/src/LPM/external.protobuf/include/google/protobuf/parse_context.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Protocol Buffers - Google's data interchange format |
2 | | // Copyright 2008 Google Inc. All rights reserved. |
3 | | // |
4 | | // Use of this source code is governed by a BSD-style |
5 | | // license that can be found in the LICENSE file or at |
6 | | // https://developers.google.com/open-source/licenses/bsd |
7 | | |
8 | | #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
9 | | #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
10 | | |
11 | | #include <cstdint> |
12 | | #include <cstring> |
13 | | #include <string> |
14 | | #include <type_traits> |
15 | | #include <utility> |
16 | | |
17 | | #include "absl/base/config.h" |
18 | | #include "absl/log/absl_check.h" |
19 | | #include "absl/log/absl_log.h" |
20 | | #include "absl/strings/cord.h" |
21 | | #include "absl/strings/internal/resize_uninitialized.h" |
22 | | #include "absl/strings/string_view.h" |
23 | | #include "absl/types/optional.h" |
24 | | #include "google/protobuf/arena.h" |
25 | | #include "google/protobuf/arenastring.h" |
26 | | #include "google/protobuf/endian.h" |
27 | | #include "google/protobuf/inlined_string_field.h" |
28 | | #include "google/protobuf/io/coded_stream.h" |
29 | | #include "google/protobuf/io/zero_copy_stream.h" |
30 | | #include "google/protobuf/metadata_lite.h" |
31 | | #include "google/protobuf/port.h" |
32 | | #include "google/protobuf/repeated_field.h" |
33 | | #include "google/protobuf/wire_format_lite.h" |
34 | | |
35 | | |
36 | | // Must be included last. |
37 | | #include "google/protobuf/port_def.inc" |
38 | | |
39 | | |
40 | | namespace google { |
41 | | namespace protobuf { |
42 | | |
43 | | class UnknownFieldSet; |
44 | | class DescriptorPool; |
45 | | class MessageFactory; |
46 | | |
47 | | namespace internal { |
48 | | |
49 | | // Template code below needs to know about the existence of these functions. |
50 | | PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s); |
51 | | PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, absl::string_view val, |
52 | | std::string* s); |
53 | | // Inline because it is just forwarding to s->WriteVarint |
54 | | inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s); |
55 | | inline void WriteLengthDelimited(uint32_t num, absl::string_view val, |
56 | | UnknownFieldSet* s); |
57 | | |
58 | | |
59 | | // The basic abstraction the parser is designed for is a slight modification |
60 | | // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized |
61 | | // stream as a series of buffers that concatenate to the full stream. |
62 | | // Pictorially a ZCIS presents a stream in chunks like so |
63 | | // [---------------------------------------------------------------] |
64 | | // [---------------------] chunk 1 |
65 | | // [----------------------------] chunk 2 |
66 | | // chunk 3 [--------------] |
67 | | // |
68 | | // Where the '-' represent the bytes which are vertically lined up with the |
69 | | // bytes of the stream. The proto parser requires its input to be presented |
70 | | // similarly with the extra |
71 | | // property that each chunk has kSlopBytes past its end that overlaps with the |
72 | | // first kSlopBytes of the next chunk, or if there is no next chunk at least its |
73 | | // still valid to read those bytes. Again, pictorially, we now have |
74 | | // |
75 | | // [---------------------------------------------------------------] |
76 | | // [-------------------....] chunk 1 |
77 | | // [------------------------....] chunk 2 |
78 | | // chunk 3 [------------------..**] |
79 | | // chunk 4 [--****] |
80 | | // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the |
81 | | // chunk that match up with the start of the next chunk. Above each chunk has |
82 | | // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes |
83 | | // past the stream, indicated by '*' above, their values are unspecified. It is |
84 | | // still legal to read them (ie. should not segfault). Reading past the |
85 | | // end should be detected by the user and indicated as an error. |
86 | | // |
87 | | // The reason for this, admittedly, unconventional invariant is to ruthlessly |
88 | | // optimize the protobuf parser. Having an overlap helps in two important ways. |
89 | | // Firstly it alleviates having to performing bounds checks if a piece of code |
90 | | // is guaranteed to not read more than kSlopBytes. Secondly, and more |
91 | | // importantly, the protobuf wireformat is such that reading a key/value pair is |
92 | | // always less than 16 bytes. This removes the need to change to next buffer in |
93 | | // the middle of reading primitive values. Hence there is no need to store and |
94 | | // load the current position. |
95 | | |
96 | | class PROTOBUF_EXPORT EpsCopyInputStream { |
97 | | public: |
98 | | enum { kMaxCordBytesToCopy = 512 }; |
99 | | explicit EpsCopyInputStream(bool enable_aliasing) |
100 | 0 | : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} |
101 | | |
102 | 0 | void BackUp(const char* ptr) { |
103 | 0 | ABSL_DCHECK(ptr <= buffer_end_ + kSlopBytes); |
104 | 0 | int count; |
105 | 0 | if (next_chunk_ == patch_buffer_) { |
106 | 0 | count = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
107 | 0 | } else { |
108 | 0 | count = size_ + static_cast<int>(buffer_end_ - ptr); |
109 | 0 | } |
110 | 0 | if (count > 0) StreamBackUp(count); |
111 | 0 | } |
112 | | |
113 | | // In sanitizer mode we use memory poisoning to guarantee that: |
114 | | // - We do not read an uninitialized token. |
115 | | // - We would like to verify that this token was consumed, but unfortunately |
116 | | // __asan_address_is_poisoned is allowed to have false negatives. |
117 | | class LimitToken { |
118 | | public: |
119 | 0 | LimitToken() { PROTOBUF_POISON_MEMORY_REGION(&token_, sizeof(token_)); } |
120 | | |
121 | 0 | explicit LimitToken(int token) : token_(token) { |
122 | 0 | PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_)); |
123 | 0 | } |
124 | | |
125 | | LimitToken(const LimitToken&) = delete; |
126 | | LimitToken& operator=(const LimitToken&) = delete; |
127 | | |
128 | 0 | LimitToken(LimitToken&& other) { *this = std::move(other); } |
129 | | |
130 | 0 | LimitToken& operator=(LimitToken&& other) { |
131 | 0 | PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_)); |
132 | 0 | token_ = other.token_; |
133 | 0 | PROTOBUF_POISON_MEMORY_REGION(&other.token_, sizeof(token_)); |
134 | 0 | return *this; |
135 | 0 | } |
136 | | |
137 | 0 | ~LimitToken() { PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_)); } |
138 | | |
139 | 0 | int token() && { |
140 | 0 | int t = token_; |
141 | 0 | PROTOBUF_POISON_MEMORY_REGION(&token_, sizeof(token_)); |
142 | 0 | return t; |
143 | 0 | } |
144 | | |
145 | | private: |
146 | | int token_; |
147 | | }; |
148 | | |
149 | | // If return value is negative it's an error |
150 | 0 | PROTOBUF_NODISCARD LimitToken PushLimit(const char* ptr, int limit) { |
151 | 0 | ABSL_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); |
152 | 0 | // This add is safe due to the invariant above, because |
153 | 0 | // ptr - buffer_end_ <= kSlopBytes. |
154 | 0 | limit += static_cast<int>(ptr - buffer_end_); |
155 | 0 | limit_end_ = buffer_end_ + (std::min)(0, limit); |
156 | 0 | auto old_limit = limit_; |
157 | 0 | limit_ = limit; |
158 | 0 | return LimitToken(old_limit - limit); |
159 | 0 | } |
160 | | |
161 | 0 | PROTOBUF_NODISCARD bool PopLimit(LimitToken delta) { |
162 | 0 | // We must update the limit first before the early return. Otherwise, we can |
163 | 0 | // end up with an invalid limit and it can lead to integer overflows. |
164 | 0 | limit_ = limit_ + std::move(delta).token(); |
165 | 0 | if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false; |
166 | 0 | // TODO We could remove this line and hoist the code to |
167 | 0 | // DoneFallback. Study the perf/bin-size effects. |
168 | 0 | limit_end_ = buffer_end_ + (std::min)(0, limit_); |
169 | 0 | return true; |
170 | 0 | } |
171 | | |
172 | 0 | PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) { |
173 | 0 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
174 | 0 | return ptr + size; |
175 | 0 | } |
176 | 0 | return SkipFallback(ptr, size); |
177 | 0 | } |
178 | | PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size, |
179 | 0 | std::string* s) { |
180 | 0 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
181 | 0 | // Fundamentally we just want to do assign to the string. |
182 | 0 | // However micro-benchmarks regress on string reading cases. So we copy |
183 | 0 | // the same logic from the old CodedInputStream ReadString. Note: as of |
184 | 0 | // Apr 2021, this is still a significant win over `assign()`. |
185 | 0 | absl::strings_internal::STLStringResizeUninitialized(s, size); |
186 | 0 | char* z = &(*s)[0]; |
187 | 0 | memcpy(z, ptr, size); |
188 | 0 | return ptr + size; |
189 | 0 | } |
190 | 0 | return ReadStringFallback(ptr, size, s); |
191 | 0 | } |
192 | | PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size, |
193 | 0 | std::string* s) { |
194 | 0 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
195 | 0 | s->append(ptr, size); |
196 | 0 | return ptr + size; |
197 | 0 | } |
198 | 0 | return AppendStringFallback(ptr, size, s); |
199 | 0 | } |
200 | | // Implemented in arenastring.cc |
201 | | PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr, |
202 | | ArenaStringPtr* s, |
203 | | Arena* arena); |
204 | | |
205 | | PROTOBUF_NODISCARD const char* ReadCord(const char* ptr, int size, |
206 | 0 | ::absl::Cord* cord) { |
207 | 0 | if (size <= std::min<int>(static_cast<int>(buffer_end_ + kSlopBytes - ptr), |
208 | 0 | kMaxCordBytesToCopy)) { |
209 | 0 | *cord = absl::string_view(ptr, size); |
210 | 0 | return ptr + size; |
211 | 0 | } |
212 | 0 | return ReadCordFallback(ptr, size, cord); |
213 | 0 | } |
214 | | |
215 | | |
216 | | template <typename Tag, typename T> |
217 | | PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr, |
218 | | Tag expected_tag, |
219 | | RepeatedField<T>* out); |
220 | | |
221 | | template <typename T> |
222 | | PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size, |
223 | | RepeatedField<T>* out); |
224 | | template <typename Add> |
225 | | PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add) { |
226 | | return ReadPackedVarint(ptr, add, [](int) {}); |
227 | | } |
228 | | template <typename Add, typename SizeCb> |
229 | | PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add, |
230 | | SizeCb size_callback); |
231 | | |
232 | 0 | uint32_t LastTag() const { return last_tag_minus_1_ + 1; } |
233 | 0 | bool ConsumeEndGroup(uint32_t start_tag) { |
234 | 0 | bool res = last_tag_minus_1_ == start_tag; |
235 | 0 | last_tag_minus_1_ = 0; |
236 | 0 | return res; |
237 | 0 | } |
238 | 0 | bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } |
239 | 0 | bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } |
240 | 0 | void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; } |
241 | 0 | void SetEndOfStream() { last_tag_minus_1_ = 1; } |
242 | 0 | bool IsExceedingLimit(const char* ptr) { |
243 | 0 | return ptr > limit_end_ && |
244 | 0 | (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); |
245 | 0 | } |
246 | 0 | bool AliasingEnabled() const { return aliasing_ != kNoAliasing; } |
247 | 0 | int BytesUntilLimit(const char* ptr) const { |
248 | 0 | return limit_ + static_cast<int>(buffer_end_ - ptr); |
249 | 0 | } |
250 | | // Maximum number of sequential bytes that can be read starting from `ptr`. |
251 | 0 | int MaximumReadSize(const char* ptr) const { |
252 | 0 | return static_cast<int>(limit_end_ - ptr) + kSlopBytes; |
253 | 0 | } |
254 | | // Returns true if more data is available, if false is returned one has to |
255 | | // call Done for further checks. |
256 | 0 | bool DataAvailable(const char* ptr) { return ptr < limit_end_; } |
257 | | |
258 | | protected: |
259 | | // Returns true if limit (either an explicit limit or end of stream) is |
260 | | // reached. It aligns *ptr across buffer seams. |
261 | | // If limit is exceeded, it returns true and ptr is set to null. |
262 | 0 | bool DoneWithCheck(const char** ptr, int d) { |
263 | 0 | ABSL_DCHECK(*ptr); |
264 | 0 | if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false; |
265 | 0 | int overrun = static_cast<int>(*ptr - buffer_end_); |
266 | 0 | ABSL_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop. |
267 | 0 | if (overrun == |
268 | 0 | limit_) { // No need to flip buffers if we ended on a limit. |
269 | 0 | // If we actually overrun the buffer and next_chunk_ is null, it means |
270 | 0 | // the stream ended and we passed the stream end. |
271 | 0 | if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr; |
272 | 0 | return true; |
273 | 0 | } |
274 | 0 | auto res = DoneFallback(overrun, d); |
275 | 0 | *ptr = res.first; |
276 | 0 | return res.second; |
277 | 0 | } |
278 | | |
279 | 0 | const char* InitFrom(absl::string_view flat) { |
280 | 0 | overall_limit_ = 0; |
281 | 0 | if (flat.size() > kSlopBytes) { |
282 | 0 | limit_ = kSlopBytes; |
283 | 0 | limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; |
284 | 0 | next_chunk_ = patch_buffer_; |
285 | 0 | if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; |
286 | 0 | return flat.data(); |
287 | 0 | } else { |
288 | 0 | if (!flat.empty()) { |
289 | 0 | std::memcpy(patch_buffer_, flat.data(), flat.size()); |
290 | 0 | } |
291 | 0 | limit_ = 0; |
292 | 0 | limit_end_ = buffer_end_ = patch_buffer_ + flat.size(); |
293 | 0 | next_chunk_ = nullptr; |
294 | 0 | if (aliasing_ == kOnPatch) { |
295 | 0 | aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) - |
296 | 0 | reinterpret_cast<std::uintptr_t>(patch_buffer_); |
297 | 0 | } |
298 | 0 | return patch_buffer_; |
299 | 0 | } |
300 | 0 | } |
301 | | |
302 | | const char* InitFrom(io::ZeroCopyInputStream* zcis); |
303 | | |
304 | 0 | const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { |
305 | 0 | if (limit == -1) return InitFrom(zcis); |
306 | 0 | overall_limit_ = limit; |
307 | 0 | auto res = InitFrom(zcis); |
308 | 0 | limit_ = limit - static_cast<int>(buffer_end_ - res); |
309 | 0 | limit_end_ = buffer_end_ + (std::min)(0, limit_); |
310 | 0 | return res; |
311 | 0 | } |
312 | | |
313 | | private: |
314 | | enum { kSlopBytes = 16, kPatchBufferSize = 32 }; |
315 | | static_assert(kPatchBufferSize >= kSlopBytes * 2, |
316 | | "Patch buffer needs to be at least large enough to hold all " |
317 | | "the slop bytes from the previous buffer, plus the first " |
318 | | "kSlopBytes from the next buffer."); |
319 | | |
320 | | const char* limit_end_; // buffer_end_ + min(limit_, 0) |
321 | | const char* buffer_end_; |
322 | | const char* next_chunk_; |
323 | | int size_; |
324 | | int limit_; // relative to buffer_end_; |
325 | | io::ZeroCopyInputStream* zcis_ = nullptr; |
326 | | char patch_buffer_[kPatchBufferSize] = {}; |
327 | | enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; |
328 | | std::uintptr_t aliasing_ = kNoAliasing; |
329 | | // This variable is used to communicate how the parse ended, in order to |
330 | | // completely verify the parsed data. A wire-format parse can end because of |
331 | | // one of the following conditions: |
332 | | // 1) A parse can end on a pushed limit. |
333 | | // 2) A parse can end on End Of Stream (EOS). |
334 | | // 3) A parse can end on 0 tag (only valid for toplevel message). |
335 | | // 4) A parse can end on an end-group tag. |
336 | | // This variable should always be set to 0, which indicates case 1. If the |
337 | | // parse terminated due to EOS (case 2), it's set to 1. In case the parse |
338 | | // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). |
339 | | // This var doesn't really belong in EpsCopyInputStream and should be part of |
340 | | // the ParseContext, but case 2 is most easily and optimally implemented in |
341 | | // DoneFallback. |
342 | | uint32_t last_tag_minus_1_ = 0; |
343 | | int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. |
344 | | // Pretty random large number that seems like a safe allocation on most |
345 | | // systems. TODO do we need to set this as build flag? |
346 | | enum { kSafeStringSize = 50000000 }; |
347 | | |
348 | | // Advances to next buffer chunk returns a pointer to the same logical place |
349 | | // in the stream as set by overrun. Overrun indicates the position in the slop |
350 | | // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at |
351 | | // limit, at which point the returned pointer maybe null if there was an |
352 | | // error. The invariant of this function is that it's guaranteed that |
353 | | // kSlopBytes bytes can be accessed from the returned ptr. This function might |
354 | | // advance more buffers than one in the underlying ZeroCopyInputStream. |
355 | | std::pair<const char*, bool> DoneFallback(int overrun, int depth); |
356 | | // Advances to the next buffer, at most one call to Next() on the underlying |
357 | | // ZeroCopyInputStream is made. This function DOES NOT match the returned |
358 | | // pointer to where in the slop region the parse ends, hence no overrun |
359 | | // parameter. This is useful for string operations where you always copy |
360 | | // to the end of the buffer (including the slop region). |
361 | | const char* Next(); |
362 | | // overrun is the location in the slop region the stream currently is |
363 | | // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of |
364 | | // the ZeroCopyInputStream in the case the parse will end in the last |
365 | | // kSlopBytes of the current buffer. depth is the current depth of nested |
366 | | // groups (or negative if the use case does not need careful tracking). |
367 | | inline const char* NextBuffer(int overrun, int depth); |
368 | | const char* SkipFallback(const char* ptr, int size); |
369 | | const char* AppendStringFallback(const char* ptr, int size, std::string* str); |
370 | | const char* ReadStringFallback(const char* ptr, int size, std::string* str); |
371 | | const char* ReadCordFallback(const char* ptr, int size, absl::Cord* cord); |
372 | | static bool ParseEndsInSlopRegion(const char* begin, int overrun, int depth); |
373 | 0 | bool StreamNext(const void** data) { |
374 | 0 | bool res = zcis_->Next(data, &size_); |
375 | 0 | if (res) overall_limit_ -= size_; |
376 | 0 | return res; |
377 | 0 | } |
378 | 0 | void StreamBackUp(int count) { |
379 | 0 | zcis_->BackUp(count); |
380 | 0 | overall_limit_ += count; |
381 | 0 | } |
382 | | |
383 | | template <typename A> |
384 | | const char* AppendSize(const char* ptr, int size, const A& append) { |
385 | | int chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
386 | | do { |
387 | | ABSL_DCHECK(size > chunk_size); |
388 | | if (next_chunk_ == nullptr) return nullptr; |
389 | | append(ptr, chunk_size); |
390 | | ptr += chunk_size; |
391 | | size -= chunk_size; |
392 | | // TODO Next calls NextBuffer which generates buffers with |
393 | | // overlap and thus incurs cost of copying the slop regions. This is not |
394 | | // necessary for reading strings. We should just call Next buffers. |
395 | | if (limit_ <= kSlopBytes) return nullptr; |
396 | | ptr = Next(); |
397 | | if (ptr == nullptr) return nullptr; // passed the limit |
398 | | ptr += kSlopBytes; |
399 | | chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
400 | | } while (size > chunk_size); |
401 | | append(ptr, size); |
402 | | return ptr + size; |
403 | | } |
404 | | |
405 | | // AppendUntilEnd appends data until a limit (either a PushLimit or end of |
406 | | // stream. Normal payloads are from length delimited fields which have an |
407 | | // explicit size. Reading until limit only comes when the string takes |
408 | | // the place of a protobuf, ie RawMessage, lazy fields and implicit weak |
409 | | // messages. We keep these methods private and friend them. |
410 | | template <typename A> |
411 | 0 | const char* AppendUntilEnd(const char* ptr, const A& append) { |
412 | 0 | if (ptr - buffer_end_ > limit_) return nullptr; |
413 | 0 | while (limit_ > kSlopBytes) { |
414 | 0 | size_t chunk_size = buffer_end_ + kSlopBytes - ptr; |
415 | 0 | append(ptr, chunk_size); |
416 | 0 | ptr = Next(); |
417 | 0 | if (ptr == nullptr) return limit_end_; |
418 | 0 | ptr += kSlopBytes; |
419 | 0 | } |
420 | 0 | auto end = buffer_end_ + limit_; |
421 | 0 | ABSL_DCHECK(end >= ptr); |
422 | 0 | append(ptr, end - ptr); |
423 | 0 | return end; |
424 | 0 | } |
425 | | |
426 | | PROTOBUF_NODISCARD const char* AppendString(const char* ptr, |
427 | 0 | std::string* str) { |
428 | 0 | return AppendUntilEnd( |
429 | 0 | ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); |
430 | 0 | } |
431 | | friend class ImplicitWeakMessage; |
432 | | |
433 | | // Needs access to kSlopBytes. |
434 | | friend PROTOBUF_EXPORT std::pair<const char*, int32_t> ReadSizeFallback( |
435 | | const char* p, uint32_t res); |
436 | | }; |
437 | | |
438 | | using LazyEagerVerifyFnType = const char* (*)(const char* ptr, |
439 | | ParseContext* ctx); |
440 | | using LazyEagerVerifyFnRef = std::remove_pointer<LazyEagerVerifyFnType>::type&; |
441 | | |
442 | | // ParseContext holds all data that is global to the entire parse. Most |
443 | | // importantly it contains the input stream, but also recursion depth and also |
444 | | // stores the end group tag, in case a parser ended on a endgroup, to verify |
445 | | // matching start/end group tags. |
446 | | class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { |
447 | | public: |
448 | | struct Data { |
449 | | const DescriptorPool* pool = nullptr; |
450 | | MessageFactory* factory = nullptr; |
451 | | }; |
452 | | |
453 | | template <typename... T> |
454 | | ParseContext(int depth, bool aliasing, const char** start, T&&... args) |
455 | | : EpsCopyInputStream(aliasing), depth_(depth) { |
456 | | *start = InitFrom(std::forward<T>(args)...); |
457 | | } |
458 | | |
459 | | struct Spawn {}; |
460 | | static constexpr Spawn kSpawn = {}; |
461 | | |
462 | | // Creates a new context from a given "ctx" to inherit a few attributes to |
463 | | // emulate continued parsing. For example, recursion depth or descriptor pools |
464 | | // must be passed down to a new "spawned" context to maintain the same parse |
465 | | // context. Note that the spawned context always disables aliasing (different |
466 | | // input). |
467 | | template <typename... T> |
468 | | ParseContext(Spawn, const ParseContext& ctx, const char** start, T&&... args) |
469 | | : EpsCopyInputStream(false), |
470 | | depth_(ctx.depth_), |
471 | | data_(ctx.data_) |
472 | | { |
473 | | *start = InitFrom(std::forward<T>(args)...); |
474 | | } |
475 | | |
476 | | // Move constructor and assignment operator are not supported because "ptr" |
477 | | // for parsing may have pointed to an inlined buffer (patch_buffer_) which can |
478 | | // be invalid afterwards. |
479 | | ParseContext(ParseContext&&) = delete; |
480 | | ParseContext& operator=(ParseContext&&) = delete; |
481 | | ParseContext& operator=(const ParseContext&) = delete; |
482 | | |
483 | 0 | void TrackCorrectEnding() { group_depth_ = 0; } |
484 | | |
485 | | // Done should only be called when the parsing pointer is pointing to the |
486 | | // beginning of field data - that is, at a tag. Or if it is NULL. |
487 | 0 | bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } |
488 | | |
489 | 0 | int depth() const { return depth_; } |
490 | | |
491 | 0 | Data& data() { return data_; } |
492 | 0 | const Data& data() const { return data_; } |
493 | | |
494 | | const char* ParseMessage(MessageLite* msg, const char* ptr); |
495 | | |
496 | | // Read the length prefix, push the new limit, call the func(ptr), and then |
497 | | // pop the limit. Useful for situations that don't have an actual message. |
498 | | template <typename Func> |
499 | | PROTOBUF_NODISCARD const char* ParseLengthDelimitedInlined(const char*, |
500 | | const Func& func); |
501 | | |
502 | | // Push the recursion depth, call the func(ptr), and then pop depth. Useful |
503 | | // for situations that don't have an actual message. |
504 | | template <typename Func> |
505 | | PROTOBUF_NODISCARD const char* ParseGroupInlined(const char* ptr, |
506 | | uint32_t start_tag, |
507 | | const Func& func); |
508 | | |
509 | | // Use a template to avoid the strong dep into TcParser. All callers will have |
510 | | // the dep. |
511 | | template <typename Parser = TcParser> |
512 | | PROTOBUF_ALWAYS_INLINE const char* ParseMessage( |
513 | | MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr) { |
514 | | return ParseLengthDelimitedInlined(ptr, [&](const char* ptr) { |
515 | | return Parser::ParseLoop(msg, ptr, this, tc_table); |
516 | | }); |
517 | | } |
518 | | template <typename Parser = TcParser> |
519 | | PROTOBUF_ALWAYS_INLINE const char* ParseGroup( |
520 | | MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr, |
521 | | uint32_t start_tag) { |
522 | | return ParseGroupInlined(ptr, start_tag, [&](const char* ptr) { |
523 | | return Parser::ParseLoop(msg, ptr, this, tc_table); |
524 | | }); |
525 | | } |
526 | | |
527 | | PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup( |
528 | 0 | MessageLite* msg, const char* ptr, uint32_t tag) { |
529 | 0 | if (--depth_ < 0) return nullptr; |
530 | 0 | group_depth_++; |
531 | 0 | auto old_depth = depth_; |
532 | 0 | auto old_group_depth = group_depth_; |
533 | 0 | ptr = msg->_InternalParse(ptr, this); |
534 | 0 | if (ptr != nullptr) { |
535 | 0 | ABSL_DCHECK_EQ(old_depth, depth_); |
536 | 0 | ABSL_DCHECK_EQ(old_group_depth, group_depth_); |
537 | 0 | } |
538 | 0 | group_depth_--; |
539 | 0 | depth_++; |
540 | 0 | if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; |
541 | 0 | return ptr; |
542 | 0 | } |
543 | | |
544 | | private: |
545 | | // Out-of-line routine to save space in ParseContext::ParseMessage<T> |
546 | | // LimitToken old; |
547 | | // ptr = ReadSizeAndPushLimitAndDepth(ptr, &old) |
548 | | // is equivalent to: |
549 | | // int size = ReadSize(&ptr); |
550 | | // if (!ptr) return nullptr; |
551 | | // LimitToken old = PushLimit(ptr, size); |
552 | | // if (--depth_ < 0) return nullptr; |
553 | | PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth( |
554 | | const char* ptr, LimitToken* old_limit); |
555 | | |
556 | | // As above, but fully inlined for the cases where we care about performance |
557 | | // more than size. eg TcParser. |
558 | | PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE const char* |
559 | | ReadSizeAndPushLimitAndDepthInlined(const char* ptr, LimitToken* old_limit); |
560 | | |
561 | | // The context keeps an internal stack to keep track of the recursive |
562 | | // part of the parse state. |
563 | | // Current depth of the active parser, depth counts down. |
564 | | // This is used to limit recursion depth (to prevent overflow on malicious |
565 | | // data), but is also used to index in stack_ to store the current state. |
566 | | int depth_; |
567 | | // Unfortunately necessary for the fringe case of ending on 0 or end-group tag |
568 | | // in the last kSlopBytes of a ZeroCopyInputStream chunk. |
569 | | int group_depth_ = INT_MIN; |
570 | | Data data_; |
571 | | }; |
572 | | |
573 | | template <int> |
574 | | struct EndianHelper; |
575 | | |
576 | | template <> |
577 | | struct EndianHelper<1> { |
578 | 0 | static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); } |
579 | | }; |
580 | | |
581 | | template <> |
582 | | struct EndianHelper<2> { |
583 | 0 | static uint16_t Load(const void* p) { |
584 | 0 | uint16_t tmp; |
585 | 0 | std::memcpy(&tmp, p, 2); |
586 | 0 | return little_endian::ToHost(tmp); |
587 | 0 | } |
588 | | }; |
589 | | |
590 | | template <> |
591 | | struct EndianHelper<4> { |
592 | 0 | static uint32_t Load(const void* p) { |
593 | 0 | uint32_t tmp; |
594 | 0 | std::memcpy(&tmp, p, 4); |
595 | 0 | return little_endian::ToHost(tmp); |
596 | 0 | } |
597 | | }; |
598 | | |
599 | | template <> |
600 | | struct EndianHelper<8> { |
601 | 0 | static uint64_t Load(const void* p) { |
602 | 0 | uint64_t tmp; |
603 | 0 | std::memcpy(&tmp, p, 8); |
604 | 0 | return little_endian::ToHost(tmp); |
605 | 0 | } |
606 | | }; |
607 | | |
608 | | template <typename T> |
609 | 0 | T UnalignedLoad(const char* p) { |
610 | 0 | auto tmp = EndianHelper<sizeof(T)>::Load(p); |
611 | 0 | T res; |
612 | 0 | memcpy(&res, &tmp, sizeof(T)); |
613 | 0 | return res; |
614 | 0 | } |
615 | | template <typename T, typename Void, |
616 | | typename = std::enable_if_t<std::is_same<Void, void>::value>> |
617 | | T UnalignedLoad(const Void* p) { |
618 | | return UnalignedLoad<T>(reinterpret_cast<const char*>(p)); |
619 | | } |
620 | | |
621 | | PROTOBUF_EXPORT |
622 | | std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res); |
623 | | PROTOBUF_EXPORT |
624 | | std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res); |
625 | | |
626 | 0 | inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { |
627 | 0 | auto tmp = VarintParseSlow32(p, res); |
628 | 0 | *out = tmp.second; |
629 | 0 | return tmp.first; |
630 | 0 | } |
631 | | |
632 | 0 | inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { |
633 | 0 | auto tmp = VarintParseSlow64(p, res); |
634 | 0 | *out = tmp.second; |
635 | 0 | return tmp.first; |
636 | 0 | } |
637 | | |
638 | | #if defined(__aarch64__) && !defined(_MSC_VER) |
639 | | // Generally, speaking, the ARM-optimized Varint decode algorithm is to extract |
640 | | // and concatenate all potentially valid data bits, compute the actual length |
641 | | // of the Varint, and mask off the data bits which are not actually part of the |
642 | | // result. More detail on the two main parts is shown below. |
643 | | // |
644 | | // 1) Extract and concatenate all potentially valid data bits. |
645 | | // Two ARM-specific features help significantly: |
646 | | // a) Efficient and non-destructive bit extraction (UBFX) |
647 | | // b) A single instruction can perform both an OR with a shifted |
648 | | // second operand in one cycle. E.g., the following two lines do the same |
649 | | // thing |
650 | | // ```result = operand_1 | (operand2 << 7);``` |
651 | | // ```ORR %[result], %[operand_1], %[operand_2], LSL #7``` |
652 | | // The figure below shows the implementation for handling four chunks. |
653 | | // |
654 | | // Bits 32 31-24 23 22-16 15 14-8 7 6-0 |
655 | | // +----+---------+----+---------+----+---------+----+---------+ |
656 | | // |CB 3| Chunk 3 |CB 2| Chunk 2 |CB 1| Chunk 1 |CB 0| Chunk 0 | |
657 | | // +----+---------+----+---------+----+---------+----+---------+ |
658 | | // | | | | |
659 | | // UBFX UBFX UBFX UBFX -- cycle 1 |
660 | | // | | | | |
661 | | // V V V V |
662 | | // Combined LSL #7 and ORR Combined LSL #7 and ORR -- cycle 2 |
663 | | // | | |
664 | | // V V |
665 | | // Combined LSL #14 and ORR -- cycle 3 |
666 | | // | |
667 | | // V |
668 | | // Parsed bits 0-27 |
669 | | // |
670 | | // |
671 | | // 2) Calculate the index of the cleared continuation bit in order to determine |
672 | | // where the encoded Varint ends and the size of the decoded value. The |
673 | | // easiest way to do this is mask off all data bits, leaving just the |
674 | | // continuation bits. We actually need to do the masking on an inverted |
675 | | // copy of the data, which leaves a 1 in all continuation bits which were |
676 | | // originally clear. The number of trailing zeroes in this value indicates |
677 | | // the size of the Varint. |
678 | | // |
679 | | // AND 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 |
680 | | // |
681 | | // Bits 63 55 47 39 31 23 15 7 |
682 | | // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
683 | | // ~ |CB 7| |CB 6| |CB 5| |CB 4| |CB 3| |CB 2| |CB 1| |CB 0| | |
684 | | // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
685 | | // | | | | | | | | |
686 | | // V V V V V V V V |
687 | | // Bits 63 55 47 39 31 23 15 7 |
688 | | // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
689 | | // |~CB 7|0|~CB 6|0|~CB 5|0|~CB 4|0|~CB 3|0|~CB 2|0|~CB 1|0|~CB 0|0| |
690 | | // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
691 | | // | |
692 | | // CTZ |
693 | | // V |
694 | | // Index of first cleared continuation bit |
695 | | // |
696 | | // |
697 | | // While this is implemented in C++ significant care has been taken to ensure |
698 | | // the compiler emits the best instruction sequence. In some cases we use the |
699 | | // following two functions to manipulate the compiler's scheduling decisions. |
700 | | // |
701 | | // Controls compiler scheduling by telling it that the first value is modified |
702 | | // by the second value the callsite. This is useful if non-critical path |
703 | | // instructions are too aggressively scheduled, resulting in a slowdown of the |
704 | | // actual critical path due to opportunity costs. An example usage is shown |
705 | | // where a false dependence of num_bits on result is added to prevent checking |
706 | | // for a very unlikely error until all critical path instructions have been |
707 | | // fetched. |
708 | | // |
709 | | // ``` |
710 | | // num_bits = <multiple operations to calculate new num_bits value> |
711 | | // result = <multiple operations to calculate result> |
712 | | // num_bits = ValueBarrier(num_bits, result); |
713 | | // if (num_bits == 63) { |
714 | | // ABSL_LOG(FATAL) << "Invalid num_bits value"; |
715 | | // } |
716 | | // ``` |
717 | | // Falsely indicate that the specific value is modified at this location. This |
718 | | // prevents code which depends on this value from being scheduled earlier. |
719 | | template <typename V1Type> |
720 | | PROTOBUF_ALWAYS_INLINE inline V1Type ValueBarrier(V1Type value1) { |
721 | | asm("" : "+r"(value1)); |
722 | | return value1; |
723 | | } |
724 | | |
725 | | template <typename V1Type, typename V2Type> |
726 | | PROTOBUF_ALWAYS_INLINE inline V1Type ValueBarrier(V1Type value1, |
727 | | V2Type value2) { |
728 | | asm("" : "+r"(value1) : "r"(value2)); |
729 | | return value1; |
730 | | } |
731 | | |
732 | | // Performs a 7 bit UBFX (Unsigned Bit Extract) starting at the indicated bit. |
733 | | static PROTOBUF_ALWAYS_INLINE inline uint64_t Ubfx7(uint64_t data, |
734 | | uint64_t start) { |
735 | | return ValueBarrier((data >> start) & 0x7f); |
736 | | } |
737 | | |
738 | | PROTOBUF_ALWAYS_INLINE inline uint64_t ExtractAndMergeTwoChunks( |
739 | | uint64_t data, uint64_t first_byte) { |
740 | | ABSL_DCHECK_LE(first_byte, 6U); |
741 | | uint64_t first = Ubfx7(data, first_byte * 8); |
742 | | uint64_t second = Ubfx7(data, (first_byte + 1) * 8); |
743 | | return ValueBarrier(first | (second << 7)); |
744 | | } |
745 | | |
746 | | struct SlowPathEncodedInfo { |
747 | | const char* p; |
748 | | uint64_t last8; |
749 | | uint64_t valid_bits; |
750 | | uint64_t valid_chunk_bits; |
751 | | uint64_t masked_cont_bits; |
752 | | }; |
753 | | |
754 | | // Performs multiple actions which are identical between 32 and 64 bit Varints |
755 | | // in order to compute the length of the encoded Varint and compute the new |
756 | | // of p. |
757 | | PROTOBUF_ALWAYS_INLINE inline SlowPathEncodedInfo ComputeLengthAndUpdateP( |
758 | | const char* p) { |
759 | | SlowPathEncodedInfo result; |
760 | | // Load the last two bytes of the encoded Varint. |
761 | | std::memcpy(&result.last8, p + 2, sizeof(result.last8)); |
762 | | uint64_t mask = ValueBarrier(0x8080808080808080); |
763 | | // Only set continuation bits remain |
764 | | result.masked_cont_bits = ValueBarrier(mask & ~result.last8); |
765 | | // The first cleared continuation bit is the most significant 1 in the |
766 | | // reversed value. Result is undefined for an input of 0 and we handle that |
767 | | // case below. |
768 | | result.valid_bits = absl::countr_zero(result.masked_cont_bits); |
769 | | // Calculates the number of chunks in the encoded Varint. This value is low |
770 | | // by three as neither the cleared continuation chunk nor the first two chunks |
771 | | // are counted. |
772 | | uint64_t set_continuation_bits = result.valid_bits >> 3; |
773 | | // Update p to point past the encoded Varint. |
774 | | result.p = p + set_continuation_bits + 3; |
775 | | // Calculate number of valid data bits in the decoded value so invalid bits |
776 | | // can be masked off. Value is too low by 14 but we account for that when |
777 | | // calculating the mask. |
778 | | result.valid_chunk_bits = result.valid_bits - set_continuation_bits; |
779 | | return result; |
780 | | } |
781 | | |
782 | | inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint64_t> |
783 | | VarintParseSlowArm64(const char* p, uint64_t first8) { |
784 | | constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL; |
785 | | constexpr uint64_t kFirstResultBitChunk2 = 2 * 7; |
786 | | constexpr uint64_t kFirstResultBitChunk4 = 4 * 7; |
787 | | constexpr uint64_t kFirstResultBitChunk6 = 6 * 7; |
788 | | constexpr uint64_t kFirstResultBitChunk8 = 8 * 7; |
789 | | |
790 | | SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p); |
791 | | // Extract data bits from the low six chunks. This includes chunks zero and |
792 | | // one which we already know are valid. |
793 | | uint64_t merged_01 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/0); |
794 | | uint64_t merged_23 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/2); |
795 | | uint64_t merged_45 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/4); |
796 | | // Low 42 bits of decoded value. |
797 | | uint64_t result = merged_01 | (merged_23 << kFirstResultBitChunk2) | |
798 | | (merged_45 << kFirstResultBitChunk4); |
799 | | // This immediate ends in 14 zeroes since valid_chunk_bits is too low by 14. |
800 | | uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits; |
801 | | // iff the Varint i invalid. |
802 | | if (PROTOBUF_PREDICT_FALSE(info.masked_cont_bits == 0)) { |
803 | | return {nullptr, 0}; |
804 | | } |
805 | | // Test for early exit if Varint does not exceed 6 chunks. Branching on one |
806 | | // bit is faster on ARM than via a compare and branch. |
807 | | if (PROTOBUF_PREDICT_FALSE((info.valid_bits & 0x20) != 0)) { |
808 | | // Extract data bits from high four chunks. |
809 | | uint64_t merged_67 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/6); |
810 | | // Last two chunks come from last two bytes of info.last8. |
811 | | uint64_t merged_89 = |
812 | | ExtractAndMergeTwoChunks(info.last8, /*first_chunk=*/6); |
813 | | result |= merged_67 << kFirstResultBitChunk6; |
814 | | result |= merged_89 << kFirstResultBitChunk8; |
815 | | // Handle an invalid Varint with all 10 continuation bits set. |
816 | | } |
817 | | // Mask off invalid data bytes. |
818 | | result &= ~result_mask; |
819 | | return {info.p, result}; |
820 | | } |
821 | | |
822 | | // See comments in VarintParseSlowArm64 for a description of the algorithm. |
823 | | // Differences in the 32 bit version are noted below. |
824 | | inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint32_t> |
825 | | VarintParseSlowArm32(const char* p, uint64_t first8) { |
826 | | constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL; |
827 | | constexpr uint64_t kFirstResultBitChunk1 = 1 * 7; |
828 | | constexpr uint64_t kFirstResultBitChunk3 = 3 * 7; |
829 | | |
830 | | // This also skips the slop bytes. |
831 | | SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p); |
832 | | // Extract data bits from chunks 1-4. Chunk zero is merged in below. |
833 | | uint64_t merged_12 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/1); |
834 | | uint64_t merged_34 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/3); |
835 | | first8 = ValueBarrier(first8, p); |
836 | | uint64_t result = Ubfx7(first8, /*start=*/0); |
837 | | result = ValueBarrier(result | merged_12 << kFirstResultBitChunk1); |
838 | | result = ValueBarrier(result | merged_34 << kFirstResultBitChunk3); |
839 | | uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits; |
840 | | result &= ~result_mask; |
841 | | // It is extremely unlikely that a Varint is invalid so checking that |
842 | | // condition isn't on the critical path. Here we make sure that we don't do so |
843 | | // until result has been computed. |
844 | | info.masked_cont_bits = ValueBarrier(info.masked_cont_bits, result); |
845 | | if (PROTOBUF_PREDICT_FALSE(info.masked_cont_bits == 0)) { |
846 | | return {nullptr, 0}; |
847 | | } |
848 | | return {info.p, result}; |
849 | | } |
850 | | |
851 | | static const char* VarintParseSlowArm(const char* p, uint32_t* out, |
852 | | uint64_t first8) { |
853 | | auto tmp = VarintParseSlowArm32(p, first8); |
854 | | *out = tmp.second; |
855 | | return tmp.first; |
856 | | } |
857 | | |
858 | | static const char* VarintParseSlowArm(const char* p, uint64_t* out, |
859 | | uint64_t first8) { |
860 | | auto tmp = VarintParseSlowArm64(p, first8); |
861 | | *out = tmp.second; |
862 | | return tmp.first; |
863 | | } |
864 | | #endif |
865 | | |
866 | | // The caller must ensure that p points to at least 10 valid bytes. |
867 | | template <typename T> |
868 | 0 | PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) { |
869 | 0 | #if defined(__aarch64__) && defined(ABSL_IS_LITTLE_ENDIAN) && !defined(_MSC_VER) |
870 | 0 | // This optimization is not supported in big endian mode |
871 | 0 | uint64_t first8; |
872 | 0 | std::memcpy(&first8, p, sizeof(first8)); |
873 | 0 | if (PROTOBUF_PREDICT_TRUE((first8 & 0x80) == 0)) { |
874 | 0 | *out = static_cast<uint8_t>(first8); |
875 | 0 | return p + 1; |
876 | 0 | } |
877 | 0 | if (PROTOBUF_PREDICT_TRUE((first8 & 0x8000) == 0)) { |
878 | 0 | uint64_t chunk1; |
879 | 0 | uint64_t chunk2; |
880 | 0 | // Extracting the two chunks this way gives a speedup for this path. |
881 | 0 | chunk1 = Ubfx7(first8, 0); |
882 | 0 | chunk2 = Ubfx7(first8, 8); |
883 | 0 | *out = chunk1 | (chunk2 << 7); |
884 | 0 | return p + 2; |
885 | 0 | } |
886 | 0 | return VarintParseSlowArm(p, out, first8); |
887 | 0 | #else // __aarch64__ |
888 | 0 | auto ptr = reinterpret_cast<const uint8_t*>(p); |
889 | 0 | uint32_t res = ptr[0]; |
890 | 0 | if ((res & 0x80) == 0) { |
891 | 0 | *out = res; |
892 | 0 | return p + 1; |
893 | 0 | } |
894 | 0 | return VarintParseSlow(p, res, out); |
895 | 0 | #endif // __aarch64__ |
896 | 0 | } Unexecuted instantiation: char const* google::protobuf::internal::VarintParse<unsigned long>(char const*, unsigned long*) Unexecuted instantiation: char const* google::protobuf::internal::VarintParse<unsigned int>(char const*, unsigned int*) |
897 | | |
898 | | // Used for tags, could read up to 5 bytes which must be available. |
899 | | // Caller must ensure it's safe to call. |
900 | | |
901 | | PROTOBUF_EXPORT |
902 | | std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res); |
903 | | |
904 | | // Same as ParseVarint but only accept 5 bytes at most. |
905 | | inline const char* ReadTag(const char* p, uint32_t* out, |
906 | 0 | uint32_t /*max_tag*/ = 0) { |
907 | 0 | uint32_t res = static_cast<uint8_t>(p[0]); |
908 | 0 | if (res < 128) { |
909 | 0 | *out = res; |
910 | 0 | return p + 1; |
911 | 0 | } |
912 | 0 | uint32_t second = static_cast<uint8_t>(p[1]); |
913 | 0 | res += (second - 1) << 7; |
914 | 0 | if (second < 128) { |
915 | 0 | *out = res; |
916 | 0 | return p + 2; |
917 | 0 | } |
918 | 0 | auto tmp = ReadTagFallback(p, res); |
919 | 0 | *out = tmp.second; |
920 | 0 | return tmp.first; |
921 | 0 | } |
922 | | |
923 | | // As above, but optimized to consume very few registers while still being fast, |
924 | | // ReadTagInlined is useful for callers that don't mind the extra code but would |
925 | | // like to avoid an extern function call causing spills into the stack. |
926 | | // |
927 | | // Two support routines for ReadTagInlined come first... |
928 | | template <class T> |
929 | | PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE constexpr T RotateLeft( |
930 | 0 | T x, int s) noexcept { |
931 | 0 | return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) | |
932 | 0 | static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1))); |
933 | 0 | } |
934 | | |
935 | | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE uint64_t |
936 | 0 | RotRight7AndReplaceLowByte(uint64_t res, const char& byte) { |
937 | 0 | // TODO: remove the inline assembly |
938 | 0 | #if defined(__x86_64__) && defined(__GNUC__) |
939 | 0 | // This will only use one register for `res`. |
940 | 0 | // `byte` comes as a reference to allow the compiler to generate code like: |
941 | 0 | // |
942 | 0 | // rorq $7, %rcx |
943 | 0 | // movb 1(%rax), %cl |
944 | 0 | // |
945 | 0 | // which avoids loading the incoming bytes into a separate register first. |
946 | 0 | asm("ror $7,%0\n\t" |
947 | 0 | "movb %1,%b0" |
948 | 0 | : "+r"(res) |
949 | 0 | : "m"(byte)); |
950 | 0 | #else |
951 | 0 | res = RotateLeft(res, -7); |
952 | 0 | res = res & ~0xFF; |
953 | 0 | res |= 0xFF & byte; |
954 | 0 | #endif |
955 | 0 | return res; |
956 | 0 | } |
957 | | |
958 | | inline PROTOBUF_ALWAYS_INLINE const char* ReadTagInlined(const char* ptr, |
959 | 0 | uint32_t* out) { |
960 | 0 | uint64_t res = 0xFF & ptr[0]; |
961 | 0 | if (PROTOBUF_PREDICT_FALSE(res >= 128)) { |
962 | 0 | res = RotRight7AndReplaceLowByte(res, ptr[1]); |
963 | 0 | if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
964 | 0 | res = RotRight7AndReplaceLowByte(res, ptr[2]); |
965 | 0 | if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
966 | 0 | res = RotRight7AndReplaceLowByte(res, ptr[3]); |
967 | 0 | if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
968 | 0 | // Note: this wouldn't work if res were 32-bit, |
969 | 0 | // because then replacing the low byte would overwrite |
970 | 0 | // the bottom 4 bits of the result. |
971 | 0 | res = RotRight7AndReplaceLowByte(res, ptr[4]); |
972 | 0 | if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
973 | 0 | // The proto format does not permit longer than 5-byte encodings for |
974 | 0 | // tags. |
975 | 0 | *out = 0; |
976 | 0 | return nullptr; |
977 | 0 | } |
978 | 0 | *out = static_cast<uint32_t>(RotateLeft(res, 28)); |
979 | 0 | #if defined(__GNUC__) |
980 | 0 | // Note: this asm statement prevents the compiler from |
981 | 0 | // trying to share the "return ptr + constant" among all |
982 | 0 | // branches. |
983 | 0 | asm("" : "+r"(ptr)); |
984 | 0 | #endif |
985 | 0 | return ptr + 5; |
986 | 0 | } |
987 | 0 | *out = static_cast<uint32_t>(RotateLeft(res, 21)); |
988 | 0 | return ptr + 4; |
989 | 0 | } |
990 | 0 | *out = static_cast<uint32_t>(RotateLeft(res, 14)); |
991 | 0 | return ptr + 3; |
992 | 0 | } |
993 | 0 | *out = static_cast<uint32_t>(RotateLeft(res, 7)); |
994 | 0 | return ptr + 2; |
995 | 0 | } |
996 | 0 | *out = static_cast<uint32_t>(res); |
997 | 0 | return ptr + 1; |
998 | 0 | } |
999 | | |
1000 | | // Decode 2 consecutive bytes of a varint and returns the value, shifted left |
1001 | | // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the |
1002 | | // first byte's continuation bit is set. |
1003 | | // If bit 15 of return value is set (equivalent to the continuation bits of both |
1004 | | // bytes being set) the varint continues, otherwise the parse is done. On x86 |
1005 | | // movsx eax, dil |
1006 | | // and edi, eax |
1007 | | // add eax, edi |
1008 | | // adc [rsi], 1 |
1009 | 0 | inline uint32_t DecodeTwoBytes(const char** ptr) { |
1010 | 0 | uint32_t value = UnalignedLoad<uint16_t>(*ptr); |
1011 | 0 | // Sign extend the low byte continuation bit |
1012 | 0 | uint32_t x = static_cast<int8_t>(value); |
1013 | 0 | value &= x; // Mask out the high byte iff no continuation |
1014 | 0 | // This add is an amazing operation, it cancels the low byte continuation bit |
1015 | 0 | // from y transferring it to the carry. Simultaneously it also shifts the 7 |
1016 | 0 | // LSB left by one tightly against high byte varint bits. Hence value now |
1017 | 0 | // contains the unpacked value shifted left by 1. |
1018 | 0 | value += x; |
1019 | 0 | // Use the carry to update the ptr appropriately. |
1020 | 0 | *ptr += value < x ? 2 : 1; |
1021 | 0 | return value; |
1022 | 0 | } |
1023 | | |
1024 | | // More efficient varint parsing for big varints |
1025 | 0 | inline const char* ParseBigVarint(const char* p, uint64_t* out) { |
1026 | 0 | auto pnew = p; |
1027 | 0 | auto tmp = DecodeTwoBytes(&pnew); |
1028 | 0 | uint64_t res = tmp >> 1; |
1029 | 0 | if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
1030 | 0 | *out = res; |
1031 | 0 | return pnew; |
1032 | 0 | } |
1033 | 0 | for (std::uint32_t i = 1; i < 5; i++) { |
1034 | 0 | pnew = p + 2 * i; |
1035 | 0 | tmp = DecodeTwoBytes(&pnew); |
1036 | 0 | res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1); |
1037 | 0 | if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
1038 | 0 | *out = res; |
1039 | 0 | return pnew; |
1040 | 0 | } |
1041 | 0 | } |
1042 | 0 | return nullptr; |
1043 | 0 | } |
1044 | | |
1045 | | PROTOBUF_EXPORT |
1046 | | std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first); |
1047 | | // Used for tags, could read up to 5 bytes which must be available. Additionally |
1048 | | // it makes sure the unsigned value fits a int32_t, otherwise returns nullptr. |
1049 | | // Caller must ensure its safe to call. |
1050 | 0 | inline uint32_t ReadSize(const char** pp) { |
1051 | 0 | auto p = *pp; |
1052 | 0 | uint32_t res = static_cast<uint8_t>(p[0]); |
1053 | 0 | if (res < 128) { |
1054 | 0 | *pp = p + 1; |
1055 | 0 | return res; |
1056 | 0 | } |
1057 | 0 | auto x = ReadSizeFallback(p, res); |
1058 | 0 | *pp = x.first; |
1059 | 0 | return x.second; |
1060 | 0 | } |
1061 | | |
1062 | | // Some convenience functions to simplify the generated parse loop code. |
1063 | | // Returning the value and updating the buffer pointer allows for nicer |
1064 | | // function composition. We rely on the compiler to inline this. |
1065 | | // Also in debug compiles having local scoped variables tend to generated |
1066 | | // stack frames that scale as O(num fields). |
1067 | 0 | inline uint64_t ReadVarint64(const char** p) { |
1068 | 0 | uint64_t tmp; |
1069 | 0 | *p = VarintParse(*p, &tmp); |
1070 | 0 | return tmp; |
1071 | 0 | } |
1072 | | |
1073 | 0 | inline uint32_t ReadVarint32(const char** p) { |
1074 | 0 | uint32_t tmp; |
1075 | 0 | *p = VarintParse(*p, &tmp); |
1076 | 0 | return tmp; |
1077 | 0 | } |
1078 | | |
1079 | 0 | inline int64_t ReadVarintZigZag64(const char** p) { |
1080 | 0 | uint64_t tmp; |
1081 | 0 | *p = VarintParse(*p, &tmp); |
1082 | 0 | return WireFormatLite::ZigZagDecode64(tmp); |
1083 | 0 | } |
1084 | | |
1085 | 0 | inline int32_t ReadVarintZigZag32(const char** p) { |
1086 | 0 | uint64_t tmp; |
1087 | 0 | *p = VarintParse(*p, &tmp); |
1088 | 0 | return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp)); |
1089 | 0 | } |
1090 | | |
1091 | | template <typename Func> |
1092 | | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE const char* |
1093 | 0 | ParseContext::ParseLengthDelimitedInlined(const char* ptr, const Func& func) { |
1094 | 0 | LimitToken old; |
1095 | 0 | ptr = ReadSizeAndPushLimitAndDepthInlined(ptr, &old); |
1096 | 0 | if (ptr == nullptr) return ptr; |
1097 | 0 | auto old_depth = depth_; |
1098 | 0 | PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr); |
1099 | 0 | if (ptr != nullptr) ABSL_DCHECK_EQ(old_depth, depth_); |
1100 | 0 | depth_++; |
1101 | 0 | if (!PopLimit(std::move(old))) return nullptr; |
1102 | 0 | return ptr; |
1103 | 0 | } |
1104 | | |
1105 | | template <typename Func> |
1106 | | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE const char* |
1107 | | ParseContext::ParseGroupInlined(const char* ptr, uint32_t start_tag, |
1108 | 0 | const Func& func) { |
1109 | 0 | if (--depth_ < 0) return nullptr; |
1110 | 0 | group_depth_++; |
1111 | 0 | auto old_depth = depth_; |
1112 | 0 | auto old_group_depth = group_depth_; |
1113 | 0 | PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr); |
1114 | 0 | if (ptr != nullptr) { |
1115 | 0 | ABSL_DCHECK_EQ(old_depth, depth_); |
1116 | 0 | ABSL_DCHECK_EQ(old_group_depth, group_depth_); |
1117 | 0 | } |
1118 | 0 | group_depth_--; |
1119 | 0 | depth_++; |
1120 | 0 | if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(start_tag))) return nullptr; |
1121 | 0 | return ptr; |
1122 | 0 | } |
1123 | | |
1124 | | inline const char* ParseContext::ReadSizeAndPushLimitAndDepthInlined( |
1125 | 0 | const char* ptr, LimitToken* old_limit) { |
1126 | 0 | int size = ReadSize(&ptr); |
1127 | 0 | if (PROTOBUF_PREDICT_FALSE(!ptr) || depth_ <= 0) { |
1128 | 0 | return nullptr; |
1129 | 0 | } |
1130 | 0 | *old_limit = PushLimit(ptr, size); |
1131 | 0 | --depth_; |
1132 | 0 | return ptr; |
1133 | 0 | } |
1134 | | |
1135 | | template <typename Tag, typename T> |
1136 | | const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr, |
1137 | | Tag expected_tag, |
1138 | | RepeatedField<T>* out) { |
1139 | | do { |
1140 | | out->Add(UnalignedLoad<T>(ptr)); |
1141 | | ptr += sizeof(T); |
1142 | | if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr; |
1143 | | } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag))); |
1144 | | return ptr; |
1145 | | } |
1146 | | |
1147 | | // Add any of the following lines to debug which parse function is failing. |
1148 | | |
1149 | | #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ |
1150 | | if (!(predicate)) { \ |
1151 | | /* ::raise(SIGINT); */ \ |
1152 | | /* ABSL_LOG(ERROR) << "Parse failure"; */ \ |
1153 | | return ret; \ |
1154 | | } |
1155 | | |
1156 | | #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ |
1157 | | GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) |
1158 | | |
1159 | | template <typename T> |
1160 | | const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size, |
1161 | | RepeatedField<T>* out) { |
1162 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
1163 | | int nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
1164 | | while (size > nbytes) { |
1165 | | int num = nbytes / sizeof(T); |
1166 | | int old_entries = out->size(); |
1167 | | out->Reserve(old_entries + num); |
1168 | | int block_size = num * sizeof(T); |
1169 | | auto dst = out->AddNAlreadyReserved(num); |
1170 | | #ifdef ABSL_IS_LITTLE_ENDIAN |
1171 | | std::memcpy(dst, ptr, block_size); |
1172 | | #else |
1173 | | for (int i = 0; i < num; i++) |
1174 | | dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
1175 | | #endif |
1176 | | size -= block_size; |
1177 | | if (limit_ <= kSlopBytes) return nullptr; |
1178 | | ptr = Next(); |
1179 | | if (ptr == nullptr) return nullptr; |
1180 | | ptr += kSlopBytes - (nbytes - block_size); |
1181 | | nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
1182 | | } |
1183 | | int num = size / sizeof(T); |
1184 | | int block_size = num * sizeof(T); |
1185 | | if (num == 0) return size == block_size ? ptr : nullptr; |
1186 | | int old_entries = out->size(); |
1187 | | out->Reserve(old_entries + num); |
1188 | | auto dst = out->AddNAlreadyReserved(num); |
1189 | | #ifdef ABSL_IS_LITTLE_ENDIAN |
1190 | | ABSL_CHECK(dst != nullptr) << out << "," << num; |
1191 | | std::memcpy(dst, ptr, block_size); |
1192 | | #else |
1193 | | for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
1194 | | #endif |
1195 | | ptr += block_size; |
1196 | | if (size != block_size) return nullptr; |
1197 | | return ptr; |
1198 | | } |
1199 | | |
1200 | | template <typename Add> |
1201 | | const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { |
1202 | | while (ptr < end) { |
1203 | | uint64_t varint; |
1204 | | ptr = VarintParse(ptr, &varint); |
1205 | | if (ptr == nullptr) return nullptr; |
1206 | | add(varint); |
1207 | | } |
1208 | | return ptr; |
1209 | | } |
1210 | | |
1211 | | template <typename Add, typename SizeCb> |
1212 | | const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add, |
1213 | | SizeCb size_callback) { |
1214 | | int size = ReadSize(&ptr); |
1215 | | size_callback(size); |
1216 | | |
1217 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
1218 | | int chunk_size = static_cast<int>(buffer_end_ - ptr); |
1219 | | while (size > chunk_size) { |
1220 | | ptr = ReadPackedVarintArray(ptr, buffer_end_, add); |
1221 | | if (ptr == nullptr) return nullptr; |
1222 | | int overrun = static_cast<int>(ptr - buffer_end_); |
1223 | | ABSL_DCHECK(overrun >= 0 && overrun <= kSlopBytes); |
1224 | | if (size - chunk_size <= kSlopBytes) { |
1225 | | // The current buffer contains all the information needed, we don't need |
1226 | | // to flip buffers. However we must parse from a buffer with enough space |
1227 | | // so we are not prone to a buffer overflow. |
1228 | | char buf[kSlopBytes + 10] = {}; |
1229 | | std::memcpy(buf, buffer_end_, kSlopBytes); |
1230 | | ABSL_CHECK_LE(size - chunk_size, kSlopBytes); |
1231 | | auto end = buf + (size - chunk_size); |
1232 | | auto res = ReadPackedVarintArray(buf + overrun, end, add); |
1233 | | if (res == nullptr || res != end) return nullptr; |
1234 | | return buffer_end_ + (res - buf); |
1235 | | } |
1236 | | size -= overrun + chunk_size; |
1237 | | ABSL_DCHECK_GT(size, 0); |
1238 | | // We must flip buffers |
1239 | | if (limit_ <= kSlopBytes) return nullptr; |
1240 | | ptr = Next(); |
1241 | | if (ptr == nullptr) return nullptr; |
1242 | | ptr += overrun; |
1243 | | chunk_size = static_cast<int>(buffer_end_ - ptr); |
1244 | | } |
1245 | | auto end = ptr + size; |
1246 | | ptr = ReadPackedVarintArray(ptr, end, add); |
1247 | | return end == ptr ? ptr : nullptr; |
1248 | | } |
1249 | | |
1250 | | // Helper for verification of utf8 |
1251 | | PROTOBUF_EXPORT |
1252 | | bool VerifyUTF8(absl::string_view s, const char* field_name); |
1253 | | |
1254 | 0 | inline bool VerifyUTF8(const std::string* s, const char* field_name) { |
1255 | 0 | return VerifyUTF8(*s, field_name); |
1256 | 0 | } |
1257 | | |
1258 | | // All the string parsers with or without UTF checking and for all CTypes. |
1259 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* InlineGreedyStringParser( |
1260 | | std::string* s, const char* ptr, ParseContext* ctx); |
1261 | | |
1262 | | PROTOBUF_NODISCARD inline const char* InlineCordParser(::absl::Cord* cord, |
1263 | | const char* ptr, |
1264 | 0 | ParseContext* ctx) { |
1265 | 0 | int size = ReadSize(&ptr); |
1266 | 0 | if (!ptr) return nullptr; |
1267 | 0 | return ctx->ReadCord(ptr, size, cord); |
1268 | 0 | } |
1269 | | |
1270 | | |
1271 | | template <typename T> |
1272 | | PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser, |
1273 | | const char* ptr, ParseContext* ctx) { |
1274 | | uint32_t number = tag >> 3; |
1275 | | GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); |
1276 | | using WireType = internal::WireFormatLite::WireType; |
1277 | | switch (tag & 7) { |
1278 | | case WireType::WIRETYPE_VARINT: { |
1279 | | uint64_t value; |
1280 | | ptr = VarintParse(ptr, &value); |
1281 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
1282 | | field_parser.AddVarint(number, value); |
1283 | | break; |
1284 | | } |
1285 | | case WireType::WIRETYPE_FIXED64: { |
1286 | | uint64_t value = UnalignedLoad<uint64_t>(ptr); |
1287 | | ptr += 8; |
1288 | | field_parser.AddFixed64(number, value); |
1289 | | break; |
1290 | | } |
1291 | | case WireType::WIRETYPE_LENGTH_DELIMITED: { |
1292 | | ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); |
1293 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
1294 | | break; |
1295 | | } |
1296 | | case WireType::WIRETYPE_START_GROUP: { |
1297 | | ptr = field_parser.ParseGroup(number, ptr, ctx); |
1298 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
1299 | | break; |
1300 | | } |
1301 | | case WireType::WIRETYPE_END_GROUP: { |
1302 | | ABSL_LOG(FATAL) << "Can't happen"; |
1303 | | break; |
1304 | | } |
1305 | | case WireType::WIRETYPE_FIXED32: { |
1306 | | uint32_t value = UnalignedLoad<uint32_t>(ptr); |
1307 | | ptr += 4; |
1308 | | field_parser.AddFixed32(number, value); |
1309 | | break; |
1310 | | } |
1311 | | default: |
1312 | | return nullptr; |
1313 | | } |
1314 | | return ptr; |
1315 | | } |
1316 | | |
1317 | | template <typename T> |
1318 | | PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser, |
1319 | | const char* ptr, |
1320 | | ParseContext* ctx) { |
1321 | | while (!ctx->Done(&ptr)) { |
1322 | | uint32_t tag; |
1323 | | ptr = ReadTag(ptr, &tag); |
1324 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
1325 | | if (tag == 0 || (tag & 7) == 4) { |
1326 | | ctx->SetLastTag(tag); |
1327 | | return ptr; |
1328 | | } |
1329 | | ptr = FieldParser(tag, field_parser, ptr, ctx); |
1330 | | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
1331 | | } |
1332 | | return ptr; |
1333 | | } |
1334 | | |
1335 | | // The packed parsers parse repeated numeric primitives directly into the |
1336 | | // corresponding field |
1337 | | |
1338 | | // These are packed varints |
1339 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt32Parser( |
1340 | | void* object, const char* ptr, ParseContext* ctx); |
1341 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt32Parser( |
1342 | | void* object, const char* ptr, ParseContext* ctx); |
1343 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt64Parser( |
1344 | | void* object, const char* ptr, ParseContext* ctx); |
1345 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt64Parser( |
1346 | | void* object, const char* ptr, ParseContext* ctx); |
1347 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt32Parser( |
1348 | | void* object, const char* ptr, ParseContext* ctx); |
1349 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt64Parser( |
1350 | | void* object, const char* ptr, ParseContext* ctx); |
1351 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedEnumParser( |
1352 | | void* object, const char* ptr, ParseContext* ctx); |
1353 | | |
1354 | | template <typename T> |
1355 | | PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr, |
1356 | | ParseContext* ctx, |
1357 | | bool (*is_valid)(int), |
1358 | | InternalMetadata* metadata, |
1359 | | int field_num) { |
1360 | | return ctx->ReadPackedVarint( |
1361 | | ptr, [object, is_valid, metadata, field_num](int32_t val) { |
1362 | | if (is_valid(val)) { |
1363 | | static_cast<RepeatedField<int>*>(object)->Add(val); |
1364 | | } else { |
1365 | | WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
1366 | | } |
1367 | | }); |
1368 | | } |
1369 | | |
1370 | | template <typename T> |
1371 | | PROTOBUF_NODISCARD const char* PackedEnumParserArg( |
1372 | | void* object, const char* ptr, ParseContext* ctx, |
1373 | | bool (*is_valid)(const void*, int), const void* data, |
1374 | | InternalMetadata* metadata, int field_num) { |
1375 | | return ctx->ReadPackedVarint( |
1376 | | ptr, [object, is_valid, data, metadata, field_num](int32_t val) { |
1377 | | if (is_valid(data, val)) { |
1378 | | static_cast<RepeatedField<int>*>(object)->Add(val); |
1379 | | } else { |
1380 | | WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
1381 | | } |
1382 | | }); |
1383 | | } |
1384 | | |
1385 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedBoolParser( |
1386 | | void* object, const char* ptr, ParseContext* ctx); |
1387 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed32Parser( |
1388 | | void* object, const char* ptr, ParseContext* ctx); |
1389 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed32Parser( |
1390 | | void* object, const char* ptr, ParseContext* ctx); |
1391 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed64Parser( |
1392 | | void* object, const char* ptr, ParseContext* ctx); |
1393 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed64Parser( |
1394 | | void* object, const char* ptr, ParseContext* ctx); |
1395 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFloatParser( |
1396 | | void* object, const char* ptr, ParseContext* ctx); |
1397 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedDoubleParser( |
1398 | | void* object, const char* ptr, ParseContext* ctx); |
1399 | | |
1400 | | // This is the only recursive parser. |
1401 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownGroupLiteParse( |
1402 | | std::string* unknown, const char* ptr, ParseContext* ctx); |
1403 | | // This is a helper to for the UnknownGroupLiteParse but is actually also |
1404 | | // useful in the generated code. It uses overload on std::string* vs |
1405 | | // UnknownFieldSet* to make the generated code isomorphic between full and lite. |
1406 | | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownFieldParse( |
1407 | | uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx); |
1408 | | |
1409 | | } // namespace internal |
1410 | | } // namespace protobuf |
1411 | | } // namespace google |
1412 | | |
1413 | | #include "google/protobuf/port_undef.inc" |
1414 | | |
1415 | | #endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |