/src/LPM/external.protobuf/include/absl/hash/internal/hash.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | // |
15 | | // ----------------------------------------------------------------------------- |
16 | | // File: hash.h |
17 | | // ----------------------------------------------------------------------------- |
18 | | // |
19 | | #ifndef ABSL_HASH_INTERNAL_HASH_H_ |
20 | | #define ABSL_HASH_INTERNAL_HASH_H_ |
21 | | |
22 | | #ifdef __APPLE__ |
23 | | #include <Availability.h> |
24 | | #include <TargetConditionals.h> |
25 | | #endif |
26 | | |
27 | | #include <algorithm> |
28 | | #include <array> |
29 | | #include <bitset> |
30 | | #include <cmath> |
31 | | #include <cstddef> |
32 | | #include <cstring> |
33 | | #include <deque> |
34 | | #include <forward_list> |
35 | | #include <functional> |
36 | | #include <iterator> |
37 | | #include <limits> |
38 | | #include <list> |
39 | | #include <map> |
40 | | #include <memory> |
41 | | #include <set> |
42 | | #include <string> |
43 | | #include <tuple> |
44 | | #include <type_traits> |
45 | | #include <unordered_map> |
46 | | #include <unordered_set> |
47 | | #include <utility> |
48 | | #include <vector> |
49 | | |
50 | | #include "absl/base/config.h" |
51 | | #include "absl/base/internal/unaligned_access.h" |
52 | | #include "absl/base/port.h" |
53 | | #include "absl/container/fixed_array.h" |
54 | | #include "absl/hash/internal/city.h" |
55 | | #include "absl/hash/internal/low_level_hash.h" |
56 | | #include "absl/meta/type_traits.h" |
57 | | #include "absl/numeric/bits.h" |
58 | | #include "absl/numeric/int128.h" |
59 | | #include "absl/strings/string_view.h" |
60 | | #include "absl/types/optional.h" |
61 | | #include "absl/types/variant.h" |
62 | | #include "absl/utility/utility.h" |
63 | | |
64 | | #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L && \ |
65 | | !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) |
66 | | #include <filesystem> // NOLINT |
67 | | #endif |
68 | | |
69 | | #ifdef ABSL_HAVE_STD_STRING_VIEW |
70 | | #include <string_view> |
71 | | #endif |
72 | | |
73 | | namespace absl { |
74 | | ABSL_NAMESPACE_BEGIN |
75 | | |
76 | | class HashState; |
77 | | |
78 | | namespace hash_internal { |
79 | | |
80 | | // Internal detail: Large buffers are hashed in smaller chunks. This function |
81 | | // returns the size of these chunks. |
82 | 0 | constexpr size_t PiecewiseChunkSize() { return 1024; } |
83 | | |
84 | | // PiecewiseCombiner |
85 | | // |
86 | | // PiecewiseCombiner is an internal-only helper class for hashing a piecewise |
87 | | // buffer of `char` or `unsigned char` as though it were contiguous. This class |
88 | | // provides two methods: |
89 | | // |
90 | | // H add_buffer(state, data, size) |
91 | | // H finalize(state) |
92 | | // |
93 | | // `add_buffer` can be called zero or more times, followed by a single call to |
94 | | // `finalize`. This will produce the same hash expansion as concatenating each |
95 | | // buffer piece into a single contiguous buffer, and passing this to |
96 | | // `H::combine_contiguous`. |
97 | | // |
98 | | // Example usage: |
99 | | // PiecewiseCombiner combiner; |
100 | | // for (const auto& piece : pieces) { |
101 | | // state = combiner.add_buffer(std::move(state), piece.data, piece.size); |
102 | | // } |
103 | | // return combiner.finalize(std::move(state)); |
104 | | class PiecewiseCombiner { |
105 | | public: |
106 | 0 | PiecewiseCombiner() : position_(0) {} |
107 | | PiecewiseCombiner(const PiecewiseCombiner&) = delete; |
108 | | PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; |
109 | | |
110 | | // PiecewiseCombiner::add_buffer() |
111 | | // |
112 | | // Appends the given range of bytes to the sequence to be hashed, which may |
113 | | // modify the provided hash state. |
114 | | template <typename H> |
115 | | H add_buffer(H state, const unsigned char* data, size_t size); |
116 | | template <typename H> |
117 | 0 | H add_buffer(H state, const char* data, size_t size) { |
118 | 0 | return add_buffer(std::move(state), |
119 | 0 | reinterpret_cast<const unsigned char*>(data), size); |
120 | 0 | } |
121 | | |
122 | | // PiecewiseCombiner::finalize() |
123 | | // |
124 | | // Finishes combining the hash sequence, which may may modify the provided |
125 | | // hash state. |
126 | | // |
127 | | // Once finalize() is called, add_buffer() may no longer be called. The |
128 | | // resulting hash state will be the same as if the pieces passed to |
129 | | // add_buffer() were concatenated into a single flat buffer, and then provided |
130 | | // to H::combine_contiguous(). |
131 | | template <typename H> |
132 | | H finalize(H state); |
133 | | |
134 | | private: |
135 | | unsigned char buf_[PiecewiseChunkSize()]; |
136 | | size_t position_; |
137 | | }; |
138 | | |
139 | | // is_hashable() |
140 | | // |
141 | | // Trait class which returns true if T is hashable by the absl::Hash framework. |
142 | | // Used for the AbslHashValue implementations for composite types below. |
143 | | template <typename T> |
144 | | struct is_hashable; |
145 | | |
146 | | // HashStateBase |
147 | | // |
148 | | // An internal implementation detail that contains common implementation details |
149 | | // for all of the "hash state objects" objects generated by Abseil. This is not |
150 | | // a public API; users should not create classes that inherit from this. |
151 | | // |
152 | | // A hash state object is the template argument `H` passed to `AbslHashValue`. |
153 | | // It represents an intermediate state in the computation of an unspecified hash |
154 | | // algorithm. `HashStateBase` provides a CRTP style base class for hash state |
155 | | // implementations. Developers adding type support for `absl::Hash` should not |
156 | | // rely on any parts of the state object other than the following member |
157 | | // functions: |
158 | | // |
159 | | // * HashStateBase::combine() |
160 | | // * HashStateBase::combine_contiguous() |
161 | | // * HashStateBase::combine_unordered() |
162 | | // |
163 | | // A derived hash state class of type `H` must provide a public member function |
164 | | // with a signature similar to the following: |
165 | | // |
166 | | // `static H combine_contiguous(H state, const unsigned char*, size_t)`. |
167 | | // |
168 | | // It must also provide a private template method named RunCombineUnordered. |
169 | | // |
170 | | // A "consumer" is a 1-arg functor returning void. Its argument is a reference |
171 | | // to an inner hash state object, and it may be called multiple times. When |
172 | | // called, the functor consumes the entropy from the provided state object, |
173 | | // and resets that object to its empty state. |
174 | | // |
175 | | // A "combiner" is a stateless 2-arg functor returning void. Its arguments are |
176 | | // an inner hash state object and an ElementStateConsumer functor. A combiner |
177 | | // uses the provided inner hash state object to hash each element of the |
178 | | // container, passing the inner hash state object to the consumer after hashing |
179 | | // each element. |
180 | | // |
181 | | // Given these definitions, a derived hash state class of type H |
182 | | // must provide a private template method with a signature similar to the |
183 | | // following: |
184 | | // |
185 | | // `template <typename CombinerT>` |
186 | | // `static H RunCombineUnordered(H outer_state, CombinerT combiner)` |
187 | | // |
188 | | // This function is responsible for constructing the inner state object and |
189 | | // providing a consumer to the combiner. It uses side effects of the consumer |
190 | | // and combiner to mix the state of each element in an order-independent manner, |
191 | | // and uses this to return an updated value of `outer_state`. |
192 | | // |
193 | | // This inside-out approach generates efficient object code in the normal case, |
194 | | // but allows us to use stack storage to implement the absl::HashState type |
195 | | // erasure mechanism (avoiding heap allocations while hashing). |
196 | | // |
197 | | // `HashStateBase` will provide a complete implementation for a hash state |
198 | | // object in terms of these two methods. |
199 | | // |
200 | | // Example: |
201 | | // |
202 | | // // Use CRTP to define your derived class. |
203 | | // struct MyHashState : HashStateBase<MyHashState> { |
204 | | // static H combine_contiguous(H state, const unsigned char*, size_t); |
205 | | // using MyHashState::HashStateBase::combine; |
206 | | // using MyHashState::HashStateBase::combine_contiguous; |
207 | | // using MyHashState::HashStateBase::combine_unordered; |
208 | | // private: |
209 | | // template <typename CombinerT> |
210 | | // static H RunCombineUnordered(H state, CombinerT combiner); |
211 | | // }; |
212 | | template <typename H> |
213 | | class HashStateBase { |
214 | | public: |
215 | | // HashStateBase::combine() |
216 | | // |
217 | | // Combines an arbitrary number of values into a hash state, returning the |
218 | | // updated state. |
219 | | // |
220 | | // Each of the value types `T` must be separately hashable by the Abseil |
221 | | // hashing framework. |
222 | | // |
223 | | // NOTE: |
224 | | // |
225 | | // state = H::combine(std::move(state), value1, value2, value3); |
226 | | // |
227 | | // is guaranteed to produce the same hash expansion as: |
228 | | // |
229 | | // state = H::combine(std::move(state), value1); |
230 | | // state = H::combine(std::move(state), value2); |
231 | | // state = H::combine(std::move(state), value3); |
232 | | template <typename T, typename... Ts> |
233 | | static H combine(H state, const T& value, const Ts&... values); |
234 | 0 | static H combine(H state) { return state; } |
235 | | |
236 | | // HashStateBase::combine_contiguous() |
237 | | // |
238 | | // Combines a contiguous array of `size` elements into a hash state, returning |
239 | | // the updated state. |
240 | | // |
241 | | // NOTE: |
242 | | // |
243 | | // state = H::combine_contiguous(std::move(state), data, size); |
244 | | // |
245 | | // is NOT guaranteed to produce the same hash expansion as a for-loop (it may |
246 | | // perform internal optimizations). If you need this guarantee, use the |
247 | | // for-loop instead. |
248 | | template <typename T> |
249 | | static H combine_contiguous(H state, const T* data, size_t size); |
250 | | |
251 | | template <typename I> |
252 | | static H combine_unordered(H state, I begin, I end); |
253 | | |
254 | | using AbslInternalPiecewiseCombiner = PiecewiseCombiner; |
255 | | |
256 | | template <typename T> |
257 | | using is_hashable = absl::hash_internal::is_hashable<T>; |
258 | | |
259 | | private: |
260 | | // Common implementation of the iteration step of a "combiner", as described |
261 | | // above. |
262 | | template <typename I> |
263 | | struct CombineUnorderedCallback { |
264 | | I begin; |
265 | | I end; |
266 | | |
267 | | template <typename InnerH, typename ElementStateConsumer> |
268 | | void operator()(InnerH inner_state, ElementStateConsumer cb) { |
269 | | for (; begin != end; ++begin) { |
270 | | inner_state = H::combine(std::move(inner_state), *begin); |
271 | | cb(inner_state); |
272 | | } |
273 | | } |
274 | | }; |
275 | | }; |
276 | | |
277 | | // is_uniquely_represented |
278 | | // |
279 | | // `is_uniquely_represented<T>` is a trait class that indicates whether `T` |
280 | | // is uniquely represented. |
281 | | // |
282 | | // A type is "uniquely represented" if two equal values of that type are |
283 | | // guaranteed to have the same bytes in their underlying storage. In other |
284 | | // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be |
285 | | // zero. This property cannot be detected automatically, so this trait is false |
286 | | // by default, but can be specialized by types that wish to assert that they are |
287 | | // uniquely represented. This makes them eligible for certain optimizations. |
288 | | // |
289 | | // If you have any doubt whatsoever, do not specialize this template. |
290 | | // The default is completely safe, and merely disables some optimizations |
291 | | // that will not matter for most types. Specializing this template, |
292 | | // on the other hand, can be very hazardous. |
293 | | // |
294 | | // To be uniquely represented, a type must not have multiple ways of |
295 | | // representing the same value; for example, float and double are not |
296 | | // uniquely represented, because they have distinct representations for |
297 | | // +0 and -0. Furthermore, the type's byte representation must consist |
298 | | // solely of user-controlled data, with no padding bits and no compiler- |
299 | | // controlled data such as vptrs or sanitizer metadata. This is usually |
300 | | // very difficult to guarantee, because in most cases the compiler can |
301 | | // insert data and padding bits at its own discretion. |
302 | | // |
303 | | // If you specialize this template for a type `T`, you must do so in the file |
304 | | // that defines that type (or in this file). If you define that specialization |
305 | | // anywhere else, `is_uniquely_represented<T>` could have different meanings |
306 | | // in different places. |
307 | | // |
308 | | // The Enable parameter is meaningless; it is provided as a convenience, |
309 | | // to support certain SFINAE techniques when defining specializations. |
310 | | template <typename T, typename Enable = void> |
311 | | struct is_uniquely_represented : std::false_type {}; |
312 | | |
313 | | // is_uniquely_represented<unsigned char> |
314 | | // |
315 | | // unsigned char is a synonym for "byte", so it is guaranteed to be |
316 | | // uniquely represented. |
317 | | template <> |
318 | | struct is_uniquely_represented<unsigned char> : std::true_type {}; |
319 | | |
320 | | // is_uniquely_represented for non-standard integral types |
321 | | // |
322 | | // Integral types other than bool should be uniquely represented on any |
323 | | // platform that this will plausibly be ported to. |
324 | | template <typename Integral> |
325 | | struct is_uniquely_represented< |
326 | | Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> |
327 | | : std::true_type {}; |
328 | | |
329 | | // is_uniquely_represented<bool> |
330 | | // |
331 | | // |
332 | | template <> |
333 | | struct is_uniquely_represented<bool> : std::false_type {}; |
334 | | |
335 | | // hash_bytes() |
336 | | // |
337 | | // Convenience function that combines `hash_state` with the byte representation |
338 | | // of `value`. |
339 | | template <typename H, typename T> |
340 | 0 | H hash_bytes(H hash_state, const T& value) { |
341 | 0 | const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); |
342 | 0 | return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); |
343 | 0 | } Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_bytes<absl::lts_20240116::hash_internal::MixingHashState, unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_bytes<absl::lts_20240116::hash_internal::MixingHashState, unsigned int>(absl::lts_20240116::hash_internal::MixingHashState, unsigned int const&) |
344 | | |
345 | | // ----------------------------------------------------------------------------- |
346 | | // AbslHashValue for Basic Types |
347 | | // ----------------------------------------------------------------------------- |
348 | | |
349 | | // Note: Default `AbslHashValue` implementations live in `hash_internal`. This |
350 | | // allows us to block lexical scope lookup when doing an unqualified call to |
351 | | // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can |
352 | | // only be found via ADL. |
353 | | |
354 | | // AbslHashValue() for hashing bool values |
355 | | // |
356 | | // We use SFINAE to ensure that this overload only accepts bool, not types that |
357 | | // are convertible to bool. |
358 | | template <typename H, typename B> |
359 | | typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( |
360 | | H hash_state, B value) { |
361 | | return H::combine(std::move(hash_state), |
362 | | static_cast<unsigned char>(value ? 1 : 0)); |
363 | | } |
364 | | |
365 | | // AbslHashValue() for hashing enum values |
366 | | template <typename H, typename Enum> |
367 | | typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( |
368 | | H hash_state, Enum e) { |
369 | | // In practice, we could almost certainly just invoke hash_bytes directly, |
370 | | // but it's possible that a sanitizer might one day want to |
371 | | // store data in the unused bits of an enum. To avoid that risk, we |
372 | | // convert to the underlying type before hashing. Hopefully this will get |
373 | | // optimized away; if not, we can reopen discussion with c-toolchain-team. |
374 | | return H::combine(std::move(hash_state), |
375 | | static_cast<typename std::underlying_type<Enum>::type>(e)); |
376 | | } |
377 | | // AbslHashValue() for hashing floating-point values |
378 | | template <typename H, typename Float> |
379 | | typename std::enable_if<std::is_same<Float, float>::value || |
380 | | std::is_same<Float, double>::value, |
381 | | H>::type |
382 | | AbslHashValue(H hash_state, Float value) { |
383 | | return hash_internal::hash_bytes(std::move(hash_state), |
384 | | value == 0 ? 0 : value); |
385 | | } |
386 | | |
387 | | // Long double has the property that it might have extra unused bytes in it. |
388 | | // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits |
389 | | // of it. This means we can't use hash_bytes on a long double and have to |
390 | | // convert it to something else first. |
391 | | template <typename H, typename LongDouble> |
392 | | typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type |
393 | | AbslHashValue(H hash_state, LongDouble value) { |
394 | | const int category = std::fpclassify(value); |
395 | | switch (category) { |
396 | | case FP_INFINITE: |
397 | | // Add the sign bit to differentiate between +Inf and -Inf |
398 | | hash_state = H::combine(std::move(hash_state), std::signbit(value)); |
399 | | break; |
400 | | |
401 | | case FP_NAN: |
402 | | case FP_ZERO: |
403 | | default: |
404 | | // Category is enough for these. |
405 | | break; |
406 | | |
407 | | case FP_NORMAL: |
408 | | case FP_SUBNORMAL: |
409 | | // We can't convert `value` directly to double because this would have |
410 | | // undefined behavior if the value is out of range. |
411 | | // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is |
412 | | // guaranteed to be in range for `double`. The truncation is |
413 | | // implementation defined, but that works as long as it is deterministic. |
414 | | int exp; |
415 | | auto mantissa = static_cast<double>(std::frexp(value, &exp)); |
416 | | hash_state = H::combine(std::move(hash_state), mantissa, exp); |
417 | | } |
418 | | |
419 | | return H::combine(std::move(hash_state), category); |
420 | | } |
421 | | |
422 | | // Without this overload, an array decays to a pointer and we hash that, which |
423 | | // is not likely to be what the caller intended. |
424 | | template <typename H, typename T, size_t N> |
425 | | H AbslHashValue(H hash_state, T (&)[N]) { |
426 | | static_assert( |
427 | | sizeof(T) == -1, |
428 | | "Hashing C arrays is not allowed. For string literals, wrap the literal " |
429 | | "in absl::string_view(). To hash the array contents, use " |
430 | | "absl::MakeSpan() or make the array an std::array. To hash the array " |
431 | | "address, use &array[0]."); |
432 | | return hash_state; |
433 | | } |
434 | | |
435 | | // AbslHashValue() for hashing pointers |
436 | | template <typename H, typename T> |
437 | | std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state, |
438 | 0 | T ptr) { |
439 | 0 | auto v = reinterpret_cast<uintptr_t>(ptr); |
440 | 0 | // Due to alignment, pointers tend to have low bits as zero, and the next few |
441 | 0 | // bits follow a pattern since they are also multiples of some base value. |
442 | 0 | // Mixing the pointer twice helps prevent stuck low bits for certain alignment |
443 | 0 | // values. |
444 | 0 | return H::combine(std::move(hash_state), v, v); |
445 | 0 | } Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPN6google8protobuf8internal13TableEntryPtrEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeES9_S8_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKN6google8protobuf15FieldDescriptorEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEPKN6google8protobuf7MessageEEENSt3__19enable_ifIXsr3std10is_pointerIT0_EE5valueET_E4typeESC_SB_ |
446 | | |
447 | | // AbslHashValue() for hashing nullptr_t |
448 | | template <typename H> |
449 | | H AbslHashValue(H hash_state, std::nullptr_t) { |
450 | | return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); |
451 | | } |
452 | | |
453 | | // AbslHashValue() for hashing pointers-to-member |
454 | | template <typename H, typename T, typename C> |
455 | | H AbslHashValue(H hash_state, T C::*ptr) { |
456 | | auto salient_ptm_size = [](std::size_t n) -> std::size_t { |
457 | | #if defined(_MSC_VER) |
458 | | // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2, |
459 | | // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain |
460 | | // padding (namely when they have 1 or 3 ints). The value below is a lower |
461 | | // bound on the number of salient, non-padding bytes that we use for |
462 | | // hashing. |
463 | | if (alignof(T C::*) == alignof(int)) { |
464 | | // No padding when all subobjects have the same size as the total |
465 | | // alignment. This happens in 32-bit mode. |
466 | | return n; |
467 | | } else { |
468 | | // Padding for 1 int (size 16) or 3 ints (size 24). |
469 | | // With 2 ints, the size is 16 with no padding, which we pessimize. |
470 | | return n == 24 ? 20 : n == 16 ? 12 : n; |
471 | | } |
472 | | #else |
473 | | // On other platforms, we assume that pointers-to-members do not have |
474 | | // padding. |
475 | | #ifdef __cpp_lib_has_unique_object_representations |
476 | | static_assert(std::has_unique_object_representations<T C::*>::value); |
477 | | #endif // __cpp_lib_has_unique_object_representations |
478 | | return n; |
479 | | #endif |
480 | | }; |
481 | | return H::combine_contiguous(std::move(hash_state), |
482 | | reinterpret_cast<unsigned char*>(&ptr), |
483 | | salient_ptm_size(sizeof ptr)); |
484 | | } |
485 | | |
486 | | // ----------------------------------------------------------------------------- |
487 | | // AbslHashValue for Composite Types |
488 | | // ----------------------------------------------------------------------------- |
489 | | |
490 | | // AbslHashValue() for hashing pairs |
491 | | template <typename H, typename T1, typename T2> |
492 | | typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, |
493 | | H>::type |
494 | 0 | AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { |
495 | 0 | return H::combine(std::move(hash_state), p.first, p.second); |
496 | 0 | } |
497 | | |
498 | | // hash_tuple() |
499 | | // |
500 | | // Helper function for hashing a tuple. The third argument should |
501 | | // be an index_sequence running from 0 to tuple_size<Tuple> - 1. |
502 | | template <typename H, typename Tuple, size_t... Is> |
503 | 0 | H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { |
504 | 0 | return H::combine(std::move(hash_state), std::get<Is>(t)...); |
505 | 0 | } Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&>, 0ul, 1ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul>) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, std::__1::integer_sequence<unsigned long, 0ul>) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::hash_tuple<absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&>, 0ul, 1ul, 2ul>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul, 2ul>) |
506 | | |
507 | | // AbslHashValue for hashing tuples |
508 | | template <typename H, typename... Ts> |
509 | | #if defined(_MSC_VER) |
510 | | // This SFINAE gets MSVC confused under some conditions. Let's just disable it |
511 | | // for now. |
512 | | H |
513 | | #else // _MSC_VER |
514 | | typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type |
515 | | #endif // _MSC_VER |
516 | 0 | AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { |
517 | 0 | return hash_internal::hash_tuple(std::move(hash_state), t, |
518 | 0 | absl::make_index_sequence<sizeof...(Ts)>()); |
519 | 0 | } Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKjRKNS0_11string_viewEEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESF_RKNS9_5tupleIJDpSC_EEE Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESC_RKNS6_5tupleIJDpS9_EEE Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal13AbslHashValueINS1_15MixingHashStateEJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS1_11is_hashableIT0_EEEE5valueET_E4typeESN_RKNSH_5tupleIJDpSK_EEE |
520 | | |
521 | | // ----------------------------------------------------------------------------- |
522 | | // AbslHashValue for Pointers |
523 | | // ----------------------------------------------------------------------------- |
524 | | |
525 | | // AbslHashValue for hashing unique_ptr |
526 | | template <typename H, typename T, typename D> |
527 | | H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { |
528 | | return H::combine(std::move(hash_state), ptr.get()); |
529 | | } |
530 | | |
531 | | // AbslHashValue for hashing shared_ptr |
532 | | template <typename H, typename T> |
533 | | H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { |
534 | | return H::combine(std::move(hash_state), ptr.get()); |
535 | | } |
536 | | |
537 | | // ----------------------------------------------------------------------------- |
538 | | // AbslHashValue for String-Like Types |
539 | | // ----------------------------------------------------------------------------- |
540 | | |
541 | | // AbslHashValue for hashing strings |
542 | | // |
543 | | // All the string-like types supported here provide the same hash expansion for |
544 | | // the same character sequence. These types are: |
545 | | // |
546 | | // - `absl::Cord` |
547 | | // - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for |
548 | | // any allocator A and any T in {char, wchar_t, char16_t, char32_t}) |
549 | | // - `absl::string_view`, `std::string_view`, `std::wstring_view`, |
550 | | // `std::u16string_view`, and `std::u32_string_view`. |
551 | | // |
552 | | // For simplicity, we currently support only strings built on `char`, `wchar_t`, |
553 | | // `char16_t`, or `char32_t`. This support may be broadened, if necessary, but |
554 | | // with some caution - this overload would misbehave in cases where the traits' |
555 | | // `eq()` member isn't equivalent to `==` on the underlying character type. |
556 | | template <typename H> |
557 | 0 | H AbslHashValue(H hash_state, absl::string_view str) { |
558 | 0 | return H::combine( |
559 | 0 | H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
560 | 0 | str.size()); |
561 | 0 | } |
562 | | |
563 | | // Support std::wstring, std::u16string and std::u32string. |
564 | | template <typename Char, typename Alloc, typename H, |
565 | | typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
566 | | std::is_same<Char, char16_t>::value || |
567 | | std::is_same<Char, char32_t>::value>> |
568 | | H AbslHashValue( |
569 | | H hash_state, |
570 | | const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { |
571 | | return H::combine( |
572 | | H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
573 | | str.size()); |
574 | | } |
575 | | |
576 | | #ifdef ABSL_HAVE_STD_STRING_VIEW |
577 | | |
578 | | // Support std::wstring_view, std::u16string_view and std::u32string_view. |
579 | | template <typename Char, typename H, |
580 | | typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
581 | | std::is_same<Char, char16_t>::value || |
582 | | std::is_same<Char, char32_t>::value>> |
583 | | H AbslHashValue(H hash_state, std::basic_string_view<Char> str) { |
584 | | return H::combine( |
585 | | H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
586 | | str.size()); |
587 | | } |
588 | | |
589 | | #endif // ABSL_HAVE_STD_STRING_VIEW |
590 | | |
591 | | #if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \ |
592 | | !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) && \ |
593 | | (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) || \ |
594 | | __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000) |
595 | | |
596 | | #define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1 |
597 | | |
598 | | // Support std::filesystem::path. The SFINAE is required because some string |
599 | | // types are implicitly convertible to std::filesystem::path. |
600 | | template <typename Path, typename H, |
601 | | typename = absl::enable_if_t< |
602 | | std::is_same_v<Path, std::filesystem::path>>> |
603 | | H AbslHashValue(H hash_state, const Path& path) { |
604 | | // This is implemented by deferring to the standard library to compute the |
605 | | // hash. The standard library requires that for two paths, `p1 == p2`, then |
606 | | // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same |
607 | | // requirement. Since `operator==` does platform specific matching, deferring |
608 | | // to the standard library is the simplest approach. |
609 | | return H::combine(std::move(hash_state), std::filesystem::hash_value(path)); |
610 | | } |
611 | | |
612 | | #endif // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE |
613 | | |
614 | | // ----------------------------------------------------------------------------- |
615 | | // AbslHashValue for Sequence Containers |
616 | | // ----------------------------------------------------------------------------- |
617 | | |
618 | | // AbslHashValue for hashing std::array |
619 | | template <typename H, typename T, size_t N> |
620 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
621 | | H hash_state, const std::array<T, N>& array) { |
622 | | return H::combine_contiguous(std::move(hash_state), array.data(), |
623 | | array.size()); |
624 | | } |
625 | | |
626 | | // AbslHashValue for hashing std::deque |
627 | | template <typename H, typename T, typename Allocator> |
628 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
629 | | H hash_state, const std::deque<T, Allocator>& deque) { |
630 | | // TODO(gromer): investigate a more efficient implementation taking |
631 | | // advantage of the chunk structure. |
632 | | for (const auto& t : deque) { |
633 | | hash_state = H::combine(std::move(hash_state), t); |
634 | | } |
635 | | return H::combine(std::move(hash_state), deque.size()); |
636 | | } |
637 | | |
638 | | // AbslHashValue for hashing std::forward_list |
639 | | template <typename H, typename T, typename Allocator> |
640 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
641 | | H hash_state, const std::forward_list<T, Allocator>& list) { |
642 | | size_t size = 0; |
643 | | for (const T& t : list) { |
644 | | hash_state = H::combine(std::move(hash_state), t); |
645 | | ++size; |
646 | | } |
647 | | return H::combine(std::move(hash_state), size); |
648 | | } |
649 | | |
650 | | // AbslHashValue for hashing std::list |
651 | | template <typename H, typename T, typename Allocator> |
652 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
653 | | H hash_state, const std::list<T, Allocator>& list) { |
654 | | for (const auto& t : list) { |
655 | | hash_state = H::combine(std::move(hash_state), t); |
656 | | } |
657 | | return H::combine(std::move(hash_state), list.size()); |
658 | | } |
659 | | |
660 | | // AbslHashValue for hashing std::vector |
661 | | // |
662 | | // Do not use this for vector<bool> on platforms that have a working |
663 | | // implementation of std::hash. It does not have a .data(), and a fallback for |
664 | | // std::hash<> is most likely faster. |
665 | | template <typename H, typename T, typename Allocator> |
666 | | typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, |
667 | | H>::type |
668 | | AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
669 | | return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), |
670 | | vector.size()), |
671 | | vector.size()); |
672 | | } |
673 | | |
674 | | // AbslHashValue special cases for hashing std::vector<bool> |
675 | | |
676 | | #if defined(ABSL_IS_BIG_ENDIAN) && \ |
677 | | (defined(__GLIBCXX__) || defined(__GLIBCPP__)) |
678 | | |
679 | | // std::hash in libstdc++ does not work correctly with vector<bool> on Big |
680 | | // Endian platforms therefore we need to implement a custom AbslHashValue for |
681 | | // it. More details on the bug: |
682 | | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531 |
683 | | template <typename H, typename T, typename Allocator> |
684 | | typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value, |
685 | | H>::type |
686 | | AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
687 | | typename H::AbslInternalPiecewiseCombiner combiner; |
688 | | for (const auto& i : vector) { |
689 | | unsigned char c = static_cast<unsigned char>(i); |
690 | | hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c)); |
691 | | } |
692 | | return H::combine(combiner.finalize(std::move(hash_state)), vector.size()); |
693 | | } |
694 | | #else |
695 | | // When not working around the libstdc++ bug above, we still have to contend |
696 | | // with the fact that std::hash<vector<bool>> is often poor quality, hashing |
697 | | // directly on the internal words and on no other state. On these platforms, |
698 | | // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value. |
699 | | // |
700 | | // Mixing in the size (as we do in our other vector<> implementations) on top |
701 | | // of the library-provided hash implementation avoids this QOI issue. |
702 | | template <typename H, typename T, typename Allocator> |
703 | | typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value, |
704 | | H>::type |
705 | | AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
706 | | return H::combine(std::move(hash_state), |
707 | | std::hash<std::vector<T, Allocator>>{}(vector), |
708 | | vector.size()); |
709 | | } |
710 | | #endif |
711 | | |
712 | | // ----------------------------------------------------------------------------- |
713 | | // AbslHashValue for Ordered Associative Containers |
714 | | // ----------------------------------------------------------------------------- |
715 | | |
716 | | // AbslHashValue for hashing std::map |
717 | | template <typename H, typename Key, typename T, typename Compare, |
718 | | typename Allocator> |
719 | | typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
720 | | H>::type |
721 | | AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { |
722 | | for (const auto& t : map) { |
723 | | hash_state = H::combine(std::move(hash_state), t); |
724 | | } |
725 | | return H::combine(std::move(hash_state), map.size()); |
726 | | } |
727 | | |
728 | | // AbslHashValue for hashing std::multimap |
729 | | template <typename H, typename Key, typename T, typename Compare, |
730 | | typename Allocator> |
731 | | typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
732 | | H>::type |
733 | | AbslHashValue(H hash_state, |
734 | | const std::multimap<Key, T, Compare, Allocator>& map) { |
735 | | for (const auto& t : map) { |
736 | | hash_state = H::combine(std::move(hash_state), t); |
737 | | } |
738 | | return H::combine(std::move(hash_state), map.size()); |
739 | | } |
740 | | |
741 | | // AbslHashValue for hashing std::set |
742 | | template <typename H, typename Key, typename Compare, typename Allocator> |
743 | | typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
744 | | H hash_state, const std::set<Key, Compare, Allocator>& set) { |
745 | | for (const auto& t : set) { |
746 | | hash_state = H::combine(std::move(hash_state), t); |
747 | | } |
748 | | return H::combine(std::move(hash_state), set.size()); |
749 | | } |
750 | | |
751 | | // AbslHashValue for hashing std::multiset |
752 | | template <typename H, typename Key, typename Compare, typename Allocator> |
753 | | typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
754 | | H hash_state, const std::multiset<Key, Compare, Allocator>& set) { |
755 | | for (const auto& t : set) { |
756 | | hash_state = H::combine(std::move(hash_state), t); |
757 | | } |
758 | | return H::combine(std::move(hash_state), set.size()); |
759 | | } |
760 | | |
761 | | // ----------------------------------------------------------------------------- |
762 | | // AbslHashValue for Unordered Associative Containers |
763 | | // ----------------------------------------------------------------------------- |
764 | | |
765 | | // AbslHashValue for hashing std::unordered_set |
766 | | template <typename H, typename Key, typename Hash, typename KeyEqual, |
767 | | typename Alloc> |
768 | | typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
769 | | H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) { |
770 | | return H::combine( |
771 | | H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
772 | | s.size()); |
773 | | } |
774 | | |
775 | | // AbslHashValue for hashing std::unordered_multiset |
776 | | template <typename H, typename Key, typename Hash, typename KeyEqual, |
777 | | typename Alloc> |
778 | | typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
779 | | H hash_state, |
780 | | const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) { |
781 | | return H::combine( |
782 | | H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
783 | | s.size()); |
784 | | } |
785 | | |
786 | | // AbslHashValue for hashing std::unordered_set |
787 | | template <typename H, typename Key, typename T, typename Hash, |
788 | | typename KeyEqual, typename Alloc> |
789 | | typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
790 | | H>::type |
791 | | AbslHashValue(H hash_state, |
792 | | const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) { |
793 | | return H::combine( |
794 | | H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
795 | | s.size()); |
796 | | } |
797 | | |
798 | | // AbslHashValue for hashing std::unordered_multiset |
799 | | template <typename H, typename Key, typename T, typename Hash, |
800 | | typename KeyEqual, typename Alloc> |
801 | | typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
802 | | H>::type |
803 | | AbslHashValue(H hash_state, |
804 | | const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) { |
805 | | return H::combine( |
806 | | H::combine_unordered(std::move(hash_state), s.begin(), s.end()), |
807 | | s.size()); |
808 | | } |
809 | | |
810 | | // ----------------------------------------------------------------------------- |
811 | | // AbslHashValue for Wrapper Types |
812 | | // ----------------------------------------------------------------------------- |
813 | | |
814 | | // AbslHashValue for hashing std::reference_wrapper |
815 | | template <typename H, typename T> |
816 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
817 | | H hash_state, std::reference_wrapper<T> opt) { |
818 | | return H::combine(std::move(hash_state), opt.get()); |
819 | | } |
820 | | |
821 | | // AbslHashValue for hashing absl::optional |
822 | | template <typename H, typename T> |
823 | | typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
824 | | H hash_state, const absl::optional<T>& opt) { |
825 | | if (opt) hash_state = H::combine(std::move(hash_state), *opt); |
826 | | return H::combine(std::move(hash_state), opt.has_value()); |
827 | | } |
828 | | |
829 | | // VariantVisitor |
830 | | template <typename H> |
831 | | struct VariantVisitor { |
832 | | H&& hash_state; |
833 | | template <typename T> |
834 | | H operator()(const T& t) const { |
835 | | return H::combine(std::move(hash_state), t); |
836 | | } |
837 | | }; |
838 | | |
839 | | // AbslHashValue for hashing absl::variant |
840 | | template <typename H, typename... T> |
841 | | typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type |
842 | | AbslHashValue(H hash_state, const absl::variant<T...>& v) { |
843 | | if (!v.valueless_by_exception()) { |
844 | | hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); |
845 | | } |
846 | | return H::combine(std::move(hash_state), v.index()); |
847 | | } |
848 | | |
849 | | // ----------------------------------------------------------------------------- |
850 | | // AbslHashValue for Other Types |
851 | | // ----------------------------------------------------------------------------- |
852 | | |
853 | | // AbslHashValue for hashing std::bitset is not defined on Little Endian |
854 | | // platforms, for the same reason as for vector<bool> (see std::vector above): |
855 | | // It does not expose the raw bytes, and a fallback to std::hash<> is most |
856 | | // likely faster. |
857 | | |
858 | | #if defined(ABSL_IS_BIG_ENDIAN) && \ |
859 | | (defined(__GLIBCXX__) || defined(__GLIBCPP__)) |
860 | | // AbslHashValue for hashing std::bitset |
861 | | // |
862 | | // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian |
863 | | // platforms therefore we need to implement a custom AbslHashValue for it. More |
864 | | // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531 |
865 | | template <typename H, size_t N> |
866 | | H AbslHashValue(H hash_state, const std::bitset<N>& set) { |
867 | | typename H::AbslInternalPiecewiseCombiner combiner; |
868 | | for (size_t i = 0; i < N; i++) { |
869 | | unsigned char c = static_cast<unsigned char>(set[i]); |
870 | | hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c)); |
871 | | } |
872 | | return H::combine(combiner.finalize(std::move(hash_state)), N); |
873 | | } |
874 | | #endif |
875 | | |
876 | | // ----------------------------------------------------------------------------- |
877 | | |
878 | | // hash_range_or_bytes() |
879 | | // |
880 | | // Mixes all values in the range [data, data+size) into the hash state. |
881 | | // This overload accepts only uniquely-represented types, and hashes them by |
882 | | // hashing the entire range of bytes. |
883 | | template <typename H, typename T> |
884 | | typename std::enable_if<is_uniquely_represented<T>::value, H>::type |
885 | 0 | hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
886 | 0 | const auto* bytes = reinterpret_cast<const unsigned char*>(data); |
887 | 0 | return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); |
888 | 0 | } |
889 | | |
890 | | // hash_range_or_bytes() |
891 | | template <typename H, typename T> |
892 | | typename std::enable_if<!is_uniquely_represented<T>::value, H>::type |
893 | | hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
894 | | for (const auto end = data + size; data < end; ++data) { |
895 | | hash_state = H::combine(std::move(hash_state), *data); |
896 | | } |
897 | | return hash_state; |
898 | | } |
899 | | |
900 | | #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ |
901 | | ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
902 | | #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 |
903 | | #else |
904 | | #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 |
905 | | #endif |
906 | | |
907 | | // HashSelect |
908 | | // |
909 | | // Type trait to select the appropriate hash implementation to use. |
910 | | // HashSelect::type<T> will give the proper hash implementation, to be invoked |
911 | | // as: |
912 | | // HashSelect::type<T>::Invoke(state, value) |
913 | | // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a |
914 | | // valid `Invoke` function. Types that are not hashable will have a ::value of |
915 | | // `false`. |
916 | | struct HashSelect { |
917 | | private: |
918 | | struct State : HashStateBase<State> { |
919 | | static State combine_contiguous(State hash_state, const unsigned char*, |
920 | | size_t); |
921 | | using State::HashStateBase::combine_contiguous; |
922 | | }; |
923 | | |
924 | | struct UniquelyRepresentedProbe { |
925 | | template <typename H, typename T> |
926 | | static auto Invoke(H state, const T& value) |
927 | 0 | -> absl::enable_if_t<is_uniquely_represented<T>::value, H> { |
928 | 0 | return hash_internal::hash_bytes(std::move(state), value); |
929 | 0 | } Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS1_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES9_RKS8_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS1_15MixingHashStateEjEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES9_RKS8_ |
930 | | }; |
931 | | |
932 | | struct HashValueProbe { |
933 | | template <typename H, typename T> |
934 | | static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
935 | | std::is_same<H, |
936 | | decltype(AbslHashValue(std::move(state), value))>::value, |
937 | 0 | H> { |
938 | 0 | return AbslHashValue(std::move(state), value); |
939 | 0 | } Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENS0_11string_viewEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENS0_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES9_E4typeES9_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKjRKNS0_11string_viewEEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESF_E4typeESF_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKmEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESC_E4typeESC_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__15tupleIJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESN_E4typeESN_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPN6google8protobuf8internal13TableEntryPtrEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKvEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESA_E4typeESA_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKN6google8protobuf15FieldDescriptorEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateENSt3__14pairIPKN6google8protobuf7MessageEPKNS9_15FieldDescriptorEEEEENS6_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESI_E4typeESI_RKT0_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal10HashSelect14HashValueProbe6InvokeINS1_15MixingHashStateEPKN6google8protobuf7MessageEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESD_E4typeESD_RKT0_ |
940 | | }; |
941 | | |
942 | | struct LegacyHashProbe { |
943 | | #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
944 | | template <typename H, typename T> |
945 | | static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
946 | | std::is_convertible< |
947 | | decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), |
948 | | size_t>::value, |
949 | | H> { |
950 | | return hash_internal::hash_bytes( |
951 | | std::move(state), |
952 | | ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); |
953 | | } |
954 | | #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
955 | | }; |
956 | | |
957 | | struct StdHashProbe { |
958 | | template <typename H, typename T> |
959 | | static auto Invoke(H state, const T& value) |
960 | | -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { |
961 | | return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); |
962 | | } |
963 | | }; |
964 | | |
965 | | template <typename Hash, typename T> |
966 | | struct Probe : Hash { |
967 | | private: |
968 | | template <typename H, typename = decltype(H::Invoke( |
969 | | std::declval<State>(), std::declval<const T&>()))> |
970 | | static std::true_type Test(int); |
971 | | template <typename U> |
972 | | static std::false_type Test(char); |
973 | | |
974 | | public: |
975 | | static constexpr bool value = decltype(Test<Hash>(0))::value; |
976 | | }; |
977 | | |
978 | | public: |
979 | | // Probe each implementation in order. |
980 | | // disjunction provides short circuiting wrt instantiation. |
981 | | template <typename T> |
982 | | using Apply = absl::disjunction< // |
983 | | Probe<UniquelyRepresentedProbe, T>, // |
984 | | Probe<HashValueProbe, T>, // |
985 | | Probe<LegacyHashProbe, T>, // |
986 | | Probe<StdHashProbe, T>, // |
987 | | std::false_type>; |
988 | | }; |
989 | | |
990 | | template <typename T> |
991 | | struct is_hashable |
992 | | : std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; |
993 | | |
994 | | // MixingHashState |
995 | | class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> { |
996 | | // absl::uint128 is not an alias or a thin wrapper around the intrinsic. |
997 | | // We use the intrinsic when available to improve performance. |
998 | | #ifdef ABSL_HAVE_INTRINSIC_INT128 |
999 | | using uint128 = __uint128_t; |
1000 | | #else // ABSL_HAVE_INTRINSIC_INT128 |
1001 | | using uint128 = absl::uint128; |
1002 | | #endif // ABSL_HAVE_INTRINSIC_INT128 |
1003 | | |
1004 | | static constexpr uint64_t kMul = |
1005 | | sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} |
1006 | | : uint64_t{0x9ddfea08eb382d69}; |
1007 | | |
1008 | | template <typename T> |
1009 | | using IntegralFastPath = |
1010 | | conjunction<std::is_integral<T>, is_uniquely_represented<T>>; |
1011 | | |
1012 | | public: |
1013 | | // Move only |
1014 | | MixingHashState(MixingHashState&&) = default; |
1015 | | MixingHashState& operator=(MixingHashState&&) = default; |
1016 | | |
1017 | | // MixingHashState::combine_contiguous() |
1018 | | // |
1019 | | // Fundamental base case for hash recursion: mixes the given range of bytes |
1020 | | // into the hash state. |
1021 | | static MixingHashState combine_contiguous(MixingHashState hash_state, |
1022 | | const unsigned char* first, |
1023 | 0 | size_t size) { |
1024 | 0 | return MixingHashState( |
1025 | 0 | CombineContiguousImpl(hash_state.state_, first, size, |
1026 | 0 | std::integral_constant<int, sizeof(size_t)>{})); |
1027 | 0 | } |
1028 | | using MixingHashState::HashStateBase::combine_contiguous; |
1029 | | |
1030 | | // MixingHashState::hash() |
1031 | | // |
1032 | | // For performance reasons in non-opt mode, we specialize this for |
1033 | | // integral types. |
1034 | | // Otherwise we would be instantiating and calling dozens of functions for |
1035 | | // something that is just one multiplication and a couple xor's. |
1036 | | // The result should be the same as running the whole algorithm, but faster. |
1037 | | template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> |
1038 | | static size_t hash(T value) { |
1039 | | return static_cast<size_t>( |
1040 | | Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value))); |
1041 | | } |
1042 | | |
1043 | | // Overload of MixingHashState::hash() |
1044 | | template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> |
1045 | 0 | static size_t hash(const T& value) { |
1046 | 0 | return static_cast<size_t>(combine(MixingHashState{}, value).state_); |
1047 | 0 | } Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINS0_11string_viewETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINS0_4CordETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS7_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKjRKNS0_11string_viewEEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSD_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKmEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSA_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__15tupleIJRKmRKPN6google8protobuf8internal13TableEntryPtrERKPKvEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSL_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashIPKN6google8protobuf15FieldDescriptorETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSB_ Unexecuted instantiation: _ZN4absl12lts_2024011613hash_internal15MixingHashState4hashINSt3__14pairIPKN6google8protobuf7MessageEPKNS7_15FieldDescriptorEEETnNS4_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSG_ |
1048 | | |
1049 | | private: |
1050 | | // Invoked only once for a given argument; that plus the fact that this is |
1051 | | // move-only ensures that there is only one non-moved-from object. |
1052 | 0 | MixingHashState() : state_(Seed()) {} |
1053 | | |
1054 | | friend class MixingHashState::HashStateBase; |
1055 | | |
1056 | | template <typename CombinerT> |
1057 | | static MixingHashState RunCombineUnordered(MixingHashState state, |
1058 | | CombinerT combiner) { |
1059 | | uint64_t unordered_state = 0; |
1060 | | combiner(MixingHashState{}, [&](MixingHashState& inner_state) { |
1061 | | // Add the hash state of the element to the running total, but mix the |
1062 | | // carry bit back into the low bit. This in intended to avoid losing |
1063 | | // entropy to overflow, especially when unordered_multisets contain |
1064 | | // multiple copies of the same value. |
1065 | | auto element_state = inner_state.state_; |
1066 | | unordered_state += element_state; |
1067 | | if (unordered_state < element_state) { |
1068 | | ++unordered_state; |
1069 | | } |
1070 | | inner_state = MixingHashState{}; |
1071 | | }); |
1072 | | return MixingHashState::combine(std::move(state), unordered_state); |
1073 | | } |
1074 | | |
1075 | | // Allow the HashState type-erasure implementation to invoke |
1076 | | // RunCombinedUnordered() directly. |
1077 | | friend class absl::HashState; |
1078 | | |
1079 | | // Workaround for MSVC bug. |
1080 | | // We make the type copyable to fix the calling convention, even though we |
1081 | | // never actually copy it. Keep it private to not affect the public API of the |
1082 | | // type. |
1083 | | MixingHashState(const MixingHashState&) = default; |
1084 | | |
1085 | 0 | explicit MixingHashState(uint64_t state) : state_(state) {} |
1086 | | |
1087 | | // Implementation of the base case for combine_contiguous where we actually |
1088 | | // mix the bytes into the state. |
1089 | | // Dispatch to different implementations of the combine_contiguous depending |
1090 | | // on the value of `sizeof(size_t)`. |
1091 | | static uint64_t CombineContiguousImpl(uint64_t state, |
1092 | | const unsigned char* first, size_t len, |
1093 | | std::integral_constant<int, 4> |
1094 | | /* sizeof_size_t */); |
1095 | | static uint64_t CombineContiguousImpl(uint64_t state, |
1096 | | const unsigned char* first, size_t len, |
1097 | | std::integral_constant<int, 8> |
1098 | | /* sizeof_size_t */); |
1099 | | |
1100 | | // Slow dispatch path for calls to CombineContiguousImpl with a size argument |
1101 | | // larger than PiecewiseChunkSize(). Has the same effect as calling |
1102 | | // CombineContiguousImpl() repeatedly with the chunk stride size. |
1103 | | static uint64_t CombineLargeContiguousImpl32(uint64_t state, |
1104 | | const unsigned char* first, |
1105 | | size_t len); |
1106 | | static uint64_t CombineLargeContiguousImpl64(uint64_t state, |
1107 | | const unsigned char* first, |
1108 | | size_t len); |
1109 | | |
1110 | | // Reads 9 to 16 bytes from p. |
1111 | | // The least significant 8 bytes are in .first, the rest (zero padded) bytes |
1112 | | // are in .second. |
1113 | | static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, |
1114 | 0 | size_t len) { |
1115 | 0 | uint64_t low_mem = absl::base_internal::UnalignedLoad64(p); |
1116 | 0 | uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8); |
1117 | 0 | #ifdef ABSL_IS_LITTLE_ENDIAN |
1118 | 0 | uint64_t most_significant = high_mem; |
1119 | 0 | uint64_t least_significant = low_mem; |
1120 | 0 | #else |
1121 | 0 | uint64_t most_significant = low_mem; |
1122 | 0 | uint64_t least_significant = high_mem; |
1123 | 0 | #endif |
1124 | 0 | return {least_significant, most_significant}; |
1125 | 0 | } |
1126 | | |
1127 | | // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. |
1128 | 0 | static uint64_t Read4To8(const unsigned char* p, size_t len) { |
1129 | 0 | uint32_t low_mem = absl::base_internal::UnalignedLoad32(p); |
1130 | 0 | uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4); |
1131 | 0 | #ifdef ABSL_IS_LITTLE_ENDIAN |
1132 | 0 | uint32_t most_significant = high_mem; |
1133 | 0 | uint32_t least_significant = low_mem; |
1134 | 0 | #else |
1135 | 0 | uint32_t most_significant = low_mem; |
1136 | 0 | uint32_t least_significant = high_mem; |
1137 | 0 | #endif |
1138 | 0 | return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) | |
1139 | 0 | least_significant; |
1140 | 0 | } |
1141 | | |
1142 | | // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. |
1143 | 0 | static uint32_t Read1To3(const unsigned char* p, size_t len) { |
1144 | 0 | // The trick used by this implementation is to avoid branches if possible. |
1145 | 0 | unsigned char mem0 = p[0]; |
1146 | 0 | unsigned char mem1 = p[len / 2]; |
1147 | 0 | unsigned char mem2 = p[len - 1]; |
1148 | 0 | #ifdef ABSL_IS_LITTLE_ENDIAN |
1149 | 0 | unsigned char significant2 = mem2; |
1150 | 0 | unsigned char significant1 = mem1; |
1151 | 0 | unsigned char significant0 = mem0; |
1152 | 0 | #else |
1153 | 0 | unsigned char significant2 = mem0; |
1154 | 0 | unsigned char significant1 = len == 2 ? mem0 : mem1; |
1155 | 0 | unsigned char significant0 = mem2; |
1156 | 0 | #endif |
1157 | 0 | return static_cast<uint32_t>(significant0 | // |
1158 | 0 | (significant1 << (len / 2 * 8)) | // |
1159 | 0 | (significant2 << ((len - 1) * 8))); |
1160 | 0 | } |
1161 | | |
1162 | 0 | ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { |
1163 | 0 | // Though the 128-bit product on AArch64 needs two instructions, it is |
1164 | 0 | // still a good balance between speed and hash quality. |
1165 | 0 | using MultType = |
1166 | 0 | absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; |
1167 | 0 | // We do the addition in 64-bit space to make sure the 128-bit |
1168 | 0 | // multiplication is fast. If we were to do it as MultType the compiler has |
1169 | 0 | // to assume that the high word is non-zero and needs to perform 2 |
1170 | 0 | // multiplications instead of one. |
1171 | 0 | MultType m = state + v; |
1172 | 0 | m *= kMul; |
1173 | 0 | return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); |
1174 | 0 | } |
1175 | | |
1176 | | // An extern to avoid bloat on a direct call to LowLevelHash() with fixed |
1177 | | // values for both the seed and salt parameters. |
1178 | | static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len); |
1179 | | |
1180 | | ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data, |
1181 | 0 | size_t len) { |
1182 | 0 | #ifdef ABSL_HAVE_INTRINSIC_INT128 |
1183 | 0 | return LowLevelHashImpl(data, len); |
1184 | 0 | #else |
1185 | 0 | return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len); |
1186 | 0 | #endif |
1187 | 0 | } |
1188 | | |
1189 | | // Seed() |
1190 | | // |
1191 | | // A non-deterministic seed. |
1192 | | // |
1193 | | // The current purpose of this seed is to generate non-deterministic results |
1194 | | // and prevent having users depend on the particular hash values. |
1195 | | // It is not meant as a security feature right now, but it leaves the door |
1196 | | // open to upgrade it to a true per-process random seed. A true random seed |
1197 | | // costs more and we don't need to pay for that right now. |
1198 | | // |
1199 | | // On platforms with ASLR, we take advantage of it to make a per-process |
1200 | | // random value. |
1201 | | // See https://en.wikipedia.org/wiki/Address_space_layout_randomization |
1202 | | // |
1203 | | // On other platforms this is still going to be non-deterministic but most |
1204 | | // probably per-build and not per-process. |
1205 | 0 | ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { |
1206 | 0 | #if (!defined(__clang__) || __clang_major__ > 11) && \ |
1207 | 0 | (!defined(__apple_build_version__) || \ |
1208 | 0 | __apple_build_version__ >= 19558921) // Xcode 12 |
1209 | 0 | return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed)); |
1210 | 0 | #else |
1211 | 0 | // Workaround the absence of |
1212 | 0 | // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021. |
1213 | 0 | return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); |
1214 | 0 | #endif |
1215 | 0 | } |
1216 | | static const void* const kSeed; |
1217 | | |
1218 | | uint64_t state_; |
1219 | | }; |
1220 | | |
1221 | | // MixingHashState::CombineContiguousImpl() |
1222 | | inline uint64_t MixingHashState::CombineContiguousImpl( |
1223 | | uint64_t state, const unsigned char* first, size_t len, |
1224 | 0 | std::integral_constant<int, 4> /* sizeof_size_t */) { |
1225 | 0 | // For large values we use CityHash, for small ones we just use a |
1226 | 0 | // multiplicative hash. |
1227 | 0 | uint64_t v; |
1228 | 0 | if (len > 8) { |
1229 | 0 | if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
1230 | 0 | return CombineLargeContiguousImpl32(state, first, len); |
1231 | 0 | } |
1232 | 0 | v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); |
1233 | 0 | } else if (len >= 4) { |
1234 | 0 | v = Read4To8(first, len); |
1235 | 0 | } else if (len > 0) { |
1236 | 0 | v = Read1To3(first, len); |
1237 | 0 | } else { |
1238 | 0 | // Empty ranges have no effect. |
1239 | 0 | return state; |
1240 | 0 | } |
1241 | 0 | return Mix(state, v); |
1242 | 0 | } |
1243 | | |
1244 | | // Overload of MixingHashState::CombineContiguousImpl() |
1245 | | inline uint64_t MixingHashState::CombineContiguousImpl( |
1246 | | uint64_t state, const unsigned char* first, size_t len, |
1247 | 0 | std::integral_constant<int, 8> /* sizeof_size_t */) { |
1248 | 0 | // For large values we use LowLevelHash or CityHash depending on the platform, |
1249 | 0 | // for small ones we just use a multiplicative hash. |
1250 | 0 | uint64_t v; |
1251 | 0 | if (len > 16) { |
1252 | 0 | if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
1253 | 0 | return CombineLargeContiguousImpl64(state, first, len); |
1254 | 0 | } |
1255 | 0 | v = Hash64(first, len); |
1256 | 0 | } else if (len > 8) { |
1257 | 0 | // This hash function was constructed by the ML-driven algorithm discovery |
1258 | 0 | // using reinforcement learning. We fed the agent lots of inputs from |
1259 | 0 | // microbenchmarks, SMHasher, low hamming distance from generated inputs and |
1260 | 0 | // picked up the one that was good on micro and macrobenchmarks. |
1261 | 0 | auto p = Read9To16(first, len); |
1262 | 0 | uint64_t lo = p.first; |
1263 | 0 | uint64_t hi = p.second; |
1264 | 0 | // Rotation by 53 was found to be most often useful when discovering these |
1265 | 0 | // hashing algorithms with ML techniques. |
1266 | 0 | lo = absl::rotr(lo, 53); |
1267 | 0 | state += kMul; |
1268 | 0 | lo += state; |
1269 | 0 | state ^= hi; |
1270 | 0 | uint128 m = state; |
1271 | 0 | m *= lo; |
1272 | 0 | return static_cast<uint64_t>(m ^ (m >> 64)); |
1273 | 0 | } else if (len >= 4) { |
1274 | 0 | v = Read4To8(first, len); |
1275 | 0 | } else if (len > 0) { |
1276 | 0 | v = Read1To3(first, len); |
1277 | 0 | } else { |
1278 | 0 | // Empty ranges have no effect. |
1279 | 0 | return state; |
1280 | 0 | } |
1281 | 0 | return Mix(state, v); |
1282 | 0 | } |
1283 | | |
1284 | | struct AggregateBarrier {}; |
1285 | | |
1286 | | // HashImpl |
1287 | | |
1288 | | // Add a private base class to make sure this type is not an aggregate. |
1289 | | // Aggregates can be aggregate initialized even if the default constructor is |
1290 | | // deleted. |
1291 | | struct PoisonedHash : private AggregateBarrier { |
1292 | | PoisonedHash() = delete; |
1293 | | PoisonedHash(const PoisonedHash&) = delete; |
1294 | | PoisonedHash& operator=(const PoisonedHash&) = delete; |
1295 | | }; |
1296 | | |
1297 | | template <typename T> |
1298 | | struct HashImpl { |
1299 | 0 | size_t operator()(const T& value) const { |
1300 | 0 | return MixingHashState::hash(value); |
1301 | 0 | } Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<absl::lts_20240116::string_view>::operator()(absl::lts_20240116::string_view const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<absl::lts_20240116::Cord>::operator()(absl::lts_20240116::Cord const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> >::operator()(std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> >::operator()(std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<google::protobuf::FieldDescriptor const*>::operator()(google::protobuf::FieldDescriptor const* const&) const Unexecuted instantiation: absl::lts_20240116::hash_internal::HashImpl<std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> >::operator()(std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> const&) const |
1302 | | }; |
1303 | | |
1304 | | template <typename T> |
1305 | | struct Hash |
1306 | | : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; |
1307 | | |
1308 | | template <typename H> |
1309 | | template <typename T, typename... Ts> |
1310 | 0 | H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { |
1311 | 0 | return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( |
1312 | 0 | std::move(state), value), |
1313 | 0 | values...); |
1314 | 0 | } Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<absl::lts_20240116::string_view>(absl::lts_20240116::hash_internal::MixingHashState, absl::lts_20240116::string_view const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<absl::lts_20240116::Cord>(absl::lts_20240116::hash_internal::MixingHashState, absl::lts_20240116::Cord const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned int const&, absl::lts_20240116::string_view const&> const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned int, absl::lts_20240116::string_view>(absl::lts_20240116::hash_internal::MixingHashState, unsigned int const&, absl::lts_20240116::string_view const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&> const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long, google::protobuf::internal::TableEntryPtr*, void const*>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&, google::protobuf::internal::TableEntryPtr* const&, void const* const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::internal::TableEntryPtr*, void const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::internal::TableEntryPtr* const&, void const* const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<unsigned long, unsigned long>(absl::lts_20240116::hash_internal::MixingHashState, unsigned long const&, unsigned long const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<void const*>(absl::lts_20240116::hash_internal::MixingHashState, void const* const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::FieldDescriptor const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::FieldDescriptor const* const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*>>(absl::lts_20240116::hash_internal::MixingHashState, std::__1::pair<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*> const&) Unexecuted instantiation: absl::lts_20240116::hash_internal::MixingHashState absl::lts_20240116::hash_internal::HashStateBase<absl::lts_20240116::hash_internal::MixingHashState>::combine<google::protobuf::Message const*, google::protobuf::FieldDescriptor const*>(absl::lts_20240116::hash_internal::MixingHashState, google::protobuf::Message const* const&, google::protobuf::FieldDescriptor const* const&) |
1315 | | |
1316 | | // HashStateBase::combine_contiguous() |
1317 | | template <typename H> |
1318 | | template <typename T> |
1319 | 0 | H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { |
1320 | 0 | return hash_internal::hash_range_or_bytes(std::move(state), data, size); |
1321 | 0 | } |
1322 | | |
1323 | | // HashStateBase::combine_unordered() |
1324 | | template <typename H> |
1325 | | template <typename I> |
1326 | | H HashStateBase<H>::combine_unordered(H state, I begin, I end) { |
1327 | | return H::RunCombineUnordered(std::move(state), |
1328 | | CombineUnorderedCallback<I>{begin, end}); |
1329 | | } |
1330 | | |
1331 | | // HashStateBase::PiecewiseCombiner::add_buffer() |
1332 | | template <typename H> |
1333 | | H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, |
1334 | 0 | size_t size) { |
1335 | 0 | if (position_ + size < PiecewiseChunkSize()) { |
1336 | 0 | // This partial chunk does not fill our existing buffer |
1337 | 0 | memcpy(buf_ + position_, data, size); |
1338 | 0 | position_ += size; |
1339 | 0 | return state; |
1340 | 0 | } |
1341 | 0 |
|
1342 | 0 | // If the buffer is partially filled we need to complete the buffer |
1343 | 0 | // and hash it. |
1344 | 0 | if (position_ != 0) { |
1345 | 0 | const size_t bytes_needed = PiecewiseChunkSize() - position_; |
1346 | 0 | memcpy(buf_ + position_, data, bytes_needed); |
1347 | 0 | state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); |
1348 | 0 | data += bytes_needed; |
1349 | 0 | size -= bytes_needed; |
1350 | 0 | } |
1351 | 0 |
|
1352 | 0 | // Hash whatever chunks we can without copying |
1353 | 0 | while (size >= PiecewiseChunkSize()) { |
1354 | 0 | state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); |
1355 | 0 | data += PiecewiseChunkSize(); |
1356 | 0 | size -= PiecewiseChunkSize(); |
1357 | 0 | } |
1358 | 0 | // Fill the buffer with the remainder |
1359 | 0 | memcpy(buf_, data, size); |
1360 | 0 | position_ = size; |
1361 | 0 | return state; |
1362 | 0 | } |
1363 | | |
1364 | | // HashStateBase::PiecewiseCombiner::finalize() |
1365 | | template <typename H> |
1366 | 0 | H PiecewiseCombiner::finalize(H state) { |
1367 | 0 | // Hash the remainder left in the buffer, which may be empty |
1368 | 0 | return H::combine_contiguous(std::move(state), buf_, position_); |
1369 | 0 | } |
1370 | | |
1371 | | } // namespace hash_internal |
1372 | | ABSL_NAMESPACE_END |
1373 | | } // namespace absl |
1374 | | |
1375 | | #endif // ABSL_HASH_INTERNAL_HASH_H_ |