Coverage Report

Created: 2025-07-04 09:33

/src/node/deps/v8/include/v8-platform.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2013 the V8 project authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style license that can be
3
// found in the LICENSE file.
4
5
#ifndef V8_V8_PLATFORM_H_
6
#define V8_V8_PLATFORM_H_
7
8
#include <math.h>
9
#include <stddef.h>
10
#include <stdint.h>
11
#include <stdlib.h>  // For abort.
12
13
#include <memory>
14
#include <string>
15
16
#include "v8-source-location.h"  // NOLINT(build/include_directory)
17
#include "v8config.h"  // NOLINT(build/include_directory)
18
19
namespace v8 {
20
21
class Isolate;
22
23
// Valid priorities supported by the task scheduling infrastructure.
24
enum class TaskPriority : uint8_t {
25
  /**
26
   * Best effort tasks are not critical for performance of the application. The
27
   * platform implementation should preempt such tasks if higher priority tasks
28
   * arrive.
29
   */
30
  kBestEffort,
31
  /**
32
   * User visible tasks are long running background tasks that will
33
   * improve performance and memory usage of the application upon completion.
34
   * Example: background compilation and garbage collection.
35
   */
36
  kUserVisible,
37
  /**
38
   * User blocking tasks are highest priority tasks that block the execution
39
   * thread (e.g. major garbage collection). They must be finished as soon as
40
   * possible.
41
   */
42
  kUserBlocking,
43
  kMaxPriority = kUserBlocking
44
};
45
46
/**
47
 * A Task represents a unit of work.
48
 */
49
class Task {
50
 public:
51
0
  virtual ~Task() = default;
52
53
  virtual void Run() = 0;
54
};
55
56
/**
57
 * An IdleTask represents a unit of work to be performed in idle time.
58
 * The Run method is invoked with an argument that specifies the deadline in
59
 * seconds returned by MonotonicallyIncreasingTime().
60
 * The idle task is expected to complete by this deadline.
61
 */
62
class IdleTask {
63
 public:
64
  virtual ~IdleTask() = default;
65
  virtual void Run(double deadline_in_seconds) = 0;
66
};
67
68
/**
69
 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
70
 * post tasks after the isolate gets destructed, but these tasks may not get
71
 * executed anymore. All tasks posted to a given TaskRunner will be invoked in
72
 * sequence. Tasks can be posted from any thread.
73
 */
74
class TaskRunner {
75
 public:
76
  /**
77
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
78
   * implementation takes ownership of |task|.
79
   */
80
  virtual void PostTask(std::unique_ptr<Task> task) = 0;
81
82
  /**
83
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
84
   * implementation takes ownership of |task|. The |task| cannot be nested
85
   * within other task executions.
86
   *
87
   * Tasks which shouldn't be interleaved with JS execution must be posted with
88
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
89
   * embedder may process tasks in a callback which is called during JS
90
   * execution.
91
   *
92
   * In particular, tasks which execute JS must be non-nestable, since JS
93
   * execution is not allowed to nest.
94
   *
95
   * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
96
   */
97
0
  virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
98
99
  /**
100
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
101
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
102
   * implementation takes ownership of |task|.
103
   */
104
  virtual void PostDelayedTask(std::unique_ptr<Task> task,
105
                               double delay_in_seconds) = 0;
106
107
  /**
108
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
109
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
110
   * implementation takes ownership of |task|. The |task| cannot be nested
111
   * within other task executions.
112
   *
113
   * Tasks which shouldn't be interleaved with JS execution must be posted with
114
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
115
   * embedder may process tasks in a callback which is called during JS
116
   * execution.
117
   *
118
   * In particular, tasks which execute JS must be non-nestable, since JS
119
   * execution is not allowed to nest.
120
   *
121
   * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
122
   */
123
  virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
124
0
                                          double delay_in_seconds) {}
125
126
  /**
127
   * Schedules an idle task to be invoked by this TaskRunner. The task is
128
   * scheduled when the embedder is idle. Requires that
129
   * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
130
   * relative to other task types and may be starved for an arbitrarily long
131
   * time if no idle time is available. The TaskRunner implementation takes
132
   * ownership of |task|.
133
   */
134
  virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
135
136
  /**
137
   * Returns true if idle tasks are enabled for this TaskRunner.
138
   */
139
  virtual bool IdleTasksEnabled() = 0;
140
141
  /**
142
   * Returns true if non-nestable tasks are enabled for this TaskRunner.
143
   */
144
0
  virtual bool NonNestableTasksEnabled() const { return false; }
145
146
  /**
147
   * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
148
   */
149
0
  virtual bool NonNestableDelayedTasksEnabled() const { return false; }
150
151
134k
  TaskRunner() = default;
152
134k
  virtual ~TaskRunner() = default;
153
154
  TaskRunner(const TaskRunner&) = delete;
155
  TaskRunner& operator=(const TaskRunner&) = delete;
156
};
157
158
/**
159
 * Delegate that's passed to Job's worker task, providing an entry point to
160
 * communicate with the scheduler.
161
 */
162
class JobDelegate {
163
 public:
164
  /**
165
   * Returns true if this thread *must* return from the worker task on the
166
   * current thread ASAP. Workers should periodically invoke ShouldYield (or
167
   * YieldIfNeeded()) as often as is reasonable.
168
   * After this method returned true, ShouldYield must not be called again.
169
   */
170
  virtual bool ShouldYield() = 0;
171
172
  /**
173
   * Notifies the scheduler that max concurrency was increased, and the number
174
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
175
   * details.
176
   */
177
  virtual void NotifyConcurrencyIncrease() = 0;
178
179
  /**
180
   * Returns a task_id unique among threads currently running this job, such
181
   * that GetTaskId() < worker count. To achieve this, the same task_id may be
182
   * reused by a different thread after a worker_task returns.
183
   */
184
  virtual uint8_t GetTaskId() = 0;
185
186
  /**
187
   * Returns true if the current task is called from the thread currently
188
   * running JobHandle::Join().
189
   */
190
  virtual bool IsJoiningThread() const = 0;
191
};
192
193
/**
194
 * Handle returned when posting a Job. Provides methods to control execution of
195
 * the posted Job.
196
 */
197
class JobHandle {
198
 public:
199
  virtual ~JobHandle() = default;
200
201
  /**
202
   * Notifies the scheduler that max concurrency was increased, and the number
203
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
204
   * details.
205
   */
206
  virtual void NotifyConcurrencyIncrease() = 0;
207
208
  /**
209
   * Contributes to the job on this thread. Doesn't return until all tasks have
210
   * completed and max concurrency becomes 0. When Join() is called and max
211
   * concurrency reaches 0, it should not increase again. This also promotes
212
   * this Job's priority to be at least as high as the calling thread's
213
   * priority.
214
   */
215
  virtual void Join() = 0;
216
217
  /**
218
   * Forces all existing workers to yield ASAP. Waits until they have all
219
   * returned from the Job's callback before returning.
220
   */
221
  virtual void Cancel() = 0;
222
223
  /*
224
   * Forces all existing workers to yield ASAP but doesn’t wait for them.
225
   * Warning, this is dangerous if the Job's callback is bound to or has access
226
   * to state which may be deleted after this call.
227
   */
228
  virtual void CancelAndDetach() = 0;
229
230
  /**
231
   * Returns true if there's any work pending or any worker running.
232
   */
233
  virtual bool IsActive() = 0;
234
235
  /**
236
   * Returns true if associated with a Job and other methods may be called.
237
   * Returns false after Join() or Cancel() was called. This may return true
238
   * even if no workers are running and IsCompleted() returns true
239
   */
240
  virtual bool IsValid() = 0;
241
242
  /**
243
   * Returns true if job priority can be changed.
244
   */
245
0
  virtual bool UpdatePriorityEnabled() const { return false; }
246
247
  /**
248
   *  Update this Job's priority.
249
   */
250
0
  virtual void UpdatePriority(TaskPriority new_priority) {}
251
};
252
253
/**
254
 * A JobTask represents work to run in parallel from Platform::PostJob().
255
 */
256
class JobTask {
257
 public:
258
  virtual ~JobTask() = default;
259
260
  virtual void Run(JobDelegate* delegate) = 0;
261
262
  /**
263
   * Controls the maximum number of threads calling Run() concurrently, given
264
   * the number of threads currently assigned to this job and executing Run().
265
   * Run() is only invoked if the number of threads previously running Run() was
266
   * less than the value returned. In general, this should return the latest
267
   * number of incomplete work items (smallest unit of work) left to process,
268
   * including items that are currently in progress. |worker_count| is the
269
   * number of threads currently assigned to this job which some callers may
270
   * need to determine their return value. Since GetMaxConcurrency() is a leaf
271
   * function, it must not call back any JobHandle methods.
272
   */
273
  virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
274
};
275
276
/**
277
 * A "blocking call" refers to any call that causes the calling thread to wait
278
 * off-CPU. It includes but is not limited to calls that wait on synchronous
279
 * file I/O operations: read or write a file from disk, interact with a pipe or
280
 * a socket, rename or delete a file, enumerate files in a directory, etc.
281
 * Acquiring a low contention lock is not considered a blocking call.
282
 */
283
284
/**
285
 * BlockingType indicates the likelihood that a blocking call will actually
286
 * block.
287
 */
288
enum class BlockingType {
289
  // The call might block (e.g. file I/O that might hit in memory cache).
290
  kMayBlock,
291
  // The call will definitely block (e.g. cache already checked and now pinging
292
  // server synchronously).
293
  kWillBlock
294
};
295
296
/**
297
 * This class is instantiated with CreateBlockingScope() in every scope where a
298
 * blocking call is made and serves as a precise annotation of the scope that
299
 * may/will block. May be implemented by an embedder to adjust the thread count.
300
 * CPU usage should be minimal within that scope. ScopedBlockingCalls can be
301
 * nested.
302
 */
303
class ScopedBlockingCall {
304
 public:
305
  virtual ~ScopedBlockingCall() = default;
306
};
307
308
/**
309
 * The interface represents complex arguments to trace events.
310
 */
311
class ConvertableToTraceFormat {
312
 public:
313
0
  virtual ~ConvertableToTraceFormat() = default;
314
315
  /**
316
   * Append the class info to the provided |out| string. The appended
317
   * data must be a valid JSON object. Strings must be properly quoted, and
318
   * escaped. There is no processing applied to the content after it is
319
   * appended.
320
   */
321
  virtual void AppendAsTraceFormat(std::string* out) const = 0;
322
};
323
324
/**
325
 * V8 Tracing controller.
326
 *
327
 * Can be implemented by an embedder to record trace events from V8.
328
 *
329
 * Will become obsolete in Perfetto SDK build (v8_use_perfetto = true).
330
 */
331
class TracingController {
332
 public:
333
0
  virtual ~TracingController() = default;
334
335
  // In Perfetto mode, trace events are written using Perfetto's Track Event
336
  // API directly without going through the embedder. However, it is still
337
  // possible to observe tracing being enabled and disabled.
338
#if !defined(V8_USE_PERFETTO)
339
  /**
340
   * Called by TRACE_EVENT* macros, don't call this directly.
341
   * The name parameter is a category group for example:
342
   * TRACE_EVENT0("v8,parse", "V8.Parse")
343
   * The pointer returned points to a value with zero or more of the bits
344
   * defined in CategoryGroupEnabledFlags.
345
   **/
346
0
  virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
347
0
    static uint8_t no = 0;
348
0
    return &no;
349
0
  }
350
351
  /**
352
   * Adds a trace event to the platform tracing system. These function calls are
353
   * usually the result of a TRACE_* macro from trace_event_common.h when
354
   * tracing and the category of the particular trace are enabled. It is not
355
   * advisable to call these functions on their own; they are really only meant
356
   * to be used by the trace macros. The returned handle can be used by
357
   * UpdateTraceEventDuration to update the duration of COMPLETE events.
358
   */
359
  virtual uint64_t AddTraceEvent(
360
      char phase, const uint8_t* category_enabled_flag, const char* name,
361
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
362
      const char** arg_names, const uint8_t* arg_types,
363
      const uint64_t* arg_values,
364
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
365
0
      unsigned int flags) {
366
0
    return 0;
367
0
  }
368
  virtual uint64_t AddTraceEventWithTimestamp(
369
      char phase, const uint8_t* category_enabled_flag, const char* name,
370
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
371
      const char** arg_names, const uint8_t* arg_types,
372
      const uint64_t* arg_values,
373
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
374
0
      unsigned int flags, int64_t timestamp) {
375
0
    return 0;
376
0
  }
377
378
  /**
379
   * Sets the duration field of a COMPLETE trace event. It must be called with
380
   * the handle returned from AddTraceEvent().
381
   **/
382
  virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
383
0
                                        const char* name, uint64_t handle) {}
384
#endif  // !defined(V8_USE_PERFETTO)
385
386
  class TraceStateObserver {
387
   public:
388
134k
    virtual ~TraceStateObserver() = default;
389
    virtual void OnTraceEnabled() = 0;
390
    virtual void OnTraceDisabled() = 0;
391
  };
392
393
  /**
394
   * Adds tracing state change observer.
395
   * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
396
   */
397
0
  virtual void AddTraceStateObserver(TraceStateObserver*) {}
398
399
  /**
400
   * Removes tracing state change observer.
401
   * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
402
   */
403
0
  virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
404
};
405
406
/**
407
 * A V8 memory page allocator.
408
 *
409
 * Can be implemented by an embedder to manage large host OS allocations.
410
 */
411
class PageAllocator {
412
 public:
413
  virtual ~PageAllocator() = default;
414
415
  /**
416
   * Gets the page granularity for AllocatePages and FreePages. Addresses and
417
   * lengths for those calls should be multiples of AllocatePageSize().
418
   */
419
  virtual size_t AllocatePageSize() = 0;
420
421
  /**
422
   * Gets the page granularity for SetPermissions and ReleasePages. Addresses
423
   * and lengths for those calls should be multiples of CommitPageSize().
424
   */
425
  virtual size_t CommitPageSize() = 0;
426
427
  /**
428
   * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
429
   * sequences of random mmap addresses.
430
   */
431
  virtual void SetRandomMmapSeed(int64_t seed) = 0;
432
433
  /**
434
   * Returns a randomized address, suitable for memory allocation under ASLR.
435
   * The address will be aligned to AllocatePageSize.
436
   */
437
  virtual void* GetRandomMmapAddr() = 0;
438
439
  /**
440
   * Memory permissions.
441
   */
442
  enum Permission {
443
    kNoAccess,
444
    kRead,
445
    kReadWrite,
446
    kReadWriteExecute,
447
    kReadExecute,
448
    // Set this when reserving memory that will later require kReadWriteExecute
449
    // permissions. The resulting behavior is platform-specific, currently
450
    // this is used to set the MAP_JIT flag on Apple Silicon.
451
    // TODO(jkummerow): Remove this when Wasm has a platform-independent
452
    // w^x implementation.
453
    // TODO(saelo): Remove this once all JIT pages are allocated through the
454
    // VirtualAddressSpace API.
455
    kNoAccessWillJitLater
456
  };
457
458
  /**
459
   * Allocates memory in range with the given alignment and permission.
460
   */
461
  virtual void* AllocatePages(void* address, size_t length, size_t alignment,
462
                              Permission permissions) = 0;
463
464
  /**
465
   * Frees memory in a range that was allocated by a call to AllocatePages.
466
   */
467
  virtual bool FreePages(void* address, size_t length) = 0;
468
469
  /**
470
   * Releases memory in a range that was allocated by a call to AllocatePages.
471
   */
472
  virtual bool ReleasePages(void* address, size_t length,
473
                            size_t new_length) = 0;
474
475
  /**
476
   * Sets permissions on pages in an allocated range.
477
   */
478
  virtual bool SetPermissions(void* address, size_t length,
479
                              Permission permissions) = 0;
480
481
  /**
482
   * Recommits discarded pages in the given range with given permissions.
483
   * Discarded pages must be recommitted with their original permissions
484
   * before they are used again.
485
   */
486
  virtual bool RecommitPages(void* address, size_t length,
487
0
                             Permission permissions) {
488
0
    // TODO(v8:12797): make it pure once it's implemented on Chromium side.
489
0
    return false;
490
0
  }
491
492
  /**
493
   * Frees memory in the given [address, address + size) range. address and size
494
   * should be operating system page-aligned. The next write to this
495
   * memory area brings the memory transparently back. This should be treated as
496
   * a hint to the OS that the pages are no longer needed. It does not guarantee
497
   * that the pages will be discarded immediately or at all.
498
   */
499
0
  virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
500
501
  /**
502
   * Decommits any wired memory pages in the given range, allowing the OS to
503
   * reclaim them, and marks the region as inacessible (kNoAccess). The address
504
   * range stays reserved and can be accessed again later by changing its
505
   * permissions. However, in that case the memory content is guaranteed to be
506
   * zero-initialized again. The memory must have been previously allocated by a
507
   * call to AllocatePages. Returns true on success, false otherwise.
508
   */
509
  virtual bool DecommitPages(void* address, size_t size) = 0;
510
511
  /**
512
   * INTERNAL ONLY: This interface has not been stabilised and may change
513
   * without notice from one release to another without being deprecated first.
514
   */
515
  class SharedMemoryMapping {
516
   public:
517
    // Implementations are expected to free the shared memory mapping in the
518
    // destructor.
519
    virtual ~SharedMemoryMapping() = default;
520
    virtual void* GetMemory() const = 0;
521
  };
522
523
  /**
524
   * INTERNAL ONLY: This interface has not been stabilised and may change
525
   * without notice from one release to another without being deprecated first.
526
   */
527
  class SharedMemory {
528
   public:
529
    // Implementations are expected to free the shared memory in the destructor.
530
    virtual ~SharedMemory() = default;
531
    virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
532
        void* new_address) const = 0;
533
    virtual void* GetMemory() const = 0;
534
    virtual size_t GetSize() const = 0;
535
  };
536
537
  /**
538
   * INTERNAL ONLY: This interface has not been stabilised and may change
539
   * without notice from one release to another without being deprecated first.
540
   *
541
   * Reserve pages at a fixed address returning whether the reservation is
542
   * possible. The reserved memory is detached from the PageAllocator and so
543
   * should not be freed by it. It's intended for use with
544
   * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
545
   */
546
0
  virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
547
0
    return false;
548
0
  }
549
550
  /**
551
   * INTERNAL ONLY: This interface has not been stabilised and may change
552
   * without notice from one release to another without being deprecated first.
553
   *
554
   * Allocates shared memory pages. Not all PageAllocators need support this and
555
   * so this method need not be overridden.
556
   * Allocates a new read-only shared memory region of size |length| and copies
557
   * the memory at |original_address| into it.
558
   */
559
  virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
560
0
      size_t length, const void* original_address) {
561
0
    return {};
562
0
  }
563
564
  /**
565
   * INTERNAL ONLY: This interface has not been stabilised and may change
566
   * without notice from one release to another without being deprecated first.
567
   *
568
   * If not overridden and changed to return true, V8 will not attempt to call
569
   * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
570
   * and RemapSharedPages must also be overridden.
571
   */
572
0
  virtual bool CanAllocateSharedPages() { return false; }
573
};
574
575
/**
576
 * An allocator that uses per-thread permissions to protect the memory.
577
 *
578
 * The implementation is platform/hardware specific, e.g. using pkeys on x64.
579
 *
580
 * INTERNAL ONLY: This interface has not been stabilised and may change
581
 * without notice from one release to another without being deprecated first.
582
 */
583
class ThreadIsolatedAllocator {
584
 public:
585
  virtual ~ThreadIsolatedAllocator() = default;
586
587
  virtual void* Allocate(size_t size) = 0;
588
589
  virtual void Free(void* object) = 0;
590
591
  enum class Type {
592
    kPkey,
593
  };
594
595
  virtual Type Type() const = 0;
596
597
  /**
598
   * Return the pkey used to implement the thread isolation if Type == kPkey.
599
   */
600
0
  virtual int Pkey() const { return -1; }
601
602
  /**
603
   * Per-thread permissions can be reset on signal handler entry. Even reading
604
   * ThreadIsolated memory will segfault in that case.
605
   * Call this function on signal handler entry to ensure that read permissions
606
   * are restored.
607
   */
608
  static void SetDefaultPermissionsForSignalHandler();
609
};
610
611
// Opaque type representing a handle to a shared memory region.
612
using PlatformSharedMemoryHandle = intptr_t;
613
static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
614
615
// Conversion routines from the platform-dependent shared memory identifiers
616
// into the opaque PlatformSharedMemoryHandle type. These use the underlying
617
// types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
618
// to avoid pulling in large OS header files into this header file. Instead,
619
// the users of these routines are expected to include the respecitve OS
620
// headers in addition to this one.
621
#if V8_OS_DARWIN
622
// Convert between a shared memory handle and a mach_port_t referencing a memory
623
// entry object.
624
inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
625
    unsigned int port) {
626
  return static_cast<PlatformSharedMemoryHandle>(port);
627
}
628
inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
629
    PlatformSharedMemoryHandle handle) {
630
  return static_cast<unsigned int>(handle);
631
}
632
#elif V8_OS_FUCHSIA
633
// Convert between a shared memory handle and a zx_handle_t to a VMO.
634
inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
635
  return static_cast<PlatformSharedMemoryHandle>(handle);
636
}
637
inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
638
  return static_cast<uint32_t>(handle);
639
}
640
#elif V8_OS_WIN
641
// Convert between a shared memory handle and a Windows HANDLE to a file mapping
642
// object.
643
inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
644
    void* handle) {
645
  return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
646
}
647
inline void* FileMappingFromSharedMemoryHandle(
648
    PlatformSharedMemoryHandle handle) {
649
  return reinterpret_cast<void*>(handle);
650
}
651
#else
652
// Convert between a shared memory handle and a file descriptor.
653
0
inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
654
0
  return static_cast<PlatformSharedMemoryHandle>(fd);
655
0
}
656
inline int FileDescriptorFromSharedMemoryHandle(
657
0
    PlatformSharedMemoryHandle handle) {
658
0
  return static_cast<int>(handle);
659
0
}
660
#endif
661
662
/**
663
 * Possible permissions for memory pages.
664
 */
665
enum class PagePermissions {
666
  kNoAccess,
667
  kRead,
668
  kReadWrite,
669
  kReadWriteExecute,
670
  kReadExecute,
671
};
672
673
/**
674
 * Class to manage a virtual memory address space.
675
 *
676
 * This class represents a contiguous region of virtual address space in which
677
 * sub-spaces and (private or shared) memory pages can be allocated, freed, and
678
 * modified. This interface is meant to eventually replace the PageAllocator
679
 * interface, and can be used as an alternative in the meantime.
680
 *
681
 * This API is not yet stable and may change without notice!
682
 */
683
class VirtualAddressSpace {
684
 public:
685
  using Address = uintptr_t;
686
687
  VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
688
                      Address base, size_t size,
689
                      PagePermissions max_page_permissions)
690
      : page_size_(page_size),
691
        allocation_granularity_(allocation_granularity),
692
        base_(base),
693
        size_(size),
694
0
        max_page_permissions_(max_page_permissions) {}
695
696
  virtual ~VirtualAddressSpace() = default;
697
698
  /**
699
   * The page size used inside this space. Guaranteed to be a power of two.
700
   * Used as granularity for all page-related operations except for allocation,
701
   * which use the allocation_granularity(), see below.
702
   *
703
   * \returns the page size in bytes.
704
   */
705
0
  size_t page_size() const { return page_size_; }
706
707
  /**
708
   * The granularity of page allocations and, by extension, of subspace
709
   * allocations. This is guaranteed to be a power of two and a multiple of the
710
   * page_size(). In practice, this is equal to the page size on most OSes, but
711
   * on Windows it is usually 64KB, while the page size is 4KB.
712
   *
713
   * \returns the allocation granularity in bytes.
714
   */
715
0
  size_t allocation_granularity() const { return allocation_granularity_; }
716
717
  /**
718
   * The base address of the address space managed by this instance.
719
   *
720
   * \returns the base address of this address space.
721
   */
722
0
  Address base() const { return base_; }
723
724
  /**
725
   * The size of the address space managed by this instance.
726
   *
727
   * \returns the size of this address space in bytes.
728
   */
729
0
  size_t size() const { return size_; }
730
731
  /**
732
   * The maximum page permissions that pages allocated inside this space can
733
   * obtain.
734
   *
735
   * \returns the maximum page permissions.
736
   */
737
0
  PagePermissions max_page_permissions() const { return max_page_permissions_; }
738
739
  /**
740
   * Whether the |address| is inside the address space managed by this instance.
741
   *
742
   * \returns true if it is inside the address space, false if not.
743
   */
744
0
  bool Contains(Address address) const {
745
0
    return (address >= base()) && (address < base() + size());
746
0
  }
747
748
  /**
749
   * Sets the random seed so that GetRandomPageAddress() will generate
750
   * repeatable sequences of random addresses.
751
   *
752
   * \param The seed for the PRNG.
753
   */
754
  virtual void SetRandomSeed(int64_t seed) = 0;
755
756
  /**
757
   * Returns a random address inside this address space, suitable for page
758
   * allocations hints.
759
   *
760
   * \returns a random address aligned to allocation_granularity().
761
   */
762
  virtual Address RandomPageAddress() = 0;
763
764
  /**
765
   * Allocates private memory pages with the given alignment and permissions.
766
   *
767
   * \param hint If nonzero, the allocation is attempted to be placed at the
768
   * given address first. If that fails, the allocation is attempted to be
769
   * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
770
   * zero for the hint always causes this function to choose a random address.
771
   * The hint, if specified, must be aligned to the specified alignment.
772
   *
773
   * \param size The size of the allocation in bytes. Must be a multiple of the
774
   * allocation_granularity().
775
   *
776
   * \param alignment The alignment of the allocation in bytes. Must be a
777
   * multiple of the allocation_granularity() and should be a power of two.
778
   *
779
   * \param permissions The page permissions of the newly allocated pages.
780
   *
781
   * \returns the start address of the allocated pages on success, zero on
782
   * failure.
783
   */
784
  static constexpr Address kNoHint = 0;
785
  virtual V8_WARN_UNUSED_RESULT Address
786
  AllocatePages(Address hint, size_t size, size_t alignment,
787
                PagePermissions permissions) = 0;
788
789
  /**
790
   * Frees previously allocated pages.
791
   *
792
   * This function will terminate the process on failure as this implies a bug
793
   * in the client. As such, there is no return value.
794
   *
795
   * \param address The start address of the pages to free. This address must
796
   * have been obtained through a call to AllocatePages.
797
   *
798
   * \param size The size in bytes of the region to free. This must match the
799
   * size passed to AllocatePages when the pages were allocated.
800
   */
801
  virtual void FreePages(Address address, size_t size) = 0;
802
803
  /**
804
   * Sets permissions of all allocated pages in the given range.
805
   *
806
   * This operation can fail due to OOM, in which case false is returned. If
807
   * the operation fails for a reason other than OOM, this function will
808
   * terminate the process as this implies a bug in the client.
809
   *
810
   * \param address The start address of the range. Must be aligned to
811
   * page_size().
812
   *
813
   * \param size The size in bytes of the range. Must be a multiple
814
   * of page_size().
815
   *
816
   * \param permissions The new permissions for the range.
817
   *
818
   * \returns true on success, false on OOM.
819
   */
820
  virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
821
      Address address, size_t size, PagePermissions permissions) = 0;
822
823
  /**
824
   * Creates a guard region at the specified address.
825
   *
826
   * Guard regions are guaranteed to cause a fault when accessed and generally
827
   * do not count towards any memory consumption limits. Further, allocating
828
   * guard regions can usually not fail in subspaces if the region does not
829
   * overlap with another region, subspace, or page allocation.
830
   *
831
   * \param address The start address of the guard region. Must be aligned to
832
   * the allocation_granularity().
833
   *
834
   * \param size The size of the guard region in bytes. Must be a multiple of
835
   * the allocation_granularity().
836
   *
837
   * \returns true on success, false otherwise.
838
   */
839
  virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
840
                                                         size_t size) = 0;
841
842
  /**
843
   * Frees an existing guard region.
844
   *
845
   * This function will terminate the process on failure as this implies a bug
846
   * in the client. As such, there is no return value.
847
   *
848
   * \param address The start address of the guard region to free. This address
849
   * must have previously been used as address parameter in a successful
850
   * invocation of AllocateGuardRegion.
851
   *
852
   * \param size The size in bytes of the guard region to free. This must match
853
   * the size passed to AllocateGuardRegion when the region was created.
854
   */
855
  virtual void FreeGuardRegion(Address address, size_t size) = 0;
856
857
  /**
858
   * Allocates shared memory pages with the given permissions.
859
   *
860
   * \param hint Placement hint. See AllocatePages.
861
   *
862
   * \param size The size of the allocation in bytes. Must be a multiple of the
863
   * allocation_granularity().
864
   *
865
   * \param permissions The page permissions of the newly allocated pages.
866
   *
867
   * \param handle A platform-specific handle to a shared memory object. See
868
   * the SharedMemoryHandleFromX routines above for ways to obtain these.
869
   *
870
   * \param offset The offset in the shared memory object at which the mapping
871
   * should start. Must be a multiple of the allocation_granularity().
872
   *
873
   * \returns the start address of the allocated pages on success, zero on
874
   * failure.
875
   */
876
  virtual V8_WARN_UNUSED_RESULT Address
877
  AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
878
                      PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
879
880
  /**
881
   * Frees previously allocated shared pages.
882
   *
883
   * This function will terminate the process on failure as this implies a bug
884
   * in the client. As such, there is no return value.
885
   *
886
   * \param address The start address of the pages to free. This address must
887
   * have been obtained through a call to AllocateSharedPages.
888
   *
889
   * \param size The size in bytes of the region to free. This must match the
890
   * size passed to AllocateSharedPages when the pages were allocated.
891
   */
892
  virtual void FreeSharedPages(Address address, size_t size) = 0;
893
894
  /**
895
   * Whether this instance can allocate subspaces or not.
896
   *
897
   * \returns true if subspaces can be allocated, false if not.
898
   */
899
  virtual bool CanAllocateSubspaces() = 0;
900
901
  /*
902
   * Allocate a subspace.
903
   *
904
   * The address space of a subspace stays reserved in the parent space for the
905
   * lifetime of the subspace. As such, it is guaranteed that page allocations
906
   * on the parent space cannot end up inside a subspace.
907
   *
908
   * \param hint Hints where the subspace should be allocated. See
909
   * AllocatePages() for more details.
910
   *
911
   * \param size The size in bytes of the subspace. Must be a multiple of the
912
   * allocation_granularity().
913
   *
914
   * \param alignment The alignment of the subspace in bytes. Must be a multiple
915
   * of the allocation_granularity() and should be a power of two.
916
   *
917
   * \param max_page_permissions The maximum permissions that pages allocated in
918
   * the subspace can obtain.
919
   *
920
   * \returns a new subspace or nullptr on failure.
921
   */
922
  virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
923
      Address hint, size_t size, size_t alignment,
924
      PagePermissions max_page_permissions) = 0;
925
926
  //
927
  // TODO(v8) maybe refactor the methods below before stabilizing the API. For
928
  // example by combining them into some form of page operation method that
929
  // takes a command enum as parameter.
930
  //
931
932
  /**
933
   * Recommits discarded pages in the given range with given permissions.
934
   * Discarded pages must be recommitted with their original permissions
935
   * before they are used again.
936
   *
937
   * \param address The start address of the range. Must be aligned to
938
   * page_size().
939
   *
940
   * \param size The size in bytes of the range. Must be a multiple
941
   * of page_size().
942
   *
943
   * \param permissions The permissions for the range that the pages must have.
944
   *
945
   * \returns true on success, false otherwise.
946
   */
947
  virtual V8_WARN_UNUSED_RESULT bool RecommitPages(
948
      Address address, size_t size, PagePermissions permissions) = 0;
949
950
  /**
951
   * Frees memory in the given [address, address + size) range. address and
952
   * size should be aligned to the page_size(). The next write to this memory
953
   * area brings the memory transparently back. This should be treated as a
954
   * hint to the OS that the pages are no longer needed. It does not guarantee
955
   * that the pages will be discarded immediately or at all.
956
   *
957
   * \returns true on success, false otherwise. Since this method is only a
958
   * hint, a successful invocation does not imply that pages have been removed.
959
   */
960
  virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
961
0
                                                        size_t size) {
962
0
    return true;
963
0
  }
964
  /**
965
   * Decommits any wired memory pages in the given range, allowing the OS to
966
   * reclaim them, and marks the region as inacessible (kNoAccess). The address
967
   * range stays reserved and can be accessed again later by changing its
968
   * permissions. However, in that case the memory content is guaranteed to be
969
   * zero-initialized again. The memory must have been previously allocated by a
970
   * call to AllocatePages.
971
   *
972
   * \returns true on success, false otherwise.
973
   */
974
  virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
975
                                                   size_t size) = 0;
976
977
 private:
978
  const size_t page_size_;
979
  const size_t allocation_granularity_;
980
  const Address base_;
981
  const size_t size_;
982
  const PagePermissions max_page_permissions_;
983
};
984
985
/**
986
 * V8 Allocator used for allocating zone backings.
987
 */
988
class ZoneBackingAllocator {
989
 public:
990
  using MallocFn = void* (*)(size_t);
991
  using FreeFn = void (*)(void*);
992
993
399k
  virtual MallocFn GetMallocFn() const { return ::malloc; }
994
399k
  virtual FreeFn GetFreeFn() const { return ::free; }
995
};
996
997
/**
998
 * Observer used by V8 to notify the embedder about entering/leaving sections
999
 * with high throughput of malloc/free operations.
1000
 */
1001
class HighAllocationThroughputObserver {
1002
 public:
1003
141k
  virtual void EnterSection() {}
1004
141k
  virtual void LeaveSection() {}
1005
};
1006
1007
/**
1008
 * V8 Platform abstraction layer.
1009
 *
1010
 * The embedder has to provide an implementation of this interface before
1011
 * initializing the rest of V8.
1012
 */
1013
class Platform {
1014
 public:
1015
0
  virtual ~Platform() = default;
1016
1017
  /**
1018
   * Allows the embedder to manage memory page allocations.
1019
   * Returning nullptr will cause V8 to use the default page allocator.
1020
   */
1021
  virtual PageAllocator* GetPageAllocator() = 0;
1022
1023
  /**
1024
   * Allows the embedder to provide an allocator that uses per-thread memory
1025
   * permissions to protect allocations.
1026
   * Returning nullptr will cause V8 to disable protections that rely on this
1027
   * feature.
1028
   */
1029
132k
  virtual ThreadIsolatedAllocator* GetThreadIsolatedAllocator() {
1030
132k
    return nullptr;
1031
132k
  }
1032
1033
  /**
1034
   * Allows the embedder to specify a custom allocator used for zones.
1035
   */
1036
798k
  virtual ZoneBackingAllocator* GetZoneBackingAllocator() {
1037
798k
    static ZoneBackingAllocator default_allocator;
1038
798k
    return &default_allocator;
1039
798k
  }
1040
1041
  /**
1042
   * Enables the embedder to respond in cases where V8 can't allocate large
1043
   * blocks of memory. V8 retries the failed allocation once after calling this
1044
   * method. On success, execution continues; otherwise V8 exits with a fatal
1045
   * error.
1046
   * Embedder overrides of this function must NOT call back into V8.
1047
   */
1048
0
  virtual void OnCriticalMemoryPressure() {}
1049
1050
  /**
1051
   * Gets the max number of worker threads that may be used to execute
1052
   * concurrent work scheduled for any single TaskPriority by
1053
   * Call(BlockingTask)OnWorkerThread() or PostJob(). This can be used to
1054
   * estimate the number of tasks a work package should be split into. A return
1055
   * value of 0 means that there are no worker threads available. Note that a
1056
   * value of 0 won't prohibit V8 from posting tasks using |CallOnWorkerThread|.
1057
   */
1058
  virtual int NumberOfWorkerThreads() = 0;
1059
1060
  /**
1061
   * Returns a TaskRunner which can be used to post a task on the foreground.
1062
   * The TaskRunner's NonNestableTasksEnabled() must be true. This function
1063
   * should only be called from a foreground thread.
1064
   * TODO(chromium:1448758): Deprecate once |GetForegroundTaskRunner(Isolate*,
1065
   * TaskPriority)| is ready.
1066
   */
1067
  virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
1068
0
      Isolate* isolate) {
1069
0
    return GetForegroundTaskRunner(isolate, TaskPriority::kUserBlocking);
1070
0
  }
1071
1072
  /**
1073
   * Returns a TaskRunner with a specific |priority| which can be used to post a
1074
   * task on the foreground thread. The TaskRunner's NonNestableTasksEnabled()
1075
   * must be true. This function should only be called from a foreground thread.
1076
   * TODO(chromium:1448758): Make pure virtual once embedders implement it.
1077
   */
1078
  virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
1079
0
      Isolate* isolate, TaskPriority priority) {
1080
0
    return nullptr;
1081
0
  }
1082
1083
  /**
1084
   * Schedules a task to be invoked on a worker thread.
1085
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1086
   * CallOnWorkerThread().
1087
   */
1088
  void CallOnWorkerThread(
1089
      std::unique_ptr<Task> task,
1090
0
      const SourceLocation& location = SourceLocation::Current()) {
1091
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, std::move(task),
1092
0
                               location);
1093
0
  }
1094
1095
  /**
1096
   * Schedules a task that blocks the main thread to be invoked with
1097
   * high-priority on a worker thread.
1098
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1099
   * CallBlockingTaskOnWorkerThread().
1100
   */
1101
  void CallBlockingTaskOnWorkerThread(
1102
      std::unique_ptr<Task> task,
1103
0
      const SourceLocation& location = SourceLocation::Current()) {
1104
0
    // Embedders may optionally override this to process these tasks in a high
1105
0
    // priority pool.
1106
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kUserBlocking, std::move(task),
1107
0
                               location);
1108
0
  }
1109
1110
  /**
1111
   * Schedules a task to be invoked with low-priority on a worker thread.
1112
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1113
   * CallLowPriorityTaskOnWorkerThread().
1114
   */
1115
  void CallLowPriorityTaskOnWorkerThread(
1116
      std::unique_ptr<Task> task,
1117
0
      const SourceLocation& location = SourceLocation::Current()) {
1118
0
    // Embedders may optionally override this to process these tasks in a low
1119
0
    // priority pool.
1120
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kBestEffort, std::move(task),
1121
0
                               location);
1122
0
  }
1123
1124
  /**
1125
   * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
1126
   * expires.
1127
   * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of
1128
   * CallDelayedOnWorkerThread().
1129
   */
1130
  void CallDelayedOnWorkerThread(
1131
      std::unique_ptr<Task> task, double delay_in_seconds,
1132
0
      const SourceLocation& location = SourceLocation::Current()) {
1133
0
    PostDelayedTaskOnWorkerThreadImpl(TaskPriority::kUserVisible,
1134
0
                                      std::move(task), delay_in_seconds,
1135
0
                                      location);
1136
0
  }
1137
1138
  /**
1139
   * Returns true if idle tasks are enabled for the given |isolate|.
1140
   */
1141
0
  virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
1142
1143
  /**
1144
   * Posts |job_task| to run in parallel. Returns a JobHandle associated with
1145
   * the Job, which can be joined or canceled.
1146
   * This avoids degenerate cases:
1147
   * - Calling CallOnWorkerThread() for each work item, causing significant
1148
   *   overhead.
1149
   * - Fixed number of CallOnWorkerThread() calls that split the work and might
1150
   *   run for a long time. This is problematic when many components post
1151
   *   "num cores" tasks and all expect to use all the cores. In these cases,
1152
   *   the scheduler lacks context to be fair to multiple same-priority requests
1153
   *   and/or ability to request lower priority work to yield when high priority
1154
   *   work comes in.
1155
   * A canonical implementation of |job_task| looks like:
1156
   * class MyJobTask : public JobTask {
1157
   *  public:
1158
   *   MyJobTask(...) : worker_queue_(...) {}
1159
   *   // JobTask:
1160
   *   void Run(JobDelegate* delegate) override {
1161
   *     while (!delegate->ShouldYield()) {
1162
   *       // Smallest unit of work.
1163
   *       auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1164
   *       if (!work_item) return;
1165
   *       ProcessWork(work_item);
1166
   *     }
1167
   *   }
1168
   *
1169
   *   size_t GetMaxConcurrency() const override {
1170
   *     return worker_queue_.GetSize(); // Thread safe.
1171
   *   }
1172
   * };
1173
   * auto handle = PostJob(TaskPriority::kUserVisible,
1174
   *                       std::make_unique<MyJobTask>(...));
1175
   * handle->Join();
1176
   *
1177
   * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1178
   * called while holding a lock that could be acquired by JobTask::Run or
1179
   * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1180
   * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1181
   * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1182
   * if that lock is *never* held while calling back into JobHandle from any
1183
   * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1184
   * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1185
   * (B=>JobHandle::foo=>B deadlock).
1186
   * Embedders should override CreateJobImpl() instead of PostJob().
1187
   */
1188
  std::unique_ptr<JobHandle> PostJob(
1189
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1190
0
      const SourceLocation& location = SourceLocation::Current()) {
1191
0
    auto handle = CreateJob(priority, std::move(job_task), location);
1192
0
    handle->NotifyConcurrencyIncrease();
1193
0
    return handle;
1194
0
  }
1195
1196
  /**
1197
   * Creates and returns a JobHandle associated with a Job. Unlike PostJob(),
1198
   * this doesn't immediately schedules |worker_task| to run; the Job is then
1199
   * scheduled by calling either NotifyConcurrencyIncrease() or Join().
1200
   *
1201
   * A sufficient CreateJob() implementation that uses the default Job provided
1202
   * in libplatform looks like:
1203
   *  std::unique_ptr<JobHandle> CreateJob(
1204
   *      TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1205
   *    return v8::platform::NewDefaultJobHandle(
1206
   *        this, priority, std::move(job_task), NumberOfWorkerThreads());
1207
   * }
1208
   *
1209
   * Embedders should override CreateJobImpl() instead of CreateJob().
1210
   */
1211
  std::unique_ptr<JobHandle> CreateJob(
1212
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1213
0
      const SourceLocation& location = SourceLocation::Current()) {
1214
0
    return CreateJobImpl(priority, std::move(job_task), location);
1215
0
  }
1216
1217
  /**
1218
   * Instantiates a ScopedBlockingCall to annotate a scope that may/will block.
1219
   */
1220
  virtual std::unique_ptr<ScopedBlockingCall> CreateBlockingScope(
1221
291
      BlockingType blocking_type) {
1222
291
    return nullptr;
1223
291
  }
1224
1225
  /**
1226
   * Monotonically increasing time in seconds from an arbitrary fixed point in
1227
   * the past. This function is expected to return at least
1228
   * millisecond-precision values. For this reason,
1229
   * it is recommended that the fixed point be no further in the past than
1230
   * the epoch.
1231
   **/
1232
  virtual double MonotonicallyIncreasingTime() = 0;
1233
1234
  /**
1235
   * Current wall-clock time in milliseconds since epoch. Use
1236
   * CurrentClockTimeMillisHighResolution() when higher precision is
1237
   * required.
1238
   */
1239
0
  virtual int64_t CurrentClockTimeMilliseconds() {
1240
0
    return static_cast<int64_t>(floor(CurrentClockTimeMillis()));
1241
0
  }
1242
1243
  /**
1244
   * This function is deprecated and will be deleted. Use either
1245
   * CurrentClockTimeMilliseconds() or
1246
   * CurrentClockTimeMillisecondsHighResolution().
1247
   */
1248
  virtual double CurrentClockTimeMillis() = 0;
1249
1250
  /**
1251
   * Same as CurrentClockTimeMilliseconds(), but with more precision.
1252
   */
1253
0
  virtual double CurrentClockTimeMillisecondsHighResolution() {
1254
0
    return CurrentClockTimeMillis();
1255
0
  }
1256
1257
  typedef void (*StackTracePrinter)();
1258
1259
  /**
1260
   * Returns a function pointer that print a stack trace of the current stack
1261
   * on invocation. Disables printing of the stack trace if nullptr.
1262
   */
1263
0
  virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1264
1265
  /**
1266
   * Returns an instance of a v8::TracingController. This must be non-nullptr.
1267
   */
1268
  virtual TracingController* GetTracingController() = 0;
1269
1270
  /**
1271
   * Tells the embedder to generate and upload a crashdump during an unexpected
1272
   * but non-critical scenario.
1273
   */
1274
0
  virtual void DumpWithoutCrashing() {}
1275
1276
  /**
1277
   * Allows the embedder to observe sections with high throughput allocation
1278
   * operations.
1279
   */
1280
  virtual HighAllocationThroughputObserver*
1281
141k
  GetHighAllocationThroughputObserver() {
1282
141k
    static HighAllocationThroughputObserver default_observer;
1283
141k
    return &default_observer;
1284
141k
  }
1285
1286
 protected:
1287
  /**
1288
   * Default implementation of current wall-clock time in milliseconds
1289
   * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1290
   * nothing special needed.
1291
   */
1292
  V8_EXPORT static double SystemClockTimeMillis();
1293
1294
  /**
1295
   * Creates and returns a JobHandle associated with a Job.
1296
   */
1297
  virtual std::unique_ptr<JobHandle> CreateJobImpl(
1298
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1299
      const SourceLocation& location) = 0;
1300
1301
  /**
1302
   * Schedules a task with |priority| to be invoked on a worker thread.
1303
   */
1304
  virtual void PostTaskOnWorkerThreadImpl(TaskPriority priority,
1305
                                          std::unique_ptr<Task> task,
1306
                                          const SourceLocation& location) = 0;
1307
1308
  /**
1309
   * Schedules a task with |priority| to be invoked on a worker thread after
1310
   * |delay_in_seconds| expires.
1311
   */
1312
  virtual void PostDelayedTaskOnWorkerThreadImpl(
1313
      TaskPriority priority, std::unique_ptr<Task> task,
1314
      double delay_in_seconds, const SourceLocation& location) = 0;
1315
};
1316
1317
}  // namespace v8
1318
1319
#endif  // V8_V8_PLATFORM_H_