Coverage Report

Created: 2025-10-31 09:06

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/node/deps/v8/include/v8-platform.h
Line
Count
Source
1
// Copyright 2013 the V8 project authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style license that can be
3
// found in the LICENSE file.
4
5
#ifndef V8_V8_PLATFORM_H_
6
#define V8_V8_PLATFORM_H_
7
8
#include <math.h>
9
#include <stddef.h>
10
#include <stdint.h>
11
#include <stdlib.h>  // For abort.
12
13
#include <memory>
14
#include <optional>
15
#include <string>
16
17
#include "v8-source-location.h"  // NOLINT(build/include_directory)
18
#include "v8config.h"            // NOLINT(build/include_directory)
19
20
namespace v8 {
21
22
class Isolate;
23
24
// Valid priorities supported by the task scheduling infrastructure.
25
enum class TaskPriority : uint8_t {
26
  /**
27
   * Best effort tasks are not critical for performance of the application. The
28
   * platform implementation should preempt such tasks if higher priority tasks
29
   * arrive.
30
   */
31
  kBestEffort,
32
  /**
33
   * User visible tasks are long running background tasks that will
34
   * improve performance and memory usage of the application upon completion.
35
   * Example: background compilation and garbage collection.
36
   */
37
  kUserVisible,
38
  /**
39
   * User blocking tasks are highest priority tasks that block the execution
40
   * thread (e.g. major garbage collection). They must be finished as soon as
41
   * possible.
42
   */
43
  kUserBlocking,
44
  kMaxPriority = kUserBlocking
45
};
46
47
/**
48
 * A Task represents a unit of work.
49
 */
50
class Task {
51
 public:
52
35
  virtual ~Task() = default;
53
54
  virtual void Run() = 0;
55
};
56
57
/**
58
 * An IdleTask represents a unit of work to be performed in idle time.
59
 * The Run method is invoked with an argument that specifies the deadline in
60
 * seconds returned by MonotonicallyIncreasingTime().
61
 * The idle task is expected to complete by this deadline.
62
 */
63
class IdleTask {
64
 public:
65
  virtual ~IdleTask() = default;
66
  virtual void Run(double deadline_in_seconds) = 0;
67
};
68
69
/**
70
 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
71
 * post tasks after the isolate gets destructed, but these tasks may not get
72
 * executed anymore. All tasks posted to a given TaskRunner will be invoked in
73
 * sequence. Tasks can be posted from any thread.
74
 */
75
class TaskRunner {
76
 public:
77
  /**
78
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
79
   * implementation takes ownership of |task|.
80
   *
81
   * Embedders should override PostTaskImpl instead of this.
82
   */
83
  void PostTask(std::unique_ptr<Task> task,
84
0
                SourceLocation location = SourceLocation::Current()) {
85
0
    PostTaskImpl(std::move(task), location);
86
0
  }
87
88
  /**
89
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
90
   * implementation takes ownership of |task|. The |task| cannot be nested
91
   * within other task executions.
92
   *
93
   * Tasks which shouldn't be interleaved with JS execution must be posted with
94
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
95
   * embedder may process tasks in a callback which is called during JS
96
   * execution.
97
   *
98
   * In particular, tasks which execute JS must be non-nestable, since JS
99
   * execution is not allowed to nest.
100
   *
101
   * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
102
   *
103
   * Embedders should override PostNonNestableTaskImpl instead of this.
104
   */
105
  void PostNonNestableTask(
106
      std::unique_ptr<Task> task,
107
0
      SourceLocation location = SourceLocation::Current()) {
108
0
    PostNonNestableTaskImpl(std::move(task), location);
109
0
  }
110
111
  /**
112
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
113
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
114
   * implementation takes ownership of |task|.
115
   *
116
   * Embedders should override PostDelayedTaskImpl instead of this.
117
   */
118
  void PostDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds,
119
0
                       SourceLocation location = SourceLocation::Current()) {
120
0
    PostDelayedTaskImpl(std::move(task), delay_in_seconds, location);
121
0
  }
122
123
  /**
124
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
125
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
126
   * implementation takes ownership of |task|. The |task| cannot be nested
127
   * within other task executions.
128
   *
129
   * Tasks which shouldn't be interleaved with JS execution must be posted with
130
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
131
   * embedder may process tasks in a callback which is called during JS
132
   * execution.
133
   *
134
   * In particular, tasks which execute JS must be non-nestable, since JS
135
   * execution is not allowed to nest.
136
   *
137
   * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
138
   *
139
   * Embedders should override PostNonNestableDelayedTaskImpl instead of this.
140
   */
141
  void PostNonNestableDelayedTask(
142
      std::unique_ptr<Task> task, double delay_in_seconds,
143
0
      SourceLocation location = SourceLocation::Current()) {
144
0
    PostNonNestableDelayedTaskImpl(std::move(task), delay_in_seconds, location);
145
0
  }
146
147
  /**
148
   * Schedules an idle task to be invoked by this TaskRunner. The task is
149
   * scheduled when the embedder is idle. Requires that
150
   * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
151
   * relative to other task types and may be starved for an arbitrarily long
152
   * time if no idle time is available. The TaskRunner implementation takes
153
   * ownership of |task|.
154
   *
155
   * Embedders should override PostIdleTaskImpl instead of this.
156
   */
157
  void PostIdleTask(std::unique_ptr<IdleTask> task,
158
0
                    SourceLocation location = SourceLocation::Current()) {
159
0
    PostIdleTaskImpl(std::move(task), location);
160
0
  }
161
162
  /**
163
   * Returns true if idle tasks are enabled for this TaskRunner.
164
   */
165
  virtual bool IdleTasksEnabled() = 0;
166
167
  /**
168
   * Returns true if non-nestable tasks are enabled for this TaskRunner.
169
   */
170
0
  virtual bool NonNestableTasksEnabled() const { return false; }
171
172
  /**
173
   * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
174
   */
175
0
  virtual bool NonNestableDelayedTasksEnabled() const { return false; }
176
177
35
  TaskRunner() = default;
178
0
  virtual ~TaskRunner() = default;
179
180
  TaskRunner(const TaskRunner&) = delete;
181
  TaskRunner& operator=(const TaskRunner&) = delete;
182
183
 protected:
184
  /**
185
   * Implementation of above methods with an additional `location` argument.
186
   */
187
  virtual void PostTaskImpl(std::unique_ptr<Task> task,
188
0
                            const SourceLocation& location) {}
189
  virtual void PostNonNestableTaskImpl(std::unique_ptr<Task> task,
190
0
                                       const SourceLocation& location) {}
191
  virtual void PostDelayedTaskImpl(std::unique_ptr<Task> task,
192
                                   double delay_in_seconds,
193
0
                                   const SourceLocation& location) {}
194
  virtual void PostNonNestableDelayedTaskImpl(std::unique_ptr<Task> task,
195
                                              double delay_in_seconds,
196
0
                                              const SourceLocation& location) {}
197
  virtual void PostIdleTaskImpl(std::unique_ptr<IdleTask> task,
198
0
                                const SourceLocation& location) {}
199
};
200
201
/**
202
 * Delegate that's passed to Job's worker task, providing an entry point to
203
 * communicate with the scheduler.
204
 */
205
class JobDelegate {
206
 public:
207
  /**
208
   * Returns true if this thread *must* return from the worker task on the
209
   * current thread ASAP. Workers should periodically invoke ShouldYield (or
210
   * YieldIfNeeded()) as often as is reasonable.
211
   * After this method returned true, ShouldYield must not be called again.
212
   */
213
  virtual bool ShouldYield() = 0;
214
215
  /**
216
   * Notifies the scheduler that max concurrency was increased, and the number
217
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
218
   * details.
219
   */
220
  virtual void NotifyConcurrencyIncrease() = 0;
221
222
  /**
223
   * Returns a task_id unique among threads currently running this job, such
224
   * that GetTaskId() < worker count. To achieve this, the same task_id may be
225
   * reused by a different thread after a worker_task returns.
226
   */
227
  virtual uint8_t GetTaskId() = 0;
228
229
  /**
230
   * Returns true if the current task is called from the thread currently
231
   * running JobHandle::Join().
232
   */
233
  virtual bool IsJoiningThread() const = 0;
234
};
235
236
/**
237
 * Handle returned when posting a Job. Provides methods to control execution of
238
 * the posted Job.
239
 */
240
class JobHandle {
241
 public:
242
  virtual ~JobHandle() = default;
243
244
  /**
245
   * Notifies the scheduler that max concurrency was increased, and the number
246
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
247
   * details.
248
   */
249
  virtual void NotifyConcurrencyIncrease() = 0;
250
251
  /**
252
   * Contributes to the job on this thread. Doesn't return until all tasks have
253
   * completed and max concurrency becomes 0. When Join() is called and max
254
   * concurrency reaches 0, it should not increase again. This also promotes
255
   * this Job's priority to be at least as high as the calling thread's
256
   * priority.
257
   */
258
  virtual void Join() = 0;
259
260
  /**
261
   * Forces all existing workers to yield ASAP. Waits until they have all
262
   * returned from the Job's callback before returning.
263
   */
264
  virtual void Cancel() = 0;
265
266
  /*
267
   * Forces all existing workers to yield ASAP but doesn’t wait for them.
268
   * Warning, this is dangerous if the Job's callback is bound to or has access
269
   * to state which may be deleted after this call.
270
   */
271
  virtual void CancelAndDetach() = 0;
272
273
  /**
274
   * Returns true if there's any work pending or any worker running.
275
   */
276
  virtual bool IsActive() = 0;
277
278
  /**
279
   * Returns true if associated with a Job and other methods may be called.
280
   * Returns false after Join() or Cancel() was called. This may return true
281
   * even if no workers are running and IsCompleted() returns true
282
   */
283
  virtual bool IsValid() = 0;
284
285
  /**
286
   * Returns true if job priority can be changed.
287
   */
288
0
  virtual bool UpdatePriorityEnabled() const { return false; }
289
290
  /**
291
   *  Update this Job's priority.
292
   */
293
0
  virtual void UpdatePriority(TaskPriority new_priority) {}
294
};
295
296
/**
297
 * A JobTask represents work to run in parallel from Platform::PostJob().
298
 */
299
class JobTask {
300
 public:
301
  virtual ~JobTask() = default;
302
303
  virtual void Run(JobDelegate* delegate) = 0;
304
305
  /**
306
   * Controls the maximum number of threads calling Run() concurrently, given
307
   * the number of threads currently assigned to this job and executing Run().
308
   * Run() is only invoked if the number of threads previously running Run() was
309
   * less than the value returned. In general, this should return the latest
310
   * number of incomplete work items (smallest unit of work) left to process,
311
   * including items that are currently in progress. |worker_count| is the
312
   * number of threads currently assigned to this job which some callers may
313
   * need to determine their return value. Since GetMaxConcurrency() is a leaf
314
   * function, it must not call back any JobHandle methods.
315
   */
316
  virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
317
};
318
319
/**
320
 * A "blocking call" refers to any call that causes the calling thread to wait
321
 * off-CPU. It includes but is not limited to calls that wait on synchronous
322
 * file I/O operations: read or write a file from disk, interact with a pipe or
323
 * a socket, rename or delete a file, enumerate files in a directory, etc.
324
 * Acquiring a low contention lock is not considered a blocking call.
325
 */
326
327
/**
328
 * BlockingType indicates the likelihood that a blocking call will actually
329
 * block.
330
 */
331
enum class BlockingType {
332
  // The call might block (e.g. file I/O that might hit in memory cache).
333
  kMayBlock,
334
  // The call will definitely block (e.g. cache already checked and now pinging
335
  // server synchronously).
336
  kWillBlock
337
};
338
339
/**
340
 * This class is instantiated with CreateBlockingScope() in every scope where a
341
 * blocking call is made and serves as a precise annotation of the scope that
342
 * may/will block. May be implemented by an embedder to adjust the thread count.
343
 * CPU usage should be minimal within that scope. ScopedBlockingCalls can be
344
 * nested.
345
 */
346
class ScopedBlockingCall {
347
 public:
348
  virtual ~ScopedBlockingCall() = default;
349
};
350
351
/**
352
 * The interface represents complex arguments to trace events.
353
 */
354
class ConvertableToTraceFormat {
355
 public:
356
0
  virtual ~ConvertableToTraceFormat() = default;
357
358
  /**
359
   * Append the class info to the provided |out| string. The appended
360
   * data must be a valid JSON object. Strings must be properly quoted, and
361
   * escaped. There is no processing applied to the content after it is
362
   * appended.
363
   */
364
  virtual void AppendAsTraceFormat(std::string* out) const = 0;
365
};
366
367
/**
368
 * V8 Tracing controller.
369
 *
370
 * Can be implemented by an embedder to record trace events from V8.
371
 *
372
 * Will become obsolete in Perfetto SDK build (v8_use_perfetto = true).
373
 */
374
class TracingController {
375
 public:
376
0
  virtual ~TracingController() = default;
377
378
  // In Perfetto mode, trace events are written using Perfetto's Track Event
379
  // API directly without going through the embedder. However, it is still
380
  // possible to observe tracing being enabled and disabled.
381
#if !defined(V8_USE_PERFETTO)
382
  /**
383
   * Called by TRACE_EVENT* macros, don't call this directly.
384
   * The name parameter is a category group for example:
385
   * TRACE_EVENT0("v8,parse", "V8.Parse")
386
   * The pointer returned points to a value with zero or more of the bits
387
   * defined in CategoryGroupEnabledFlags.
388
   **/
389
2.83k
  virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
390
2.83k
    static uint8_t no = 0;
391
2.83k
    return &no;
392
2.83k
  }
393
394
  /**
395
   * Adds a trace event to the platform tracing system. These function calls are
396
   * usually the result of a TRACE_* macro from trace-event-no-perfetto.h when
397
   * tracing and the category of the particular trace are enabled. It is not
398
   * advisable to call these functions on their own; they are really only meant
399
   * to be used by the trace macros. The returned handle can be used by
400
   * UpdateTraceEventDuration to update the duration of COMPLETE events.
401
   */
402
  virtual uint64_t AddTraceEvent(
403
      char phase, const uint8_t* category_enabled_flag, const char* name,
404
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
405
      const char** arg_names, const uint8_t* arg_types,
406
      const uint64_t* arg_values,
407
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
408
0
      unsigned int flags) {
409
0
    return 0;
410
0
  }
411
  virtual uint64_t AddTraceEventWithTimestamp(
412
      char phase, const uint8_t* category_enabled_flag, const char* name,
413
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
414
      const char** arg_names, const uint8_t* arg_types,
415
      const uint64_t* arg_values,
416
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
417
0
      unsigned int flags, int64_t timestamp) {
418
0
    return 0;
419
0
  }
420
421
  /**
422
   * Sets the duration field of a COMPLETE trace event. It must be called with
423
   * the handle returned from AddTraceEvent().
424
   **/
425
  virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
426
0
                                        const char* name, uint64_t handle) {}
427
#endif  // !defined(V8_USE_PERFETTO)
428
429
  class TraceStateObserver {
430
   public:
431
35
    virtual ~TraceStateObserver() = default;
432
    virtual void OnTraceEnabled() = 0;
433
    virtual void OnTraceDisabled() = 0;
434
  };
435
436
  /**
437
   * Adds tracing state change observer.
438
   * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
439
   */
440
70
  virtual void AddTraceStateObserver(TraceStateObserver*) {}
441
442
  /**
443
   * Removes tracing state change observer.
444
   * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
445
   */
446
70
  virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
447
};
448
449
/**
450
 * A V8 memory page allocator.
451
 *
452
 * Can be implemented by an embedder to manage large host OS allocations.
453
 */
454
class PageAllocator {
455
 public:
456
  virtual ~PageAllocator() = default;
457
458
  /**
459
   * Gets the page granularity for AllocatePages and FreePages. Addresses and
460
   * lengths for those calls should be multiples of AllocatePageSize().
461
   */
462
  virtual size_t AllocatePageSize() = 0;
463
464
  /**
465
   * Gets the page granularity for SetPermissions and ReleasePages. Addresses
466
   * and lengths for those calls should be multiples of CommitPageSize().
467
   */
468
  virtual size_t CommitPageSize() = 0;
469
470
  /**
471
   * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
472
   * sequences of random mmap addresses.
473
   */
474
  virtual void SetRandomMmapSeed(int64_t seed) = 0;
475
476
  /**
477
   * Returns a randomized address, suitable for memory allocation under ASLR.
478
   * The address will be aligned to AllocatePageSize.
479
   */
480
  virtual void* GetRandomMmapAddr() = 0;
481
482
  /**
483
   * Memory permissions.
484
   */
485
  enum Permission {
486
    kNoAccess,
487
    kRead,
488
    kReadWrite,
489
    kReadWriteExecute,
490
    kReadExecute,
491
    // Set this when reserving memory that will later require kReadWriteExecute
492
    // permissions. The resulting behavior is platform-specific, currently
493
    // this is used to set the MAP_JIT flag on Apple Silicon.
494
    // TODO(jkummerow): Remove this when Wasm has a platform-independent
495
    // w^x implementation.
496
    // TODO(saelo): Remove this once all JIT pages are allocated through the
497
    // VirtualAddressSpace API.
498
    kNoAccessWillJitLater
499
  };
500
501
  /**
502
   * Optional hints for AllocatePages().
503
   */
504
  class AllocationHint final {
505
   public:
506
    AllocationHint() = default;
507
508
    V8_WARN_UNUSED_RESULT constexpr AllocationHint WithAddress(
509
0
        void* address) const {
510
0
      return AllocationHint(address, may_grow_);
511
0
    }
512
513
0
    V8_WARN_UNUSED_RESULT constexpr AllocationHint WithMayGrow() const {
514
0
      return AllocationHint(address_, true);
515
0
    }
516
517
0
    bool MayGrow() const { return may_grow_; }
518
0
    void* Address() const { return address_; }
519
520
   private:
521
    constexpr AllocationHint(void* address, bool may_grow)
522
0
        : address_(address), may_grow_(may_grow) {}
523
524
    void* address_ = nullptr;
525
    bool may_grow_ = false;
526
  };
527
528
  /**
529
   * Allocates memory in range with the given alignment and permission.
530
   */
531
  virtual void* AllocatePages(void* address, size_t length, size_t alignment,
532
                              Permission permissions) = 0;
533
534
  /**
535
   * Allocates memory in range with the given alignment and permission. In
536
   * addition to AllocatePages it allows to pass in allocation hints. The
537
   * underlying implementation may not make use of hints.
538
   */
539
  virtual void* AllocatePages(size_t length, size_t alignment,
540
0
                              Permission permissions, AllocationHint hint) {
541
0
    return AllocatePages(hint.Address(), length, alignment, permissions);
542
0
  }
543
544
  /**
545
   * Resizes the previously allocated memory at the given address. Returns true
546
   * if the allocation could be resized. Returns false if this operation is
547
   * either not supported or the object could not be resized in-place.
548
   */
549
  virtual bool ResizeAllocationAt(void* address, size_t old_length,
550
0
                                  size_t new_length, Permission permissions) {
551
0
    return false;
552
0
  }
553
554
  /**
555
   * Frees memory in a range that was allocated by a call to AllocatePages.
556
   */
557
  virtual bool FreePages(void* address, size_t length) = 0;
558
559
  /**
560
   * Releases memory in a range that was allocated by a call to AllocatePages.
561
   */
562
  virtual bool ReleasePages(void* address, size_t length,
563
                            size_t new_length) = 0;
564
565
  /**
566
   * Sets permissions on pages in an allocated range.
567
   */
568
  virtual bool SetPermissions(void* address, size_t length,
569
                              Permission permissions) = 0;
570
571
  /**
572
   * Recommits discarded pages in the given range with given permissions.
573
   * Discarded pages must be recommitted with their original permissions
574
   * before they are used again.
575
   */
576
  virtual bool RecommitPages(void* address, size_t length,
577
0
                             Permission permissions) {
578
0
    // TODO(v8:12797): make it pure once it's implemented on Chromium side.
579
0
    return false;
580
0
  }
581
582
  /**
583
   * Frees memory in the given [address, address + size) range. address and size
584
   * should be operating system page-aligned. The next write to this
585
   * memory area brings the memory transparently back. This should be treated as
586
   * a hint to the OS that the pages are no longer needed. It does not guarantee
587
   * that the pages will be discarded immediately or at all.
588
   */
589
0
  virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
590
591
  /**
592
   * Decommits any wired memory pages in the given range, allowing the OS to
593
   * reclaim them, and marks the region as inacessible (kNoAccess). The address
594
   * range stays reserved and can be accessed again later by changing its
595
   * permissions. However, in that case the memory content is guaranteed to be
596
   * zero-initialized again. The memory must have been previously allocated by a
597
   * call to AllocatePages. Returns true on success, false otherwise.
598
   */
599
  virtual bool DecommitPages(void* address, size_t size) = 0;
600
601
  /**
602
   * Block any modifications to the given mapping such as changing permissions
603
   * or unmapping the pages on supported platforms.
604
   * The address space reservation will exist until the process ends, but it's
605
   * possible to release the memory using DiscardSystemPages. Note that this
606
   * might require write permissions to the page as e.g. on Linux, mseal will
607
   * block discarding sealed anonymous memory.
608
   */
609
0
  virtual bool SealPages(void* address, size_t length) {
610
0
    // TODO(360048056): make it pure once it's implemented on Chromium side.
611
0
    return false;
612
0
  }
613
614
  /**
615
   * INTERNAL ONLY: This interface has not been stabilised and may change
616
   * without notice from one release to another without being deprecated first.
617
   */
618
  class SharedMemoryMapping {
619
   public:
620
    // Implementations are expected to free the shared memory mapping in the
621
    // destructor.
622
    virtual ~SharedMemoryMapping() = default;
623
    virtual void* GetMemory() const = 0;
624
  };
625
626
  /**
627
   * INTERNAL ONLY: This interface has not been stabilised and may change
628
   * without notice from one release to another without being deprecated first.
629
   */
630
  class SharedMemory {
631
   public:
632
    // Implementations are expected to free the shared memory in the destructor.
633
    virtual ~SharedMemory() = default;
634
    virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
635
        void* new_address) const = 0;
636
    virtual void* GetMemory() const = 0;
637
    virtual size_t GetSize() const = 0;
638
  };
639
640
  /**
641
   * INTERNAL ONLY: This interface has not been stabilised and may change
642
   * without notice from one release to another without being deprecated first.
643
   *
644
   * Reserve pages at a fixed address returning whether the reservation is
645
   * possible. The reserved memory is detached from the PageAllocator and so
646
   * should not be freed by it. It's intended for use with
647
   * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
648
   */
649
0
  virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
650
0
    return false;
651
0
  }
652
653
  /**
654
   * INTERNAL ONLY: This interface has not been stabilised and may change
655
   * without notice from one release to another without being deprecated first.
656
   *
657
   * Allocates shared memory pages. Not all PageAllocators need support this and
658
   * so this method need not be overridden.
659
   * Allocates a new read-only shared memory region of size |length| and copies
660
   * the memory at |original_address| into it.
661
   */
662
  virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
663
0
      size_t length, const void* original_address) {
664
0
    return {};
665
0
  }
666
667
  /**
668
   * INTERNAL ONLY: This interface has not been stabilised and may change
669
   * without notice from one release to another without being deprecated first.
670
   *
671
   * If not overridden and changed to return true, V8 will not attempt to call
672
   * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
673
   * and RemapSharedPages must also be overridden.
674
   */
675
0
  virtual bool CanAllocateSharedPages() { return false; }
676
};
677
678
/**
679
 * An allocator that uses per-thread permissions to protect the memory.
680
 *
681
 * The implementation is platform/hardware specific, e.g. using pkeys on x64.
682
 *
683
 * INTERNAL ONLY: This interface has not been stabilised and may change
684
 * without notice from one release to another without being deprecated first.
685
 */
686
class ThreadIsolatedAllocator {
687
 public:
688
  virtual ~ThreadIsolatedAllocator() = default;
689
690
  virtual void* Allocate(size_t size) = 0;
691
692
  virtual void Free(void* object) = 0;
693
694
  enum class Type {
695
    kPkey,
696
  };
697
698
  virtual Type Type() const = 0;
699
700
  /**
701
   * Return the pkey used to implement the thread isolation if Type == kPkey.
702
   */
703
0
  virtual int Pkey() const { return -1; }
704
};
705
706
// Opaque type representing a handle to a shared memory region.
707
using PlatformSharedMemoryHandle = intptr_t;
708
static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
709
710
// Conversion routines from the platform-dependent shared memory identifiers
711
// into the opaque PlatformSharedMemoryHandle type. These use the underlying
712
// types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
713
// to avoid pulling in large OS header files into this header file. Instead,
714
// the users of these routines are expected to include the respecitve OS
715
// headers in addition to this one.
716
#if V8_OS_DARWIN
717
// Convert between a shared memory handle and a mach_port_t referencing a memory
718
// entry object.
719
inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
720
    unsigned int port) {
721
  return static_cast<PlatformSharedMemoryHandle>(port);
722
}
723
inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
724
    PlatformSharedMemoryHandle handle) {
725
  return static_cast<unsigned int>(handle);
726
}
727
#elif V8_OS_FUCHSIA
728
// Convert between a shared memory handle and a zx_handle_t to a VMO.
729
inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
730
  return static_cast<PlatformSharedMemoryHandle>(handle);
731
}
732
inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
733
  return static_cast<uint32_t>(handle);
734
}
735
#elif V8_OS_WIN
736
// Convert between a shared memory handle and a Windows HANDLE to a file mapping
737
// object.
738
inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
739
    void* handle) {
740
  return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
741
}
742
inline void* FileMappingFromSharedMemoryHandle(
743
    PlatformSharedMemoryHandle handle) {
744
  return reinterpret_cast<void*>(handle);
745
}
746
#else
747
// Convert between a shared memory handle and a file descriptor.
748
0
inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
749
0
  return static_cast<PlatformSharedMemoryHandle>(fd);
750
0
}
751
inline int FileDescriptorFromSharedMemoryHandle(
752
0
    PlatformSharedMemoryHandle handle) {
753
0
  return static_cast<int>(handle);
754
0
}
755
#endif
756
757
/**
758
 * Possible permissions for memory pages.
759
 */
760
enum class PagePermissions {
761
  kNoAccess,
762
  kRead,
763
  kReadWrite,
764
  kReadWriteExecute,
765
  kReadExecute,
766
};
767
768
/**
769
 * Class to manage a virtual memory address space.
770
 *
771
 * This class represents a contiguous region of virtual address space in which
772
 * sub-spaces and (private or shared) memory pages can be allocated, freed, and
773
 * modified. This interface is meant to eventually replace the PageAllocator
774
 * interface, and can be used as an alternative in the meantime.
775
 *
776
 * This API is not yet stable and may change without notice!
777
 */
778
class VirtualAddressSpace {
779
 public:
780
  using Address = uintptr_t;
781
782
  VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
783
                      Address base, size_t size,
784
                      PagePermissions max_page_permissions)
785
      : page_size_(page_size),
786
        allocation_granularity_(allocation_granularity),
787
        base_(base),
788
        size_(size),
789
0
        max_page_permissions_(max_page_permissions) {}
790
791
  virtual ~VirtualAddressSpace() = default;
792
793
  /**
794
   * The page size used inside this space. Guaranteed to be a power of two.
795
   * Used as granularity for all page-related operations except for allocation,
796
   * which use the allocation_granularity(), see below.
797
   *
798
   * \returns the page size in bytes.
799
   */
800
0
  size_t page_size() const { return page_size_; }
801
802
  /**
803
   * The granularity of page allocations and, by extension, of subspace
804
   * allocations. This is guaranteed to be a power of two and a multiple of the
805
   * page_size(). In practice, this is equal to the page size on most OSes, but
806
   * on Windows it is usually 64KB, while the page size is 4KB.
807
   *
808
   * \returns the allocation granularity in bytes.
809
   */
810
0
  size_t allocation_granularity() const { return allocation_granularity_; }
811
812
  /**
813
   * The base address of the address space managed by this instance.
814
   *
815
   * \returns the base address of this address space.
816
   */
817
0
  Address base() const { return base_; }
818
819
  /**
820
   * The size of the address space managed by this instance.
821
   *
822
   * \returns the size of this address space in bytes.
823
   */
824
0
  size_t size() const { return size_; }
825
826
  /**
827
   * The maximum page permissions that pages allocated inside this space can
828
   * obtain.
829
   *
830
   * \returns the maximum page permissions.
831
   */
832
0
  PagePermissions max_page_permissions() const { return max_page_permissions_; }
833
834
  /**
835
   * Whether the |address| is inside the address space managed by this instance.
836
   *
837
   * \returns true if it is inside the address space, false if not.
838
   */
839
0
  bool Contains(Address address) const {
840
0
    return (address >= base()) && (address < base() + size());
841
0
  }
842
843
  /**
844
   * Sets the random seed so that GetRandomPageAddress() will generate
845
   * repeatable sequences of random addresses.
846
   *
847
   * \param The seed for the PRNG.
848
   */
849
  virtual void SetRandomSeed(int64_t seed) = 0;
850
851
  /**
852
   * Returns a random address inside this address space, suitable for page
853
   * allocations hints.
854
   *
855
   * \returns a random address aligned to allocation_granularity().
856
   */
857
  virtual Address RandomPageAddress() = 0;
858
859
  /**
860
   * Allocates private memory pages with the given alignment and permissions.
861
   *
862
   * \param hint If nonzero, the allocation is attempted to be placed at the
863
   * given address first. If that fails, the allocation is attempted to be
864
   * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
865
   * zero for the hint always causes this function to choose a random address.
866
   * The hint, if specified, must be aligned to the specified alignment.
867
   *
868
   * \param size The size of the allocation in bytes. Must be a multiple of the
869
   * allocation_granularity().
870
   *
871
   * \param alignment The alignment of the allocation in bytes. Must be a
872
   * multiple of the allocation_granularity() and should be a power of two.
873
   *
874
   * \param permissions The page permissions of the newly allocated pages.
875
   *
876
   * \returns the start address of the allocated pages on success, zero on
877
   * failure.
878
   */
879
  static constexpr Address kNoHint = 0;
880
  virtual V8_WARN_UNUSED_RESULT Address
881
  AllocatePages(Address hint, size_t size, size_t alignment,
882
                PagePermissions permissions) = 0;
883
884
  /**
885
   * Frees previously allocated pages.
886
   *
887
   * This function will terminate the process on failure as this implies a bug
888
   * in the client. As such, there is no return value.
889
   *
890
   * \param address The start address of the pages to free. This address must
891
   * have been obtained through a call to AllocatePages.
892
   *
893
   * \param size The size in bytes of the region to free. This must match the
894
   * size passed to AllocatePages when the pages were allocated.
895
   */
896
  virtual void FreePages(Address address, size_t size) = 0;
897
898
  /**
899
   * Sets permissions of all allocated pages in the given range.
900
   *
901
   * This operation can fail due to OOM, in which case false is returned. If
902
   * the operation fails for a reason other than OOM, this function will
903
   * terminate the process as this implies a bug in the client.
904
   *
905
   * \param address The start address of the range. Must be aligned to
906
   * page_size().
907
   *
908
   * \param size The size in bytes of the range. Must be a multiple
909
   * of page_size().
910
   *
911
   * \param permissions The new permissions for the range.
912
   *
913
   * \returns true on success, false on OOM.
914
   */
915
  virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
916
      Address address, size_t size, PagePermissions permissions) = 0;
917
918
  /**
919
   * Creates a guard region at the specified address.
920
   *
921
   * Guard regions are guaranteed to cause a fault when accessed and generally
922
   * do not count towards any memory consumption limits. Further, allocating
923
   * guard regions can usually not fail in subspaces if the region does not
924
   * overlap with another region, subspace, or page allocation.
925
   *
926
   * \param address The start address of the guard region. Must be aligned to
927
   * the allocation_granularity().
928
   *
929
   * \param size The size of the guard region in bytes. Must be a multiple of
930
   * the allocation_granularity().
931
   *
932
   * \returns true on success, false otherwise.
933
   */
934
  virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
935
                                                         size_t size) = 0;
936
937
  /**
938
   * Frees an existing guard region.
939
   *
940
   * This function will terminate the process on failure as this implies a bug
941
   * in the client. As such, there is no return value.
942
   *
943
   * \param address The start address of the guard region to free. This address
944
   * must have previously been used as address parameter in a successful
945
   * invocation of AllocateGuardRegion.
946
   *
947
   * \param size The size in bytes of the guard region to free. This must match
948
   * the size passed to AllocateGuardRegion when the region was created.
949
   */
950
  virtual void FreeGuardRegion(Address address, size_t size) = 0;
951
952
  /**
953
   * Allocates shared memory pages with the given permissions.
954
   *
955
   * \param hint Placement hint. See AllocatePages.
956
   *
957
   * \param size The size of the allocation in bytes. Must be a multiple of the
958
   * allocation_granularity().
959
   *
960
   * \param permissions The page permissions of the newly allocated pages.
961
   *
962
   * \param handle A platform-specific handle to a shared memory object. See
963
   * the SharedMemoryHandleFromX routines above for ways to obtain these.
964
   *
965
   * \param offset The offset in the shared memory object at which the mapping
966
   * should start. Must be a multiple of the allocation_granularity().
967
   *
968
   * \returns the start address of the allocated pages on success, zero on
969
   * failure.
970
   */
971
  virtual V8_WARN_UNUSED_RESULT Address
972
  AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
973
                      PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
974
975
  /**
976
   * Frees previously allocated shared pages.
977
   *
978
   * This function will terminate the process on failure as this implies a bug
979
   * in the client. As such, there is no return value.
980
   *
981
   * \param address The start address of the pages to free. This address must
982
   * have been obtained through a call to AllocateSharedPages.
983
   *
984
   * \param size The size in bytes of the region to free. This must match the
985
   * size passed to AllocateSharedPages when the pages were allocated.
986
   */
987
  virtual void FreeSharedPages(Address address, size_t size) = 0;
988
989
  /**
990
   * Memory protection key support.
991
   *
992
   * If supported by the hardware and operating system, virtual address spaces
993
   * can use memory protection keys in addition to the regular page
994
   * permissions. The MemoryProtectionKeyId type identifies a memory protection
995
   * key and is used by the related APIs in this class.
996
   *
997
   * TODO(saelo): consider renaming to just MemoryProtectionKey, but currently
998
   * there's a naming conflict with base::MemoryProtectionKey.
999
   */
1000
  using MemoryProtectionKeyId = int;
1001
1002
  /**
1003
   * The memory protection key used by this space, if any.
1004
   *
1005
   * If this space uses a memory protection key, then all memory pages in it
1006
   * will have this key set. In that case, this API will return that key.
1007
   *
1008
   * \returns the memory protection key used by this space or std::nullopt.
1009
   */
1010
  virtual std::optional<MemoryProtectionKeyId> ActiveMemoryProtectionKey() = 0;
1011
1012
  /**
1013
   * Whether this instance can allocate subspaces or not.
1014
   *
1015
   * \returns true if subspaces can be allocated, false if not.
1016
   */
1017
  virtual bool CanAllocateSubspaces() = 0;
1018
1019
  /*
1020
   * Allocate a subspace.
1021
   *
1022
   * The address space of a subspace stays reserved in the parent space for the
1023
   * lifetime of the subspace. As such, it is guaranteed that page allocations
1024
   * on the parent space cannot end up inside a subspace.
1025
   *
1026
   * \param hint Hints where the subspace should be allocated. See
1027
   * AllocatePages() for more details.
1028
   *
1029
   * \param size The size in bytes of the subspace. Must be a multiple of the
1030
   * allocation_granularity().
1031
   *
1032
   * \param alignment The alignment of the subspace in bytes. Must be a multiple
1033
   * of the allocation_granularity() and should be a power of two.
1034
   *
1035
   * \param max_page_permissions The maximum permissions that pages allocated in
1036
   * the subspace can obtain.
1037
   *
1038
   * \param key Optional memory protection key for the subspace. If used, the
1039
   * returned subspace will use this key for all its memory pages.
1040
   *
1041
   * \returns a new subspace or nullptr on failure.
1042
   */
1043
  virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
1044
      Address hint, size_t size, size_t alignment,
1045
      PagePermissions max_page_permissions,
1046
      std::optional<MemoryProtectionKeyId> key = std::nullopt) = 0;
1047
1048
  //
1049
  // TODO(v8) maybe refactor the methods below before stabilizing the API. For
1050
  // example by combining them into some form of page operation method that
1051
  // takes a command enum as parameter.
1052
  //
1053
1054
  /**
1055
   * Recommits discarded pages in the given range with given permissions.
1056
   * Discarded pages must be recommitted with their original permissions
1057
   * before they are used again.
1058
   *
1059
   * \param address The start address of the range. Must be aligned to
1060
   * page_size().
1061
   *
1062
   * \param size The size in bytes of the range. Must be a multiple
1063
   * of page_size().
1064
   *
1065
   * \param permissions The permissions for the range that the pages must have.
1066
   *
1067
   * \returns true on success, false otherwise.
1068
   */
1069
  virtual V8_WARN_UNUSED_RESULT bool RecommitPages(
1070
      Address address, size_t size, PagePermissions permissions) = 0;
1071
1072
  /**
1073
   * Frees memory in the given [address, address + size) range. address and
1074
   * size should be aligned to the page_size(). The next write to this memory
1075
   * area brings the memory transparently back. This should be treated as a
1076
   * hint to the OS that the pages are no longer needed. It does not guarantee
1077
   * that the pages will be discarded immediately or at all.
1078
   *
1079
   * \returns true on success, false otherwise. Since this method is only a
1080
   * hint, a successful invocation does not imply that pages have been removed.
1081
   */
1082
  virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
1083
0
                                                        size_t size) {
1084
0
    return true;
1085
0
  }
1086
  /**
1087
   * Decommits any wired memory pages in the given range, allowing the OS to
1088
   * reclaim them, and marks the region as inacessible (kNoAccess). The address
1089
   * range stays reserved and can be accessed again later by changing its
1090
   * permissions. However, in that case the memory content is guaranteed to be
1091
   * zero-initialized again. The memory must have been previously allocated by a
1092
   * call to AllocatePages.
1093
   *
1094
   * \returns true on success, false otherwise.
1095
   */
1096
  virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
1097
                                                   size_t size) = 0;
1098
1099
 private:
1100
  const size_t page_size_;
1101
  const size_t allocation_granularity_;
1102
  const Address base_;
1103
  const size_t size_;
1104
  const PagePermissions max_page_permissions_;
1105
};
1106
1107
/**
1108
 * Observer used by V8 to notify the embedder about entering/leaving sections
1109
 * with high throughput of malloc/free operations.
1110
 */
1111
class HighAllocationThroughputObserver {
1112
 public:
1113
3.69k
  virtual void EnterSection() {}
1114
3.69k
  virtual void LeaveSection() {}
1115
};
1116
1117
/**
1118
 * V8 Platform abstraction layer.
1119
 *
1120
 * The embedder has to provide an implementation of this interface before
1121
 * initializing the rest of V8.
1122
 */
1123
class Platform {
1124
 public:
1125
35
  virtual ~Platform() = default;
1126
1127
  /**
1128
   * Allows the embedder to manage memory page allocations.
1129
   * Returning nullptr will cause V8 to use the default page allocator.
1130
   */
1131
0
  virtual PageAllocator* GetPageAllocator() { return nullptr; }
1132
1133
  /**
1134
   * Allows the embedder to provide an allocator that uses per-thread memory
1135
   * permissions to protect allocations.
1136
   * Returning nullptr will cause V8 to disable protections that rely on this
1137
   * feature.
1138
   */
1139
35
  virtual ThreadIsolatedAllocator* GetThreadIsolatedAllocator() {
1140
35
    return nullptr;
1141
35
  }
1142
1143
  /**
1144
   * Enables the embedder to respond in cases where V8 can't allocate large
1145
   * blocks of memory. V8 retries the failed allocation once after calling this
1146
   * method. On success, execution continues; otherwise V8 exits with a fatal
1147
   * error.
1148
   * Embedder overrides of this function must NOT call back into V8.
1149
   */
1150
0
  virtual void OnCriticalMemoryPressure() {}
1151
1152
  /**
1153
   * Gets the max number of worker threads that may be used to execute
1154
   * concurrent work scheduled for any single TaskPriority by
1155
   * Call(BlockingTask)OnWorkerThread() or PostJob(). This can be used to
1156
   * estimate the number of tasks a work package should be split into. A return
1157
   * value of 0 means that there are no worker threads available. Note that a
1158
   * value of 0 won't prohibit V8 from posting tasks using |CallOnWorkerThread|.
1159
   */
1160
  virtual int NumberOfWorkerThreads() = 0;
1161
1162
  /**
1163
   * Returns a TaskRunner which can be used to post a task on the foreground.
1164
   * The TaskRunner's NonNestableTasksEnabled() must be true. This function
1165
   * should only be called from a foreground thread.
1166
   */
1167
0
  std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(Isolate* isolate) {
1168
0
    return GetForegroundTaskRunner(isolate, TaskPriority::kUserBlocking);
1169
0
  }
1170
1171
  /**
1172
   * Returns a TaskRunner with a specific |priority| which can be used to post a
1173
   * task on the foreground thread. The TaskRunner's NonNestableTasksEnabled()
1174
   * must be true. This function should only be called from a foreground thread.
1175
   */
1176
  virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
1177
      Isolate* isolate, TaskPriority priority) = 0;
1178
1179
  /**
1180
   * Schedules a task to be invoked on a worker thread.
1181
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1182
   * CallOnWorkerThread().
1183
   */
1184
  V8_DEPRECATE_SOON("Use PostTaskOnWorkerThread instead.")
1185
  void CallOnWorkerThread(std::unique_ptr<Task> task,
1186
0
                          SourceLocation location = SourceLocation::Current()) {
1187
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, std::move(task),
1188
0
                               location);
1189
0
  }
1190
1191
  /**
1192
   * Schedules a task that blocks the main thread to be invoked with
1193
   * high-priority on a worker thread.
1194
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1195
   * CallBlockingTaskOnWorkerThread().
1196
   */
1197
  V8_DEPRECATE_SOON("Use PostTaskOnWorkerThread instead.")
1198
  void CallBlockingTaskOnWorkerThread(
1199
      std::unique_ptr<Task> task,
1200
0
      SourceLocation location = SourceLocation::Current()) {
1201
0
    // Embedders may optionally override this to process these tasks in a high
1202
0
    // priority pool.
1203
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kUserBlocking, std::move(task),
1204
0
                               location);
1205
0
  }
1206
1207
  /**
1208
   * Schedules a task to be invoked with low-priority on a worker thread.
1209
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1210
   * CallLowPriorityTaskOnWorkerThread().
1211
   */
1212
  V8_DEPRECATE_SOON("Use PostTaskOnWorkerThread instead.")
1213
  void CallLowPriorityTaskOnWorkerThread(
1214
      std::unique_ptr<Task> task,
1215
0
      SourceLocation location = SourceLocation::Current()) {
1216
0
    // Embedders may optionally override this to process these tasks in a low
1217
0
    // priority pool.
1218
0
    PostTaskOnWorkerThreadImpl(TaskPriority::kBestEffort, std::move(task),
1219
0
                               location);
1220
0
  }
1221
1222
  /**
1223
   * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
1224
   * expires.
1225
   * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of
1226
   * CallDelayedOnWorkerThread().
1227
   */
1228
  V8_DEPRECATE_SOON("Use PostDelayedTaskOnWorkerThread instead.")
1229
  void CallDelayedOnWorkerThread(
1230
      std::unique_ptr<Task> task, double delay_in_seconds,
1231
0
      SourceLocation location = SourceLocation::Current()) {
1232
0
    PostDelayedTaskOnWorkerThreadImpl(TaskPriority::kUserVisible,
1233
0
                                      std::move(task), delay_in_seconds,
1234
0
                                      location);
1235
0
  }
1236
1237
  /**
1238
   * Schedules a task to be invoked on a worker thread.
1239
   * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1240
   * PostTaskOnWorkerThread().
1241
   */
1242
  void PostTaskOnWorkerThread(
1243
      TaskPriority priority, std::unique_ptr<Task> task,
1244
0
      SourceLocation location = SourceLocation::Current()) {
1245
0
    PostTaskOnWorkerThreadImpl(priority, std::move(task), location);
1246
0
  }
1247
1248
  /**
1249
   * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
1250
   * expires.
1251
   * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of
1252
   * PostDelayedTaskOnWorkerThread().
1253
   */
1254
  void PostDelayedTaskOnWorkerThread(
1255
      TaskPriority priority, std::unique_ptr<Task> task,
1256
      double delay_in_seconds,
1257
0
      SourceLocation location = SourceLocation::Current()) {
1258
0
    PostDelayedTaskOnWorkerThreadImpl(priority, std::move(task),
1259
0
                                      delay_in_seconds, location);
1260
0
  }
1261
1262
  /**
1263
   * Returns true if idle tasks are enabled for the given |isolate|.
1264
   */
1265
0
  virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
1266
1267
  /**
1268
   * Posts |job_task| to run in parallel. Returns a JobHandle associated with
1269
   * the Job, which can be joined or canceled.
1270
   * This avoids degenerate cases:
1271
   * - Calling CallOnWorkerThread() for each work item, causing significant
1272
   *   overhead.
1273
   * - Fixed number of CallOnWorkerThread() calls that split the work and might
1274
   *   run for a long time. This is problematic when many components post
1275
   *   "num cores" tasks and all expect to use all the cores. In these cases,
1276
   *   the scheduler lacks context to be fair to multiple same-priority requests
1277
   *   and/or ability to request lower priority work to yield when high priority
1278
   *   work comes in.
1279
   * A canonical implementation of |job_task| looks like:
1280
   * class MyJobTask : public JobTask {
1281
   *  public:
1282
   *   MyJobTask(...) : worker_queue_(...) {}
1283
   *   // JobTask:
1284
   *   void Run(JobDelegate* delegate) override {
1285
   *     while (!delegate->ShouldYield()) {
1286
   *       // Smallest unit of work.
1287
   *       auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1288
   *       if (!work_item) return;
1289
   *       ProcessWork(work_item);
1290
   *     }
1291
   *   }
1292
   *
1293
   *   size_t GetMaxConcurrency() const override {
1294
   *     return worker_queue_.GetSize(); // Thread safe.
1295
   *   }
1296
   * };
1297
   * auto handle = PostJob(TaskPriority::kUserVisible,
1298
   *                       std::make_unique<MyJobTask>(...));
1299
   * handle->Join();
1300
   *
1301
   * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1302
   * called while holding a lock that could be acquired by JobTask::Run or
1303
   * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1304
   * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1305
   * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1306
   * if that lock is *never* held while calling back into JobHandle from any
1307
   * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1308
   * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1309
   * (B=>JobHandle::foo=>B deadlock).
1310
   * Embedders should override CreateJobImpl() instead of PostJob().
1311
   */
1312
  std::unique_ptr<JobHandle> PostJob(
1313
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1314
0
      SourceLocation location = SourceLocation::Current()) {
1315
0
    auto handle = CreateJob(priority, std::move(job_task), location);
1316
0
    handle->NotifyConcurrencyIncrease();
1317
0
    return handle;
1318
0
  }
1319
1320
  /**
1321
   * Creates and returns a JobHandle associated with a Job. Unlike PostJob(),
1322
   * this doesn't immediately schedules |worker_task| to run; the Job is then
1323
   * scheduled by calling either NotifyConcurrencyIncrease() or Join().
1324
   *
1325
   * A sufficient CreateJob() implementation that uses the default Job provided
1326
   * in libplatform looks like:
1327
   *  std::unique_ptr<JobHandle> CreateJob(
1328
   *      TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1329
   *    return v8::platform::NewDefaultJobHandle(
1330
   *        this, priority, std::move(job_task), NumberOfWorkerThreads());
1331
   * }
1332
   *
1333
   * Embedders should override CreateJobImpl() instead of CreateJob().
1334
   */
1335
  std::unique_ptr<JobHandle> CreateJob(
1336
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1337
0
      SourceLocation location = SourceLocation::Current()) {
1338
0
    return CreateJobImpl(priority, std::move(job_task), location);
1339
0
  }
1340
1341
  /**
1342
   * Instantiates a ScopedBlockingCall to annotate a scope that may/will block.
1343
   */
1344
  virtual std::unique_ptr<ScopedBlockingCall> CreateBlockingScope(
1345
31
      BlockingType blocking_type) {
1346
31
    return nullptr;
1347
31
  }
1348
1349
  /**
1350
   * Monotonically increasing time in seconds from an arbitrary fixed point in
1351
   * the past. This function is expected to return at least
1352
   * millisecond-precision values. For this reason,
1353
   * it is recommended that the fixed point be no further in the past than
1354
   * the epoch.
1355
   **/
1356
  virtual double MonotonicallyIncreasingTime() = 0;
1357
1358
  /**
1359
   * Current wall-clock time in milliseconds since epoch. Use
1360
   * CurrentClockTimeMillisHighResolution() when higher precision is
1361
   * required.
1362
   */
1363
7
  virtual int64_t CurrentClockTimeMilliseconds() {
1364
7
    return static_cast<int64_t>(floor(CurrentClockTimeMillis()));
1365
7
  }
1366
1367
  /**
1368
   * This function is deprecated and will be deleted. Use either
1369
   * CurrentClockTimeMilliseconds() or
1370
   * CurrentClockTimeMillisecondsHighResolution().
1371
   */
1372
  virtual double CurrentClockTimeMillis() = 0;
1373
1374
  /**
1375
   * Same as CurrentClockTimeMilliseconds(), but with more precision.
1376
   */
1377
0
  virtual double CurrentClockTimeMillisecondsHighResolution() {
1378
0
    return CurrentClockTimeMillis();
1379
0
  }
1380
1381
  typedef void (*StackTracePrinter)();
1382
1383
  /**
1384
   * Returns a function pointer that print a stack trace of the current stack
1385
   * on invocation. Disables printing of the stack trace if nullptr.
1386
   */
1387
0
  virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1388
1389
  /**
1390
   * Returns an instance of a v8::TracingController. This must be non-nullptr.
1391
   */
1392
  virtual TracingController* GetTracingController() = 0;
1393
1394
  /**
1395
   * Tells the embedder to generate and upload a crashdump during an unexpected
1396
   * but non-critical scenario.
1397
   */
1398
0
  virtual void DumpWithoutCrashing() {}
1399
1400
  /**
1401
   * Allows the embedder to observe sections with high throughput allocation
1402
   * operations.
1403
   */
1404
  virtual HighAllocationThroughputObserver*
1405
3.69k
  GetHighAllocationThroughputObserver() {
1406
3.69k
    static HighAllocationThroughputObserver default_observer;
1407
3.69k
    return &default_observer;
1408
3.69k
  }
1409
1410
 protected:
1411
  /**
1412
   * Default implementation of current wall-clock time in milliseconds
1413
   * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1414
   * nothing special needed.
1415
   */
1416
  V8_EXPORT static double SystemClockTimeMillis();
1417
1418
  /**
1419
   * Creates and returns a JobHandle associated with a Job.
1420
   */
1421
  virtual std::unique_ptr<JobHandle> CreateJobImpl(
1422
      TaskPriority priority, std::unique_ptr<JobTask> job_task,
1423
      const SourceLocation& location) = 0;
1424
1425
  /**
1426
   * Schedules a task with |priority| to be invoked on a worker thread.
1427
   */
1428
  virtual void PostTaskOnWorkerThreadImpl(TaskPriority priority,
1429
                                          std::unique_ptr<Task> task,
1430
                                          const SourceLocation& location) = 0;
1431
1432
  /**
1433
   * Schedules a task with |priority| to be invoked on a worker thread after
1434
   * |delay_in_seconds| expires.
1435
   */
1436
  virtual void PostDelayedTaskOnWorkerThreadImpl(
1437
      TaskPriority priority, std::unique_ptr<Task> task,
1438
      double delay_in_seconds, const SourceLocation& location) = 0;
1439
};
1440
1441
}  // namespace v8
1442
1443
#endif  // V8_V8_PLATFORM_H_