/src/nss/lib/softoken/kbkdf.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | #include "pkcs11i.h" | 
| 2 |  | #include "blapi.h" | 
| 3 |  | #include "secerr.h" | 
| 4 |  | #include "softoken.h" | 
| 5 |  |  | 
| 6 |  | /* Overview: | 
| 7 |  |  * | 
| 8 |  |  * This file contains implementations of the three KDFs from NIST SP800-108 | 
| 9 |  |  * "Recommendation for Key Derivation Using Pseudorandom Functions": | 
| 10 |  |  * | 
| 11 |  |  *  1. KDF in Counter Mode (section 5.1) | 
| 12 |  |  *  2. KDF in Feedback Mode (section 5.2) | 
| 13 |  |  *  3. KDF in Double-Pipeline Iteration Mode (section 5.3) | 
| 14 |  |  * | 
| 15 |  |  * These KDFs are a form of negotiable building blocks for KDFs: protocol | 
| 16 |  |  * designers can choose various fields, their endianness, and the underlying | 
| 17 |  |  * PRF. These constructs are generic enough to handle creation of arbitrary, | 
| 18 |  |  * (but known ahead of time) length outputs. | 
| 19 |  |  * | 
| 20 |  |  * The families of PRFs described here are used, among other places, in | 
| 21 |  |  * Kerberos and GlobalPlatform's Secure Channel Protocol 03. The PKCS#11 v3.0 | 
| 22 |  |  * design for this KDF facilitates a wide range of uses. | 
| 23 |  |  * | 
| 24 |  |  * Implementation Details: | 
| 25 |  |  * | 
| 26 |  |  * We reuse the new sftk_MACCtx for handling the underlying MACing; with a few | 
| 27 |  |  * safe restrictions, we can reuse whatever it gives us to use as a PRF. | 
| 28 |  |  * | 
| 29 |  |  * We implement the core of the KDF in the *Raw(...) version of the function | 
| 30 |  |  * call. The PKCS#11 key handling happens in the non-Raw version. This means | 
| 31 |  |  * we need a single large allocation upfront (large enough to store the entire | 
| 32 |  |  * key stream), but means we can share key parsing logic and enable the | 
| 33 |  |  * creation of data objects. | 
| 34 |  |  */ | 
| 35 |  |  | 
| 36 |  | /* [ section: #define's ] */ | 
| 37 |  |  | 
| 38 | 0 | #define VALID_CK_BOOL(x) ((x) == CK_TRUE || (x) == CK_FALSE) | 
| 39 | 0 | #define IS_COUNTER(_mech) ((_mech) == CKM_SP800_108_COUNTER_KDF || (_mech) == CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA) | 
| 40 | 0 | #define DOES_DERIVE_DATA(_mech) ((_mech) == CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA || (_mech) == CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA || (_mech) == CKM_NSS_SP800_108_DOUBLE_PIPELINE_KDF_DERIVE_DATA) | 
| 41 |  |  | 
| 42 |  | /* [ section: parameter validation ] */ | 
| 43 |  |  | 
| 44 |  | static CK_RV | 
| 45 |  | kbkdf_LoadParameters(CK_MECHANISM_TYPE mech, CK_MECHANISM_PTR pMechanism, CK_SP800_108_KDF_PARAMS_PTR kdf_params, CK_BYTE_PTR *initial_value, CK_ULONG_PTR initial_value_length) | 
| 46 | 0 | { | 
| 47 |  |     /* This function loads the parameters for the given mechanism into the | 
| 48 |  |      * specified kdf_params, splitting off the IV if present. In PKCS#11 v3.0, | 
| 49 |  |      * CK_SP800_108_FEEDBACK_KDF_PARAMS and CK_SP800_108_KDF_PARAMS have | 
| 50 |  |      * different ordering of internal parameters, which means that it isn't | 
| 51 |  |      * easy to reuse feedback parameters in the same functions as non-feedback | 
| 52 |  |      * parameters. Rather than duplicating the logic, split out the only | 
| 53 |  |      * Feedback-specific data (the IV) into a separate argument and repack it | 
| 54 |  |      * into the passed kdf_params struct instead. */ | 
| 55 | 0 |     PR_ASSERT(pMechanism != NULL && kdf_params != NULL && initial_value != NULL && initial_value_length != NULL); | 
| 56 |  | 
 | 
| 57 | 0 |     CK_SP800_108_KDF_PARAMS_PTR in_params; | 
| 58 | 0 |     CK_SP800_108_FEEDBACK_KDF_PARAMS_PTR feedback_params; | 
| 59 |  | 
 | 
| 60 | 0 |     if (mech == CKM_SP800_108_FEEDBACK_KDF || mech == CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA) { | 
| 61 | 0 |         if (pMechanism->ulParameterLen != sizeof(CK_SP800_108_FEEDBACK_KDF_PARAMS)) { | 
| 62 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 63 | 0 |         } | 
| 64 |  |  | 
| 65 | 0 |         feedback_params = (CK_SP800_108_FEEDBACK_KDF_PARAMS *)pMechanism->pParameter; | 
| 66 |  | 
 | 
| 67 | 0 |         if (feedback_params->pIV == NULL && feedback_params->ulIVLen > 0) { | 
| 68 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 69 | 0 |         } | 
| 70 |  |  | 
| 71 | 0 |         kdf_params->prfType = feedback_params->prfType; | 
| 72 | 0 |         kdf_params->ulNumberOfDataParams = feedback_params->ulNumberOfDataParams; | 
| 73 | 0 |         kdf_params->pDataParams = feedback_params->pDataParams; | 
| 74 | 0 |         kdf_params->ulAdditionalDerivedKeys = feedback_params->ulAdditionalDerivedKeys; | 
| 75 | 0 |         kdf_params->pAdditionalDerivedKeys = feedback_params->pAdditionalDerivedKeys; | 
| 76 |  | 
 | 
| 77 | 0 |         *initial_value = feedback_params->pIV; | 
| 78 | 0 |         *initial_value_length = feedback_params->ulIVLen; | 
| 79 | 0 |     } else { | 
| 80 | 0 |         if (pMechanism->ulParameterLen != sizeof(CK_SP800_108_KDF_PARAMS)) { | 
| 81 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 82 | 0 |         } | 
| 83 |  |  | 
| 84 | 0 |         in_params = (CK_SP800_108_KDF_PARAMS *)pMechanism->pParameter; | 
| 85 |  | 
 | 
| 86 | 0 |         (*kdf_params) = *in_params; | 
| 87 | 0 |     } | 
| 88 |  |  | 
| 89 | 0 |     return CKR_OK; | 
| 90 | 0 | } | 
| 91 |  |  | 
| 92 |  | static CK_RV | 
| 93 |  | kbkdf_ValidateParameter(CK_MECHANISM_TYPE mech, const CK_PRF_DATA_PARAM *data) | 
| 94 | 0 | { | 
| 95 |  |     /* This function validates that the passed data parameter (data) conforms | 
| 96 |  |      * to PKCS#11 v3.0's expectations for KDF parameters. This depends both on | 
| 97 |  |      * the type of this parameter (data->type) and on the KDF mechanism (mech) | 
| 98 |  |      * as certain parameters are context dependent (like Iteration Variable). | 
| 99 |  |      */ | 
| 100 |  |  | 
| 101 |  |     /* If the parameter is missing a value when one is expected, then this | 
| 102 |  |      * parameter is invalid. */ | 
| 103 | 0 |     if ((data->pValue == NULL) != (data->ulValueLen == 0)) { | 
| 104 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 105 | 0 |     } | 
| 106 |  |  | 
| 107 | 0 |     switch (data->type) { | 
| 108 | 0 |         case CK_SP800_108_ITERATION_VARIABLE: | 
| 109 | 0 |         case CK_SP800_108_OPTIONAL_COUNTER: { | 
| 110 | 0 |             if (data->type == CK_SP800_108_ITERATION_VARIABLE && !IS_COUNTER(mech)) { | 
| 111 |  |                 /* In Feedback and Double Pipeline KDFs, PKCS#11 v3.0 connotes the | 
| 112 |  |                  * iteration variable as the chaining value from the previous PRF | 
| 113 |  |                  * invocation. In contrast, counter mode treats this variable as a | 
| 114 |  |                  * COUNTER_FORMAT descriptor. Thus we can skip validation of | 
| 115 |  |                  * iteration variable parameters outside of counter mode. However, | 
| 116 |  |                  * PKCS#11 v3.0 technically mandates that pValue is NULL, so we | 
| 117 |  |                  * still have to validate that. */ | 
| 118 |  | 
 | 
| 119 | 0 |                 if (data->pValue != NULL) { | 
| 120 | 0 |                     return CKR_MECHANISM_PARAM_INVALID; | 
| 121 | 0 |                 } | 
| 122 |  |  | 
| 123 | 0 |                 return CKR_OK; | 
| 124 | 0 |             } | 
| 125 |  |  | 
| 126 |  |             /* In counter mode, data->pValue should be a pointer to an instance of | 
| 127 |  |              * CK_SP800_108_COUNTER_FORMAT; validate its length. */ | 
| 128 | 0 |             if (data->ulValueLen != sizeof(CK_SP800_108_COUNTER_FORMAT)) { | 
| 129 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 130 | 0 |             } | 
| 131 |  |  | 
| 132 | 0 |             CK_SP800_108_COUNTER_FORMAT_PTR param = (CK_SP800_108_COUNTER_FORMAT_PTR)data->pValue; | 
| 133 |  |  | 
| 134 |  |             /* Validate the endian parameter. */ | 
| 135 | 0 |             if (!VALID_CK_BOOL(param->bLittleEndian)) { | 
| 136 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 137 | 0 |             } | 
| 138 |  |  | 
| 139 |  |             /* Due to restrictions by our underlying hashes, we restrict bit | 
| 140 |  |              * widths to actually be byte widths by ensuring they're a multiple | 
| 141 |  |              * of eight. */ | 
| 142 | 0 |             if ((param->ulWidthInBits % 8) != 0) { | 
| 143 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 144 | 0 |             } | 
| 145 |  |  | 
| 146 |  |             /* Note that section 5.1 denotes the maximum length of the counter | 
| 147 |  |              * to be 32. */ | 
| 148 | 0 |             if (param->ulWidthInBits > 32) { | 
| 149 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 150 | 0 |             } | 
| 151 | 0 |             break; | 
| 152 | 0 |         } | 
| 153 | 0 |         case CK_SP800_108_DKM_LENGTH: { | 
| 154 |  |             /* data->pValue should be a pointer to an instance of | 
| 155 |  |              * CK_SP800_108_DKM_LENGTH_FORMAT; validate its length. */ | 
| 156 | 0 |             if (data->ulValueLen != sizeof(CK_SP800_108_DKM_LENGTH_FORMAT)) { | 
| 157 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 158 | 0 |             } | 
| 159 |  |  | 
| 160 | 0 |             CK_SP800_108_DKM_LENGTH_FORMAT_PTR param = (CK_SP800_108_DKM_LENGTH_FORMAT_PTR)data->pValue; | 
| 161 |  |  | 
| 162 |  |             /* Validate the method parameter. */ | 
| 163 | 0 |             if (param->dkmLengthMethod != CK_SP800_108_DKM_LENGTH_SUM_OF_KEYS && | 
| 164 | 0 |                 param->dkmLengthMethod != CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS) { | 
| 165 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 166 | 0 |             } | 
| 167 |  |  | 
| 168 |  |             /* Validate the endian parameter. */ | 
| 169 | 0 |             if (!VALID_CK_BOOL(param->bLittleEndian)) { | 
| 170 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 171 | 0 |             } | 
| 172 |  |  | 
| 173 |  |             /* Validate the maximum width: we restrict it to being a byte width | 
| 174 |  |              * instead of a bit width due to restrictions by the underlying | 
| 175 |  |              * PRFs. */ | 
| 176 | 0 |             if ((param->ulWidthInBits % 8) != 0) { | 
| 177 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 178 | 0 |             } | 
| 179 |  |  | 
| 180 |  |             /* Ensure that the width doesn't overflow a 64-bit int. This | 
| 181 |  |              * restriction is arbitrary but since the counters can't exceed | 
| 182 |  |              * 32-bits (and most PRFs output at most 1024 bits), you're unlikely | 
| 183 |  |              * to need all 64-bits of length indicator. */ | 
| 184 | 0 |             if (param->ulWidthInBits > 64) { | 
| 185 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 186 | 0 |             } | 
| 187 | 0 |             break; | 
| 188 | 0 |         } | 
| 189 | 0 |         case CK_SP800_108_BYTE_ARRAY: | 
| 190 |  |             /* There is no additional data to validate for byte arrays; we can | 
| 191 |  |              * only assume the byte array is of the specified size. */ | 
| 192 | 0 |             break; | 
| 193 | 0 |         default: | 
| 194 |  |             /* Unexpected parameter type. */ | 
| 195 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 196 | 0 |     } | 
| 197 |  |  | 
| 198 | 0 |     return CKR_OK; | 
| 199 | 0 | } | 
| 200 |  |  | 
| 201 |  | static CK_RV | 
| 202 |  | kbkdf_ValidateDerived(CK_DERIVED_KEY_PTR key) | 
| 203 | 0 | { | 
| 204 | 0 |     CK_KEY_TYPE keyType = CKK_GENERIC_SECRET; | 
| 205 | 0 |     PRUint64 keySize = 0; | 
| 206 |  |  | 
| 207 |  |     /* The pointer to the key handle shouldn't be NULL. If it is, we can't | 
| 208 |  |      * do anything else, so exit early. Every other failure case sets the | 
| 209 |  |      * key->phKey = CK_INVALID_HANDLE, so we can't use `goto failure` here. */ | 
| 210 | 0 |     if (key->phKey == NULL) { | 
| 211 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 212 | 0 |     } | 
| 213 |  |  | 
| 214 |  |     /* Validate that we have no attributes if and only if pTemplate is NULL. | 
| 215 |  |      * Otherwise, there's an inconsistency somewhere. */ | 
| 216 | 0 |     if ((key->ulAttributeCount == 0) != (key->pTemplate == NULL)) { | 
| 217 | 0 |         goto failure; | 
| 218 | 0 |     } | 
| 219 |  |  | 
| 220 | 0 |     for (size_t offset = 0; offset < key->ulAttributeCount; offset++) { | 
| 221 | 0 |         CK_ATTRIBUTE_PTR template = key->pTemplate + offset; | 
| 222 |  |  | 
| 223 |  |         /* We only look for the CKA_VALUE_LEN and CKA_KEY_TYPE attributes. | 
| 224 |  |          * Everything else we assume we can set on the key if it is passed | 
| 225 |  |          * here. However, if we can't inquire as to a length (and barring | 
| 226 |  |          * that, if we have a key type without a standard length), we're | 
| 227 |  |          * definitely stuck. This mirrors the logic at the top of | 
| 228 |  |          * NSC_DeriveKey(...). */ | 
| 229 | 0 |         if (template->type == CKA_KEY_TYPE) { | 
| 230 | 0 |             if (template->ulValueLen != sizeof(CK_KEY_TYPE)) { | 
| 231 | 0 |                 goto failure; | 
| 232 | 0 |             } | 
| 233 |  |  | 
| 234 | 0 |             keyType = *(CK_KEY_TYPE *)template->pValue; | 
| 235 | 0 |         } else if (template->type == CKA_VALUE_LEN) { | 
| 236 | 0 |             if (template->ulValueLen != sizeof(CK_ULONG)) { | 
| 237 | 0 |                 goto failure; | 
| 238 | 0 |             } | 
| 239 |  |  | 
| 240 | 0 |             keySize = *(CK_ULONG *)template->pValue; | 
| 241 | 0 |         } | 
| 242 | 0 |     } | 
| 243 |  |  | 
| 244 | 0 |     if (keySize == 0) { | 
| 245 |  |         /* When we lack a keySize, see if we can infer it from the type of the | 
| 246 |  |          * passed key. */ | 
| 247 | 0 |         keySize = sftk_MapKeySize(keyType); | 
| 248 | 0 |     } | 
| 249 |  |  | 
| 250 |  |     /* The main piece of information we validate is that we have a length for | 
| 251 |  |      * this key. */ | 
| 252 | 0 |     if (keySize == 0 || keySize >= (1ull << 32ull)) { | 
| 253 | 0 |         goto failure; | 
| 254 | 0 |     } | 
| 255 |  |  | 
| 256 | 0 |     return CKR_OK; | 
| 257 |  |  | 
| 258 | 0 | failure: | 
| 259 |  |     /* PKCS#11 v3.0: If the failure was caused by the content of a specific | 
| 260 |  |      * key's template (ie the template defined by the content of pTemplate), | 
| 261 |  |      * the corresponding phKey value will be set to CK_INVALID_HANDLE to | 
| 262 |  |      * identify the offending template. */ | 
| 263 | 0 |     *(key->phKey) = CK_INVALID_HANDLE; | 
| 264 | 0 |     return CKR_MECHANISM_PARAM_INVALID; | 
| 265 | 0 | } | 
| 266 |  |  | 
| 267 |  | static CK_RV | 
| 268 |  | kbkdf_ValidateParameters(CK_MECHANISM_TYPE mech, const CK_SP800_108_KDF_PARAMS *params, CK_ULONG keySize) | 
| 269 | 0 | { | 
| 270 | 0 |     CK_RV ret = CKR_MECHANISM_PARAM_INVALID; | 
| 271 | 0 |     int param_type_count[5] = { 0, 0, 0, 0, 0 }; | 
| 272 | 0 |     size_t offset = 0; | 
| 273 |  |  | 
| 274 |  |     /* Start with checking the prfType as a mechanism against a list of | 
| 275 |  |      * PRFs allowed by PKCS#11 v3.0. */ | 
| 276 | 0 |     if (!(/* The following types aren't defined in NSS yet. */ | 
| 277 |  |           /* params->prfType != CKM_3DES_CMAC && */ | 
| 278 | 0 |           params->prfType == CKM_AES_CMAC || /* allow */ | 
| 279 |  |           /* We allow any HMAC except MD2 and MD5. */ | 
| 280 | 0 |           params->prfType != CKM_MD2_HMAC ||                        /* disallow */ | 
| 281 | 0 |           params->prfType != CKM_MD5_HMAC ||                        /* disallow */ | 
| 282 | 0 |           sftk_HMACMechanismToHash(params->prfType) != HASH_AlgNULL /* Valid HMAC <-> HASH isn't NULL */ | 
| 283 | 0 |           )) { | 
| 284 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 285 | 0 |     } | 
| 286 |  |  | 
| 287 |  |     /* We can't have a null pDataParams pointer: we always need at least one | 
| 288 |  |      * parameter to succeed. */ | 
| 289 | 0 |     if (params->pDataParams == NULL) { | 
| 290 | 0 |         return CKR_HOST_MEMORY; | 
| 291 | 0 |     } | 
| 292 |  |  | 
| 293 |  |     /* Validate each KDF parameter. */ | 
| 294 | 0 |     for (offset = 0; offset < params->ulNumberOfDataParams; offset++) { | 
| 295 |  |         /* Validate this parameter has acceptable values. */ | 
| 296 | 0 |         ret = kbkdf_ValidateParameter(mech, params->pDataParams + offset); | 
| 297 | 0 |         if (ret != CKR_OK) { | 
| 298 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 299 | 0 |         } | 
| 300 |  |  | 
| 301 |  |         /* Count that we have a parameter of this type. The above logic | 
| 302 |  |          * in ValidateParameter MUST validate that type is within the | 
| 303 |  |          * appropriate range. */ | 
| 304 | 0 |         PR_ASSERT(params->pDataParams[offset].type < sizeof(param_type_count) / sizeof(param_type_count[0])); | 
| 305 | 0 |         param_type_count[params->pDataParams[offset].type] += 1; | 
| 306 | 0 |     } | 
| 307 |  |  | 
| 308 | 0 |     if (IS_COUNTER(mech)) { | 
| 309 |  |         /* We have to have at least one iteration variable parameter. */ | 
| 310 | 0 |         if (param_type_count[CK_SP800_108_ITERATION_VARIABLE] == 0) { | 
| 311 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 312 | 0 |         } | 
| 313 |  |  | 
| 314 |  |         /* We can't have any optional counters parameters -- these belong in | 
| 315 |  |          * iteration variable parameters instead. */ | 
| 316 | 0 |         if (param_type_count[CK_SP800_108_OPTIONAL_COUNTER] != 0) { | 
| 317 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 318 | 0 |         } | 
| 319 | 0 |     } | 
| 320 |  |  | 
| 321 |  |     /* Validate basic assumptions about derived keys: | 
| 322 |  |      *      NULL <-> ulAdditionalDerivedKeys > 0 | 
| 323 |  |      */ | 
| 324 | 0 |     if ((params->ulAdditionalDerivedKeys == 0) != (params->pAdditionalDerivedKeys == NULL)) { | 
| 325 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 326 | 0 |     } | 
| 327 |  |  | 
| 328 |  |     /* Validate each derived key. */ | 
| 329 | 0 |     for (offset = 0; offset < params->ulAdditionalDerivedKeys; offset++) { | 
| 330 | 0 |         ret = kbkdf_ValidateDerived(params->pAdditionalDerivedKeys + offset); | 
| 331 | 0 |         if (ret != CKR_OK) { | 
| 332 | 0 |             return CKR_MECHANISM_PARAM_INVALID; | 
| 333 | 0 |         } | 
| 334 | 0 |     } | 
| 335 |  |  | 
| 336 |  |     /* Validate the length of our primary key. */ | 
| 337 | 0 |     if (keySize == 0 || ((PRUint64)keySize) >= (1ull << 32ull)) { | 
| 338 | 0 |         return CKR_KEY_SIZE_RANGE; | 
| 339 | 0 |     } | 
| 340 |  |  | 
| 341 | 0 |     return CKR_OK; | 
| 342 | 0 | } | 
| 343 |  |  | 
| 344 |  | /* [ section: parameter helpers ] */ | 
| 345 |  |  | 
| 346 |  | static CK_VOID_PTR | 
| 347 |  | kbkdf_FindParameter(const CK_SP800_108_KDF_PARAMS *params, CK_PRF_DATA_TYPE type) | 
| 348 | 0 | { | 
| 349 | 0 |     for (size_t offset = 0; offset < params->ulNumberOfDataParams; offset++) { | 
| 350 | 0 |         if (params->pDataParams[offset].type == type) { | 
| 351 | 0 |             return params->pDataParams[offset].pValue; | 
| 352 | 0 |         } | 
| 353 | 0 |     } | 
| 354 |  |  | 
| 355 | 0 |     return NULL; | 
| 356 | 0 | } | 
| 357 |  |  | 
| 358 |  | size_t | 
| 359 |  | kbkdf_IncrementBuffer(size_t cur_offset, size_t consumed, size_t prf_length) | 
| 360 | 0 | { | 
| 361 | 0 |     return cur_offset + PR_ROUNDUP(consumed, prf_length); | 
| 362 | 0 | } | 
| 363 |  |  | 
| 364 |  | CK_ULONG | 
| 365 |  | kbkdf_GetDerivedKeySize(CK_DERIVED_KEY_PTR derived_key) | 
| 366 | 0 | { | 
| 367 |  |     /* Precondition: kbkdf_ValidateDerived(...) returns CKR_OK for this key, | 
| 368 |  |      * which implies that keySize is defined. */ | 
| 369 |  | 
 | 
| 370 | 0 |     CK_KEY_TYPE keyType = CKK_GENERIC_SECRET; | 
| 371 | 0 |     CK_ULONG keySize = 0; | 
| 372 |  | 
 | 
| 373 | 0 |     for (size_t offset = 0; offset < derived_key->ulAttributeCount; offset++) { | 
| 374 | 0 |         CK_ATTRIBUTE_PTR template = derived_key->pTemplate + offset; | 
| 375 |  |  | 
| 376 |  |         /* Find the two attributes we care about. */ | 
| 377 | 0 |         if (template->type == CKA_KEY_TYPE) { | 
| 378 | 0 |             keyType = *(CK_KEY_TYPE *)template->pValue; | 
| 379 | 0 |         } else if (template->type == CKA_VALUE_LEN) { | 
| 380 | 0 |             keySize = *(CK_ULONG *)template->pValue; | 
| 381 | 0 |         } | 
| 382 | 0 |     } | 
| 383 |  |  | 
| 384 |  |     /* Prefer keySize, if we have it. */ | 
| 385 | 0 |     if (keySize > 0) { | 
| 386 | 0 |         return keySize; | 
| 387 | 0 |     } | 
| 388 |  |  | 
| 389 |  |     /* Else, fall back to this mapping. We know kbkdf_ValidateDerived(...) | 
| 390 |  |      * passed, so this should return non-zero. */ | 
| 391 | 0 |     return sftk_MapKeySize(keyType); | 
| 392 | 0 | } | 
| 393 |  |  | 
| 394 |  | static CK_RV | 
| 395 |  | kbkdf_CalculateLength(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, CK_ULONG ret_key_size, PRUint64 *output_bitlen, size_t *buffer_length) | 
| 396 | 0 | { | 
| 397 |  |     /* Two cases: either we have additional derived keys or we don't. In the | 
| 398 |  |      * case that we don't, the length of the derivation is the size of the | 
| 399 |  |      * single derived key, and that is the length of the PRF buffer. Otherwise, | 
| 400 |  |      * we need to use the proper CK_SP800_108_DKM_LENGTH_METHOD to calculate | 
| 401 |  |      * the length of the output (in bits), with a separate value for the size | 
| 402 |  |      * of the PRF data buffer. This means that, under PKCS#11 with additional | 
| 403 |  |      * derived keys, we lie to the KDF about the _actual_ length of the PRF | 
| 404 |  |      * output. | 
| 405 |  |      * | 
| 406 |  |      * Note that *output_bitlen is the L parameter in NIST SP800-108 and is in | 
| 407 |  |      * bits. However, *buffer_length is in bytes. | 
| 408 |  |      */ | 
| 409 |  | 
 | 
| 410 | 0 |     if (params->ulAdditionalDerivedKeys == 0) { | 
| 411 |  |         /* When we have no additional derived keys, we get the keySize from | 
| 412 |  |          * the value passed to one of our KBKDF_* methods. */ | 
| 413 | 0 |         *output_bitlen = ret_key_size; | 
| 414 | 0 |         *buffer_length = ret_key_size; | 
| 415 | 0 |     } else { | 
| 416 |  |         /* Offset in the additional derived keys array. */ | 
| 417 | 0 |         size_t offset = 0; | 
| 418 |  |  | 
| 419 |  |         /* Size of the derived key. */ | 
| 420 | 0 |         CK_ULONG derived_size = 0; | 
| 421 |  |  | 
| 422 |  |         /* In the below, we place the sum of the keys into *output_bitlen | 
| 423 |  |          * and the size of the buffer (with padding mandated by PKCS#11 v3.0) | 
| 424 |  |          * into *buffer_length. If the method is the segment sum, then we | 
| 425 |  |          * replace *output_bitlen with *buffer_length at the end. This ensures | 
| 426 |  |          * we always get a output buffer large enough to handle all derived | 
| 427 |  |          * keys, and *output_bitlen reflects the correct L value. */ | 
| 428 |  |  | 
| 429 |  |         /* Count the initial derived key. */ | 
| 430 | 0 |         *output_bitlen = ret_key_size; | 
| 431 | 0 |         *buffer_length = kbkdf_IncrementBuffer(0, ret_key_size, ctx->mac_size); | 
| 432 |  |  | 
| 433 |  |         /* Handle n - 1 keys. The last key is special. */ | 
| 434 | 0 |         for (; offset < params->ulAdditionalDerivedKeys - 1; offset++) { | 
| 435 | 0 |             derived_size = kbkdf_GetDerivedKeySize(params->pAdditionalDerivedKeys + offset); | 
| 436 |  | 
 | 
| 437 | 0 |             *output_bitlen += derived_size; | 
| 438 | 0 |             *buffer_length = kbkdf_IncrementBuffer(*buffer_length, derived_size, ctx->mac_size); | 
| 439 | 0 |         } | 
| 440 |  |  | 
| 441 |  |         /* Handle the last key. */ | 
| 442 | 0 |         derived_size = kbkdf_GetDerivedKeySize(params->pAdditionalDerivedKeys + offset); | 
| 443 |  | 
 | 
| 444 | 0 |         *output_bitlen += derived_size; | 
| 445 | 0 |         *buffer_length = kbkdf_IncrementBuffer(*buffer_length, derived_size, ctx->mac_size); | 
| 446 |  |  | 
| 447 |  |         /* Pointer to the DKM method parameter. Note that this implicit cast | 
| 448 |  |          * is safe since we've assumed we've been validated by | 
| 449 |  |          * kbkdf_ValidateParameters(...). When kdm_param is NULL, we don't | 
| 450 |  |          * use the output_bitlen parameter. */ | 
| 451 | 0 |         CK_SP800_108_DKM_LENGTH_FORMAT_PTR dkm_param = kbkdf_FindParameter(params, CK_SP800_108_DKM_LENGTH); | 
| 452 | 0 |         if (dkm_param != NULL) { | 
| 453 | 0 |             if (dkm_param->dkmLengthMethod == CK_SP800_108_DKM_LENGTH_SUM_OF_SEGMENTS) { | 
| 454 | 0 |                 *output_bitlen = *buffer_length; | 
| 455 | 0 |             } | 
| 456 | 0 |         } | 
| 457 | 0 |     } | 
| 458 |  |  | 
| 459 |  |     /* Note that keySize is the size in bytes and ctx->mac_size is also | 
| 460 |  |      * the size in bytes. However, output_bitlen needs to be in bits, so | 
| 461 |  |      * multiply by 8 here. */ | 
| 462 | 0 |     *output_bitlen *= 8; | 
| 463 |  | 
 | 
| 464 | 0 |     return CKR_OK; | 
| 465 | 0 | } | 
| 466 |  |  | 
| 467 |  | static CK_RV | 
| 468 |  | kbkdf_CalculateIterations(CK_MECHANISM_TYPE mech, const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, size_t buffer_length, PRUint32 *num_iterations) | 
| 469 | 0 | { | 
| 470 | 0 |     CK_SP800_108_COUNTER_FORMAT_PTR param_ptr = NULL; | 
| 471 | 0 |     PRUint64 iteration_count; | 
| 472 | 0 |     PRUint64 r = 32; | 
| 473 |  |  | 
| 474 |  |     /* We need to know how many full iterations are required. This is done | 
| 475 |  |      * by rounding up the division of the PRF length into buffer_length. | 
| 476 |  |      * However, we're not guaranteed that the last output is a full PRF | 
| 477 |  |      * invocation, so handle that here. */ | 
| 478 | 0 |     iteration_count = buffer_length + (ctx->mac_size - 1); | 
| 479 | 0 |     iteration_count = iteration_count / ctx->mac_size; | 
| 480 |  |  | 
| 481 |  |     /* NIST SP800-108, section 5.1, process step #2: | 
| 482 |  |      * | 
| 483 |  |      *      if n > 2^r - 1, then indicate an error and stop. | 
| 484 |  |      * | 
| 485 |  |      * In non-counter mode KDFs, r is set at 32, leaving behavior | 
| 486 |  |      * under-defined when the optional counter is included but fewer than | 
| 487 |  |      * 32 bits. This implementation assumes r is 32, but if the counter | 
| 488 |  |      * parameter is included, validates it against that. In counter-mode | 
| 489 |  |      * KDFs, this is in the ITERATION_VARIABLE parameter; in feedback- or | 
| 490 |  |      * pipeline-mode KDFs, this is in the COUNTER parameter. | 
| 491 |  |      * | 
| 492 |  |      * This is consistent with the supplied sample CAVP tests; none reuses the | 
| 493 |  |      * same counter value. In some configurations, this could result in | 
| 494 |  |      * duplicated KDF output. We seek to avoid that from happening. | 
| 495 |  |      */ | 
| 496 | 0 |     if (IS_COUNTER(mech)) { | 
| 497 | 0 |         param_ptr = kbkdf_FindParameter(params, CK_SP800_108_ITERATION_VARIABLE); | 
| 498 |  |  | 
| 499 |  |         /* Validated by kbkdf_ValidateParameters(...) above. */ | 
| 500 | 0 |         PR_ASSERT(param_ptr != NULL); | 
| 501 |  | 
 | 
| 502 | 0 |         r = ((CK_SP800_108_COUNTER_FORMAT_PTR)param_ptr)->ulWidthInBits; | 
| 503 | 0 |     } else { | 
| 504 | 0 |         param_ptr = kbkdf_FindParameter(params, CK_SP800_108_COUNTER); | 
| 505 |  |  | 
| 506 |  |         /* Not guaranteed to exist, hence the default value of r=32. */ | 
| 507 | 0 |         if (param_ptr != NULL) { | 
| 508 | 0 |             r = ((CK_SP800_108_COUNTER_FORMAT_PTR)param_ptr)->ulWidthInBits; | 
| 509 | 0 |         } | 
| 510 | 0 |     } | 
| 511 |  | 
 | 
| 512 | 0 |     if (iteration_count >= (1ull << r) || r > 32) { | 
| 513 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 514 | 0 |     } | 
| 515 |  |  | 
| 516 | 0 |     *num_iterations = (PRUint32)iteration_count; | 
| 517 |  | 
 | 
| 518 | 0 |     return CKR_OK; | 
| 519 | 0 | } | 
| 520 |  |  | 
| 521 |  | static CK_RV | 
| 522 |  | kbkdf_AddParameters(CK_MECHANISM_TYPE mech, sftk_MACCtx *ctx, const CK_SP800_108_KDF_PARAMS *params, PRUint32 counter, PRUint64 length, const unsigned char *chaining_prf, size_t chaining_prf_len, CK_PRF_DATA_TYPE exclude) | 
| 523 | 0 | { | 
| 524 | 0 |     size_t offset = 0; | 
| 525 | 0 |     CK_RV ret = CKR_OK; | 
| 526 |  | 
 | 
| 527 | 0 |     for (offset = 0; offset < params->ulNumberOfDataParams; offset++) { | 
| 528 | 0 |         CK_PRF_DATA_PARAM_PTR param = params->pDataParams + offset; | 
| 529 |  | 
 | 
| 530 | 0 |         if (param->type == exclude) { | 
| 531 |  |             /* Necessary for Double Pipeline mode: when constructing the IV, | 
| 532 |  |              * we skip the  optional counter. */ | 
| 533 | 0 |             continue; | 
| 534 | 0 |         } | 
| 535 |  |  | 
| 536 | 0 |         switch (param->type) { | 
| 537 | 0 |             case CK_SP800_108_ITERATION_VARIABLE: { | 
| 538 |  |                 /* When present in COUNTER mode, this signifies adding the counter | 
| 539 |  |                  * variable to the PRF. Otherwise, it signifies the chaining | 
| 540 |  |                  * value for other KDF modes. */ | 
| 541 | 0 |                 if (IS_COUNTER(mech)) { | 
| 542 | 0 |                     CK_SP800_108_COUNTER_FORMAT_PTR counter_format = (CK_SP800_108_COUNTER_FORMAT_PTR)param->pValue; | 
| 543 | 0 |                     CK_BYTE buffer[sizeof(PRUint64)]; | 
| 544 | 0 |                     CK_ULONG num_bytes; | 
| 545 | 0 |                     sftk_EncodeInteger(counter, counter_format->ulWidthInBits, counter_format->bLittleEndian, buffer, &num_bytes); | 
| 546 | 0 |                     ret = sftk_MAC_Update(ctx, buffer, num_bytes); | 
| 547 | 0 |                 } else { | 
| 548 | 0 |                     ret = sftk_MAC_Update(ctx, chaining_prf, chaining_prf_len); | 
| 549 | 0 |                 } | 
| 550 | 0 |                 break; | 
| 551 | 0 |             } | 
| 552 | 0 |             case CK_SP800_108_COUNTER: { | 
| 553 |  |                 /* Only present in the case when not using COUNTER mode. */ | 
| 554 | 0 |                 PR_ASSERT(!IS_COUNTER(mech)); | 
| 555 |  |  | 
| 556 |  |                 /* We should've already validated that this parameter is of | 
| 557 |  |                  * type COUNTER_FORMAT. */ | 
| 558 | 0 |                 CK_SP800_108_COUNTER_FORMAT_PTR counter_format = (CK_SP800_108_COUNTER_FORMAT_PTR)param->pValue; | 
| 559 | 0 |                 CK_BYTE buffer[sizeof(PRUint64)]; | 
| 560 | 0 |                 CK_ULONG num_bytes; | 
| 561 | 0 |                 sftk_EncodeInteger(counter, counter_format->ulWidthInBits, counter_format->bLittleEndian, buffer, &num_bytes); | 
| 562 | 0 |                 ret = sftk_MAC_Update(ctx, buffer, num_bytes); | 
| 563 | 0 |                 break; | 
| 564 | 0 |             } | 
| 565 | 0 |             case CK_SP800_108_BYTE_ARRAY: | 
| 566 | 0 |                 ret = sftk_MAC_Update(ctx, (CK_BYTE_PTR)param->pValue, param->ulValueLen); | 
| 567 | 0 |                 break; | 
| 568 | 0 |             case CK_SP800_108_DKM_LENGTH: { | 
| 569 |  |                 /* We've already done the hard work of calculating the length in | 
| 570 |  |                  * the kbkdf_CalculateIterations function; we merely need to add | 
| 571 |  |                  * the length to the desired point in the input stream. */ | 
| 572 | 0 |                 CK_SP800_108_DKM_LENGTH_FORMAT_PTR length_format = (CK_SP800_108_DKM_LENGTH_FORMAT_PTR)param->pValue; | 
| 573 | 0 |                 CK_BYTE buffer[sizeof(PRUint64)]; | 
| 574 | 0 |                 CK_ULONG num_bytes; | 
| 575 | 0 |                 sftk_EncodeInteger(length, length_format->ulWidthInBits, length_format->bLittleEndian, buffer, &num_bytes); | 
| 576 | 0 |                 ret = sftk_MAC_Update(ctx, buffer, num_bytes); | 
| 577 | 0 |                 break; | 
| 578 | 0 |             } | 
| 579 | 0 |             default: | 
| 580 |  |                 /* This should've been caught by kbkdf_ValidateParameters(...). */ | 
| 581 | 0 |                 PR_ASSERT(PR_FALSE); | 
| 582 | 0 |                 return CKR_MECHANISM_PARAM_INVALID; | 
| 583 | 0 |         } | 
| 584 |  |  | 
| 585 | 0 |         if (ret != CKR_OK) { | 
| 586 | 0 |             return ret; | 
| 587 | 0 |         } | 
| 588 | 0 |     } | 
| 589 |  |  | 
| 590 | 0 |     return CKR_OK; | 
| 591 | 0 | } | 
| 592 |  |  | 
| 593 |  | CK_RV | 
| 594 |  | kbkdf_SaveKey(SFTKObject *key, unsigned char *key_buffer, unsigned int key_len) | 
| 595 | 0 | { | 
| 596 | 0 |     return sftk_forceAttribute(key, CKA_VALUE, key_buffer, key_len); | 
| 597 | 0 | } | 
| 598 |  |  | 
| 599 |  | CK_RV | 
| 600 |  | kbkdf_CreateKey(CK_MECHANISM_TYPE kdf_mech, CK_SESSION_HANDLE hSession, CK_DERIVED_KEY_PTR derived_key, SFTKObject **ret_key) | 
| 601 | 0 | { | 
| 602 |  |     /* Largely duplicated from NSC_DeriveKey(...) */ | 
| 603 | 0 |     CK_RV ret = CKR_HOST_MEMORY; | 
| 604 | 0 |     SFTKObject *key = NULL; | 
| 605 | 0 |     SFTKSlot *slot = sftk_SlotFromSessionHandle(hSession); | 
| 606 | 0 |     size_t offset = 0; | 
| 607 |  |  | 
| 608 |  |     /* Slot should be non-NULL because NSC_DeriveKey(...) has already | 
| 609 |  |      * performed a sftk_SlotFromSessionHandle(...) call on this session | 
| 610 |  |      * handle. However, Coverity incorrectly flagged this (see 1607955). */ | 
| 611 | 0 |     PR_ASSERT(slot != NULL); | 
| 612 | 0 |     PR_ASSERT(ret_key != NULL); | 
| 613 | 0 |     PR_ASSERT(derived_key != NULL); | 
| 614 | 0 |     PR_ASSERT(derived_key->phKey != NULL); | 
| 615 |  | 
 | 
| 616 | 0 |     if (slot == NULL) { | 
| 617 | 0 |         return CKR_SESSION_HANDLE_INVALID; | 
| 618 | 0 |     } | 
| 619 |  |  | 
| 620 |  |     /* Create the new key object for this additional derived key. */ | 
| 621 | 0 |     key = sftk_NewObject(slot); | 
| 622 | 0 |     if (key == NULL) { | 
| 623 | 0 |         return CKR_HOST_MEMORY; | 
| 624 | 0 |     } | 
| 625 |  |  | 
| 626 |  |     /* Setup the key from the provided template. */ | 
| 627 | 0 |     for (offset = 0; offset < derived_key->ulAttributeCount; offset++) { | 
| 628 | 0 |         ret = sftk_AddAttributeType(key, sftk_attr_expand(derived_key->pTemplate + offset)); | 
| 629 | 0 |         if (ret != CKR_OK) { | 
| 630 | 0 |             sftk_FreeObject(key); | 
| 631 | 0 |             return ret; | 
| 632 | 0 |         } | 
| 633 | 0 |     } | 
| 634 |  |  | 
| 635 |  |     /* When using the CKM_SP800_* series of mechanisms, the result must be a | 
| 636 |  |      * secret key, so its contents can be adequately protected in FIPS mode. | 
| 637 |  |      * However, when using the special CKM_NSS_SP800_*_DERIVE_DATA series, the | 
| 638 |  |      * contents need not be protected, so we set CKO_DATA on these "keys". */ | 
| 639 | 0 |     CK_OBJECT_CLASS classType = CKO_SECRET_KEY; | 
| 640 | 0 |     if (DOES_DERIVE_DATA(kdf_mech)) { | 
| 641 | 0 |         classType = CKO_DATA; | 
| 642 | 0 |     } | 
| 643 |  | 
 | 
| 644 | 0 |     ret = sftk_forceAttribute(key, CKA_CLASS, &classType, sizeof(classType)); | 
| 645 | 0 |     if (ret != CKR_OK) { | 
| 646 | 0 |         sftk_FreeObject(key); | 
| 647 | 0 |         return ret; | 
| 648 | 0 |     } | 
| 649 |  |  | 
| 650 | 0 |     *ret_key = key; | 
| 651 | 0 |     return CKR_OK; | 
| 652 | 0 | } | 
| 653 |  |  | 
| 654 |  | CK_RV | 
| 655 |  | kbkdf_FinalizeKey(CK_SESSION_HANDLE hSession, CK_DERIVED_KEY_PTR derived_key, SFTKObject *key) | 
| 656 | 0 | { | 
| 657 |  |     /* Largely duplicated from NSC_DeriveKey(...) */ | 
| 658 | 0 |     CK_RV ret = CKR_HOST_MEMORY; | 
| 659 | 0 |     SFTKSession *session = NULL; | 
| 660 |  | 
 | 
| 661 | 0 |     PR_ASSERT(derived_key != NULL && key != NULL); | 
| 662 |  | 
 | 
| 663 | 0 |     SFTKSessionObject *sessionForKey = sftk_narrowToSessionObject(key); | 
| 664 | 0 |     PR_ASSERT(sessionForKey != NULL); | 
| 665 | 0 |     sessionForKey->wasDerived = PR_TRUE; | 
| 666 |  | 
 | 
| 667 | 0 |     session = sftk_SessionFromHandle(hSession); | 
| 668 |  |  | 
| 669 |  |     /* Session should be non-NULL because NSC_DeriveKey(...) has already | 
| 670 |  |      * performed a sftk_SessionFromHandle(...) call on this session handle. */ | 
| 671 | 0 |     PR_ASSERT(session != NULL); | 
| 672 |  | 
 | 
| 673 | 0 |     ret = sftk_handleObject(key, session); | 
| 674 | 0 |     if (ret != CKR_OK) { | 
| 675 | 0 |         goto done; | 
| 676 | 0 |     } | 
| 677 |  |  | 
| 678 | 0 |     *(derived_key->phKey) = key->handle; | 
| 679 |  | 
 | 
| 680 | 0 | done: | 
| 681 |  |     /* Guaranteed that key != NULL */ | 
| 682 | 0 |     sftk_FreeObject(key); | 
| 683 |  |  | 
| 684 |  |     /* Doesn't do anything. */ | 
| 685 | 0 |     if (session) { | 
| 686 | 0 |         sftk_FreeSession(session); | 
| 687 | 0 |     } | 
| 688 |  | 
 | 
| 689 | 0 |     return ret; | 
| 690 | 0 | } | 
| 691 |  |  | 
| 692 |  | CK_RV | 
| 693 |  | kbkdf_SaveKeys(CK_MECHANISM_TYPE mech, CK_SESSION_HANDLE hSession, CK_SP800_108_KDF_PARAMS_PTR params, unsigned char *output_buffer, size_t buffer_len, size_t prf_length, SFTKObject *ret_key, CK_ULONG ret_key_size) | 
| 694 | 0 | { | 
| 695 | 0 |     CK_RV ret; | 
| 696 | 0 |     size_t key_offset = 0; | 
| 697 | 0 |     size_t buffer_offset = 0; | 
| 698 |  | 
 | 
| 699 | 0 |     PR_ASSERT(output_buffer != NULL && buffer_len > 0 && ret_key != NULL); | 
| 700 |  |  | 
| 701 |  |     /* First place key material into the main key. */ | 
| 702 | 0 |     ret = kbkdf_SaveKey(ret_key, output_buffer + buffer_offset, ret_key_size); | 
| 703 | 0 |     if (ret != CKR_OK) { | 
| 704 | 0 |         return ret; | 
| 705 | 0 |     } | 
| 706 |  |  | 
| 707 |  |     /* Then increment the offset based on PKCS#11 additional key guidelines: | 
| 708 |  |      * no two keys may share the key stream from the same PRF invocation. */ | 
| 709 | 0 |     buffer_offset = kbkdf_IncrementBuffer(buffer_offset, ret_key_size, prf_length); | 
| 710 |  | 
 | 
| 711 | 0 |     if (params->ulAdditionalDerivedKeys > 0) { | 
| 712 |  |         /* Note that the following code is technically incorrect: PKCS#11 v3.0 | 
| 713 |  |          * says that _no_ key should be set in the event of failure to derive | 
| 714 |  |          * _any_ key. */ | 
| 715 | 0 |         for (key_offset = 0; key_offset < params->ulAdditionalDerivedKeys; key_offset++) { | 
| 716 | 0 |             CK_DERIVED_KEY_PTR derived_key = params->pAdditionalDerivedKeys + key_offset; | 
| 717 | 0 |             SFTKObject *key_obj = NULL; | 
| 718 | 0 |             size_t key_size = kbkdf_GetDerivedKeySize(derived_key); | 
| 719 |  |  | 
| 720 |  |             /* Create a new internal key object for this derived key. */ | 
| 721 | 0 |             ret = kbkdf_CreateKey(mech, hSession, derived_key, &key_obj); | 
| 722 | 0 |             if (ret != CKR_OK) { | 
| 723 | 0 |                 *(derived_key->phKey) = CK_INVALID_HANDLE; | 
| 724 | 0 |                 return ret; | 
| 725 | 0 |             } | 
| 726 |  |  | 
| 727 |  |             /* Save the underlying key bytes to the key object. */ | 
| 728 | 0 |             ret = kbkdf_SaveKey(key_obj, output_buffer + buffer_offset, key_size); | 
| 729 | 0 |             if (ret != CKR_OK) { | 
| 730 |  |                 /* When kbkdf_CreateKey(...) exits with an error, it will free | 
| 731 |  |                  * the constructed key object. kbkdf_FinalizeKey(...) also | 
| 732 |  |                  * always frees the key object. In the unlikely event that | 
| 733 |  |                  * kbkdf_SaveKey(...) _does_ fail, we thus need to free it | 
| 734 |  |                  * manually. */ | 
| 735 | 0 |                 sftk_FreeObject(key_obj); | 
| 736 | 0 |                 *(derived_key->phKey) = CK_INVALID_HANDLE; | 
| 737 | 0 |                 return ret; | 
| 738 | 0 |             } | 
| 739 |  |  | 
| 740 |  |             /* Handle the increment. */ | 
| 741 | 0 |             buffer_offset = kbkdf_IncrementBuffer(buffer_offset, key_size, prf_length); | 
| 742 |  |  | 
| 743 |  |             /* Finalize this key. */ | 
| 744 | 0 |             ret = kbkdf_FinalizeKey(hSession, derived_key, key_obj); | 
| 745 | 0 |             if (ret != CKR_OK) { | 
| 746 | 0 |                 *(derived_key->phKey) = CK_INVALID_HANDLE; | 
| 747 | 0 |                 return ret; | 
| 748 | 0 |             } | 
| 749 | 0 |         } | 
| 750 | 0 |     } | 
| 751 |  |  | 
| 752 | 0 |     return CKR_OK; | 
| 753 | 0 | } | 
| 754 |  |  | 
| 755 |  | /* [ section: KDFs ] */ | 
| 756 |  |  | 
| 757 |  | static CK_RV | 
| 758 |  | kbkdf_CounterRaw(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen) | 
| 759 | 0 | { | 
| 760 | 0 |     CK_RV ret = CKR_OK; | 
| 761 |  |  | 
| 762 |  |     /* Counter variable for this KDF instance. */ | 
| 763 | 0 |     PRUint32 counter; | 
| 764 |  |  | 
| 765 |  |     /* Number of iterations required of this PRF necessary to reach the | 
| 766 |  |      * desired output length. */ | 
| 767 | 0 |     PRUint32 num_iterations; | 
| 768 |  |  | 
| 769 |  |     /* Offset in ret_buffer that we're at. */ | 
| 770 | 0 |     size_t buffer_offset = 0; | 
| 771 |  |  | 
| 772 |  |     /* Size of this block, in bytes. Defaults to ctx->mac_size except on | 
| 773 |  |      * the last iteration where it could be a partial block. */ | 
| 774 | 0 |     size_t block_size = ctx->mac_size; | 
| 775 |  |  | 
| 776 |  |     /* Calculate the number of iterations required based on the size of the | 
| 777 |  |      * output buffer. */ | 
| 778 | 0 |     ret = kbkdf_CalculateIterations(CKM_SP800_108_COUNTER_KDF, params, ctx, buffer_length, &num_iterations); | 
| 779 | 0 |     if (ret != CKR_OK) { | 
| 780 | 0 |         return ret; | 
| 781 | 0 |     } | 
| 782 |  |  | 
| 783 |  |     /* | 
| 784 |  |      * 5.1 - [ KDF in Counter Mode ] | 
| 785 |  |      * | 
| 786 |  |      * Fixed values: | 
| 787 |  |      *      1. h - the length of the PRF in bits (ctx->mac_size) | 
| 788 |  |      *      2. r - the length of the binary representation of the counter i | 
| 789 |  |      *          (params[k: params[k].type == CK_SP800_108_ITERATION_VARIABLE:].data->ulWidthInBits) | 
| 790 |  |      * Input: | 
| 791 |  |      *      1. K_I - the key for the PRF (base_key) | 
| 792 |  |      *      2. label - a binary data field, usually before the separator. Optional. | 
| 793 |  |      *      3. context - a binary data field, usually after the separator. Optional. | 
| 794 |  |      *      4. L - length of the output in bits (output_bitlen) | 
| 795 |  |      * | 
| 796 |  |      * Process: | 
| 797 |  |      *      1. n := ceil(L / h) (num_iterations) | 
| 798 |  |      *      2. if n > 2^r - 1, then indicate an error and stop | 
| 799 |  |      *      3. result(0) = NULL | 
| 800 |  |      *      4. for i = 1 to n, do | 
| 801 |  |      *          a. K(i) = PRF(K_I, [i]_2 || Label || 0x00 || Context || [L]_2) | 
| 802 |  |      *          b. result(i) := result(i - 1) || K(i). | 
| 803 |  |      *      5. return K_O := the leftmost L bits of result(n). | 
| 804 |  |      */ | 
| 805 | 0 |     for (counter = 1; counter <= num_iterations; counter++) { | 
| 806 | 0 |         if (counter == num_iterations) { | 
| 807 | 0 |             block_size = buffer_length - buffer_offset; | 
| 808 |  |  | 
| 809 |  |             /* Assumption: if we've validated our arguments correctly, this | 
| 810 |  |              * should always be true. */ | 
| 811 | 0 |             PR_ASSERT(block_size <= ctx->mac_size); | 
| 812 | 0 |         } | 
| 813 |  |  | 
| 814 |  |         /* Add all parameters required by this instance of the KDF to the | 
| 815 |  |          * input stream of the underlying PRF. */ | 
| 816 | 0 |         ret = kbkdf_AddParameters(CKM_SP800_108_COUNTER_KDF, ctx, params, counter, output_bitlen, NULL, 0 /* chaining_prf output */, 0 /* exclude */); | 
| 817 | 0 |         if (ret != CKR_OK) { | 
| 818 | 0 |             return ret; | 
| 819 | 0 |         } | 
| 820 |  |  | 
| 821 |  |         /* Finalize this iteration of the PRF. */ | 
| 822 | 0 |         ret = sftk_MAC_Finish(ctx, ret_buffer + buffer_offset, NULL, block_size); | 
| 823 | 0 |         if (ret != CKR_OK) { | 
| 824 | 0 |             return ret; | 
| 825 | 0 |         } | 
| 826 |  |  | 
| 827 |  |         /* Increment our position in the key material. */ | 
| 828 | 0 |         buffer_offset += block_size; | 
| 829 |  | 
 | 
| 830 | 0 |         if (counter < num_iterations) { | 
| 831 |  |             /* Reset the underlying PRF for the next iteration. Only do this | 
| 832 |  |              * when we have a next iteration since it isn't necessary to do | 
| 833 |  |              * either before the first iteration (MAC is already initialized) | 
| 834 |  |              * or after the last iteration (we won't be called again). */ | 
| 835 | 0 |             ret = sftk_MAC_Reset(ctx); | 
| 836 | 0 |             if (ret != CKR_OK) { | 
| 837 | 0 |                 return ret; | 
| 838 | 0 |             } | 
| 839 | 0 |         } | 
| 840 | 0 |     } | 
| 841 |  |  | 
| 842 | 0 |     return CKR_OK; | 
| 843 | 0 | } | 
| 844 |  |  | 
| 845 |  | static CK_RV | 
| 846 |  | kbkdf_FeedbackRaw(const CK_SP800_108_KDF_PARAMS *params, const unsigned char *initial_value, CK_ULONG initial_value_length, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen) | 
| 847 | 0 | { | 
| 848 | 0 |     CK_RV ret = CKR_OK; | 
| 849 |  |  | 
| 850 |  |     /* Counter variable for this KDF instance. */ | 
| 851 | 0 |     PRUint32 counter; | 
| 852 |  |  | 
| 853 |  |     /* Number of iterations required of this PRF necessary to reach the | 
| 854 |  |      * desired output length. */ | 
| 855 | 0 |     PRUint32 num_iterations; | 
| 856 |  |  | 
| 857 |  |     /* Offset in ret_buffer that we're at. */ | 
| 858 | 0 |     size_t buffer_offset = 0; | 
| 859 |  |  | 
| 860 |  |     /* Size of this block, in bytes. Defaults to ctx->mac_size except on | 
| 861 |  |      * the last iteration where it could be a partial block. */ | 
| 862 | 0 |     size_t block_size = ctx->mac_size; | 
| 863 |  |  | 
| 864 |  |     /* The last PRF invocation and/or the initial value; used for feedback | 
| 865 |  |      * chaining in this KDF. Note that we have to make it large enough to | 
| 866 |  |      * fit the output of the PRF, but we can delay its actual creation until | 
| 867 |  |      * the first PRF invocation. Until then, point to the IV value. */ | 
| 868 | 0 |     unsigned char *chaining_value = (unsigned char *)initial_value; | 
| 869 |  |  | 
| 870 |  |     /* Size of the chaining value discussed above. Defaults to the size of | 
| 871 |  |      * the IV value. */ | 
| 872 | 0 |     size_t chaining_length = initial_value_length; | 
| 873 |  |  | 
| 874 |  |     /* Calculate the number of iterations required based on the size of the | 
| 875 |  |      * output buffer. */ | 
| 876 | 0 |     ret = kbkdf_CalculateIterations(CKM_SP800_108_FEEDBACK_KDF, params, ctx, buffer_length, &num_iterations); | 
| 877 | 0 |     if (ret != CKR_OK) { | 
| 878 | 0 |         goto finish; | 
| 879 | 0 |     } | 
| 880 |  |  | 
| 881 |  |     /* | 
| 882 |  |      * 5.2 - [ KDF in Feedback Mode ] | 
| 883 |  |      * | 
| 884 |  |      * Fixed values: | 
| 885 |  |      *      1. h - the length of the PRF in bits (ctx->mac_size) | 
| 886 |  |      *      2. r - the length of the binary representation of the counter i | 
| 887 |  |      *          (params[k: params[k].type == CK_SP800_108_OPTIONAL_COUNTER:].data->ulWidthInBits) | 
| 888 |  |      *          Note that it is only specified when the optional counter is requested. | 
| 889 |  |      * Input: | 
| 890 |  |      *      1. K_I - the key for the PRF (base_key) | 
| 891 |  |      *      2. label - a binary data field, usually before the separator. Optional. | 
| 892 |  |      *      3. context - a binary data field, usually after the separator. Optional. | 
| 893 |  |      *      4. IV - a binary data field, initial PRF value. (params->pIV) | 
| 894 |  |      *      5. L - length of the output in bits (output_bitlen) | 
| 895 |  |      * | 
| 896 |  |      * Process: | 
| 897 |  |      *      1. n := ceil(L / h) (num_iterations) | 
| 898 |  |      *      2. if n > 2^32 - 1, then indicate an error and stop | 
| 899 |  |      *      3. result(0) = NULL, K(0) := IV (chaining_value) | 
| 900 |  |      *      4. for i = 1 to n, do | 
| 901 |  |      *          a. K(i) = PRF(K_I, K(i-1) {|| [i]_2} || Label || 0x00 || Context || [L]_2) | 
| 902 |  |      *          b. result(i) := result(i - 1) || K(i). | 
| 903 |  |      *      5. return K_O := the leftmost L bits of result(n). | 
| 904 |  |      */ | 
| 905 | 0 |     for (counter = 1; counter <= num_iterations; counter++) { | 
| 906 | 0 |         if (counter == num_iterations) { | 
| 907 | 0 |             block_size = buffer_length - buffer_offset; | 
| 908 |  |  | 
| 909 |  |             /* Assumption: if we've validated our arguments correctly, this | 
| 910 |  |              * should always be true. */ | 
| 911 | 0 |             PR_ASSERT(block_size <= ctx->mac_size); | 
| 912 | 0 |         } | 
| 913 |  |  | 
| 914 |  |         /* Add all parameters required by this instance of the KDF to the | 
| 915 |  |          * input stream of the underlying PRF. */ | 
| 916 | 0 |         ret = kbkdf_AddParameters(CKM_SP800_108_FEEDBACK_KDF, ctx, params, counter, output_bitlen, chaining_value, chaining_length, 0 /* exclude */); | 
| 917 | 0 |         if (ret != CKR_OK) { | 
| 918 | 0 |             goto finish; | 
| 919 | 0 |         } | 
| 920 |  |  | 
| 921 | 0 |         if (counter == 1) { | 
| 922 |  |             /* On the first iteration, chaining_value points to the IV from | 
| 923 |  |              * the caller and chaining_length is the length of that IV. We | 
| 924 |  |              * now need to allocate a buffer of suitable length to store the | 
| 925 |  |              * MAC output. */ | 
| 926 | 0 |             chaining_value = PORT_ZNewArray(unsigned char, ctx->mac_size); | 
| 927 | 0 |             chaining_length = ctx->mac_size; | 
| 928 |  | 
 | 
| 929 | 0 |             if (chaining_value == NULL) { | 
| 930 | 0 |                 ret = CKR_HOST_MEMORY; | 
| 931 | 0 |                 goto finish; | 
| 932 | 0 |             } | 
| 933 | 0 |         } | 
| 934 |  |  | 
| 935 |  |         /* Finalize this iteration of the PRF. Unlike other KDF forms, we | 
| 936 |  |          * first save this to the chaining value so that we can reuse it | 
| 937 |  |          * in the next iteration before copying the necessary length to | 
| 938 |  |          * the output buffer. */ | 
| 939 | 0 |         ret = sftk_MAC_Finish(ctx, chaining_value, NULL, chaining_length); | 
| 940 | 0 |         if (ret != CKR_OK) { | 
| 941 | 0 |             goto finish; | 
| 942 | 0 |         } | 
| 943 |  |  | 
| 944 |  |         /* Save as much of the chaining value as we need for output. */ | 
| 945 | 0 |         PORT_Memcpy(ret_buffer + buffer_offset, chaining_value, block_size); | 
| 946 |  |  | 
| 947 |  |         /* Increment our position in the key material. */ | 
| 948 | 0 |         buffer_offset += block_size; | 
| 949 |  | 
 | 
| 950 | 0 |         if (counter < num_iterations) { | 
| 951 |  |             /* Reset the underlying PRF for the next iteration. Only do this | 
| 952 |  |              * when we have a next iteration since it isn't necessary to do | 
| 953 |  |              * either before the first iteration (MAC is already initialized) | 
| 954 |  |              * or after the last iteration (we won't be called again). */ | 
| 955 | 0 |             ret = sftk_MAC_Reset(ctx); | 
| 956 | 0 |             if (ret != CKR_OK) { | 
| 957 | 0 |                 goto finish; | 
| 958 | 0 |             } | 
| 959 | 0 |         } | 
| 960 | 0 |     } | 
| 961 |  |  | 
| 962 | 0 | finish: | 
| 963 | 0 |     if (chaining_value != initial_value && chaining_value != NULL) { | 
| 964 | 0 |         PORT_ZFree(chaining_value, chaining_length); | 
| 965 | 0 |     } | 
| 966 |  | 
 | 
| 967 | 0 |     return ret; | 
| 968 | 0 | } | 
| 969 |  |  | 
| 970 |  | static CK_RV | 
| 971 |  | kbkdf_PipelineRaw(const CK_SP800_108_KDF_PARAMS *params, sftk_MACCtx *ctx, unsigned char *ret_buffer, size_t buffer_length, PRUint64 output_bitlen) | 
| 972 | 0 | { | 
| 973 | 0 |     CK_RV ret = CKR_OK; | 
| 974 |  |  | 
| 975 |  |     /* Counter variable for this KDF instance. */ | 
| 976 | 0 |     PRUint32 counter; | 
| 977 |  |  | 
| 978 |  |     /* Number of iterations required of this PRF necessary to reach the | 
| 979 |  |      * desired output length. */ | 
| 980 | 0 |     PRUint32 num_iterations; | 
| 981 |  |  | 
| 982 |  |     /* Offset in ret_buffer that we're at. */ | 
| 983 | 0 |     size_t buffer_offset = 0; | 
| 984 |  |  | 
| 985 |  |     /* Size of this block, in bytes. Defaults to ctx->mac_size except on | 
| 986 |  |      * the last iteration where it could be a partial block. */ | 
| 987 | 0 |     size_t block_size = ctx->mac_size; | 
| 988 |  |  | 
| 989 |  |     /* The last PRF invocation. This is used for the first of the double | 
| 990 |  |      * PRF invocations this KDF is named after. This defaults to NULL, | 
| 991 |  |      * signifying that we have to calculate the initial value from params; | 
| 992 |  |      * when non-NULL, we directly add only this value to the PRF. */ | 
| 993 | 0 |     unsigned char *chaining_value = NULL; | 
| 994 |  |  | 
| 995 |  |     /* Size of the chaining value discussed above. Defaults to 0. */ | 
| 996 | 0 |     size_t chaining_length = 0; | 
| 997 |  |  | 
| 998 |  |     /* Calculate the number of iterations required based on the size of the | 
| 999 |  |      * output buffer. */ | 
| 1000 | 0 |     ret = kbkdf_CalculateIterations(CKM_SP800_108_DOUBLE_PIPELINE_KDF, params, ctx, buffer_length, &num_iterations); | 
| 1001 | 0 |     if (ret != CKR_OK) { | 
| 1002 | 0 |         goto finish; | 
| 1003 | 0 |     } | 
| 1004 |  |  | 
| 1005 |  |     /* | 
| 1006 |  |      * 5.3 - [ KDF in Double-Pipeline Iteration Mode ] | 
| 1007 |  |      * | 
| 1008 |  |      * Fixed values: | 
| 1009 |  |      *      1. h - the length of the PRF in bits (ctx->mac_size) | 
| 1010 |  |      *      2. r - the length of the binary representation of the counter i | 
| 1011 |  |      *          (params[k: params[k].type == CK_SP800_108_OPTIONAL_COUNTER:].data->ulWidthInBits) | 
| 1012 |  |      *          Note that it is only specified when the optional counter is requested. | 
| 1013 |  |      * Input: | 
| 1014 |  |      *      1. K_I - the key for the PRF (base_key) | 
| 1015 |  |      *      2. label - a binary data field, usually before the separator. Optional. | 
| 1016 |  |      *      3. context - a binary data field, usually after the separator. Optional. | 
| 1017 |  |      *      4. L - length of the output in bits (output_bitlen) | 
| 1018 |  |      * | 
| 1019 |  |      * Process: | 
| 1020 |  |      *      1. n := ceil(L / h) (num_iterations) | 
| 1021 |  |      *      2. if n > 2^32 - 1, then indicate an error and stop | 
| 1022 |  |      *      3. result(0) = NULL | 
| 1023 |  |      *      4. A(0) := IV := Label || 0x00 || Context || [L]_2 | 
| 1024 |  |      *      5. for i = 1 to n, do | 
| 1025 |  |      *          a. A(i) := PRF(K_I, A(i-1)) | 
| 1026 |  |      *          b. K(i) := PRF(K_I, A(i) {|| [i]_2} || Label || 0x00 || Context || [L]_2 | 
| 1027 |  |      *          c. result(i) := result(i-1) || K(i) | 
| 1028 |  |      *      6. return K_O := the leftmost L bits of result(n). | 
| 1029 |  |      */ | 
| 1030 | 0 |     for (counter = 1; counter <= num_iterations; counter++) { | 
| 1031 | 0 |         if (counter == num_iterations) { | 
| 1032 | 0 |             block_size = buffer_length - buffer_offset; | 
| 1033 |  |  | 
| 1034 |  |             /* Assumption: if we've validated our arguments correctly, this | 
| 1035 |  |              * should always be true. */ | 
| 1036 | 0 |             PR_ASSERT(block_size <= ctx->mac_size); | 
| 1037 | 0 |         } | 
| 1038 |  |  | 
| 1039 |  |         /* ===== First pipeline: construct A(i) ===== */ | 
| 1040 | 0 |         if (counter == 1) { | 
| 1041 |  |             /* On the first iteration, we have no chaining value so specify | 
| 1042 |  |              * NULL for the pointer and 0 for the length, and exclude the | 
| 1043 |  |              * optional counter if it exists. This is what NIST specifies as | 
| 1044 |  |              * the IV for the KDF. */ | 
| 1045 | 0 |             ret = kbkdf_AddParameters(CKM_SP800_108_DOUBLE_PIPELINE_KDF, ctx, params, counter, output_bitlen, NULL, 0, CK_SP800_108_OPTIONAL_COUNTER); | 
| 1046 | 0 |             if (ret != CKR_OK) { | 
| 1047 | 0 |                 goto finish; | 
| 1048 | 0 |             } | 
| 1049 |  |  | 
| 1050 |  |             /* Allocate the chaining value so we can save the PRF output. */ | 
| 1051 | 0 |             chaining_value = PORT_ZNewArray(unsigned char, ctx->mac_size); | 
| 1052 | 0 |             chaining_length = ctx->mac_size; | 
| 1053 | 0 |             if (chaining_value == NULL) { | 
| 1054 | 0 |                 ret = CKR_HOST_MEMORY; | 
| 1055 | 0 |                 goto finish; | 
| 1056 | 0 |             } | 
| 1057 | 0 |         } else { | 
| 1058 |  |             /* On all other iterations, the next stage of the first pipeline | 
| 1059 |  |              * comes directly from this stage. */ | 
| 1060 | 0 |             ret = sftk_MAC_Update(ctx, chaining_value, chaining_length); | 
| 1061 | 0 |             if (ret != CKR_OK) { | 
| 1062 | 0 |                 goto finish; | 
| 1063 | 0 |             } | 
| 1064 | 0 |         } | 
| 1065 |  |  | 
| 1066 |  |         /* Save the PRF output to chaining_value for use in the second | 
| 1067 |  |          * pipeline. */ | 
| 1068 | 0 |         ret = sftk_MAC_Finish(ctx, chaining_value, NULL, chaining_length); | 
| 1069 | 0 |         if (ret != CKR_OK) { | 
| 1070 | 0 |             goto finish; | 
| 1071 | 0 |         } | 
| 1072 |  |  | 
| 1073 |  |         /* Reset the PRF so we can reuse it for the second pipeline. */ | 
| 1074 | 0 |         ret = sftk_MAC_Reset(ctx); | 
| 1075 | 0 |         if (ret != CKR_OK) { | 
| 1076 | 0 |             goto finish; | 
| 1077 | 0 |         } | 
| 1078 |  |  | 
| 1079 |  |         /* ===== Second pipeline: construct K(i) ===== */ | 
| 1080 |  |  | 
| 1081 |  |         /* Add all parameters required by this instance of the KDF to the | 
| 1082 |  |          * input stream of the underlying PRF. Note that this includes the | 
| 1083 |  |          * chaining value we calculated from the previous pipeline stage. */ | 
| 1084 | 0 |         ret = kbkdf_AddParameters(CKM_SP800_108_FEEDBACK_KDF, ctx, params, counter, output_bitlen, chaining_value, chaining_length, 0 /* exclude */); | 
| 1085 | 0 |         if (ret != CKR_OK) { | 
| 1086 | 0 |             goto finish; | 
| 1087 | 0 |         } | 
| 1088 |  |  | 
| 1089 |  |         /* Finalize this iteration of the PRF directly to the output buffer. | 
| 1090 |  |          * Unlike Feedback mode, this pipeline doesn't influence the previous | 
| 1091 |  |          * stage. */ | 
| 1092 | 0 |         ret = sftk_MAC_Finish(ctx, ret_buffer + buffer_offset, NULL, block_size); | 
| 1093 | 0 |         if (ret != CKR_OK) { | 
| 1094 | 0 |             goto finish; | 
| 1095 | 0 |         } | 
| 1096 |  |  | 
| 1097 |  |         /* Increment our position in the key material. */ | 
| 1098 | 0 |         buffer_offset += block_size; | 
| 1099 |  | 
 | 
| 1100 | 0 |         if (counter < num_iterations) { | 
| 1101 |  |             /* Reset the underlying PRF for the next iteration. Only do this | 
| 1102 |  |              * when we have a next iteration since it isn't necessary to do | 
| 1103 |  |              * either before the first iteration (MAC is already initialized) | 
| 1104 |  |              * or after the last iteration (we won't be called again). */ | 
| 1105 | 0 |             ret = sftk_MAC_Reset(ctx); | 
| 1106 | 0 |             if (ret != CKR_OK) { | 
| 1107 | 0 |                 goto finish; | 
| 1108 | 0 |             } | 
| 1109 | 0 |         } | 
| 1110 | 0 |     } | 
| 1111 |  |  | 
| 1112 | 0 | finish: | 
| 1113 | 0 |     PORT_ZFree(chaining_value, chaining_length); | 
| 1114 |  | 
 | 
| 1115 | 0 |     return ret; | 
| 1116 | 0 | } | 
| 1117 |  |  | 
| 1118 |  | static CK_RV | 
| 1119 |  | kbkdf_RawDispatch(CK_MECHANISM_TYPE mech, | 
| 1120 |  |                   const CK_SP800_108_KDF_PARAMS *kdf_params, | 
| 1121 |  |                   const CK_BYTE *initial_value, | 
| 1122 |  |                   CK_ULONG initial_value_length, | 
| 1123 |  |                   SFTKObject *prf_key, const unsigned char *prf_key_bytes, | 
| 1124 |  |                   unsigned int prf_key_length, unsigned char **out_key_bytes, | 
| 1125 |  |                   size_t *out_key_length, unsigned int *mac_size, | 
| 1126 |  |                   CK_ULONG ret_key_size) | 
| 1127 | 0 | { | 
| 1128 | 0 |     CK_RV ret; | 
| 1129 |  |     /* Context for our underlying PRF function. | 
| 1130 |  |      * | 
| 1131 |  |      * Zeroing context required unconditional call of sftk_MAC_Destroy. | 
| 1132 |  |      */ | 
| 1133 | 0 |     sftk_MACCtx ctx = { 0 }; | 
| 1134 |  |  | 
| 1135 |  |     /* We need one buffers large enough to fit the entire KDF key stream for | 
| 1136 |  |      * all iterations of the PRF. This needs only include to the end of the | 
| 1137 |  |      * last key, so it isn't an even multiple of the PRF output size. */ | 
| 1138 | 0 |     unsigned char *output_buffer = NULL; | 
| 1139 |  |  | 
| 1140 |  |     /* Size of the above buffer, in bytes. Note that this is technically | 
| 1141 |  |      * separate from the below output_bitlen variable due to the presence | 
| 1142 |  |      * of additional derived keys. See commentary in kbkdf_CalculateLength. | 
| 1143 |  |      */ | 
| 1144 | 0 |     size_t buffer_length = 0; | 
| 1145 |  |  | 
| 1146 |  |     /* While NIST specifies a maximum length (in bits) for the counter, they | 
| 1147 |  |      * don't for the maximum length. It is unlikely, but theoretically | 
| 1148 |  |      * possible for output of the PRF to exceed 32 bits while keeping the | 
| 1149 |  |      * counter under 2^32. Thus, use a 64-bit variable for the maximum | 
| 1150 |  |      * output length. | 
| 1151 |  |      * | 
| 1152 |  |      * It is unlikely any caller will request this much data in practice. | 
| 1153 |  |      * 2^32 invocations of the PRF (for a 512-bit PRF) would be 256GB of | 
| 1154 |  |      * data in the KDF key stream alone. The bigger limit is the number of | 
| 1155 |  |      * and size of keys (again, 2^32); this could easily exceed 256GB when | 
| 1156 |  |      * counting the backing softoken key, the key data, template data, and | 
| 1157 |  |      * the input parameters to this KDF. | 
| 1158 |  |      * | 
| 1159 |  |      * This is the L parameter in NIST SP800-108. | 
| 1160 |  |      */ | 
| 1161 | 0 |     PRUint64 output_bitlen = 0; | 
| 1162 |  |  | 
| 1163 |  |     /* First validate our passed input parameters against PKCS#11 v3.0 | 
| 1164 |  |      * and NIST SP800-108 requirements. */ | 
| 1165 | 0 |     ret = kbkdf_ValidateParameters(mech, kdf_params, ret_key_size); | 
| 1166 | 0 |     if (ret != CKR_OK) { | 
| 1167 | 0 |         goto finish; | 
| 1168 | 0 |     } | 
| 1169 |  |  | 
| 1170 |  |     /* Initialize the underlying PRF state. */ | 
| 1171 | 0 |     if (prf_key) { | 
| 1172 | 0 |         ret = sftk_MAC_Init(&ctx, kdf_params->prfType, prf_key); | 
| 1173 | 0 |     } else { | 
| 1174 | 0 |         ret = sftk_MAC_InitRaw(&ctx, kdf_params->prfType, prf_key_bytes, | 
| 1175 | 0 |                                prf_key_length, PR_TRUE); | 
| 1176 | 0 |     } | 
| 1177 | 0 |     if (ret != CKR_OK) { | 
| 1178 | 0 |         goto finish; | 
| 1179 | 0 |     } | 
| 1180 |  |  | 
| 1181 |  |     /* Compute the size of our output buffer based on passed parameters and | 
| 1182 |  |      * the output size of the underlying PRF. */ | 
| 1183 | 0 |     ret = kbkdf_CalculateLength(kdf_params, &ctx, ret_key_size, &output_bitlen, &buffer_length); | 
| 1184 | 0 |     if (ret != CKR_OK) { | 
| 1185 | 0 |         goto finish; | 
| 1186 | 0 |     } | 
| 1187 |  |  | 
| 1188 |  |     /* Allocate memory for the PRF output */ | 
| 1189 | 0 |     output_buffer = PORT_ZNewArray(unsigned char, buffer_length); | 
| 1190 | 0 |     if (output_buffer == NULL) { | 
| 1191 | 0 |         ret = CKR_HOST_MEMORY; | 
| 1192 | 0 |         goto finish; | 
| 1193 | 0 |     } | 
| 1194 |  |  | 
| 1195 |  |     /* Call into the underlying KDF */ | 
| 1196 | 0 |     switch (mech) { | 
| 1197 | 0 |         case CKM_NSS_SP800_108_COUNTER_KDF_DERIVE_DATA: /* fall through */ | 
| 1198 | 0 |         case CKM_SP800_108_COUNTER_KDF: | 
| 1199 | 0 |             ret = kbkdf_CounterRaw(kdf_params, &ctx, output_buffer, buffer_length, output_bitlen); | 
| 1200 | 0 |             break; | 
| 1201 | 0 |         case CKM_NSS_SP800_108_FEEDBACK_KDF_DERIVE_DATA: /* fall through */ | 
| 1202 | 0 |         case CKM_SP800_108_FEEDBACK_KDF: | 
| 1203 | 0 |             ret = kbkdf_FeedbackRaw(kdf_params, initial_value, initial_value_length, &ctx, output_buffer, buffer_length, output_bitlen); | 
| 1204 | 0 |             break; | 
| 1205 | 0 |         case CKM_NSS_SP800_108_DOUBLE_PIPELINE_KDF_DERIVE_DATA: /* fall through */ | 
| 1206 | 0 |         case CKM_SP800_108_DOUBLE_PIPELINE_KDF: | 
| 1207 | 0 |             ret = kbkdf_PipelineRaw(kdf_params, &ctx, output_buffer, buffer_length, output_bitlen); | 
| 1208 | 0 |             break; | 
| 1209 | 0 |         default: | 
| 1210 |  |             /* Shouldn't happen unless NIST introduces a new KBKDF type. */ | 
| 1211 | 0 |             PR_ASSERT(PR_FALSE); | 
| 1212 | 0 |             ret = CKR_FUNCTION_FAILED; | 
| 1213 | 0 |     } | 
| 1214 |  |  | 
| 1215 |  |     /* Validate the above KDF succeeded. */ | 
| 1216 | 0 |     if (ret != CKR_OK) { | 
| 1217 | 0 |         goto finish; | 
| 1218 | 0 |     } | 
| 1219 |  |  | 
| 1220 | 0 |     *out_key_bytes = output_buffer; | 
| 1221 | 0 |     *out_key_length = buffer_length; | 
| 1222 | 0 |     *mac_size = ctx.mac_size; | 
| 1223 |  | 
 | 
| 1224 | 0 |     output_buffer = NULL; /* returning the buffer, don't zero and free it */ | 
| 1225 |  | 
 | 
| 1226 | 0 | finish: | 
| 1227 | 0 |     PORT_ZFree(output_buffer, buffer_length); | 
| 1228 |  |  | 
| 1229 |  |     /* Free the PRF. This should handle clearing all sensitive information. */ | 
| 1230 | 0 |     sftk_MAC_Destroy(&ctx, PR_FALSE); | 
| 1231 | 0 |     return ret; | 
| 1232 | 0 | } | 
| 1233 |  |  | 
| 1234 |  | /* [ section: PKCS#11 entry ] */ | 
| 1235 |  |  | 
| 1236 |  | CK_RV | 
| 1237 |  | kbkdf_Dispatch(CK_MECHANISM_TYPE mech, CK_SESSION_HANDLE hSession, CK_MECHANISM_PTR pMechanism, SFTKObject *prf_key, SFTKObject *ret_key, CK_ULONG ret_key_size) | 
| 1238 | 0 | { | 
| 1239 |  |     /* This handles boilerplate common to all KBKDF types. Instead of placing | 
| 1240 |  |      * this in pkcs11c.c, place it here to reduce clutter. */ | 
| 1241 |  | 
 | 
| 1242 | 0 |     CK_RV ret; | 
| 1243 |  |  | 
| 1244 |  |     /* Assumptions about our calling environment. */ | 
| 1245 | 0 |     PR_ASSERT(pMechanism != NULL && prf_key != NULL && ret_key != NULL); | 
| 1246 |  |  | 
| 1247 |  |     /* Validate that the caller passed parameters. */ | 
| 1248 | 0 |     if (pMechanism->pParameter == NULL) { | 
| 1249 | 0 |         return CKR_MECHANISM_PARAM_INVALID; | 
| 1250 | 0 |     } | 
| 1251 |  |  | 
| 1252 |  |     /* Create a common set of parameters to use for all KDF types. This | 
| 1253 |  |      * separates out the KDF parameters from the Feedback-specific IV, | 
| 1254 |  |      * allowing us to use a common type for all calls. */ | 
| 1255 | 0 |     CK_SP800_108_KDF_PARAMS kdf_params = { 0 }; | 
| 1256 | 0 |     CK_BYTE_PTR initial_value = NULL; | 
| 1257 | 0 |     CK_ULONG initial_value_length = 0; | 
| 1258 | 0 |     unsigned char *output_buffer = NULL; | 
| 1259 | 0 |     size_t buffer_length = 0; | 
| 1260 | 0 |     unsigned int mac_size = 0; | 
| 1261 |  |  | 
| 1262 |  |     /* Split Feedback-specific IV from remaining KDF parameters. */ | 
| 1263 | 0 |     ret = kbkdf_LoadParameters(mech, pMechanism, &kdf_params, &initial_value, &initial_value_length); | 
| 1264 | 0 |     if (ret != CKR_OK) { | 
| 1265 | 0 |         goto finish; | 
| 1266 | 0 |     } | 
| 1267 |  |     /* let rawDispatch handle the rest. We split this out so we could | 
| 1268 |  |      * handle the POST test without accessing pkcs #11 objects. */ | 
| 1269 | 0 |     ret = kbkdf_RawDispatch(mech, &kdf_params, initial_value, | 
| 1270 | 0 |                             initial_value_length, prf_key, NULL, 0, | 
| 1271 | 0 |                             &output_buffer, &buffer_length, &mac_size, | 
| 1272 | 0 |                             ret_key_size); | 
| 1273 | 0 |     if (ret != CKR_OK) { | 
| 1274 | 0 |         goto finish; | 
| 1275 | 0 |     } | 
| 1276 |  |  | 
| 1277 |  |     /* Write the output of the PRF into the appropriate keys. */ | 
| 1278 | 0 |     ret = kbkdf_SaveKeys(mech, hSession, &kdf_params, output_buffer, buffer_length, mac_size, ret_key, ret_key_size); | 
| 1279 | 0 |     if (ret != CKR_OK) { | 
| 1280 | 0 |         goto finish; | 
| 1281 | 0 |     } | 
| 1282 |  |  | 
| 1283 | 0 | finish: | 
| 1284 | 0 |     PORT_ZFree(output_buffer, buffer_length); | 
| 1285 |  | 
 | 
| 1286 | 0 |     return ret; | 
| 1287 | 0 | } | 
| 1288 |  |  | 
| 1289 |  | struct sftk_SP800_Test_struct { | 
| 1290 |  |     CK_MECHANISM_TYPE mech; | 
| 1291 |  |     CK_SP800_108_KDF_PARAMS kdf_params; | 
| 1292 |  |     unsigned int expected_mac_size; | 
| 1293 |  |     unsigned int ret_key_length; | 
| 1294 |  |     const unsigned char expected_key_bytes[64]; | 
| 1295 |  | }; | 
| 1296 |  |  | 
| 1297 |  | static const CK_SP800_108_COUNTER_FORMAT counter_32 = { 0, 32 }; | 
| 1298 |  | static const CK_PRF_DATA_PARAM counter_32_data = { CK_SP800_108_ITERATION_VARIABLE, (CK_VOID_PTR)&counter_32, sizeof(counter_32) }; | 
| 1299 |  |  | 
| 1300 |  | #ifdef NSS_FULL_POST | 
| 1301 |  | static const CK_SP800_108_COUNTER_FORMAT counter_16 = { 0, 16 }; | 
| 1302 |  | static const CK_PRF_DATA_PARAM counter_16_data = { CK_SP800_108_ITERATION_VARIABLE, (CK_VOID_PTR)&counter_16, sizeof(counter_16) }; | 
| 1303 |  | static const CK_PRF_DATA_PARAM counter_null_data = { CK_SP800_108_ITERATION_VARIABLE, NULL, 0 }; | 
| 1304 |  | #endif | 
| 1305 |  |  | 
| 1306 |  | static const struct sftk_SP800_Test_struct sftk_SP800_Tests[] = { | 
| 1307 |  | #ifdef NSS_FULL_POST | 
| 1308 |  |     { | 
| 1309 |  |         CKM_SP800_108_COUNTER_KDF, | 
| 1310 |  |         { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_16_data, 0, NULL }, | 
| 1311 |  |         16, | 
| 1312 |  |         64, | 
| 1313 |  |         { 0x7b, 0x1c, 0xe7, 0xf3, 0x14, 0x67, 0x15, 0xdd, | 
| 1314 |  |           0xde, 0x0c, 0x09, 0x46, 0x3f, 0x47, 0x7b, 0xa6, | 
| 1315 |  |           0xb8, 0xba, 0x40, 0x07, 0x7c, 0xe3, 0x19, 0x53, | 
| 1316 |  |           0x26, 0xac, 0x4c, 0x2e, 0x2b, 0x37, 0x41, 0xe4, | 
| 1317 |  |           0x1b, 0x01, 0x3f, 0x2f, 0x2d, 0x16, 0x95, 0xee, | 
| 1318 |  |           0xeb, 0x7e, 0x72, 0x7d, 0xa4, 0xab, 0x2e, 0x67, | 
| 1319 |  |           0x1d, 0xef, 0x6f, 0xa2, 0xc6, 0xee, 0x3c, 0xcf, | 
| 1320 |  |           0xef, 0x88, 0xfd, 0x5c, 0x1d, 0x7b, 0xa0, 0x5a }, | 
| 1321 |  |     }, | 
| 1322 |  |     { | 
| 1323 |  |         CKM_SP800_108_COUNTER_KDF, | 
| 1324 |  |         { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL }, | 
| 1325 |  |         48, | 
| 1326 |  |         64, | 
| 1327 |  |         { 0xe6, 0x62, 0xa4, 0x32, 0x5c, 0xe4, 0xc2, 0x28, | 
| 1328 |  |           0x73, 0x8a, 0x5d, 0x94, 0xe7, 0x05, 0xe0, 0x5a, | 
| 1329 |  |           0x71, 0x61, 0xb2, 0x3c, 0x51, 0x28, 0x03, 0x1d, | 
| 1330 |  |           0xa7, 0xf5, 0x10, 0x83, 0x34, 0xdb, 0x11, 0x73, | 
| 1331 |  |           0x92, 0xa6, 0x79, 0x74, 0x81, 0x5d, 0x22, 0x7e, | 
| 1332 |  |           0x8d, 0xf2, 0x59, 0x14, 0x56, 0x60, 0xcf, 0xb2, | 
| 1333 |  |           0xb3, 0xfd, 0x46, 0xfd, 0x9b, 0x74, 0xfe, 0x4a, | 
| 1334 |  |           0x09, 0x30, 0x4a, 0xdf, 0x07, 0x43, 0xfe, 0x85 }, | 
| 1335 |  |     }, | 
| 1336 |  |     { | 
| 1337 |  |         CKM_SP800_108_COUNTER_KDF, | 
| 1338 |  |         { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL }, | 
| 1339 |  |         64, | 
| 1340 |  |         64, | 
| 1341 |  |         { 0xb0, 0x78, 0x36, 0xe1, 0x15, 0xd6, 0xf0, 0xac, | 
| 1342 |  |           0x68, 0x7b, 0x42, 0xd3, 0xb6, 0x82, 0x51, 0xad, | 
| 1343 |  |           0x95, 0x0a, 0x69, 0x88, 0x84, 0xc2, 0x2e, 0x07, | 
| 1344 |  |           0x34, 0x62, 0x8d, 0x42, 0x72, 0x0f, 0x22, 0xe6, | 
| 1345 |  |           0xd5, 0x7f, 0x80, 0x15, 0xe6, 0x84, 0x00, 0x65, | 
| 1346 |  |           0xef, 0x64, 0x77, 0x29, 0xd6, 0x3b, 0xc7, 0x9a, | 
| 1347 |  |           0x15, 0x6d, 0x36, 0xf3, 0x96, 0xc9, 0x14, 0x3f, | 
| 1348 |  |           0x2d, 0x4a, 0x7c, 0xdb, 0xc3, 0x6c, 0x3d, 0x6a }, | 
| 1349 |  |     }, | 
| 1350 |  |     { | 
| 1351 |  |         CKM_SP800_108_FEEDBACK_KDF, | 
| 1352 |  |         { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1353 |  |         16, | 
| 1354 |  |         64, | 
| 1355 |  |         { 0xc0, 0xa0, 0x23, 0x96, 0x16, 0x4d, 0xd6, 0xbd, | 
| 1356 |  |           0x2a, 0x75, 0x8e, 0x72, 0xf5, 0xc3, 0xa0, 0xb8, | 
| 1357 |  |           0x78, 0x83, 0x15, 0x21, 0x34, 0xd3, 0xd8, 0x71, | 
| 1358 |  |           0xc9, 0xe7, 0x4b, 0x20, 0xb7, 0x65, 0x5b, 0x13, | 
| 1359 |  |           0xbc, 0x85, 0x54, 0xe3, 0xb6, 0xee, 0x73, 0xd5, | 
| 1360 |  |           0xf2, 0xa0, 0x94, 0x1a, 0x79, 0x66, 0x3b, 0x1e, | 
| 1361 |  |           0x67, 0x3e, 0x69, 0xa4, 0x12, 0x40, 0xa9, 0xda, | 
| 1362 |  |           0x8d, 0x14, 0xb1, 0xce, 0xf1, 0x4b, 0x79, 0x4e }, | 
| 1363 |  |     }, | 
| 1364 |  |     { | 
| 1365 |  |         CKM_SP800_108_FEEDBACK_KDF, | 
| 1366 |  |         { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1367 |  |         32, | 
| 1368 |  |         64, | 
| 1369 |  |         { 0x99, 0x9b, 0x08, 0x79, 0x14, 0x2e, 0x58, 0x34, | 
| 1370 |  |           0xd7, 0x92, 0xa7, 0x7e, 0x7f, 0xc2, 0xf0, 0x34, | 
| 1371 |  |           0xa3, 0x4e, 0x33, 0xf0, 0x63, 0x95, 0x2d, 0xad, | 
| 1372 |  |           0xbf, 0x3b, 0xcb, 0x6d, 0x4e, 0x07, 0xd9, 0xe9, | 
| 1373 |  |           0xbd, 0xbd, 0x77, 0x54, 0xe1, 0xa3, 0x36, 0x26, | 
| 1374 |  |           0xcd, 0xb1, 0xf9, 0x2d, 0x80, 0x68, 0xa2, 0x01, | 
| 1375 |  |           0x4e, 0xbf, 0x35, 0xec, 0x65, 0xae, 0xfd, 0x71, | 
| 1376 |  |           0xa6, 0xd7, 0x62, 0x26, 0x2c, 0x3f, 0x73, 0x63 }, | 
| 1377 |  |     }, | 
| 1378 |  |     { | 
| 1379 |  |         CKM_SP800_108_FEEDBACK_KDF, | 
| 1380 |  |         { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1381 |  |         48, | 
| 1382 |  |         64, | 
| 1383 |  |         { 0xc8, 0x7a, 0xf8, 0xd9, 0x6b, 0x90, 0x82, 0x35, | 
| 1384 |  |           0xea, 0xf5, 0x2c, 0x8f, 0xce, 0xaa, 0x3b, 0xa5, | 
| 1385 |  |           0x68, 0xd3, 0x7f, 0xae, 0x31, 0x93, 0xe6, 0x69, | 
| 1386 |  |           0x0c, 0xd1, 0x74, 0x7f, 0x8f, 0xc2, 0xe2, 0x33, | 
| 1387 |  |           0x93, 0x45, 0x23, 0xba, 0xb3, 0x73, 0xc9, 0x2c, | 
| 1388 |  |           0xd6, 0xd2, 0x10, 0x16, 0xe9, 0x9f, 0x9e, 0xe8, | 
| 1389 |  |           0xc1, 0x0e, 0x29, 0x95, 0x3d, 0x16, 0x68, 0x24, | 
| 1390 |  |           0x40, 0x4d, 0x40, 0x21, 0x41, 0xa6, 0xc8, 0xdb }, | 
| 1391 |  |     }, | 
| 1392 |  |     { | 
| 1393 |  |         CKM_SP800_108_FEEDBACK_KDF, | 
| 1394 |  |         { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1395 |  |         64, | 
| 1396 |  |         64, | 
| 1397 |  |         { 0x81, 0x39, 0x12, 0xc2, 0xf9, 0x31, 0x24, 0x7c, | 
| 1398 |  |           0x71, 0x12, 0x97, 0x08, 0x82, 0x76, 0x83, 0x55, | 
| 1399 |  |           0x8c, 0x82, 0xf3, 0x09, 0xd6, 0x1b, 0x7a, 0xa2, | 
| 1400 |  |           0x6e, 0x71, 0x6b, 0xad, 0x46, 0x57, 0x60, 0x89, | 
| 1401 |  |           0x38, 0xcf, 0x63, 0xfa, 0xf4, 0x38, 0x27, 0xef, | 
| 1402 |  |           0xf0, 0xaf, 0x75, 0x4e, 0xc2, 0xe0, 0x31, 0xdb, | 
| 1403 |  |           0x59, 0x7d, 0x19, 0xc9, 0x6d, 0xbb, 0xed, 0x95, | 
| 1404 |  |           0xaf, 0x3e, 0xd8, 0x33, 0x76, 0xab, 0xec, 0xfa }, | 
| 1405 |  |     }, | 
| 1406 |  |     { | 
| 1407 |  |         CKM_SP800_108_DOUBLE_PIPELINE_KDF, | 
| 1408 |  |         { CKM_AES_CMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1409 |  |         16, | 
| 1410 |  |         64, | 
| 1411 |  |         { 0x3e, 0xa8, 0xbf, 0x77, 0x84, 0x90, 0xb0, 0x3a, | 
| 1412 |  |           0x89, 0x16, 0x32, 0x01, 0x92, 0xd3, 0x1f, 0x1b, | 
| 1413 |  |           0xc1, 0x06, 0xc5, 0x32, 0x62, 0x03, 0x50, 0x16, | 
| 1414 |  |           0x3b, 0xb9, 0xa7, 0xdc, 0xb5, 0x68, 0x6a, 0xbb, | 
| 1415 |  |           0xbb, 0x7d, 0x63, 0x69, 0x24, 0x6e, 0x09, 0xd6, | 
| 1416 |  |           0x6f, 0x80, 0x57, 0x65, 0xc5, 0x62, 0x33, 0x96, | 
| 1417 |  |           0x69, 0xe6, 0xab, 0x65, 0x36, 0xd0, 0xe2, 0x5c, | 
| 1418 |  |           0xd7, 0xbd, 0xe4, 0x68, 0x13, 0xd6, 0xb1, 0x46 }, | 
| 1419 |  |     }, | 
| 1420 |  |     { | 
| 1421 |  |         CKM_SP800_108_DOUBLE_PIPELINE_KDF, | 
| 1422 |  |         { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1423 |  |         32, | 
| 1424 |  |         64, | 
| 1425 |  |         { 0xeb, 0x28, 0xd9, 0x2c, 0x19, 0x33, 0xb9, 0x2a, | 
| 1426 |  |           0xf9, 0xac, 0x85, 0xbd, 0xf4, 0xdb, 0xfa, 0x88, | 
| 1427 |  |           0x73, 0xf4, 0x36, 0x08, 0xdb, 0xfe, 0x13, 0xd1, | 
| 1428 |  |           0x5a, 0xec, 0x7b, 0x68, 0x13, 0x53, 0xb3, 0xd1, | 
| 1429 |  |           0x31, 0xf2, 0x83, 0xae, 0x9f, 0x75, 0x47, 0xb6, | 
| 1430 |  |           0x6d, 0x3c, 0x20, 0x16, 0x47, 0x9c, 0x27, 0x66, | 
| 1431 |  |           0xec, 0xa9, 0xdf, 0x0c, 0xda, 0x2a, 0xf9, 0xf4, | 
| 1432 |  |           0x55, 0x74, 0xde, 0x9d, 0x3f, 0xe3, 0x5e, 0x14 }, | 
| 1433 |  |     }, | 
| 1434 |  |     { | 
| 1435 |  |         CKM_SP800_108_DOUBLE_PIPELINE_KDF, | 
| 1436 |  |         { CKM_SHA384_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1437 |  |         48, | 
| 1438 |  |         64, | 
| 1439 |  |         { 0xa5, 0xca, 0x32, 0x40, 0x00, 0x93, 0xb2, 0xcc, | 
| 1440 |  |           0x78, 0x3c, 0xa6, 0xc4, 0xaf, 0xa8, 0xb3, 0xd0, | 
| 1441 |  |           0xa4, 0x6b, 0xb5, 0x31, 0x35, 0x87, 0x33, 0xa2, | 
| 1442 |  |           0x6a, 0x6b, 0xe1, 0xff, 0xea, 0x1d, 0x6e, 0x9e, | 
| 1443 |  |           0x0b, 0xde, 0x8b, 0x92, 0x15, 0xd6, 0x56, 0x2f, | 
| 1444 |  |           0xb6, 0x1a, 0xd7, 0xd2, 0x01, 0x3e, 0x28, 0x2e, | 
| 1445 |  |           0xfa, 0x84, 0x3c, 0xc0, 0xe8, 0xbe, 0x94, 0xc0, | 
| 1446 |  |           0x06, 0xbd, 0xbf, 0x87, 0x1f, 0xb8, 0x64, 0xc2 }, | 
| 1447 |  |     }, | 
| 1448 |  |     { | 
| 1449 |  |         CKM_SP800_108_DOUBLE_PIPELINE_KDF, | 
| 1450 |  |         { CKM_SHA512_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_null_data, 0, NULL }, | 
| 1451 |  |         64, | 
| 1452 |  |         64, | 
| 1453 |  |         { 0x3f, 0xd9, 0x4e, 0x80, 0x58, 0x21, 0xc8, 0xea, | 
| 1454 |  |           0x22, 0x17, 0xcf, 0x7d, 0xce, 0xfd, 0xec, 0x03, | 
| 1455 |  |           0xb9, 0xe4, 0xa2, 0xf7, 0xc0, 0xf1, 0x68, 0x81, | 
| 1456 |  |           0x53, 0x71, 0xb7, 0x42, 0x14, 0x4e, 0x5b, 0x09, | 
| 1457 |  |           0x05, 0x31, 0xb9, 0x27, 0x18, 0x2d, 0x23, 0xf8, | 
| 1458 |  |           0x9c, 0x3d, 0x4e, 0xd0, 0xdd, 0xf3, 0x1e, 0x4b, | 
| 1459 |  |           0xf2, 0xf9, 0x1a, 0x5d, 0x00, 0x66, 0x22, 0x83, | 
| 1460 |  |           0xae, 0x3c, 0x53, 0xd2, 0x54, 0x4b, 0x06, 0x4c }, | 
| 1461 |  |     }, | 
| 1462 |  | #endif | 
| 1463 |  |     { | 
| 1464 |  |         CKM_SP800_108_COUNTER_KDF, | 
| 1465 |  |         { CKM_SHA256_HMAC, 1, (CK_PRF_DATA_PARAM_PTR)&counter_32_data, 0, NULL }, | 
| 1466 |  |         32, | 
| 1467 |  |         64, | 
| 1468 |  |         { 0xfb, 0x2b, 0xb5, 0xde, 0xce, 0x5a, 0x2b, 0xdc, | 
| 1469 |  |           0x25, 0x8f, 0x54, 0x17, 0x4b, 0x5a, 0xa7, 0x90, | 
| 1470 |  |           0x64, 0x36, 0xeb, 0x43, 0x1f, 0x1d, 0xf9, 0x23, | 
| 1471 |  |           0xb2, 0x22, 0x29, 0xa0, 0xfa, 0x2e, 0x21, 0xb6, | 
| 1472 |  |           0xb7, 0xfb, 0x27, 0x0a, 0x1c, 0xa6, 0x58, 0x43, | 
| 1473 |  |           0xa1, 0x16, 0x44, 0x29, 0x4b, 0x1c, 0xb3, 0x72, | 
| 1474 |  |           0xd5, 0x98, 0x9d, 0x27, 0xd5, 0x75, 0x25, 0xbf, | 
| 1475 |  |           0x23, 0x61, 0x40, 0x48, 0xbb, 0x0b, 0x49, 0x8e }, | 
| 1476 |  |     } | 
| 1477 |  | }; | 
| 1478 |  |  | 
| 1479 |  | SECStatus | 
| 1480 |  | sftk_fips_SP800_108_PowerUpSelfTests(void) | 
| 1481 | 0 | { | 
| 1482 | 0 |     int i; | 
| 1483 | 0 |     CK_RV crv; | 
| 1484 |  | 
 | 
| 1485 | 0 |     const unsigned char prf_key[] = { | 
| 1486 | 0 |         0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, | 
| 1487 | 0 |         0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, | 
| 1488 | 0 |         0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, | 
| 1489 | 0 |         0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, | 
| 1490 | 0 |         0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, | 
| 1491 | 0 |         0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, | 
| 1492 | 0 |         0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, | 
| 1493 | 0 |         0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78 | 
| 1494 | 0 |     }; | 
| 1495 | 0 |     for (i = 0; i < PR_ARRAY_SIZE(sftk_SP800_Tests); i++) { | 
| 1496 | 0 |         const struct sftk_SP800_Test_struct *test = &sftk_SP800_Tests[i]; | 
| 1497 | 0 |         unsigned char *output_buffer; | 
| 1498 | 0 |         size_t buffer_length; | 
| 1499 | 0 |         unsigned int mac_size; | 
| 1500 |  | 
 | 
| 1501 | 0 |         crv = kbkdf_RawDispatch(test->mech, &test->kdf_params, | 
| 1502 | 0 |                                 prf_key, test->expected_mac_size, | 
| 1503 | 0 |                                 NULL, prf_key, test->expected_mac_size, | 
| 1504 | 0 |                                 &output_buffer, &buffer_length, &mac_size, | 
| 1505 | 0 |                                 test->ret_key_length); | 
| 1506 | 0 |         if (crv != CKR_OK) { | 
| 1507 | 0 |             PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | 
| 1508 | 0 |             return SECFailure; | 
| 1509 | 0 |         } | 
| 1510 | 0 |         if ((mac_size != test->expected_mac_size) || | 
| 1511 | 0 |             (buffer_length != test->ret_key_length) || | 
| 1512 | 0 |             (output_buffer == NULL) || | 
| 1513 | 0 |             (PORT_Memcmp(output_buffer, test->expected_key_bytes, buffer_length) != 0)) { | 
| 1514 | 0 |             PORT_ZFree(output_buffer, buffer_length); | 
| 1515 | 0 |             PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | 
| 1516 | 0 |             return SECFailure; | 
| 1517 | 0 |         } | 
| 1518 | 0 |         PORT_ZFree(output_buffer, buffer_length); | 
| 1519 | 0 |     } | 
| 1520 | 0 |     return SECSuccess; | 
| 1521 | 0 | } |