoever, do not specialize this template.
290
// The default is completely safe, and merely disables some optimizations
291
// that will not matter for most types. Specializing this template,
292
// on the other hand, can be very hazardous.
293
//
294
// To be uniquely represented, a type must not have multiple ways of
295
// representing the same value; for example, float and double are not
296
// uniquely represented, because they have distinct representations for
297
// +0 and -0. Furthermore, the type's byte representation must consist
298
// solely of user-controlled data, with no padding bits and no compiler-
299
// controlled data such as vptrs or sanitizer metadata. This is usually
300
// very difficult to guarantee, because in most cases the compiler can
301
// insert data and padding bits at its own discretion.
302
//
303
// If you specialize this template for a type `T`, you must do so in the file
304
// that defines that type (or in this file). If you define that specialization
305
// anywhere else, `is_uniquely_represented<T>` could have different meanings
306
// in different places.
307
//
308
// The Enable parameter is meaningless; it is provided as a convenience,
309
// to support certain SFINAE techniques when defining specializations.
310
template <typename T, typename Enable = void>
311
struct is_uniquely_represented : std::false_type {};
312
313
// is_uniquely_represented<unsigned char>
314
//
315
// unsigned char is a synonym for "byte", so it is guaranteed to be
316
// uniquely represented.
317
template <>
318
struct is_uniquely_represented<unsigned char> : std::true_type {};
319
320
// is_uniquely_represented for non-standard integral types
321
//
322
// Integral types other than bool should be uniquely represented on any
323
// platform that this will plausibly be ported to.
324
template <typename Integral>
325
struct is_uniquely_represented<
326
    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
327
    : std::true_type {};
328
329
// is_uniquely_represented<bool>
330
//
331
//
332
template <>
333
struct is_uniquely_represented<bool> : std::false_type {};
334
335
// hash_bytes()
336
//
337
// Convenience function that combines `hash_state` with the byte representation
338
// of `value`.
339
template <typename H, typename T>
340
0
H hash_bytes(H hash_state, const T& value) {
341
0
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
342
0
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
343
0
}
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_bytes<absl::lts_20240116::hash_internal::MixingHashState, unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_bytes<absl::lts_20240116::hash_internal::MixingHashState, unsigned int>(absl::lts_20240116::hash_internal::MixingHashState, unsigned int const&)
344
345
// -----------------------------------------------------------------------------
346
// AbslHashValue for Basic Types
347
// -----------------------------------------------------------------------------
348
349
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
350
// allows us to block lexical scope lookup when doing an unqualified call to
351
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
352
// only be found via ADL.
353
354
// AbslHashValue() for hashing bool values
355
//
356
// We use SFINAE to ensure that this overload only accepts bool, not types that
357
// are convertible to bool.
358
template <typename H, typename B>
359
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
360
    H hash_state, B value) {
361
  return H::combine(std::move(hash_state),
362
                    static_cast<unsigned char>(value ? 1 : 0));
363
}
364
365
// AbslHashValue() for hashing enum values
366
template <typename H, typename Enum>
367
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
368
    H hash_state, Enum e) {
369
  // In practice, we could almost certainly just invoke hash_bytes directly,
370
  // but it's possible that a sanitizer might one day want to
371
  // store data in the unused bits of an enum. To avoid that risk, we
372
  // convert to the underlying type before hashing. Hopefully this will get
373
  // optimized away; if not, we can reopen discussion with c-toolchain-team.
374
  return H::combine(std::move(hash_state),
375
                    static_cast<typename std::underlying_type<Enum>::type>(e));
376
}
377
// AbslHashValue() for hashing floating-point values
378
template <typename H, typename Float>
379
typename std::enable_if<std::is_same<Float, float>::value ||
380
                            std::is_same<Float, double>::value,
381
                        H>::type
382
AbslHashValue(H hash_state, Float value) {
383
  return hash_internal::hash_bytes(std::move(hash_state),
384
                                   value == 0 ? 0 : value);
385
}
386
387
// Long double has the property that it might have extra unused bytes in it.
388
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
389
// of it. This means we can't use hash_bytes on a long double and have to
390
// convert it to something else first.
391
template <typename H, typename LongDouble>
392
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
393
AbslHashValue(H hash_state, LongDouble value) {
394
  const int category = std::fpclassify(value);
395
  switch (category) {
396
    case FP_INFINITE:
397
      // Add the sign bit to differentiate between +Inf and -Inf
398
      hash_state = H::combine(std::move(hash_state), std::signbit(value));
399
      break;
400
401
    case FP_NAN:
402
    case FP_ZERO:
403
    default:
404
      // Category is enough for these.
405
      break;
406
407
    case FP_NORMAL:
408
    case FP_SUBNORMAL:
409
      // We can't convert `value` directly to double because this would have
410
      // undefined behavior if the value is out of range.
411
      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
412
      // guaranteed to be in range for `double`. The truncation is
413
      // implementation defined, but that works as long as it is deterministic.
414
      int exp;
415
      auto mantissa = static_cast<double>(std::frexp(value, &exp));
416
      hash_state = H::combine(std::move(hash_state), mantissa, exp);
417
  }
418
419
  return H::combine(std::move(hash_state), category);
420
}
421
422
// Without this overload, an array decays to a pointer and we hash that, which
423
// is not likely to be what the caller intended.
424
template <typename H, typename T, size_t N>
425
H AbslHashValue(H hash_state, T (&)[N]) {
426
  static_assert(
427
      sizeof(T) == -1,
428
      "Hashing C arrays is not allowed. For string literals, wrap the literal "
429
      "in absl::string_view(). To hash the array contents, use "
430
      "absl::MakeSpan() or make the array an std::array. To hash the array "
431
      "address, use &array[0].");
432
  return hash_state;
433
}
434
435
// AbslHashValue() for hashing pointers
436
template <typename H, typename T>
437
std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state,
438
0
                                                             T ptr) {
439
0
  auto v = reinterpret_cast<uintptr_t>(ptr);
440
0
  // Due to alignment, pointers tend to have low bits as zero, and the next few
441
0
  // bits follow a pattern since they are also multiples of some base value.
442
0
  // Mixing the pointer twice helps prevent stuck low bits for certain alignment
443
0
  // values.
444
0
  return H::combine(std::move(hash_state), v, v);
445
0
}
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPN6google8protobuf8internal13TableEntryPtrEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeES9_S8_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKN6google8protobuf15FieldDescriptorEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKN6google8protobuf7MessageEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_
446
447
// AbslHashValue() for hashing nullptr_t
448
template <typename H>
449
H AbslHashValue(H hash_state, std::nullptr_t) {
450
  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
451
}
452
453
// AbslHashValue() for hashing pointers-to-member
454
template <typename H, typename T, typename C>
455
H AbslHashValue(H hash_state, T C::*ptr) {
456
  auto salient_ptm_size = [](std::size_t n) -> std::size_t {
457
#if defined(_MSC_VER)
458
    // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
459
    // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
460
    // padding (namely when they have 1 or 3 ints). The value below is a lower
461
    // bound on the number of salient, non-padding bytes that we use for
462
    // hashing.
463
    if (alignof(T C::*) == alignof(int)) {
464
      // No padding when all subobjects have the same size as the total
465
      // alignment. This happens in 32-bit mode.
466
      return n;
467
    } else {
468
      // Padding for 1 int (size 16) or 3 ints (size 24).
469
      // With 2 ints, the size is 16 with no padding, which we pessimize.
470
      return n == 24 ? 20 : n == 16 ? 12 : n;
471
    }
472
#else
473
  // On other platforms, we assume that pointers-to-members do not have
474
  // padding.
475
#ifdef __cpp_lib_has_unique_object_representations
476
    static_assert(std::has_unique_object_representations<T C::*>::value);
477
#endif  // __cpp_lib_has_unique_object_representations
478
    return n;
479
#endif
480
  };
481
  return H::combine_contiguous(std::move(hash_state),
482
                               reinterpret_cast<unsigned char*>(&ptr),
483
                               salient_ptm_size(sizeof ptr));
484
}
485
486
// -----------------------------------------------------------------------------
487
// AbslHashValue for Composite Types
488
// -----------------------------------------------------------------------------
489
490
// AbslHashValue() for hashing pairs
491
template <typename H, typename T1, typename T2>
492
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
493
                        H>::type
494
0
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
495
0
  return H::combine(std::move(hash_state), p.first, p.second);
496
0
}
497
498
// hash_tuple()
499
//
500
// Helper function for hashing a tuple. The third argument should
501
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
502
template <typename H, typename Tuple, size_t... Is>
503
0
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
504
0
  return H::combine(std::move(hash_state), std::get<Is>(t)...);
505
0
}
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&>, 0ul, 1ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul>)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, std::__1::integer_sequence<unsigned long, 0ul>)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&>, 0ul, 1ul, 2ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul, 2ul>)
506
507
// AbslHashValue for hashing tuples
508
template <typename H, typename... Ts>
509
#if defined(_MSC_VER)
510
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
511
// for now.
512
H
513
#else   // _MSC_VER
514
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
515
#endif  // _MSC_VER
516
0
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
517
0
  return hash_internal::hash_tuple(std::move(hash_state), t,
518
0
                                   absl::make_index_sequence<sizeof...(Ts)>());
519
0
}
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKjRKNS0_11string_viewEEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESF_RKNS9_5tupleIJDpSC_EEE
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESC_RKNS6_5tupleIJDpS9_EEE
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESN_RKNSH_5tupleIJDpSK_EEE
520
521
// -----------------------------------------------------------------------------
522
// AbslHashValue for Pointers
523
// -----------------------------------------------------------------------------
524
525
// AbslHashValue for hashing unique_ptr
526
template <typename H, typename T, typename D>
527
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
528
  return H::combine(std::move(hash_state), ptr.get());
529
}
530
531
// AbslHashValue for hashing shared_ptr
532
template <typename H, typename T>
533
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
534
  return H::combine(std::move(hash_state), ptr.get());
535
}
536
537
// -----------------------------------------------------------------------------
538
// AbslHashValue for String-Like Types
539
// -----------------------------------------------------------------------------
540
541
// AbslHashValue for hashing strings
542
//
543
// All the string-like types supported here provide the same hash expansion for
544
// the same character sequence. These types are:
545
//
546
//  - `absl::Cord`
547
//  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
548
//      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
549
//  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
550
//    `std::u16string_view`, and `std::u32_string_view`.
551
//
552
// For simplicity, we currently support only strings built on `char`, `wchar_t`,
553
// `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
554
// with some caution - this overload would misbehave in cases where the traits'
555
// `eq()` member isn't equivalent to `==` on the underlying character type.
556
template <typename H>
557
0
H AbslHashValue(H hash_state, absl::string_view str) {
558
0
  return H::combine(
559
0
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
560
0
      str.size());
561
0
}
562
563
// Support std::wstring, std::u16string and std::u32string.
564
template <typename Char, typename Alloc, typename H,
565
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
566
                                       std::is_same<Char, char16_t>::value ||
567
                                       std::is_same<Char, char32_t>::value>>
568
H AbslHashValue(
569
    H hash_state,
570
    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
571
  return H::combine(
572
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
573
      str.size());
574
}
575
576
#ifdef ABSL_HAVE_STD_STRING_VIEW
577
578
// Support std::wstring_view, std::u16string_view and std::u32string_view.
579
template <typename Char, typename H,
580
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
581
                                       std::is_same<Char, char16_t>::value ||
582
                                       std::is_same<Char, char32_t>::value>>
583
H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
584
  return H::combine(
585
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
586
      str.size());
587
}
588
589
#endif  // ABSL_HAVE_STD_STRING_VIEW
590
591
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
592
    !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) && \
593
    (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) ||        \
594
     __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000)
595
596
#define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1
597
598
// Support std::filesystem::path. The SFINAE is required because some string
599
// types are implicitly convertible to std::filesystem::path.
600
template <typename Path, typename H,
601
          typename = absl::enable_if_t<
602
              std::is_same_v<Path, std::filesystem::path>>>
603
H AbslHashValue(H hash_state, const Path& path) {
604
  // This is implemented by deferring to the standard library to compute the
605
  // hash.  The standard library requires that for two paths, `p1 == p2`, then
606
  // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same
607
  // requirement. Since `operator==` does platform specific matching, deferring
608
  // to the standard library is the simplest approach.
609
  return H::combine(std::move(hash_state), std::filesystem::hash_value(path));
610
}
611
612
#endif  // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE
613
614
// -----------------------------------------------------------------------------
615
// AbslHashValue for Sequence Containers
616
// -----------------------------------------------------------------------------
617
618
// AbslHashValue for hashing std::array
619
template <typename H, typename T, size_t N>
620
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
621
    H hash_state, const std::array<T, N>& array) {
622
  return H::combine_contiguous(std::move(hash_state), array.data(),
623
                               array.size());
624
}
625
626
// AbslHashValue for hashing std::deque
627
template <typename H, typename T, typename Allocator>
628
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
629
    H hash_state, const std::deque<T, Allocator>& deque) {
630
  // TODO(gromer): investigate a more efficient implementation taking
631
  // advantage of the chunk structure.
632
  for (const auto& t : deque) {
633
    hash_state = H::combine(std::move(hash_state), t);
634
  }
635
  return H::combine(std::move(hash_state), deque.size());
636
}
637
638
// AbslHashValue for hashing std::forward_list
639
template <typename H, typename T, typename Allocator>
640
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
641
    H hash_state, const std::forward_list<T, Allocator>& list) {
642
  size_t size = 0;
643
  for (const T& t : list) {
644
    hash_state = H::combine(std::move(hash_state), t);
645
    ++size;
646
  }
647
  return H::combine(std::move(hash_state), size);
648
}
649
650
// AbslHashValue for hashing std::list
651
template <typename H, typename T, typename Allocator>
652
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
653
    H hash_state, const std::list<T, Allocator>& list) {
654
  for (const auto& t : list) {
655
    hash_state = H::combine(std::move(hash_state), t);
656
  }
657
  return H::combine(std::move(hash_state), list.size());
658
}
659
660
// AbslHashValue for hashing std::vector
661
//
662
// Do not use this for vector<bool> on platforms that have a working
663
// implementation of std::hash. It does not have a .data(), and a fallback for
664
// std::hash<> is most likely faster.
665
template <typename H, typename T, typename Allocator>
666
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
667
                        H>::type
668
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
669
  return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
670
                                          vector.size()),
671
                    vector.size());
672
}
673
674
// AbslHashValue special cases for hashing std::vector<bool>
675
676
#if defined(ABSL_IS_BIG_ENDIAN) && \
677
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
678
679
// std::hash in libstdc++ does not work correctly with vector<bool> on Big
680
// Endian platforms therefore we need to implement a custom AbslHashValue for
681
// it. More details on the bug:
682
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
683
template <typename H, typename T, typename Allocator>
684
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
685
                        H>::type
686
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
687
  typename H::AbslInternalPiecewiseCombiner combiner;
688
  for (const auto& i : vector) {
689
    unsigned char c = static_cast<unsigned char>(i);
690
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
691
  }
692
  return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
693
}
694
#else
695
// When not working around the libstdc++ bug above, we still have to contend
696
// with the fact that std::hash<vector<bool>> is often poor quality, hashing
697
// directly on the internal words and on no other state.  On these platforms,
698
// vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
699
//
700
// Mixing in the size (as we do in our other vector<> implementations) on top
701
// of the library-provided hash implementation avoids this QOI issue.
702
template <typename H, typename T, typename Allocator>
703
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
704
                        H>::type
705
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
706
  return H::combine(std::move(hash_state),
707
                    std::hash<std::vector<T, Allocator>>{}(vector),
708
                    vector.size());
709
}
710
#endif
711
712
// -----------------------------------------------------------------------------
713
// AbslHashValue for Ordered Associative Containers
714
// -----------------------------------------------------------------------------
715
716
// AbslHashValue for hashing std::map
717
template <typename H, typename Key, typename T, typename Compare,
718
          typename Allocator>
719
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
720
                        H>::type
721
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
722
  for (const auto& t : map) {
723
    hash_state = H::combine(std::move(hash_state), t);
724
  }
725
  return H::combine(std::move(hash_state), map.size());
726
}
727
728
// AbslHashValue for hashing std::multimap
729
template <typename H, typename Key, typename T, typename Compare,
730
          typename Allocator>
731
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
732
                        H>::type
733
AbslHashValue(H hash_state,
734
              const std::multimap<Key, T, Compare, Allocator>& map) {
735
  for (const auto& t : map) {
736
    hash_state = H::combine(std::move(hash_state), t);
737
  }
738
  return H::combine(std::move(hash_state), map.size());
739
}
740
741
// AbslHashValue for hashing std::set
742
template <typename H, typename Key, typename Compare, typename Allocator>
743
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
744
    H hash_state, const std::set<Key, Compare, Allocator>& set) {
745
  for (const auto& t : set) {
746
    hash_state = H::combine(std::move(hash_state), t);
747
  }
748
  return H::combine(std::move(hash_state), set.size());
749
}
750
751
// AbslHashValue for hashing std::multiset
752
template <typename H, typename Key, typename Compare, typename Allocator>
753
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
754
    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
755
  for (const auto& t : set) {
756
    hash_state = H::combine(std::move(hash_state), t);
757
  }
758
  return H::combine(std::move(hash_state), set.size());
759
}
760
761
// -----------------------------------------------------------------------------
762
// AbslHashValue for Unordered Associative Containers
763
// -----------------------------------------------------------------------------
764
765
// AbslHashValue for hashing std::unordered_set
766
template <typename H, typename Key, typename Hash, typename KeyEqual,
767
          typename Alloc>
768
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
769
    H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
770
  return H::combine(
771
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
772
      s.size());
773
}
774
775
// AbslHashValue for hashing std::unordered_multiset
776
template <typename H, typename Key, typename Hash, typename KeyEqual,
777
          typename Alloc>
778
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
779
    H hash_state,
780
    const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
781
  return H::combine(
782
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
783
      s.size());
784
}
785
786
// AbslHashValue for hashing std::unordered_set
787
template <typename H, typename Key, typename T, typename Hash,
788
          typename KeyEqual, typename Alloc>
789
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
790
                        H>::type
791
AbslHashValue(H hash_state,
792
              const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
793
  return H::combine(
794
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
795
      s.size());
796
}
797
798
// AbslHashValue for hashing std::unordered_multiset
799
template <typename H, typename Key, typename T, typename Hash,
800
          typename KeyEqual, typename Alloc>
801
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
802
                        H>::type
803
AbslHashValue(H hash_state,
804
              const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
805
  return H::combine(
806
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
807
      s.size());
808
}
809
810
// -----------------------------------------------------------------------------
811
// AbslHashValue for Wrapper Types
812
// -----------------------------------------------------------------------------
813
814
// AbslHashValue for hashing std::reference_wrapper
815
template <typename H, typename T>
816
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
817
    H hash_state, std::reference_wrapper<T> opt) {
818
  return H::combine(std::move(hash_state), opt.get());
819
}
820
821
// AbslHashValue for hashing absl::optional
822
template <typename H, typename T>
823
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
824
    H hash_state, const absl::optional<T>& opt) {
825
  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
826
  return H::combine(std::move(hash_state), opt.has_value());
827
}
828
829
// VariantVisitor
830
template <typename H>
831
struct VariantVisitor {
832
  H&& hash_state;
833
  template <typename T>
834
  H operator()(const T& t) const {
835
    return H::combine(std::move(hash_state), t);
836
  }
837
};
838
839
// AbslHashValue for hashing absl::variant
840
template <typename H, typename... T>
841
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
842
AbslHashValue(H hash_state, const absl::variant<T...>& v) {
843
  if (!v.valueless_by_exception()) {
844
    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
845
  }
846
  return H::combine(std::move(hash_state), v.index());
847
}
848
849
// -----------------------------------------------------------------------------
850
// AbslHashValue for Other Types
851
// -----------------------------------------------------------------------------
852
853
// AbslHashValue for hashing std::bitset is not defined on Little Endian
854
// platforms, for the same reason as for vector<bool> (see std::vector above):
855
// It does not expose the raw bytes, and a fallback to std::hash<> is most
856
// likely faster.
857
858
#if defined(ABSL_IS_BIG_ENDIAN) && \
859
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
860
// AbslHashValue for hashing std::bitset
861
//
862
// std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
863
// platforms therefore we need to implement a custom AbslHashValue for it. More
864
// details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
865
template <typename H, size_t N>
866
H AbslHashValue(H hash_state, const std::bitset<N>& set) {
867
  typename H::AbslInternalPiecewiseCombiner combiner;
868
  for (size_t i = 0; i < N; i++) {
869
    unsigned char c = static_cast<unsigned char>(set[i]);
870
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
871
  }
872
  return H::combine(combiner.finalize(std::move(hash_state)), N);
873
}
874
#endif
875
876
// -----------------------------------------------------------------------------
877
878
// hash_range_or_bytes()
879
//
880
// Mixes all values in the range [data, data+size) into the hash state.
881
// This overload accepts only uniquely-represented types, and hashes them by
882
// hashing the entire range of bytes.
883
template <typename H, typename T>
884
typename std::enable_if<is_uniquely_represented<T>::value, H>::type
885
0
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
886
0
  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
887
0
  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
888
0
}
889
890
// hash_range_or_bytes()
891
template <typename H, typename T>
892
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
893
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
894
  for (const auto end = data + size; data < end; ++data) {
895
    hash_state = H::combine(std::move(hash_state), *data);
896
  }
897
  return hash_state;
898
}
899
900
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
901
    ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
902
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
903
#else
904
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
905
#endif
906
907
// HashSelect
908
//
909
// Type trait to select the appropriate hash implementation to use.
910
// HashSelect::type<T> will give the proper hash implementation, to be invoked
911
// as:
912
//   HashSelect::type<T>::Invoke(state, value)
913
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
914
// valid `Invoke` function. Types that are not hashable will have a ::value of
915
// `false`.
916
struct HashSelect {
917
 private:
918
  struct State : HashStateBase<State> {
919
    static State combine_contiguous(State hash_state, const unsigned char*,
920
                                    size_t);
921
    using State::HashStateBase::combine_contiguous;
922
  };
923
924
  struct UniquelyRepresentedProbe {
925
    template <typename H, typename T>
926
    static auto Invoke(H state, const T& value)
927
0
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
928
0
      return hash_internal::hash_bytes(std::move(state), value);
929
0
    }
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS1_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES9_RKS8_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS1_15MixingHashStateEjEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES9_RKS8_
930
  };
931
932
  struct HashValueProbe {
933
    template <typename H, typename T>
934
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
935
        std::is_same<H,
936
                     decltype(AbslHashValue(std::move(state), value))>::value,
937
0
        H> {
938
0
      return AbslHashValue(std::move(state), value);
939
0
    }
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENS0_11string_viewEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENS0_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKjRKNS0_11string_viewEEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESF_E4typeESF_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKmEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESC_E4typeESC_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESN_E4typeESN_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPN6google8protobuf8internal13TableEntryPtrEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESA_E4typeESA_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKN6google8protobuf15FieldDescriptorEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__14pairIPKN6google8protobuf7MessageEPKNS9_15FieldDescriptorEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESI_E4typeESI_RKT0_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKN6google8protobuf7MessageEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_
940
  };
941
942
  struct LegacyHashProbe {
943
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
944
    template <typename H, typename T>
945
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
946
        std::is_convertible<
947
            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
948
            size_t>::value,
949
        H> {
950
      return hash_internal::hash_bytes(
951
          std::move(state),
952
          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
953
    }
954
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
955
  };
956
957
  struct StdHashProbe {
958
    template <typename H, typename T>
959
    static auto Invoke(H state, const T& value)
960
        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
961
      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
962
    }
963
  };
964
965
  template <typename Hash, typename T>
966
  struct Probe : Hash {
967
   private:
968
    template <typename H, typename = decltype(H::Invoke(
969
                              std::declval<State>(), std::declval<const T&>()))>
970
    static std::true_type Test(int);
971
    template <typename U>
972
    static std::false_type Test(char);
973
974
   public:
975
    static constexpr bool value = decltype(Test<Hash>(0))::value;
976
  };
977
978
 public:
979
  // Probe each implementation in order.
980
  // disjunction provides short circuiting wrt instantiation.
981
  template <typename T>
982
  using Apply = absl::disjunction<         //
983
      Probe<UniquelyRepresentedProbe, T>,  //
984
      Probe<HashValueProbe, T>,            //
985
      Probe<LegacyHashProbe, T>,           //
986
      Probe<StdHashProbe, T>,              //
987
      std::false_type>;
988
};
989
990
template <typename T>
991
struct is_hashable
992
    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
993
994
// MixingHashState
995
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
996
  // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
997
  // We use the intrinsic when available to improve performance.
998
#ifdef ABSL_HAVE_INTRINSIC_INT128
999
  using uint128 = __uint128_t;
1000
#else   // ABSL_HAVE_INTRINSIC_INT128
1001
  using uint128 = absl::uint128;
1002
#endif  // ABSL_HAVE_INTRINSIC_INT128
1003
1004
  static constexpr uint64_t kMul =
1005
  sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
1006
                      : uint64_t{0x9ddfea08eb382d69};
1007
1008
  template <typename T>
1009
  using IntegralFastPath =
1010
      conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
1011
1012
 public:
1013
  // Move only
1014
  MixingHashState(MixingHashState&&) = default;
1015
  MixingHashState& operator=(MixingHashState&&) = default;
1016
1017
  // MixingHashState::combine_contiguous()
1018
  //
1019
  // Fundamental base case for hash recursion: mixes the given range of bytes
1020
  // into the hash state.
1021
  static MixingHashState combine_contiguous(MixingHashState hash_state,
1022
                                            const unsigned char* first,
1023
0
                                            size_t size) {
1024
0
    return MixingHashState(
1025
0
        CombineContiguousImpl(hash_state.state_, first, size,
1026
0
                              std::integral_constant<int, sizeof(size_t)>{}));
1027
0
  }
1028
  using MixingHashState::HashStateBase::combine_contiguous;
1029
1030
  // MixingHashState::hash()
1031
  //
1032
  // For performance reasons in non-opt mode, we specialize this for
1033
  // integral types.
1034
  // Otherwise we would be instantiating and calling dozens of functions for
1035
  // something that is just one multiplication and a couple xor's.
1036
  // The result should be the same as running the whole algorithm, but faster.
1037
  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
1038
  static size_t hash(T value) {
1039
    return static_cast<size_t>(
1040
        Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value)));
1041
  }
1042
1043
  // Overload of MixingHashState::hash()
1044
  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
1045
0
  static size_t hash(const T& value) {
1046
0
    return static_cast<size_t>(combine(MixingHashState{}, value).state_);
1047
0
  }
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINS0_11string_viewETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINS0_4CordETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKjRKNS0_11string_viewEEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSD_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKmEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSA_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSL_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashIPKN6google8protobuf15FieldDescriptorETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSB_
Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__14pairIPKN6google8protobuf7MessageEPKNS7_15FieldDescriptorEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSG_
1048
1049
 private:
1050
  // Invoked only once for a given argument; that plus the fact that this is
1051
  // move-only ensures that there is only one non-moved-from object.
1052
0
  MixingHashState() : state_(Seed()) {}
1053
1054
  friend class MixingHashState::HashStateBase;
1055
1056
  template <typename CombinerT>
1057
  static MixingHashState RunCombineUnordered(MixingHashState state,
1058
                                             CombinerT combiner) {
1059
    uint64_t unordered_state = 0;
1060
    combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1061
      // Add the hash state of the element to the running total, but mix the
1062
      // carry bit back into the low bit.  This in intended to avoid losing
1063
      // entropy to overflow, especially when unordered_multisets contain
1064
      // multiple copies of the same value.
1065
      auto element_state = inner_state.state_;
1066
      unordered_state += element_state;
1067
      if (unordered_state < element_state) {
1068
        ++unordered_state;
1069
      }
1070
      inner_state = MixingHashState{};
1071
    });
1072
    return MixingHashState::combine(std::move(state), unordered_state);
1073
  }
1074
1075
  // Allow the HashState type-erasure implementation to invoke
1076
  // RunCombinedUnordered() directly.
1077
  friend class absl::HashState;
1078
1079
  // Workaround for MSVC bug.
1080
  // We make the type copyable to fix the calling convention, even though we
1081
  // never actually copy it. Keep it private to not affect the public API of the
1082
  // type.
1083
  MixingHashState(const MixingHashState&) = default;
1084
1085
0
  explicit MixingHashState(uint64_t state) : state_(state) {}
1086
1087
  // Implementation of the base case for combine_contiguous where we actually
1088
  // mix the bytes into the state.
1089
  // Dispatch to different implementations of the combine_contiguous depending
1090
  // on the value of `sizeof(size_t)`.
1091
  static uint64_t CombineContiguousImpl(uint64_t state,
1092
                                        const unsigned char* first, size_t len,
1093
                                        std::integral_constant<int, 4>
1094
                                        /* sizeof_size_t */);
1095
  static uint64_t CombineContiguousImpl(uint64_t state,
1096
                                        const unsigned char* first, size_t len,
1097
                                        std::integral_constant<int, 8>
1098
                                        /* sizeof_size_t */);
1099
1100
  // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1101
  // larger than PiecewiseChunkSize().  Has the same effect as calling
1102
  // CombineContiguousImpl() repeatedly with the chunk stride size.
1103
  static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1104
                                               const unsigned char* first,
1105
                                               size_t len);
1106
  static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1107
                                               const unsigned char* first,
1108
                                               size_t len);
1109
1110
  // Reads 9 to 16 bytes from p.
1111
  // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1112
  // are in .second.
1113
  static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1114
0
                                                 size_t len) {
1115
0
    uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1116
0
    uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1117
0
#ifdef ABSL_IS_LITTLE_ENDIAN
1118
0
    uint64_t most_significant = high_mem;
1119
0
    uint64_t least_significant = low_mem;
1120
0
#else
1121
0
    uint64_t most_significant = low_mem;
1122
0
    uint64_t least_significant = high_mem;
1123
0
#endif
1124
0
    return {least_significant, most_significant};
1125
0
  }
1126
1127
  // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1128
0
  static uint64_t Read4To8(const unsigned char* p, size_t len) {
1129
0
    uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1130
0
    uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1131
0
#ifdef ABSL_IS_LITTLE_ENDIAN
1132
0
    uint32_t most_significant = high_mem;
1133
0
    uint32_t least_significant = low_mem;
1134
0
#else
1135
0
    uint32_t most_significant = low_mem;
1136
0
    uint32_t least_significant = high_mem;
1137
0
#endif
1138
0
    return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1139
0
           least_significant;
1140
0
  }
1141
1142
  // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1143
0
  static uint32_t Read1To3(const unsigned char* p, size_t len) {
1144
0
    // The trick used by this implementation is to avoid branches if possible.
1145
0
    unsigned char mem0 = p[0];
1146
0
    unsigned char mem1 = p[len / 2];
1147
0
    unsigned char mem2 = p[len - 1];
1148
0
#ifdef ABSL_IS_LITTLE_ENDIAN
1149
0
    unsigned char significant2 = mem2;
1150
0
    unsigned char significant1 = mem1;
1151
0
    unsigned char significant0 = mem0;
1152
0
#else
1153
0
    unsigned char significant2 = mem0;
1154
0
    unsigned char significant1 = len == 2 ? mem0 : mem1;
1155
0
    unsigned char significant0 = mem2;
1156
0
#endif
1157
0
    return static_cast<uint32_t>(significant0 |                     //
1158
0
                                 (significant1 << (len / 2 * 8)) |  //
1159
0
                                 (significant2 << ((len - 1) * 8)));
1160
0
  }
1161
1162
0
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1163
0
    // Though the 128-bit product on AArch64 needs two instructions, it is
1164
0
    // still a good balance between speed and hash quality.
1165
0
    using MultType =
1166
0
        absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1167
0
    // We do the addition in 64-bit space to make sure the 128-bit
1168
0
    // multiplication is fast. If we were to do it as MultType the compiler has
1169
0
    // to assume that the high word is non-zero and needs to perform 2
1170
0
    // multiplications instead of one.
1171
0
    MultType m = state + v;
1172
0
    m *= kMul;
1173
0
    return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1174
0
  }
1175
1176
  // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1177
  // values for both the seed and salt parameters.
1178
  static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1179
1180
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1181
0
                                                      size_t len) {
1182
0
#ifdef ABSL_HAVE_INTRINSIC_INT128
1183
0
    return LowLevelHashImpl(data, len);
1184
0
#else
1185
0
    return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1186
0
#endif
1187
0
  }
1188
1189
  // Seed()
1190
  //
1191
  // A non-deterministic seed.
1192
  //
1193
  // The current purpose of this seed is to generate non-deterministic results
1194
  // and prevent having users depend on the particular hash values.
1195
  // It is not meant as a security feature right now, but it leaves the door
1196
  // open to upgrade it to a true per-process random seed. A true random seed
1197
  // costs more and we don't need to pay for that right now.
1198
  //
1199
  // On platforms with ASLR, we take advantage of it to make a per-process
1200
  // random value.
1201
  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1202
  //
1203
  // On other platforms this is still going to be non-deterministic but most
1204
  // probably per-build and not per-process.
1205
0
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1206
0
#if (!defined(__clang__) || __clang_major__ > 11) && \
1207
0
    (!defined(__apple_build_version__) ||            \
1208
0
     __apple_build_version__ >= 19558921)  // Xcode 12
1209
0
    return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1210
0
#else
1211
0
    // Workaround the absence of
1212
0
    // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1213
0
    return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1214
0
#endif
1215
0
  }
1216
  static const void* const kSeed;
1217
1218
  uint64_t state_;
1219
};
1220
1221
// MixingHashState::CombineContiguousImpl()
1222
inline uint64_t MixingHashState::CombineContiguousImpl(
1223
    uint64_t state, const unsigned char* first, size_t len,
1224
0
    std::integral_constant<int, 4> /* sizeof_size_t */) {
1225
0
  // For large values we use CityHash, for small ones we just use a
1226
0
  // multiplicative hash.
1227
0
  uint64_t v;
1228
0
  if (len > 8) {
1229
0
    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1230
0
      return CombineLargeContiguousImpl32(state, first, len);
1231
0
    }
1232
0
    v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1233
0
  } else if (len >= 4) {
1234
0
    v = Read4To8(first, len);
1235
0
  } else if (len > 0) {
1236
0
    v = Read1To3(first, len);
1237
0
  } else {
1238
0
    // Empty ranges have no effect.
1239
0
    return state;
1240
0
  }
1241
0
  return Mix(state, v);
1242
0
}
1243
1244
// Overload of MixingHashState::CombineContiguousImpl()
1245
inline uint64_t MixingHashState::CombineContiguousImpl(
1246
    uint64_t state, const unsigned char* first, size_t len,
1247
0
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1248
0
  // For large values we use LowLevelHash or CityHash depending on the platform,
1249
0
  // for small ones we just use a multiplicative hash.
1250
0
  uint64_t v;
1251
0
  if (len > 16) {
1252
0
    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1253
0
      return CombineLargeContiguousImpl64(state, first, len);
1254
0
    }
1255
0
    v = Hash64(first, len);
1256
0
  } else if (len > 8) {
1257
0
    // This hash function was constructed by the ML-driven algorithm discovery
1258
0
    // using reinforcement learning. We fed the agent lots of inputs from
1259
0
    // microbenchmarks, SMHasher, low hamming distance from generated inputs and
1260
0
    // picked up the one that was good on micro and macrobenchmarks.
1261
0
    auto p = Read9To16(first, len);
1262
0
    uint64_t lo = p.first;
1263
0
    uint64_t hi = p.second;
1264
0
    // Rotation by 53 was found to be most often useful when discovering these
1265
0
    // hashing algorithms with ML techniques.
1266
0
    lo = absl::rotr(lo, 53);
1267
0
    state += kMul;
1268
0
    lo += state;
1269
0
    state ^= hi;
1270
0
    uint128 m = state;
1271
0
    m *= lo;
1272
0
    return static_cast<uint64_t>(m ^ (m >> 64));
1273
0
  } else if (len >= 4) {
1274
0
    v = Read4To8(first, len);
1275
0
  } else if (len > 0) {
1276
0
    v = Read1To3(first, len);
1277
0
  } else {
1278
0
    // Empty ranges have no effect.
1279
0
    return state;
1280
0
  }
1281
0
  return Mix(state, v);
1282
0
}
1283
1284
struct AggregateBarrier {};
1285
1286
// HashImpl
1287
1288
// Add a private base class to make sure this type is not an aggregate.
1289
// Aggregates can be aggregate initialized even if the default constructor is
1290
// deleted.
1291
struct PoisonedHash : private AggregateBarrier {
1292
  PoisonedHash() = delete;
1293
  PoisonedHash(const PoisonedHash&) = delete;
1294
  PoisonedHash& operator=(const PoisonedHash&) = delete;
1295
};
1296
1297
template <typename T>
1298
struct HashImpl {
1299
0
  size_t operator()(const T& value) const {
1300
0
    return MixingHashState::hash(value);
1301
0
  }
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<absl::lts_20240116::string_view>::operator()(absl::lts_20240116::string_view const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<absl::lts_20240116::Cord>::operator()(absl::lts_20240116::Cord const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> >::operator()(std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> >::operator()(std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<google::protobuf::FieldDescriptor const*>::operator()(google::protobuf::FieldDescriptor const* const&) const
Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> >::operator()(std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> const&) const
1302
};
1303
1304
template <typename T>
1305
struct Hash
1306
    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1307
1308
template <typename H>
1309
template <typename T, typename... Ts>
1310
0
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1311
0
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1312
0
                        std::move(state), value),
1313
0
                    values...);
1314
0
}
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<absl::lts_20240116::string_view>(absl::lts_20240116::hash_internal::MixingHashState, absl::lts_20240116::string_view const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<absl::lts_20240116::Cord>(absl::lts_20240116::hash_internal::MixingHashState, absl::lts_20240116::Cord const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned int, absl::lts_20240116::string_view>(absl::lts_20240116::hash_internal::MixingHashState, unsigned int const&, absl::lts_20240116::string_view const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long, google::protobuf::internal::TableEntryPtr*, void const*>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::internal::TableEntryPtr*, void const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::internal::TableEntryPtr* const&, void const* const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long, unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&, unsigned long const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<void const*>(absl::lts_20240116::hash_internal::MixingHashState, void const* const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::FieldDescriptor const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::FieldDescriptor const* const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> const&)
Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::Message const* const&, google::protobuf::FieldDescriptor const* const&)
1315
1316
// HashStateBase::combine_contiguous()
1317
template <typename H>
1318
template <typename T>
1319
0
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1320
0
  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1321
0
}
1322
1323
// HashStateBase::combine_unordered()
1324
template <typename H>
1325
template <typename I>
1326
H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1327
  return H::RunCombineUnordered(std::move(state),
1328
                                CombineUnorderedCallback<I>{begin, end});
1329
}
1330
1331
// HashStateBase::PiecewiseCombiner::add_buffer()
1332
template <typename H>
1333
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1334
0
                                size_t size) {
1335
0
  if (position_ + size < PiecewiseChunkSize()) {
1336
0
    // This partial chunk does not fill our existing buffer
1337
0
    memcpy(buf_ + position_, data, size);
1338
0
    position_ += size;
1339
0
    return state;
1340
0
  }
1341
0
1342
0
  // If the buffer is partially filled we need to complete the buffer
1343
0
  // and hash it.
1344
0
  if (position_ != 0) {
1345
0
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
1346
0
    memcpy(buf_ + position_, data, bytes_needed);
1347
0
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1348
0
    data += bytes_needed;
1349
0
    size -= bytes_needed;
1350
0
  }
1351
0
1352
0
  // Hash whatever chunks we can without copying
1353
0
  while (size >= PiecewiseChunkSize()) {
1354
0
    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1355
0
    data += PiecewiseChunkSize();
1356
0
    size -= PiecewiseChunkSize();
1357
0
  }
1358
0
  // Fill the buffer with the remainder
1359
0
  memcpy(buf_, data, size);
1360
0
  position_ = size;
1361
0
  return state;
1362
0
}
1363
1364
// HashStateBase::PiecewiseCombiner::finalize()
1365
template <typename H>
1366
0
H PiecewiseCombiner::finalize(H state) {
1367
0
  // Hash the remainder left in the buffer, which may be empty
1368
0
  return H::combine_contiguous(std::move(state), buf_, position_);
1369
0
}
1370
1371
}  // namespace hash_internal
1372
ABSL_NAMESPACE_END
1373
}  // namespace absl
1374
1375
#endif  // ABSL_HASH_INTERNAL_HASH_H_