/src/nspr/pr/src/misc/prtime.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | | |
6 | | /* |
7 | | * prtime.c -- |
8 | | * |
9 | | * NSPR date and time functions |
10 | | * |
11 | | */ |
12 | | |
13 | | #include "prinit.h" |
14 | | #include "prtime.h" |
15 | | #include "prlock.h" |
16 | | #include "prprf.h" |
17 | | #include "prlog.h" |
18 | | |
19 | | #include <string.h> |
20 | | #include <ctype.h> |
21 | | #include <errno.h> /* for EINVAL */ |
22 | | #include <time.h> |
23 | | |
24 | | /* |
25 | | * The COUNT_LEAPS macro counts the number of leap years passed by |
26 | | * till the start of the given year Y. At the start of the year 4 |
27 | | * A.D. the number of leap years passed by is 0, while at the start of |
28 | | * the year 5 A.D. this count is 1. The number of years divisible by |
29 | | * 100 but not divisible by 400 (the non-leap years) is deducted from |
30 | | * the count to get the correct number of leap years. |
31 | | * |
32 | | * The COUNT_DAYS macro counts the number of days since 01/01/01 till the |
33 | | * start of the given year Y. The number of days at the start of the year |
34 | | * 1 is 0 while the number of days at the start of the year 2 is 365 |
35 | | * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 |
36 | | * midnight 00:00:00. |
37 | | */ |
38 | | |
39 | 21.7k | #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) |
40 | 21.7k | #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) |
41 | 10.8k | #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) |
42 | | |
43 | | /* |
44 | | * Static variables used by functions in this file |
45 | | */ |
46 | | |
47 | | /* |
48 | | * The following array contains the day of year for the last day of |
49 | | * each month, where index 1 is January, and day 0 is January 1. |
50 | | */ |
51 | | |
52 | | static const int lastDayOfMonth[2][13] = { |
53 | | {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, |
54 | | {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} |
55 | | }; |
56 | | |
57 | | /* |
58 | | * The number of days in a month |
59 | | */ |
60 | | |
61 | | static const PRInt8 nDays[2][12] = { |
62 | | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
63 | | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} |
64 | | }; |
65 | | |
66 | | /* |
67 | | * Declarations for internal functions defined later in this file. |
68 | | */ |
69 | | |
70 | | static void ComputeGMT(PRTime time, PRExplodedTime *gmt); |
71 | | static int IsLeapYear(PRInt16 year); |
72 | | static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset); |
73 | | |
74 | | /* |
75 | | *------------------------------------------------------------------------ |
76 | | * |
77 | | * ComputeGMT -- |
78 | | * |
79 | | * Caveats: |
80 | | * - we ignore leap seconds |
81 | | * |
82 | | *------------------------------------------------------------------------ |
83 | | */ |
84 | | |
85 | | static void |
86 | | ComputeGMT(PRTime time, PRExplodedTime *gmt) |
87 | 0 | { |
88 | 0 | PRInt32 tmp, rem; |
89 | 0 | PRInt32 numDays; |
90 | 0 | PRInt64 numDays64, rem64; |
91 | 0 | int isLeap; |
92 | 0 | PRInt64 sec; |
93 | 0 | PRInt64 usec; |
94 | 0 | PRInt64 usecPerSec; |
95 | 0 | PRInt64 secPerDay; |
96 | | |
97 | | /* |
98 | | * We first do the usec, sec, min, hour thing so that we do not |
99 | | * have to do LL arithmetic. |
100 | | */ |
101 | |
|
102 | 0 | LL_I2L(usecPerSec, 1000000L); |
103 | 0 | LL_DIV(sec, time, usecPerSec); |
104 | 0 | LL_MOD(usec, time, usecPerSec); |
105 | 0 | LL_L2I(gmt->tm_usec, usec); |
106 | | /* Correct for weird mod semantics so the remainder is always positive */ |
107 | 0 | if (gmt->tm_usec < 0) { |
108 | 0 | PRInt64 one; |
109 | |
|
110 | 0 | LL_I2L(one, 1L); |
111 | 0 | LL_SUB(sec, sec, one); |
112 | 0 | gmt->tm_usec += 1000000L; |
113 | 0 | } |
114 | |
|
115 | 0 | LL_I2L(secPerDay, 86400L); |
116 | 0 | LL_DIV(numDays64, sec, secPerDay); |
117 | 0 | LL_MOD(rem64, sec, secPerDay); |
118 | | /* We are sure both of these numbers can fit into PRInt32 */ |
119 | 0 | LL_L2I(numDays, numDays64); |
120 | 0 | LL_L2I(rem, rem64); |
121 | 0 | if (rem < 0) { |
122 | 0 | numDays--; |
123 | 0 | rem += 86400L; |
124 | 0 | } |
125 | | |
126 | | /* Compute day of week. Epoch started on a Thursday. */ |
127 | |
|
128 | 0 | gmt->tm_wday = (numDays + 4) % 7; |
129 | 0 | if (gmt->tm_wday < 0) { |
130 | 0 | gmt->tm_wday += 7; |
131 | 0 | } |
132 | | |
133 | | /* Compute the time of day. */ |
134 | |
|
135 | 0 | gmt->tm_hour = rem / 3600; |
136 | 0 | rem %= 3600; |
137 | 0 | gmt->tm_min = rem / 60; |
138 | 0 | gmt->tm_sec = rem % 60; |
139 | | |
140 | | /* |
141 | | * Compute the year by finding the 400 year period, then working |
142 | | * down from there. |
143 | | * |
144 | | * Since numDays is originally the number of days since January 1, 1970, |
145 | | * we must change it to be the number of days from January 1, 0001. |
146 | | */ |
147 | |
|
148 | 0 | numDays += 719162; /* 719162 = days from year 1 up to 1970 */ |
149 | 0 | tmp = numDays / 146097; /* 146097 = days in 400 years */ |
150 | 0 | rem = numDays % 146097; |
151 | 0 | gmt->tm_year = tmp * 400 + 1; |
152 | | |
153 | | /* Compute the 100 year period. */ |
154 | |
|
155 | 0 | tmp = rem / 36524; /* 36524 = days in 100 years */ |
156 | 0 | rem %= 36524; |
157 | 0 | if (tmp == 4) { /* the 400th year is a leap year */ |
158 | 0 | tmp = 3; |
159 | 0 | rem = 36524; |
160 | 0 | } |
161 | 0 | gmt->tm_year += tmp * 100; |
162 | | |
163 | | /* Compute the 4 year period. */ |
164 | |
|
165 | 0 | tmp = rem / 1461; /* 1461 = days in 4 years */ |
166 | 0 | rem %= 1461; |
167 | 0 | gmt->tm_year += tmp * 4; |
168 | | |
169 | | /* Compute which year in the 4. */ |
170 | |
|
171 | 0 | tmp = rem / 365; |
172 | 0 | rem %= 365; |
173 | 0 | if (tmp == 4) { /* the 4th year is a leap year */ |
174 | 0 | tmp = 3; |
175 | 0 | rem = 365; |
176 | 0 | } |
177 | |
|
178 | 0 | gmt->tm_year += tmp; |
179 | 0 | gmt->tm_yday = rem; |
180 | 0 | isLeap = IsLeapYear(gmt->tm_year); |
181 | | |
182 | | /* Compute the month and day of month. */ |
183 | |
|
184 | 0 | for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) { |
185 | 0 | } |
186 | 0 | gmt->tm_month = --tmp; |
187 | 0 | gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp]; |
188 | |
|
189 | 0 | gmt->tm_params.tp_gmt_offset = 0; |
190 | 0 | gmt->tm_params.tp_dst_offset = 0; |
191 | 0 | } |
192 | | |
193 | | |
194 | | /* |
195 | | *------------------------------------------------------------------------ |
196 | | * |
197 | | * PR_ExplodeTime -- |
198 | | * |
199 | | * Cf. struct tm *gmtime(const time_t *tp) and |
200 | | * struct tm *localtime(const time_t *tp) |
201 | | * |
202 | | *------------------------------------------------------------------------ |
203 | | */ |
204 | | |
205 | | PR_IMPLEMENT(void) |
206 | | PR_ExplodeTime( |
207 | | PRTime usecs, |
208 | | PRTimeParamFn params, |
209 | | PRExplodedTime *exploded) |
210 | 0 | { |
211 | 0 | ComputeGMT(usecs, exploded); |
212 | 0 | exploded->tm_params = params(exploded); |
213 | 0 | ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset |
214 | 0 | + exploded->tm_params.tp_dst_offset); |
215 | 0 | } |
216 | | |
217 | | |
218 | | /* |
219 | | *------------------------------------------------------------------------ |
220 | | * |
221 | | * PR_ImplodeTime -- |
222 | | * |
223 | | * Cf. time_t mktime(struct tm *tp) |
224 | | * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. |
225 | | * |
226 | | *------------------------------------------------------------------------ |
227 | | */ |
228 | | PR_IMPLEMENT(PRTime) |
229 | | PR_ImplodeTime(const PRExplodedTime *exploded) |
230 | 5.44k | { |
231 | 5.44k | PRExplodedTime copy; |
232 | 5.44k | PRTime retVal; |
233 | 5.44k | PRInt64 secPerDay, usecPerSec; |
234 | 5.44k | PRInt64 temp; |
235 | 5.44k | PRInt64 numSecs64; |
236 | 5.44k | PRInt32 numDays; |
237 | 5.44k | PRInt32 numSecs; |
238 | | |
239 | | /* Normalize first. Do this on our copy */ |
240 | 5.44k | copy = *exploded; |
241 | 5.44k | PR_NormalizeTime(©, PR_GMTParameters); |
242 | | |
243 | 5.44k | numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year); |
244 | | |
245 | 5.44k | numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 |
246 | 5.44k | + copy.tm_min * 60 + copy.tm_sec; |
247 | | |
248 | 5.44k | LL_I2L(temp, numDays); |
249 | 5.44k | LL_I2L(secPerDay, 86400); |
250 | 5.44k | LL_MUL(temp, temp, secPerDay); |
251 | 5.44k | LL_I2L(numSecs64, numSecs); |
252 | 5.44k | LL_ADD(numSecs64, numSecs64, temp); |
253 | | |
254 | | /* apply the GMT and DST offsets */ |
255 | 5.44k | LL_I2L(temp, copy.tm_params.tp_gmt_offset); |
256 | 5.44k | LL_SUB(numSecs64, numSecs64, temp); |
257 | 5.44k | LL_I2L(temp, copy.tm_params.tp_dst_offset); |
258 | 5.44k | LL_SUB(numSecs64, numSecs64, temp); |
259 | | |
260 | 5.44k | LL_I2L(usecPerSec, 1000000L); |
261 | 5.44k | LL_MUL(temp, numSecs64, usecPerSec); |
262 | 5.44k | LL_I2L(retVal, copy.tm_usec); |
263 | 5.44k | LL_ADD(retVal, retVal, temp); |
264 | | |
265 | 5.44k | return retVal; |
266 | 5.44k | } |
267 | | |
268 | | /* |
269 | | *------------------------------------------------------------------------- |
270 | | * |
271 | | * IsLeapYear -- |
272 | | * |
273 | | * Returns 1 if the year is a leap year, 0 otherwise. |
274 | | * |
275 | | *------------------------------------------------------------------------- |
276 | | */ |
277 | | |
278 | | static int IsLeapYear(PRInt16 year) |
279 | 11.3k | { |
280 | 11.3k | if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) { |
281 | 1.57k | return 1; |
282 | 1.57k | } |
283 | 9.73k | return 0; |
284 | 11.3k | } |
285 | | |
286 | | /* |
287 | | * 'secOffset' should be less than 86400 (i.e., a day). |
288 | | * 'time' should point to a normalized PRExplodedTime. |
289 | | */ |
290 | | |
291 | | static void |
292 | | ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) |
293 | 5.44k | { |
294 | 5.44k | time->tm_sec += secOffset; |
295 | | |
296 | | /* Note that in this implementation we do not count leap seconds */ |
297 | 5.44k | if (time->tm_sec < 0 || time->tm_sec >= 60) { |
298 | 0 | time->tm_min += time->tm_sec / 60; |
299 | 0 | time->tm_sec %= 60; |
300 | 0 | if (time->tm_sec < 0) { |
301 | 0 | time->tm_sec += 60; |
302 | 0 | time->tm_min--; |
303 | 0 | } |
304 | 0 | } |
305 | | |
306 | 5.44k | if (time->tm_min < 0 || time->tm_min >= 60) { |
307 | 0 | time->tm_hour += time->tm_min / 60; |
308 | 0 | time->tm_min %= 60; |
309 | 0 | if (time->tm_min < 0) { |
310 | 0 | time->tm_min += 60; |
311 | 0 | time->tm_hour--; |
312 | 0 | } |
313 | 0 | } |
314 | | |
315 | 5.44k | if (time->tm_hour < 0) { |
316 | | /* Decrement mday, yday, and wday */ |
317 | 0 | time->tm_hour += 24; |
318 | 0 | time->tm_mday--; |
319 | 0 | time->tm_yday--; |
320 | 0 | if (time->tm_mday < 1) { |
321 | 0 | time->tm_month--; |
322 | 0 | if (time->tm_month < 0) { |
323 | 0 | time->tm_month = 11; |
324 | 0 | time->tm_year--; |
325 | 0 | if (IsLeapYear(time->tm_year)) { |
326 | 0 | time->tm_yday = 365; |
327 | 0 | } |
328 | 0 | else { |
329 | 0 | time->tm_yday = 364; |
330 | 0 | } |
331 | 0 | } |
332 | 0 | time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
333 | 0 | } |
334 | 0 | time->tm_wday--; |
335 | 0 | if (time->tm_wday < 0) { |
336 | 0 | time->tm_wday = 6; |
337 | 0 | } |
338 | 5.44k | } else if (time->tm_hour > 23) { |
339 | | /* Increment mday, yday, and wday */ |
340 | 0 | time->tm_hour -= 24; |
341 | 0 | time->tm_mday++; |
342 | 0 | time->tm_yday++; |
343 | 0 | if (time->tm_mday > |
344 | 0 | nDays[IsLeapYear(time->tm_year)][time->tm_month]) { |
345 | 0 | time->tm_mday = 1; |
346 | 0 | time->tm_month++; |
347 | 0 | if (time->tm_month > 11) { |
348 | 0 | time->tm_month = 0; |
349 | 0 | time->tm_year++; |
350 | 0 | time->tm_yday = 0; |
351 | 0 | } |
352 | 0 | } |
353 | 0 | time->tm_wday++; |
354 | 0 | if (time->tm_wday > 6) { |
355 | 0 | time->tm_wday = 0; |
356 | 0 | } |
357 | 0 | } |
358 | 5.44k | } |
359 | | |
360 | | PR_IMPLEMENT(void) |
361 | | PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) |
362 | 5.44k | { |
363 | 5.44k | int daysInMonth; |
364 | 5.44k | PRInt32 numDays; |
365 | | |
366 | | /* Get back to GMT */ |
367 | 5.44k | time->tm_sec -= time->tm_params.tp_gmt_offset |
368 | 5.44k | + time->tm_params.tp_dst_offset; |
369 | 5.44k | time->tm_params.tp_gmt_offset = 0; |
370 | 5.44k | time->tm_params.tp_dst_offset = 0; |
371 | | |
372 | | /* Now normalize GMT */ |
373 | | |
374 | 5.44k | if (time->tm_usec < 0 || time->tm_usec >= 1000000) { |
375 | 0 | time->tm_sec += time->tm_usec / 1000000; |
376 | 0 | time->tm_usec %= 1000000; |
377 | 0 | if (time->tm_usec < 0) { |
378 | 0 | time->tm_usec += 1000000; |
379 | 0 | time->tm_sec--; |
380 | 0 | } |
381 | 0 | } |
382 | | |
383 | | /* Note that we do not count leap seconds in this implementation */ |
384 | 5.44k | if (time->tm_sec < 0 || time->tm_sec >= 60) { |
385 | 0 | time->tm_min += time->tm_sec / 60; |
386 | 0 | time->tm_sec %= 60; |
387 | 0 | if (time->tm_sec < 0) { |
388 | 0 | time->tm_sec += 60; |
389 | 0 | time->tm_min--; |
390 | 0 | } |
391 | 0 | } |
392 | | |
393 | 5.44k | if (time->tm_min < 0 || time->tm_min >= 60) { |
394 | 0 | time->tm_hour += time->tm_min / 60; |
395 | 0 | time->tm_min %= 60; |
396 | 0 | if (time->tm_min < 0) { |
397 | 0 | time->tm_min += 60; |
398 | 0 | time->tm_hour--; |
399 | 0 | } |
400 | 0 | } |
401 | | |
402 | 5.44k | if (time->tm_hour < 0 || time->tm_hour >= 24) { |
403 | 0 | time->tm_mday += time->tm_hour / 24; |
404 | 0 | time->tm_hour %= 24; |
405 | 0 | if (time->tm_hour < 0) { |
406 | 0 | time->tm_hour += 24; |
407 | 0 | time->tm_mday--; |
408 | 0 | } |
409 | 0 | } |
410 | | |
411 | | /* Normalize month and year before mday */ |
412 | 5.44k | if (time->tm_month < 0 || time->tm_month >= 12) { |
413 | 0 | time->tm_year += time->tm_month / 12; |
414 | 0 | time->tm_month %= 12; |
415 | 0 | if (time->tm_month < 0) { |
416 | 0 | time->tm_month += 12; |
417 | 0 | time->tm_year--; |
418 | 0 | } |
419 | 0 | } |
420 | | |
421 | | /* Now that month and year are in proper range, normalize mday */ |
422 | | |
423 | 5.44k | if (time->tm_mday < 1) { |
424 | | /* mday too small */ |
425 | 0 | do { |
426 | | /* the previous month */ |
427 | 0 | time->tm_month--; |
428 | 0 | if (time->tm_month < 0) { |
429 | 0 | time->tm_month = 11; |
430 | 0 | time->tm_year--; |
431 | 0 | } |
432 | 0 | time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
433 | 0 | } while (time->tm_mday < 1); |
434 | 5.44k | } else { |
435 | 5.44k | daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
436 | 5.86k | while (time->tm_mday > daysInMonth) { |
437 | | /* mday too large */ |
438 | 422 | time->tm_mday -= daysInMonth; |
439 | 422 | time->tm_month++; |
440 | 422 | if (time->tm_month > 11) { |
441 | 0 | time->tm_month = 0; |
442 | 0 | time->tm_year++; |
443 | 0 | } |
444 | 422 | daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
445 | 422 | } |
446 | 5.44k | } |
447 | | |
448 | | /* Recompute yday and wday */ |
449 | 5.44k | time->tm_yday = time->tm_mday + |
450 | 5.44k | lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; |
451 | | |
452 | 5.44k | numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; |
453 | 5.44k | time->tm_wday = (numDays + 4) % 7; |
454 | 5.44k | if (time->tm_wday < 0) { |
455 | 461 | time->tm_wday += 7; |
456 | 461 | } |
457 | | |
458 | | /* Recompute time parameters */ |
459 | | |
460 | 5.44k | time->tm_params = params(time); |
461 | | |
462 | 5.44k | ApplySecOffset(time, time->tm_params.tp_gmt_offset |
463 | 5.44k | + time->tm_params.tp_dst_offset); |
464 | 5.44k | } |
465 | | |
466 | | |
467 | | /* |
468 | | *------------------------------------------------------------------------- |
469 | | * |
470 | | * PR_LocalTimeParameters -- |
471 | | * |
472 | | * returns the time parameters for the local time zone |
473 | | * |
474 | | * The following uses localtime() from the standard C library. |
475 | | * (time.h) This is our fallback implementation. Unix, PC, and BeOS |
476 | | * use this version. A platform may have its own machine-dependent |
477 | | * implementation of this function. |
478 | | * |
479 | | *------------------------------------------------------------------------- |
480 | | */ |
481 | | |
482 | | #if defined(HAVE_INT_LOCALTIME_R) |
483 | | |
484 | | /* |
485 | | * In this case we could define the macro as |
486 | | * #define MT_safe_localtime(timer, result) \ |
487 | | * (localtime_r(timer, result) == 0 ? result : NULL) |
488 | | * I chose to compare the return value of localtime_r with -1 so |
489 | | * that I can catch the cases where localtime_r returns a pointer |
490 | | * to struct tm. The macro definition above would not be able to |
491 | | * detect such mistakes because it is legal to compare a pointer |
492 | | * with 0. |
493 | | */ |
494 | | |
495 | | #define MT_safe_localtime(timer, result) \ |
496 | | (localtime_r(timer, result) == -1 ? NULL: result) |
497 | | |
498 | | #elif defined(HAVE_POINTER_LOCALTIME_R) |
499 | | |
500 | 0 | #define MT_safe_localtime localtime_r |
501 | | |
502 | | #elif defined(_MSC_VER) |
503 | | |
504 | | /* Visual C++ has had localtime_s() since Visual C++ 2005. */ |
505 | | |
506 | | static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) |
507 | | { |
508 | | errno_t err = localtime_s(result, clock); |
509 | | if (err != 0) { |
510 | | errno = err; |
511 | | return NULL; |
512 | | } |
513 | | return result; |
514 | | } |
515 | | |
516 | | #else |
517 | | |
518 | | #define HAVE_LOCALTIME_MONITOR 1 /* We use 'monitor' to serialize our calls |
519 | | * to localtime(). */ |
520 | | static PRLock *monitor = NULL; |
521 | | |
522 | | static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) |
523 | | { |
524 | | struct tm *tmPtr; |
525 | | int needLock = PR_Initialized(); /* We need to use a lock to protect |
526 | | * against NSPR threads only when the |
527 | | * NSPR thread system is activated. */ |
528 | | |
529 | | if (needLock) { |
530 | | PR_Lock(monitor); |
531 | | } |
532 | | |
533 | | /* |
534 | | * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock' |
535 | | * represents a time before midnight January 1, 1970. In |
536 | | * that case, we also return a NULL pointer and the struct tm |
537 | | * object pointed to by 'result' is not modified. |
538 | | * |
539 | | * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long |
540 | | * hence, does not recognize negative values of clock as pre-1/1/70. |
541 | | * We have to manually check (WIN16 only) for negative value of |
542 | | * clock and return NULL. |
543 | | * |
544 | | * With negative values of clock, OS/2 returns the struct tm for |
545 | | * clock plus ULONG_MAX. So we also have to check for the invalid |
546 | | * structs returned for timezones west of Greenwich when clock == 0. |
547 | | */ |
548 | | |
549 | | tmPtr = localtime(clock); |
550 | | |
551 | | #if defined(WIN16) || defined(XP_OS2) |
552 | | if ( (PRInt32) *clock < 0 || |
553 | | ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70)) { |
554 | | result = NULL; |
555 | | } |
556 | | else { |
557 | | *result = *tmPtr; |
558 | | } |
559 | | #else |
560 | | if (tmPtr) { |
561 | | *result = *tmPtr; |
562 | | } else { |
563 | | result = NULL; |
564 | | } |
565 | | #endif /* WIN16 */ |
566 | | |
567 | | if (needLock) { |
568 | | PR_Unlock(monitor); |
569 | | } |
570 | | |
571 | | return result; |
572 | | } |
573 | | |
574 | | #endif /* definition of MT_safe_localtime() */ |
575 | | |
576 | | void _PR_InitTime(void) |
577 | 1 | { |
578 | | #ifdef HAVE_LOCALTIME_MONITOR |
579 | | monitor = PR_NewLock(); |
580 | | #endif |
581 | | #ifdef WINCE |
582 | | _MD_InitTime(); |
583 | | #endif |
584 | 1 | } |
585 | | |
586 | | void _PR_CleanupTime(void) |
587 | 0 | { |
588 | | #ifdef HAVE_LOCALTIME_MONITOR |
589 | | if (monitor) { |
590 | | PR_DestroyLock(monitor); |
591 | | monitor = NULL; |
592 | | } |
593 | | #endif |
594 | | #ifdef WINCE |
595 | | _MD_CleanupTime(); |
596 | | #endif |
597 | 0 | } |
598 | | |
599 | | #if defined(XP_UNIX) || defined(XP_PC) |
600 | | |
601 | | PR_IMPLEMENT(PRTimeParameters) |
602 | | PR_LocalTimeParameters(const PRExplodedTime *gmt) |
603 | 0 | { |
604 | |
|
605 | 0 | PRTimeParameters retVal; |
606 | 0 | struct tm localTime; |
607 | 0 | struct tm *localTimeResult; |
608 | 0 | time_t secs; |
609 | 0 | PRTime secs64; |
610 | 0 | PRInt64 usecPerSec; |
611 | 0 | PRInt64 usecPerSec_1; |
612 | 0 | PRInt64 maxInt32; |
613 | 0 | PRInt64 minInt32; |
614 | 0 | PRInt32 dayOffset; |
615 | 0 | PRInt32 offset2Jan1970; |
616 | 0 | PRInt32 offsetNew; |
617 | 0 | int isdst2Jan1970; |
618 | | |
619 | | /* |
620 | | * Calculate the GMT offset. First, figure out what is |
621 | | * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400 |
622 | | * seconds, since the epoch) in local time. Then we calculate |
623 | | * the difference between local time and GMT in seconds: |
624 | | * gmt_offset = local_time - GMT |
625 | | * |
626 | | * Caveat: the validity of this calculation depends on two |
627 | | * assumptions: |
628 | | * 1. Daylight saving time was not in effect on Jan. 2, 1970. |
629 | | * 2. The time zone of the geographic location has not changed |
630 | | * since Jan. 2, 1970. |
631 | | */ |
632 | |
|
633 | 0 | secs = 86400L; |
634 | 0 | localTimeResult = MT_safe_localtime(&secs, &localTime); |
635 | 0 | PR_ASSERT(localTimeResult != NULL); |
636 | 0 | if (localTimeResult == NULL) { |
637 | | /* Shouldn't happen. Use safe fallback for optimized builds. */ |
638 | 0 | return PR_GMTParameters(gmt); |
639 | 0 | } |
640 | | |
641 | | /* GMT is 00:00:00, 2nd of Jan. */ |
642 | | |
643 | 0 | offset2Jan1970 = (PRInt32)localTime.tm_sec |
644 | 0 | + 60L * (PRInt32)localTime.tm_min |
645 | 0 | + 3600L * (PRInt32)localTime.tm_hour |
646 | 0 | + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L); |
647 | |
|
648 | 0 | isdst2Jan1970 = localTime.tm_isdst; |
649 | | |
650 | | /* |
651 | | * Now compute DST offset. We calculate the overall offset |
652 | | * of local time from GMT, similar to above. The overall |
653 | | * offset has two components: gmt offset and dst offset. |
654 | | * We subtract gmt offset from the overall offset to get |
655 | | * the dst offset. |
656 | | * overall_offset = local_time - GMT |
657 | | * overall_offset = gmt_offset + dst_offset |
658 | | * ==> dst_offset = local_time - GMT - gmt_offset |
659 | | */ |
660 | |
|
661 | 0 | secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */ |
662 | 0 | LL_I2L(usecPerSec, PR_USEC_PER_SEC); |
663 | 0 | LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1); |
664 | | /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */ |
665 | 0 | if (LL_GE_ZERO(secs64)) { |
666 | 0 | LL_DIV(secs64, secs64, usecPerSec); |
667 | 0 | } else { |
668 | 0 | LL_NEG(secs64, secs64); |
669 | 0 | LL_ADD(secs64, secs64, usecPerSec_1); |
670 | 0 | LL_DIV(secs64, secs64, usecPerSec); |
671 | 0 | LL_NEG(secs64, secs64); |
672 | 0 | } |
673 | 0 | LL_I2L(maxInt32, PR_INT32_MAX); |
674 | 0 | LL_I2L(minInt32, PR_INT32_MIN); |
675 | 0 | if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) { |
676 | | /* secs64 is too large or too small for time_t (32-bit integer) */ |
677 | 0 | retVal.tp_gmt_offset = offset2Jan1970; |
678 | 0 | retVal.tp_dst_offset = 0; |
679 | 0 | return retVal; |
680 | 0 | } |
681 | 0 | LL_L2I(secs, secs64); |
682 | | |
683 | | /* |
684 | | * On Windows, localtime() (and our MT_safe_localtime() too) |
685 | | * returns a NULL pointer for time before midnight January 1, |
686 | | * 1970 GMT. In that case, we just use the GMT offset for |
687 | | * Jan 2, 1970 and assume that DST was not in effect. |
688 | | */ |
689 | |
|
690 | 0 | if (MT_safe_localtime(&secs, &localTime) == NULL) { |
691 | 0 | retVal.tp_gmt_offset = offset2Jan1970; |
692 | 0 | retVal.tp_dst_offset = 0; |
693 | 0 | return retVal; |
694 | 0 | } |
695 | | |
696 | | /* |
697 | | * dayOffset is the offset between local time and GMT in |
698 | | * the day component, which can only be -1, 0, or 1. We |
699 | | * use the day of the week to compute dayOffset. |
700 | | */ |
701 | | |
702 | 0 | dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday; |
703 | | |
704 | | /* |
705 | | * Need to adjust for wrapping around of day of the week from |
706 | | * 6 back to 0. |
707 | | */ |
708 | |
|
709 | 0 | if (dayOffset == -6) { |
710 | | /* Local time is Sunday (0) and GMT is Saturday (6) */ |
711 | 0 | dayOffset = 1; |
712 | 0 | } else if (dayOffset == 6) { |
713 | | /* Local time is Saturday (6) and GMT is Sunday (0) */ |
714 | 0 | dayOffset = -1; |
715 | 0 | } |
716 | |
|
717 | 0 | offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec |
718 | 0 | + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min) |
719 | 0 | + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) |
720 | 0 | + 86400L * (PRInt32)dayOffset; |
721 | |
|
722 | 0 | if (localTime.tm_isdst <= 0) { |
723 | | /* DST is not in effect */ |
724 | 0 | retVal.tp_gmt_offset = offsetNew; |
725 | 0 | retVal.tp_dst_offset = 0; |
726 | 0 | } else { |
727 | | /* DST is in effect */ |
728 | 0 | if (isdst2Jan1970 <=0) { |
729 | | /* |
730 | | * DST was not in effect back in 2 Jan. 1970. |
731 | | * Use the offset back then as the GMT offset, |
732 | | * assuming the time zone has not changed since then. |
733 | | */ |
734 | 0 | retVal.tp_gmt_offset = offset2Jan1970; |
735 | 0 | retVal.tp_dst_offset = offsetNew - offset2Jan1970; |
736 | 0 | } else { |
737 | | /* |
738 | | * DST was also in effect back in 2 Jan. 1970. |
739 | | * Then our clever trick (or rather, ugly hack) fails. |
740 | | * We will just assume DST offset is an hour. |
741 | | */ |
742 | 0 | retVal.tp_gmt_offset = offsetNew - 3600; |
743 | 0 | retVal.tp_dst_offset = 3600; |
744 | 0 | } |
745 | 0 | } |
746 | |
|
747 | 0 | return retVal; |
748 | 0 | } |
749 | | |
750 | | #endif /* defined(XP_UNIX) || defined(XP_PC) */ |
751 | | |
752 | | /* |
753 | | *------------------------------------------------------------------------ |
754 | | * |
755 | | * PR_USPacificTimeParameters -- |
756 | | * |
757 | | * The time parameters function for the US Pacific Time Zone. |
758 | | * |
759 | | *------------------------------------------------------------------------ |
760 | | */ |
761 | | |
762 | | /* |
763 | | * Returns the mday of the first sunday of the month, where |
764 | | * mday and wday are for a given day in the month. |
765 | | * mdays start with 1 (e.g. 1..31). |
766 | | * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
767 | | */ |
768 | 0 | #define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1) |
769 | | |
770 | | /* |
771 | | * Returns the mday for the N'th Sunday of the month, where |
772 | | * mday and wday are for a given day in the month. |
773 | | * mdays start with 1 (e.g. 1..31). |
774 | | * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
775 | | * N has the following values: 0 = first, 1 = second (etc), -1 = last. |
776 | | * ndays is the number of days in that month, the same value as the |
777 | | * mday of the last day of the month. |
778 | | */ |
779 | | static PRInt32 |
780 | | NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) |
781 | 0 | { |
782 | 0 | PRInt32 firstSun = firstSunday(mday, wday); |
783 | |
|
784 | 0 | if (N < 0) { |
785 | 0 | N = (ndays - firstSun) / 7; |
786 | 0 | } |
787 | 0 | return firstSun + (7 * N); |
788 | 0 | } |
789 | | |
790 | | typedef struct DSTParams { |
791 | | PRInt8 dst_start_month; /* 0 = January */ |
792 | | PRInt8 dst_start_Nth_Sunday; /* N as defined above */ |
793 | | PRInt8 dst_start_month_ndays; /* ndays as defined above */ |
794 | | PRInt8 dst_end_month; /* 0 = January */ |
795 | | PRInt8 dst_end_Nth_Sunday; /* N as defined above */ |
796 | | PRInt8 dst_end_month_ndays; /* ndays as defined above */ |
797 | | } DSTParams; |
798 | | |
799 | | static const DSTParams dstParams[2] = { |
800 | | /* year < 2007: First April Sunday - Last October Sunday */ |
801 | | { 3, 0, 30, 9, -1, 31 }, |
802 | | /* year >= 2007: Second March Sunday - First November Sunday */ |
803 | | { 2, 1, 31, 10, 0, 30 } |
804 | | }; |
805 | | |
806 | | PR_IMPLEMENT(PRTimeParameters) |
807 | | PR_USPacificTimeParameters(const PRExplodedTime *gmt) |
808 | 0 | { |
809 | 0 | const DSTParams *dst; |
810 | 0 | PRTimeParameters retVal; |
811 | 0 | PRExplodedTime st; |
812 | | |
813 | | /* |
814 | | * Based on geographic location and GMT, figure out offset of |
815 | | * standard time from GMT. In this example implementation, we |
816 | | * assume the local time zone is US Pacific Time. |
817 | | */ |
818 | |
|
819 | 0 | retVal.tp_gmt_offset = -8L * 3600L; |
820 | | |
821 | | /* |
822 | | * Make a copy of GMT. Note that the tm_params field of this copy |
823 | | * is ignored. |
824 | | */ |
825 | |
|
826 | 0 | st.tm_usec = gmt->tm_usec; |
827 | 0 | st.tm_sec = gmt->tm_sec; |
828 | 0 | st.tm_min = gmt->tm_min; |
829 | 0 | st.tm_hour = gmt->tm_hour; |
830 | 0 | st.tm_mday = gmt->tm_mday; |
831 | 0 | st.tm_month = gmt->tm_month; |
832 | 0 | st.tm_year = gmt->tm_year; |
833 | 0 | st.tm_wday = gmt->tm_wday; |
834 | 0 | st.tm_yday = gmt->tm_yday; |
835 | | |
836 | | /* Apply the offset to GMT to obtain the local standard time */ |
837 | 0 | ApplySecOffset(&st, retVal.tp_gmt_offset); |
838 | |
|
839 | 0 | if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */ |
840 | 0 | dst = &dstParams[0]; |
841 | 0 | } else { /* Second March Sunday - First November Sunday */ |
842 | 0 | dst = &dstParams[1]; |
843 | 0 | } |
844 | | |
845 | | /* |
846 | | * Apply the rules on standard time or GMT to obtain daylight saving |
847 | | * time offset. In this implementation, we use the US DST rule. |
848 | | */ |
849 | 0 | if (st.tm_month < dst->dst_start_month) { |
850 | 0 | retVal.tp_dst_offset = 0L; |
851 | 0 | } else if (st.tm_month == dst->dst_start_month) { |
852 | 0 | int NthSun = NthSunday(st.tm_mday, st.tm_wday, |
853 | 0 | dst->dst_start_Nth_Sunday, |
854 | 0 | dst->dst_start_month_ndays); |
855 | 0 | if (st.tm_mday < NthSun) { /* Before starting Sunday */ |
856 | 0 | retVal.tp_dst_offset = 0L; |
857 | 0 | } else if (st.tm_mday == NthSun) { /* Starting Sunday */ |
858 | | /* 01:59:59 PST -> 03:00:00 PDT */ |
859 | 0 | if (st.tm_hour < 2) { |
860 | 0 | retVal.tp_dst_offset = 0L; |
861 | 0 | } else { |
862 | 0 | retVal.tp_dst_offset = 3600L; |
863 | 0 | } |
864 | 0 | } else { /* After starting Sunday */ |
865 | 0 | retVal.tp_dst_offset = 3600L; |
866 | 0 | } |
867 | 0 | } else if (st.tm_month < dst->dst_end_month) { |
868 | 0 | retVal.tp_dst_offset = 3600L; |
869 | 0 | } else if (st.tm_month == dst->dst_end_month) { |
870 | 0 | int NthSun = NthSunday(st.tm_mday, st.tm_wday, |
871 | 0 | dst->dst_end_Nth_Sunday, |
872 | 0 | dst->dst_end_month_ndays); |
873 | 0 | if (st.tm_mday < NthSun) { /* Before ending Sunday */ |
874 | 0 | retVal.tp_dst_offset = 3600L; |
875 | 0 | } else if (st.tm_mday == NthSun) { /* Ending Sunday */ |
876 | | /* 01:59:59 PDT -> 01:00:00 PST */ |
877 | 0 | if (st.tm_hour < 1) { |
878 | 0 | retVal.tp_dst_offset = 3600L; |
879 | 0 | } else { |
880 | 0 | retVal.tp_dst_offset = 0L; |
881 | 0 | } |
882 | 0 | } else { /* After ending Sunday */ |
883 | 0 | retVal.tp_dst_offset = 0L; |
884 | 0 | } |
885 | 0 | } else { |
886 | 0 | retVal.tp_dst_offset = 0L; |
887 | 0 | } |
888 | 0 | return retVal; |
889 | 0 | } |
890 | | |
891 | | /* |
892 | | *------------------------------------------------------------------------ |
893 | | * |
894 | | * PR_GMTParameters -- |
895 | | * |
896 | | * Returns the PRTimeParameters for Greenwich Mean Time. |
897 | | * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. |
898 | | * |
899 | | *------------------------------------------------------------------------ |
900 | | */ |
901 | | |
902 | | PR_IMPLEMENT(PRTimeParameters) |
903 | | PR_GMTParameters(const PRExplodedTime *gmt) |
904 | 5.44k | { |
905 | 5.44k | PRTimeParameters retVal = { 0, 0 }; |
906 | 5.44k | return retVal; |
907 | 5.44k | } |
908 | | |
909 | | /* |
910 | | * The following code implements PR_ParseTimeString(). It is based on |
911 | | * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>. |
912 | | */ |
913 | | |
914 | | /* |
915 | | * We only recognize the abbreviations of a small subset of time zones |
916 | | * in North America, Europe, and Japan. |
917 | | * |
918 | | * PST/PDT: Pacific Standard/Daylight Time |
919 | | * MST/MDT: Mountain Standard/Daylight Time |
920 | | * CST/CDT: Central Standard/Daylight Time |
921 | | * EST/EDT: Eastern Standard/Daylight Time |
922 | | * AST: Atlantic Standard Time |
923 | | * NST: Newfoundland Standard Time |
924 | | * GMT: Greenwich Mean Time |
925 | | * BST: British Summer Time |
926 | | * MET: Middle Europe Time |
927 | | * EET: Eastern Europe Time |
928 | | * JST: Japan Standard Time |
929 | | */ |
930 | | |
931 | | typedef enum |
932 | | { |
933 | | TT_UNKNOWN, |
934 | | |
935 | | TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, |
936 | | |
937 | | TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, |
938 | | TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, |
939 | | |
940 | | TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, |
941 | | TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST |
942 | | } TIME_TOKEN; |
943 | | |
944 | | /* |
945 | | * This parses a time/date string into a PRTime |
946 | | * (microseconds after "1-Jan-1970 00:00:00 GMT"). |
947 | | * It returns PR_SUCCESS on success, and PR_FAILURE |
948 | | * if the time/date string can't be parsed. |
949 | | * |
950 | | * Many formats are handled, including: |
951 | | * |
952 | | * 14 Apr 89 03:20:12 |
953 | | * 14 Apr 89 03:20 GMT |
954 | | * Fri, 17 Mar 89 4:01:33 |
955 | | * Fri, 17 Mar 89 4:01 GMT |
956 | | * Mon Jan 16 16:12 PDT 1989 |
957 | | * Mon Jan 16 16:12 +0130 1989 |
958 | | * 6 May 1992 16:41-JST (Wednesday) |
959 | | * 22-AUG-1993 10:59:12.82 |
960 | | * 22-AUG-1993 10:59pm |
961 | | * 22-AUG-1993 12:59am |
962 | | * 22-AUG-1993 12:59 PM |
963 | | * Friday, August 04, 1995 3:54 PM |
964 | | * 06/21/95 04:24:34 PM |
965 | | * 20/06/95 21:07 |
966 | | * 95-06-08 19:32:48 EDT |
967 | | * |
968 | | * If the input string doesn't contain a description of the timezone, |
969 | | * we consult the `default_to_gmt' to decide whether the string should |
970 | | * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). |
971 | | * The correct value for this argument depends on what standard specified |
972 | | * the time string which you are parsing. |
973 | | */ |
974 | | |
975 | | PR_IMPLEMENT(PRStatus) |
976 | | PR_ParseTimeStringToExplodedTime( |
977 | | const char *string, |
978 | | PRBool default_to_gmt, |
979 | | PRExplodedTime *result) |
980 | 0 | { |
981 | 0 | TIME_TOKEN dotw = TT_UNKNOWN; |
982 | 0 | TIME_TOKEN month = TT_UNKNOWN; |
983 | 0 | TIME_TOKEN zone = TT_UNKNOWN; |
984 | 0 | int zone_offset = -1; |
985 | 0 | int dst_offset = 0; |
986 | 0 | int date = -1; |
987 | 0 | PRInt32 year = -1; |
988 | 0 | int hour = -1; |
989 | 0 | int min = -1; |
990 | 0 | int sec = -1; |
991 | 0 | struct tm *localTimeResult; |
992 | |
|
993 | 0 | const char *rest = string; |
994 | |
|
995 | 0 | int iterations = 0; |
996 | |
|
997 | 0 | PR_ASSERT(string && result); |
998 | 0 | if (!string || !result) { |
999 | 0 | return PR_FAILURE; |
1000 | 0 | } |
1001 | | |
1002 | 0 | while (*rest) |
1003 | 0 | { |
1004 | |
|
1005 | 0 | if (iterations++ > 1000) |
1006 | 0 | { |
1007 | 0 | return PR_FAILURE; |
1008 | 0 | } |
1009 | | |
1010 | 0 | switch (*rest) |
1011 | 0 | { |
1012 | 0 | case 'a': case 'A': |
1013 | 0 | if (month == TT_UNKNOWN && |
1014 | 0 | (rest[1] == 'p' || rest[1] == 'P') && |
1015 | 0 | (rest[2] == 'r' || rest[2] == 'R')) { |
1016 | 0 | month = TT_APR; |
1017 | 0 | } |
1018 | 0 | else if (zone == TT_UNKNOWN && |
1019 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1020 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1021 | 0 | zone = TT_AST; |
1022 | 0 | } |
1023 | 0 | else if (month == TT_UNKNOWN && |
1024 | 0 | (rest[1] == 'u' || rest[1] == 'U') && |
1025 | 0 | (rest[2] == 'g' || rest[2] == 'G')) { |
1026 | 0 | month = TT_AUG; |
1027 | 0 | } |
1028 | 0 | break; |
1029 | 0 | case 'b': case 'B': |
1030 | 0 | if (zone == TT_UNKNOWN && |
1031 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1032 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1033 | 0 | zone = TT_BST; |
1034 | 0 | } |
1035 | 0 | break; |
1036 | 0 | case 'c': case 'C': |
1037 | 0 | if (zone == TT_UNKNOWN && |
1038 | 0 | (rest[1] == 'd' || rest[1] == 'D') && |
1039 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1040 | 0 | zone = TT_CDT; |
1041 | 0 | } |
1042 | 0 | else if (zone == TT_UNKNOWN && |
1043 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1044 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1045 | 0 | zone = TT_CST; |
1046 | 0 | } |
1047 | 0 | break; |
1048 | 0 | case 'd': case 'D': |
1049 | 0 | if (month == TT_UNKNOWN && |
1050 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1051 | 0 | (rest[2] == 'c' || rest[2] == 'C')) { |
1052 | 0 | month = TT_DEC; |
1053 | 0 | } |
1054 | 0 | break; |
1055 | 0 | case 'e': case 'E': |
1056 | 0 | if (zone == TT_UNKNOWN && |
1057 | 0 | (rest[1] == 'd' || rest[1] == 'D') && |
1058 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1059 | 0 | zone = TT_EDT; |
1060 | 0 | } |
1061 | 0 | else if (zone == TT_UNKNOWN && |
1062 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1063 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1064 | 0 | zone = TT_EET; |
1065 | 0 | } |
1066 | 0 | else if (zone == TT_UNKNOWN && |
1067 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1068 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1069 | 0 | zone = TT_EST; |
1070 | 0 | } |
1071 | 0 | break; |
1072 | 0 | case 'f': case 'F': |
1073 | 0 | if (month == TT_UNKNOWN && |
1074 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1075 | 0 | (rest[2] == 'b' || rest[2] == 'B')) { |
1076 | 0 | month = TT_FEB; |
1077 | 0 | } |
1078 | 0 | else if (dotw == TT_UNKNOWN && |
1079 | 0 | (rest[1] == 'r' || rest[1] == 'R') && |
1080 | 0 | (rest[2] == 'i' || rest[2] == 'I')) { |
1081 | 0 | dotw = TT_FRI; |
1082 | 0 | } |
1083 | 0 | break; |
1084 | 0 | case 'g': case 'G': |
1085 | 0 | if (zone == TT_UNKNOWN && |
1086 | 0 | (rest[1] == 'm' || rest[1] == 'M') && |
1087 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1088 | 0 | zone = TT_GMT; |
1089 | 0 | } |
1090 | 0 | break; |
1091 | 0 | case 'j': case 'J': |
1092 | 0 | if (month == TT_UNKNOWN && |
1093 | 0 | (rest[1] == 'a' || rest[1] == 'A') && |
1094 | 0 | (rest[2] == 'n' || rest[2] == 'N')) { |
1095 | 0 | month = TT_JAN; |
1096 | 0 | } |
1097 | 0 | else if (zone == TT_UNKNOWN && |
1098 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1099 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1100 | 0 | zone = TT_JST; |
1101 | 0 | } |
1102 | 0 | else if (month == TT_UNKNOWN && |
1103 | 0 | (rest[1] == 'u' || rest[1] == 'U') && |
1104 | 0 | (rest[2] == 'l' || rest[2] == 'L')) { |
1105 | 0 | month = TT_JUL; |
1106 | 0 | } |
1107 | 0 | else if (month == TT_UNKNOWN && |
1108 | 0 | (rest[1] == 'u' || rest[1] == 'U') && |
1109 | 0 | (rest[2] == 'n' || rest[2] == 'N')) { |
1110 | 0 | month = TT_JUN; |
1111 | 0 | } |
1112 | 0 | break; |
1113 | 0 | case 'm': case 'M': |
1114 | 0 | if (month == TT_UNKNOWN && |
1115 | 0 | (rest[1] == 'a' || rest[1] == 'A') && |
1116 | 0 | (rest[2] == 'r' || rest[2] == 'R')) { |
1117 | 0 | month = TT_MAR; |
1118 | 0 | } |
1119 | 0 | else if (month == TT_UNKNOWN && |
1120 | 0 | (rest[1] == 'a' || rest[1] == 'A') && |
1121 | 0 | (rest[2] == 'y' || rest[2] == 'Y')) { |
1122 | 0 | month = TT_MAY; |
1123 | 0 | } |
1124 | 0 | else if (zone == TT_UNKNOWN && |
1125 | 0 | (rest[1] == 'd' || rest[1] == 'D') && |
1126 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1127 | 0 | zone = TT_MDT; |
1128 | 0 | } |
1129 | 0 | else if (zone == TT_UNKNOWN && |
1130 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1131 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1132 | 0 | zone = TT_MET; |
1133 | 0 | } |
1134 | 0 | else if (dotw == TT_UNKNOWN && |
1135 | 0 | (rest[1] == 'o' || rest[1] == 'O') && |
1136 | 0 | (rest[2] == 'n' || rest[2] == 'N')) { |
1137 | 0 | dotw = TT_MON; |
1138 | 0 | } |
1139 | 0 | else if (zone == TT_UNKNOWN && |
1140 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1141 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1142 | 0 | zone = TT_MST; |
1143 | 0 | } |
1144 | 0 | break; |
1145 | 0 | case 'n': case 'N': |
1146 | 0 | if (month == TT_UNKNOWN && |
1147 | 0 | (rest[1] == 'o' || rest[1] == 'O') && |
1148 | 0 | (rest[2] == 'v' || rest[2] == 'V')) { |
1149 | 0 | month = TT_NOV; |
1150 | 0 | } |
1151 | 0 | else if (zone == TT_UNKNOWN && |
1152 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1153 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1154 | 0 | zone = TT_NST; |
1155 | 0 | } |
1156 | 0 | break; |
1157 | 0 | case 'o': case 'O': |
1158 | 0 | if (month == TT_UNKNOWN && |
1159 | 0 | (rest[1] == 'c' || rest[1] == 'C') && |
1160 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1161 | 0 | month = TT_OCT; |
1162 | 0 | } |
1163 | 0 | break; |
1164 | 0 | case 'p': case 'P': |
1165 | 0 | if (zone == TT_UNKNOWN && |
1166 | 0 | (rest[1] == 'd' || rest[1] == 'D') && |
1167 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1168 | 0 | zone = TT_PDT; |
1169 | 0 | } |
1170 | 0 | else if (zone == TT_UNKNOWN && |
1171 | 0 | (rest[1] == 's' || rest[1] == 'S') && |
1172 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1173 | 0 | zone = TT_PST; |
1174 | 0 | } |
1175 | 0 | break; |
1176 | 0 | case 's': case 'S': |
1177 | 0 | if (dotw == TT_UNKNOWN && |
1178 | 0 | (rest[1] == 'a' || rest[1] == 'A') && |
1179 | 0 | (rest[2] == 't' || rest[2] == 'T')) { |
1180 | 0 | dotw = TT_SAT; |
1181 | 0 | } |
1182 | 0 | else if (month == TT_UNKNOWN && |
1183 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1184 | 0 | (rest[2] == 'p' || rest[2] == 'P')) { |
1185 | 0 | month = TT_SEP; |
1186 | 0 | } |
1187 | 0 | else if (dotw == TT_UNKNOWN && |
1188 | 0 | (rest[1] == 'u' || rest[1] == 'U') && |
1189 | 0 | (rest[2] == 'n' || rest[2] == 'N')) { |
1190 | 0 | dotw = TT_SUN; |
1191 | 0 | } |
1192 | 0 | break; |
1193 | 0 | case 't': case 'T': |
1194 | 0 | if (dotw == TT_UNKNOWN && |
1195 | 0 | (rest[1] == 'h' || rest[1] == 'H') && |
1196 | 0 | (rest[2] == 'u' || rest[2] == 'U')) { |
1197 | 0 | dotw = TT_THU; |
1198 | 0 | } |
1199 | 0 | else if (dotw == TT_UNKNOWN && |
1200 | 0 | (rest[1] == 'u' || rest[1] == 'U') && |
1201 | 0 | (rest[2] == 'e' || rest[2] == 'E')) { |
1202 | 0 | dotw = TT_TUE; |
1203 | 0 | } |
1204 | 0 | break; |
1205 | 0 | case 'u': case 'U': |
1206 | 0 | if (zone == TT_UNKNOWN && |
1207 | 0 | (rest[1] == 't' || rest[1] == 'T') && |
1208 | 0 | !(rest[2] >= 'A' && rest[2] <= 'Z') && |
1209 | 0 | !(rest[2] >= 'a' && rest[2] <= 'z')) |
1210 | | /* UT is the same as GMT but UTx is not. */ |
1211 | 0 | { |
1212 | 0 | zone = TT_GMT; |
1213 | 0 | } |
1214 | 0 | break; |
1215 | 0 | case 'w': case 'W': |
1216 | 0 | if (dotw == TT_UNKNOWN && |
1217 | 0 | (rest[1] == 'e' || rest[1] == 'E') && |
1218 | 0 | (rest[2] == 'd' || rest[2] == 'D')) { |
1219 | 0 | dotw = TT_WED; |
1220 | 0 | } |
1221 | 0 | break; |
1222 | | |
1223 | 0 | case '+': case '-': |
1224 | 0 | { |
1225 | 0 | const char *end; |
1226 | 0 | int sign; |
1227 | 0 | if (zone_offset != -1) |
1228 | 0 | { |
1229 | | /* already got one... */ |
1230 | 0 | rest++; |
1231 | 0 | break; |
1232 | 0 | } |
1233 | 0 | if (zone != TT_UNKNOWN && zone != TT_GMT) |
1234 | 0 | { |
1235 | | /* GMT+0300 is legal, but PST+0300 is not. */ |
1236 | 0 | rest++; |
1237 | 0 | break; |
1238 | 0 | } |
1239 | | |
1240 | 0 | sign = ((*rest == '+') ? 1 : -1); |
1241 | 0 | rest++; /* move over sign */ |
1242 | 0 | end = rest; |
1243 | 0 | while (*end >= '0' && *end <= '9') { |
1244 | 0 | end++; |
1245 | 0 | } |
1246 | 0 | if (rest == end) { /* no digits here */ |
1247 | 0 | break; |
1248 | 0 | } |
1249 | | |
1250 | 0 | if ((end - rest) == 4) |
1251 | | /* offset in HHMM */ |
1252 | 0 | zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + |
1253 | 0 | (((rest[2]-'0')*10) + (rest[3]-'0'))); |
1254 | 0 | else if ((end - rest) == 2) |
1255 | | /* offset in hours */ |
1256 | 0 | { |
1257 | 0 | zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; |
1258 | 0 | } |
1259 | 0 | else if ((end - rest) == 1) |
1260 | | /* offset in hours */ |
1261 | 0 | { |
1262 | 0 | zone_offset = (rest[0]-'0') * 60; |
1263 | 0 | } |
1264 | 0 | else |
1265 | | /* 3 or >4 */ |
1266 | 0 | { |
1267 | 0 | break; |
1268 | 0 | } |
1269 | | |
1270 | 0 | zone_offset *= sign; |
1271 | 0 | zone = TT_GMT; |
1272 | 0 | break; |
1273 | 0 | } |
1274 | | |
1275 | 0 | case '0': case '1': case '2': case '3': case '4': |
1276 | 0 | case '5': case '6': case '7': case '8': case '9': |
1277 | 0 | { |
1278 | 0 | int tmp_hour = -1; |
1279 | 0 | int tmp_min = -1; |
1280 | 0 | int tmp_sec = -1; |
1281 | 0 | const char *end = rest + 1; |
1282 | 0 | while (*end >= '0' && *end <= '9') { |
1283 | 0 | end++; |
1284 | 0 | } |
1285 | | |
1286 | | /* end is now the first character after a range of digits. */ |
1287 | |
|
1288 | 0 | if (*end == ':') |
1289 | 0 | { |
1290 | 0 | if (hour >= 0 && min >= 0) { /* already got it */ |
1291 | 0 | break; |
1292 | 0 | } |
1293 | | |
1294 | | /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ |
1295 | 0 | if ((end - rest) > 2) |
1296 | | /* it is [0-9][0-9][0-9]+: */ |
1297 | 0 | { |
1298 | 0 | break; |
1299 | 0 | } |
1300 | 0 | if ((end - rest) == 2) |
1301 | 0 | tmp_hour = ((rest[0]-'0')*10 + |
1302 | 0 | (rest[1]-'0')); |
1303 | 0 | else { |
1304 | 0 | tmp_hour = (rest[0]-'0'); |
1305 | 0 | } |
1306 | | |
1307 | | /* move over the colon, and parse minutes */ |
1308 | |
|
1309 | 0 | rest = ++end; |
1310 | 0 | while (*end >= '0' && *end <= '9') { |
1311 | 0 | end++; |
1312 | 0 | } |
1313 | |
|
1314 | 0 | if (end == rest) |
1315 | | /* no digits after first colon? */ |
1316 | 0 | { |
1317 | 0 | break; |
1318 | 0 | } |
1319 | 0 | if ((end - rest) > 2) |
1320 | | /* it is [0-9][0-9][0-9]+: */ |
1321 | 0 | { |
1322 | 0 | break; |
1323 | 0 | } |
1324 | 0 | if ((end - rest) == 2) |
1325 | 0 | tmp_min = ((rest[0]-'0')*10 + |
1326 | 0 | (rest[1]-'0')); |
1327 | 0 | else { |
1328 | 0 | tmp_min = (rest[0]-'0'); |
1329 | 0 | } |
1330 | | |
1331 | | /* now go for seconds */ |
1332 | 0 | rest = end; |
1333 | 0 | if (*rest == ':') { |
1334 | 0 | rest++; |
1335 | 0 | } |
1336 | 0 | end = rest; |
1337 | 0 | while (*end >= '0' && *end <= '9') { |
1338 | 0 | end++; |
1339 | 0 | } |
1340 | |
|
1341 | 0 | if (end == rest) |
1342 | | /* no digits after second colon - that's ok. */ |
1343 | 0 | ; |
1344 | 0 | else if ((end - rest) > 2) |
1345 | | /* it is [0-9][0-9][0-9]+: */ |
1346 | 0 | { |
1347 | 0 | break; |
1348 | 0 | } |
1349 | 0 | if ((end - rest) == 2) |
1350 | 0 | tmp_sec = ((rest[0]-'0')*10 + |
1351 | 0 | (rest[1]-'0')); |
1352 | 0 | else { |
1353 | 0 | tmp_sec = (rest[0]-'0'); |
1354 | 0 | } |
1355 | | |
1356 | | /* If we made it here, we've parsed hour and min, |
1357 | | and possibly sec, so it worked as a unit. */ |
1358 | | |
1359 | | /* skip over whitespace and see if there's an AM or PM |
1360 | | directly following the time. |
1361 | | */ |
1362 | 0 | if (tmp_hour <= 12) |
1363 | 0 | { |
1364 | 0 | const char *s = end; |
1365 | 0 | while (*s && (*s == ' ' || *s == '\t')) { |
1366 | 0 | s++; |
1367 | 0 | } |
1368 | 0 | if ((s[0] == 'p' || s[0] == 'P') && |
1369 | 0 | (s[1] == 'm' || s[1] == 'M')) |
1370 | | /* 10:05pm == 22:05, and 12:05pm == 12:05 */ |
1371 | 0 | { |
1372 | 0 | tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); |
1373 | 0 | } |
1374 | 0 | else if (tmp_hour == 12 && |
1375 | 0 | (s[0] == 'a' || s[0] == 'A') && |
1376 | 0 | (s[1] == 'm' || s[1] == 'M')) |
1377 | | /* 12:05am == 00:05 */ |
1378 | 0 | { |
1379 | 0 | tmp_hour = 0; |
1380 | 0 | } |
1381 | 0 | } |
1382 | |
|
1383 | 0 | hour = tmp_hour; |
1384 | 0 | min = tmp_min; |
1385 | 0 | sec = tmp_sec; |
1386 | 0 | rest = end; |
1387 | 0 | break; |
1388 | 0 | } |
1389 | 0 | if ((*end == '/' || *end == '-') && |
1390 | 0 | end[1] >= '0' && end[1] <= '9') |
1391 | 0 | { |
1392 | | /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 |
1393 | | or even 95-06-05... |
1394 | | #### But it doesn't handle 1995-06-22. |
1395 | | */ |
1396 | 0 | int n1, n2, n3; |
1397 | 0 | const char *s; |
1398 | |
|
1399 | 0 | if (month != TT_UNKNOWN) |
1400 | | /* if we saw a month name, this can't be. */ |
1401 | 0 | { |
1402 | 0 | break; |
1403 | 0 | } |
1404 | | |
1405 | 0 | s = rest; |
1406 | |
|
1407 | 0 | n1 = (*s++ - '0'); /* first 1 or 2 digits */ |
1408 | 0 | if (*s >= '0' && *s <= '9') { |
1409 | 0 | n1 = n1*10 + (*s++ - '0'); |
1410 | 0 | } |
1411 | |
|
1412 | 0 | if (*s != '/' && *s != '-') { /* slash */ |
1413 | 0 | break; |
1414 | 0 | } |
1415 | 0 | s++; |
1416 | |
|
1417 | 0 | if (*s < '0' || *s > '9') { /* second 1 or 2 digits */ |
1418 | 0 | break; |
1419 | 0 | } |
1420 | 0 | n2 = (*s++ - '0'); |
1421 | 0 | if (*s >= '0' && *s <= '9') { |
1422 | 0 | n2 = n2*10 + (*s++ - '0'); |
1423 | 0 | } |
1424 | |
|
1425 | 0 | if (*s != '/' && *s != '-') { /* slash */ |
1426 | 0 | break; |
1427 | 0 | } |
1428 | 0 | s++; |
1429 | |
|
1430 | 0 | if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */ |
1431 | 0 | break; |
1432 | 0 | } |
1433 | 0 | n3 = (*s++ - '0'); |
1434 | 0 | if (*s >= '0' && *s <= '9') { |
1435 | 0 | n3 = n3*10 + (*s++ - '0'); |
1436 | 0 | } |
1437 | |
|
1438 | 0 | if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ |
1439 | 0 | { |
1440 | 0 | n3 = n3*10 + (*s++ - '0'); |
1441 | 0 | if (*s < '0' || *s > '9') { |
1442 | 0 | break; |
1443 | 0 | } |
1444 | 0 | n3 = n3*10 + (*s++ - '0'); |
1445 | 0 | if (*s >= '0' && *s <= '9') { |
1446 | 0 | n3 = n3*10 + (*s++ - '0'); |
1447 | 0 | } |
1448 | 0 | } |
1449 | | |
1450 | 0 | if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ |
1451 | 0 | (*s >= 'A' && *s <= 'Z') || |
1452 | 0 | (*s >= 'a' && *s <= 'z')) { |
1453 | 0 | break; |
1454 | 0 | } |
1455 | | |
1456 | | /* Ok, we parsed three 1-2 digit numbers, with / or - |
1457 | | between them. Now decide what the hell they are |
1458 | | (DD/MM/YY or MM/DD/YY or YY/MM/DD.) |
1459 | | */ |
1460 | | |
1461 | 0 | if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ |
1462 | 0 | { |
1463 | 0 | if (n2 > 12) { |
1464 | 0 | break; |
1465 | 0 | } |
1466 | 0 | if (n3 > 31) { |
1467 | 0 | break; |
1468 | 0 | } |
1469 | 0 | year = n1; |
1470 | 0 | if (year < 70) { |
1471 | 0 | year += 2000; |
1472 | 0 | } |
1473 | 0 | else if (year < 100) { |
1474 | 0 | year += 1900; |
1475 | 0 | } |
1476 | 0 | month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
1477 | 0 | date = n3; |
1478 | 0 | rest = s; |
1479 | 0 | break; |
1480 | 0 | } |
1481 | | |
1482 | 0 | if (n1 > 12 && n2 > 12) /* illegal */ |
1483 | 0 | { |
1484 | 0 | rest = s; |
1485 | 0 | break; |
1486 | 0 | } |
1487 | | |
1488 | 0 | if (n3 < 70) { |
1489 | 0 | n3 += 2000; |
1490 | 0 | } |
1491 | 0 | else if (n3 < 100) { |
1492 | 0 | n3 += 1900; |
1493 | 0 | } |
1494 | |
|
1495 | 0 | if (n1 > 12) /* must be DD/MM/YY */ |
1496 | 0 | { |
1497 | 0 | date = n1; |
1498 | 0 | month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
1499 | 0 | year = n3; |
1500 | 0 | } |
1501 | 0 | else /* assume MM/DD/YY */ |
1502 | 0 | { |
1503 | | /* #### In the ambiguous case, should we consult the |
1504 | | locale to find out the local default? */ |
1505 | 0 | month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); |
1506 | 0 | date = n2; |
1507 | 0 | year = n3; |
1508 | 0 | } |
1509 | 0 | rest = s; |
1510 | 0 | } |
1511 | 0 | else if ((*end >= 'A' && *end <= 'Z') || |
1512 | 0 | (*end >= 'a' && *end <= 'z')) |
1513 | | /* Digits followed by non-punctuation - what's that? */ |
1514 | 0 | ; |
1515 | 0 | else if ((end - rest) == 5) /* five digits is a year */ |
1516 | 0 | year = (year < 0 |
1517 | 0 | ? ((rest[0]-'0')*10000L + |
1518 | 0 | (rest[1]-'0')*1000L + |
1519 | 0 | (rest[2]-'0')*100L + |
1520 | 0 | (rest[3]-'0')*10L + |
1521 | 0 | (rest[4]-'0')) |
1522 | 0 | : year); |
1523 | 0 | else if ((end - rest) == 4) /* four digits is a year */ |
1524 | 0 | year = (year < 0 |
1525 | 0 | ? ((rest[0]-'0')*1000L + |
1526 | 0 | (rest[1]-'0')*100L + |
1527 | 0 | (rest[2]-'0')*10L + |
1528 | 0 | (rest[3]-'0')) |
1529 | 0 | : year); |
1530 | 0 | else if ((end - rest) == 2) /* two digits - date or year */ |
1531 | 0 | { |
1532 | 0 | int n = ((rest[0]-'0')*10 + |
1533 | 0 | (rest[1]-'0')); |
1534 | | /* If we don't have a date (day of the month) and we see a number |
1535 | | less than 32, then assume that is the date. |
1536 | | |
1537 | | Otherwise, if we have a date and not a year, assume this is the |
1538 | | year. If it is less than 70, then assume it refers to the 21st |
1539 | | century. If it is two digits (>= 70), assume it refers to this |
1540 | | century. Otherwise, assume it refers to an unambiguous year. |
1541 | | |
1542 | | The world will surely end soon. |
1543 | | */ |
1544 | 0 | if (date < 0 && n < 32) { |
1545 | 0 | date = n; |
1546 | 0 | } |
1547 | 0 | else if (year < 0) |
1548 | 0 | { |
1549 | 0 | if (n < 70) { |
1550 | 0 | year = 2000 + n; |
1551 | 0 | } |
1552 | 0 | else if (n < 100) { |
1553 | 0 | year = 1900 + n; |
1554 | 0 | } |
1555 | 0 | else { |
1556 | 0 | year = n; |
1557 | 0 | } |
1558 | 0 | } |
1559 | | /* else what the hell is this. */ |
1560 | 0 | } |
1561 | 0 | else if ((end - rest) == 1) { /* one digit - date */ |
1562 | 0 | date = (date < 0 ? (rest[0]-'0') : date); |
1563 | 0 | } |
1564 | | /* else, three or more than five digits - what's that? */ |
1565 | | |
1566 | 0 | break; |
1567 | 0 | } |
1568 | 0 | } |
1569 | | |
1570 | | /* Skip to the end of this token, whether we parsed it or not. |
1571 | | Tokens are delimited by whitespace, or ,;-/ |
1572 | | But explicitly not :+-. |
1573 | | */ |
1574 | 0 | while (*rest && |
1575 | 0 | *rest != ' ' && *rest != '\t' && |
1576 | 0 | *rest != ',' && *rest != ';' && |
1577 | 0 | *rest != '-' && *rest != '+' && |
1578 | 0 | *rest != '/' && |
1579 | 0 | *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') { |
1580 | 0 | rest++; |
1581 | 0 | } |
1582 | | /* skip over uninteresting chars. */ |
1583 | 0 | SKIP_MORE: |
1584 | 0 | while (*rest && |
1585 | 0 | (*rest == ' ' || *rest == '\t' || |
1586 | 0 | *rest == ',' || *rest == ';' || *rest == '/' || |
1587 | 0 | *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) { |
1588 | 0 | rest++; |
1589 | 0 | } |
1590 | | |
1591 | | /* "-" is ignored at the beginning of a token if we have not yet |
1592 | | parsed a year (e.g., the second "-" in "30-AUG-1966"), or if |
1593 | | the character after the dash is not a digit. */ |
1594 | 0 | if (*rest == '-' && ((rest > string && |
1595 | 0 | isalpha((unsigned char)rest[-1]) && year < 0) || |
1596 | 0 | rest[1] < '0' || rest[1] > '9')) |
1597 | 0 | { |
1598 | 0 | rest++; |
1599 | 0 | goto SKIP_MORE; |
1600 | 0 | } |
1601 | |
|
1602 | 0 | } |
1603 | | |
1604 | 0 | if (zone != TT_UNKNOWN && zone_offset == -1) |
1605 | 0 | { |
1606 | 0 | switch (zone) |
1607 | 0 | { |
1608 | 0 | case TT_PST: zone_offset = -8 * 60; break; |
1609 | 0 | case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; |
1610 | 0 | case TT_MST: zone_offset = -7 * 60; break; |
1611 | 0 | case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; |
1612 | 0 | case TT_CST: zone_offset = -6 * 60; break; |
1613 | 0 | case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; |
1614 | 0 | case TT_EST: zone_offset = -5 * 60; break; |
1615 | 0 | case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; |
1616 | 0 | case TT_AST: zone_offset = -4 * 60; break; |
1617 | 0 | case TT_NST: zone_offset = -3 * 60 - 30; break; |
1618 | 0 | case TT_GMT: zone_offset = 0 * 60; break; |
1619 | 0 | case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; |
1620 | 0 | case TT_MET: zone_offset = 1 * 60; break; |
1621 | 0 | case TT_EET: zone_offset = 2 * 60; break; |
1622 | 0 | case TT_JST: zone_offset = 9 * 60; break; |
1623 | 0 | default: |
1624 | 0 | PR_ASSERT (0); |
1625 | 0 | break; |
1626 | 0 | } |
1627 | 0 | } |
1628 | | |
1629 | | /* If we didn't find a year, month, or day-of-the-month, we can't |
1630 | | possibly parse this, and in fact, mktime() will do something random |
1631 | | (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt |
1632 | | a numerologically significant date... */ |
1633 | 0 | if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) { |
1634 | 0 | return PR_FAILURE; |
1635 | 0 | } |
1636 | | |
1637 | 0 | memset(result, 0, sizeof(*result)); |
1638 | 0 | if (sec != -1) { |
1639 | 0 | result->tm_sec = sec; |
1640 | 0 | } |
1641 | 0 | if (min != -1) { |
1642 | 0 | result->tm_min = min; |
1643 | 0 | } |
1644 | 0 | if (hour != -1) { |
1645 | 0 | result->tm_hour = hour; |
1646 | 0 | } |
1647 | 0 | if (date != -1) { |
1648 | 0 | result->tm_mday = date; |
1649 | 0 | } |
1650 | 0 | if (month != TT_UNKNOWN) { |
1651 | 0 | result->tm_month = (((int)month) - ((int)TT_JAN)); |
1652 | 0 | } |
1653 | 0 | if (year != -1) { |
1654 | 0 | result->tm_year = year; |
1655 | 0 | } |
1656 | 0 | if (dotw != TT_UNKNOWN) { |
1657 | 0 | result->tm_wday = (((int)dotw) - ((int)TT_SUN)); |
1658 | 0 | } |
1659 | | /* |
1660 | | * Mainly to compute wday and yday, but normalized time is also required |
1661 | | * by the check below that works around a Visual C++ 2005 mktime problem. |
1662 | | */ |
1663 | 0 | PR_NormalizeTime(result, PR_GMTParameters); |
1664 | | /* The remaining work is to set the gmt and dst offsets in tm_params. */ |
1665 | |
|
1666 | 0 | if (zone == TT_UNKNOWN && default_to_gmt) |
1667 | 0 | { |
1668 | | /* No zone was specified, so pretend the zone was GMT. */ |
1669 | 0 | zone = TT_GMT; |
1670 | 0 | zone_offset = 0; |
1671 | 0 | } |
1672 | |
|
1673 | 0 | if (zone_offset == -1) |
1674 | 0 | { |
1675 | | /* no zone was specified, and we're to assume that everything |
1676 | | is local. */ |
1677 | 0 | struct tm localTime; |
1678 | 0 | time_t secs; |
1679 | |
|
1680 | 0 | PR_ASSERT(result->tm_month > -1 && |
1681 | 0 | result->tm_mday > 0 && |
1682 | 0 | result->tm_hour > -1 && |
1683 | 0 | result->tm_min > -1 && |
1684 | 0 | result->tm_sec > -1); |
1685 | | |
1686 | | /* |
1687 | | * To obtain time_t from a tm structure representing the local |
1688 | | * time, we call mktime(). However, we need to see if we are |
1689 | | * on 1-Jan-1970 or before. If we are, we can't call mktime() |
1690 | | * because mktime() will crash on win16. In that case, we |
1691 | | * calculate zone_offset based on the zone offset at |
1692 | | * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the |
1693 | | * date we are parsing to transform the date to GMT. We also |
1694 | | * do so if mktime() returns (time_t) -1 (time out of range). |
1695 | | */ |
1696 | | |
1697 | | /* month, day, hours, mins and secs are always non-negative |
1698 | | so we dont need to worry about them. */ |
1699 | 0 | if(result->tm_year >= 1970) |
1700 | 0 | { |
1701 | 0 | PRInt64 usec_per_sec; |
1702 | |
|
1703 | 0 | localTime.tm_sec = result->tm_sec; |
1704 | 0 | localTime.tm_min = result->tm_min; |
1705 | 0 | localTime.tm_hour = result->tm_hour; |
1706 | 0 | localTime.tm_mday = result->tm_mday; |
1707 | 0 | localTime.tm_mon = result->tm_month; |
1708 | 0 | localTime.tm_year = result->tm_year - 1900; |
1709 | | /* Set this to -1 to tell mktime "I don't care". If you set |
1710 | | it to 0 or 1, you are making assertions about whether the |
1711 | | date you are handing it is in daylight savings mode or not; |
1712 | | and if you're wrong, it will "fix" it for you. */ |
1713 | 0 | localTime.tm_isdst = -1; |
1714 | |
|
1715 | | #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ |
1716 | | /* |
1717 | | * mktime will return (time_t) -1 if the input is a date |
1718 | | * after 23:59:59, December 31, 3000, US Pacific Time (not |
1719 | | * UTC as documented): |
1720 | | * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx |
1721 | | * But if the year is 3001, mktime also invokes the invalid |
1722 | | * parameter handler, causing the application to crash. This |
1723 | | * problem has been reported in |
1724 | | * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. |
1725 | | * We avoid this crash by not calling mktime if the date is |
1726 | | * out of range. To use a simple test that works in any time |
1727 | | * zone, we consider year 3000 out of range as well. (See |
1728 | | * bug 480740.) |
1729 | | */ |
1730 | | if (result->tm_year >= 3000) { |
1731 | | /* Emulate what mktime would have done. */ |
1732 | | errno = EINVAL; |
1733 | | secs = (time_t) -1; |
1734 | | } else { |
1735 | | secs = mktime(&localTime); |
1736 | | } |
1737 | | #else |
1738 | 0 | secs = mktime(&localTime); |
1739 | 0 | #endif |
1740 | 0 | if (secs != (time_t) -1) |
1741 | 0 | { |
1742 | 0 | PRTime usecs64; |
1743 | 0 | LL_I2L(usecs64, secs); |
1744 | 0 | LL_I2L(usec_per_sec, PR_USEC_PER_SEC); |
1745 | 0 | LL_MUL(usecs64, usecs64, usec_per_sec); |
1746 | 0 | PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result); |
1747 | 0 | return PR_SUCCESS; |
1748 | 0 | } |
1749 | 0 | } |
1750 | | |
1751 | | /* So mktime() can't handle this case. We assume the |
1752 | | zone_offset for the date we are parsing is the same as |
1753 | | the zone offset on 00:00:00 2 Jan 1970 GMT. */ |
1754 | 0 | secs = 86400; |
1755 | 0 | localTimeResult = MT_safe_localtime(&secs, &localTime); |
1756 | 0 | PR_ASSERT(localTimeResult != NULL); |
1757 | 0 | if (localTimeResult == NULL) { |
1758 | 0 | return PR_FAILURE; |
1759 | 0 | } |
1760 | 0 | zone_offset = localTime.tm_min |
1761 | 0 | + 60 * localTime.tm_hour |
1762 | 0 | + 1440 * (localTime.tm_mday - 2); |
1763 | 0 | } |
1764 | | |
1765 | 0 | result->tm_params.tp_gmt_offset = zone_offset * 60; |
1766 | 0 | result->tm_params.tp_dst_offset = dst_offset * 60; |
1767 | |
|
1768 | 0 | return PR_SUCCESS; |
1769 | 0 | } |
1770 | | |
1771 | | PR_IMPLEMENT(PRStatus) |
1772 | | PR_ParseTimeString( |
1773 | | const char *string, |
1774 | | PRBool default_to_gmt, |
1775 | | PRTime *result) |
1776 | 0 | { |
1777 | 0 | PRExplodedTime tm; |
1778 | 0 | PRStatus rv; |
1779 | |
|
1780 | 0 | rv = PR_ParseTimeStringToExplodedTime(string, |
1781 | 0 | default_to_gmt, |
1782 | 0 | &tm); |
1783 | 0 | if (rv != PR_SUCCESS) { |
1784 | 0 | return rv; |
1785 | 0 | } |
1786 | | |
1787 | 0 | *result = PR_ImplodeTime(&tm); |
1788 | |
|
1789 | 0 | return PR_SUCCESS; |
1790 | 0 | } |
1791 | | |
1792 | | /* |
1793 | | ******************************************************************* |
1794 | | ******************************************************************* |
1795 | | ** |
1796 | | ** OLD COMPATIBILITY FUNCTIONS |
1797 | | ** |
1798 | | ******************************************************************* |
1799 | | ******************************************************************* |
1800 | | */ |
1801 | | |
1802 | | |
1803 | | /* |
1804 | | *----------------------------------------------------------------------- |
1805 | | * |
1806 | | * PR_FormatTime -- |
1807 | | * |
1808 | | * Format a time value into a buffer. Same semantics as strftime(). |
1809 | | * |
1810 | | *----------------------------------------------------------------------- |
1811 | | */ |
1812 | | |
1813 | | PR_IMPLEMENT(PRUint32) |
1814 | | PR_FormatTime(char *buf, int buflen, const char *fmt, |
1815 | | const PRExplodedTime *time) |
1816 | 0 | { |
1817 | 0 | size_t rv; |
1818 | 0 | struct tm a; |
1819 | 0 | struct tm *ap; |
1820 | |
|
1821 | 0 | if (time) { |
1822 | 0 | ap = &a; |
1823 | 0 | a.tm_sec = time->tm_sec; |
1824 | 0 | a.tm_min = time->tm_min; |
1825 | 0 | a.tm_hour = time->tm_hour; |
1826 | 0 | a.tm_mday = time->tm_mday; |
1827 | 0 | a.tm_mon = time->tm_month; |
1828 | 0 | a.tm_wday = time->tm_wday; |
1829 | 0 | a.tm_year = time->tm_year - 1900; |
1830 | 0 | a.tm_yday = time->tm_yday; |
1831 | 0 | a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0; |
1832 | | |
1833 | | /* |
1834 | | * On some platforms, for example SunOS 4, struct tm has two |
1835 | | * additional fields: tm_zone and tm_gmtoff. |
1836 | | */ |
1837 | |
|
1838 | 0 | #if (__GLIBC__ >= 2) || defined(NETBSD) \ |
1839 | 0 | || defined(OPENBSD) || defined(FREEBSD) \ |
1840 | 0 | || defined(DARWIN) || defined(ANDROID) |
1841 | 0 | a.tm_zone = NULL; |
1842 | 0 | a.tm_gmtoff = time->tm_params.tp_gmt_offset + |
1843 | 0 | time->tm_params.tp_dst_offset; |
1844 | 0 | #endif |
1845 | 0 | } else { |
1846 | 0 | ap = NULL; |
1847 | 0 | } |
1848 | |
|
1849 | 0 | rv = strftime(buf, buflen, fmt, ap); |
1850 | 0 | if (!rv && buf && buflen > 0) { |
1851 | | /* |
1852 | | * When strftime fails, the contents of buf are indeterminate. |
1853 | | * Some callers don't check the return value from this function, |
1854 | | * so store an empty string in buf in case they try to print it. |
1855 | | */ |
1856 | 0 | buf[0] = '\0'; |
1857 | 0 | } |
1858 | 0 | return rv; |
1859 | 0 | } |
1860 | | |
1861 | | |
1862 | | /* |
1863 | | * The following string arrays and macros are used by PR_FormatTimeUSEnglish(). |
1864 | | */ |
1865 | | |
1866 | | static const char* abbrevDays[] = |
1867 | | { |
1868 | | "Sun","Mon","Tue","Wed","Thu","Fri","Sat" |
1869 | | }; |
1870 | | |
1871 | | static const char* days[] = |
1872 | | { |
1873 | | "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday" |
1874 | | }; |
1875 | | |
1876 | | static const char* abbrevMonths[] = |
1877 | | { |
1878 | | "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
1879 | | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
1880 | | }; |
1881 | | |
1882 | | static const char* months[] = |
1883 | | { |
1884 | | "January", "February", "March", "April", "May", "June", |
1885 | | "July", "August", "September", "October", "November", "December" |
1886 | | }; |
1887 | | |
1888 | | |
1889 | | /* |
1890 | | * Add a single character to the given buffer, incrementing the buffer pointer |
1891 | | * and decrementing the buffer size. Return 0 on error. |
1892 | | */ |
1893 | 0 | #define ADDCHAR( buf, bufSize, ch ) \ |
1894 | 0 | do \ |
1895 | 0 | { \ |
1896 | 0 | if( bufSize < 1 ) \ |
1897 | 0 | { \ |
1898 | 0 | *(--buf) = '\0'; \ |
1899 | 0 | return 0; \ |
1900 | 0 | } \ |
1901 | 0 | *buf++ = ch; \ |
1902 | 0 | bufSize--; \ |
1903 | 0 | } \ |
1904 | 0 | while(0) |
1905 | | |
1906 | | |
1907 | | /* |
1908 | | * Add a string to the given buffer, incrementing the buffer pointer |
1909 | | * and decrementing the buffer size appropriately. Return 0 on error. |
1910 | | */ |
1911 | 0 | #define ADDSTR( buf, bufSize, str ) \ |
1912 | 0 | do \ |
1913 | 0 | { \ |
1914 | 0 | PRUint32 strSize = strlen( str ); \ |
1915 | 0 | if( strSize > bufSize ) \ |
1916 | 0 | { \ |
1917 | 0 | if( bufSize==0 ) \ |
1918 | 0 | *(--buf) = '\0'; \ |
1919 | 0 | else \ |
1920 | 0 | *buf = '\0'; \ |
1921 | 0 | return 0; \ |
1922 | 0 | } \ |
1923 | 0 | memcpy(buf, str, strSize); \ |
1924 | 0 | buf += strSize; \ |
1925 | 0 | bufSize -= strSize; \ |
1926 | 0 | } \ |
1927 | 0 | while(0) |
1928 | | |
1929 | | /* Needed by PR_FormatTimeUSEnglish() */ |
1930 | | static unsigned int pr_WeekOfYear(const PRExplodedTime* time, |
1931 | | unsigned int firstDayOfWeek); |
1932 | | |
1933 | | |
1934 | | /*********************************************************************************** |
1935 | | * |
1936 | | * Description: |
1937 | | * This is a dumbed down version of strftime that will format the date in US |
1938 | | * English regardless of the setting of the global locale. This functionality is |
1939 | | * needed to write things like MIME headers which must always be in US English. |
1940 | | * |
1941 | | **********************************************************************************/ |
1942 | | |
1943 | | PR_IMPLEMENT(PRUint32) |
1944 | | PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize, |
1945 | | const char* format, const PRExplodedTime* time ) |
1946 | 0 | { |
1947 | 0 | char* bufPtr = buf; |
1948 | 0 | const char* fmtPtr; |
1949 | 0 | char tmpBuf[ 40 ]; |
1950 | 0 | const int tmpBufSize = sizeof( tmpBuf ); |
1951 | | |
1952 | |
|
1953 | 0 | for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ ) |
1954 | 0 | { |
1955 | 0 | if( *fmtPtr != '%' ) |
1956 | 0 | { |
1957 | 0 | ADDCHAR( bufPtr, bufSize, *fmtPtr ); |
1958 | 0 | } |
1959 | 0 | else |
1960 | 0 | { |
1961 | 0 | switch( *(++fmtPtr) ) |
1962 | 0 | { |
1963 | 0 | case '%': |
1964 | | /* escaped '%' character */ |
1965 | 0 | ADDCHAR( bufPtr, bufSize, '%' ); |
1966 | 0 | break; |
1967 | | |
1968 | 0 | case 'a': |
1969 | | /* abbreviated weekday name */ |
1970 | 0 | ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] ); |
1971 | 0 | break; |
1972 | | |
1973 | 0 | case 'A': |
1974 | | /* full weekday name */ |
1975 | 0 | ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] ); |
1976 | 0 | break; |
1977 | | |
1978 | 0 | case 'b': |
1979 | | /* abbreviated month name */ |
1980 | 0 | ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] ); |
1981 | 0 | break; |
1982 | | |
1983 | 0 | case 'B': |
1984 | | /* full month name */ |
1985 | 0 | ADDSTR(bufPtr, bufSize, months[ time->tm_month ] ); |
1986 | 0 | break; |
1987 | | |
1988 | 0 | case 'c': |
1989 | | /* Date and time. */ |
1990 | 0 | PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time ); |
1991 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
1992 | 0 | break; |
1993 | | |
1994 | 0 | case 'd': |
1995 | | /* day of month ( 01 - 31 ) */ |
1996 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday ); |
1997 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
1998 | 0 | break; |
1999 | | |
2000 | 0 | case 'H': |
2001 | | /* hour ( 00 - 23 ) */ |
2002 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour ); |
2003 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2004 | 0 | break; |
2005 | | |
2006 | 0 | case 'I': |
2007 | | /* hour ( 01 - 12 ) */ |
2008 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld", |
2009 | 0 | (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 ); |
2010 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2011 | 0 | break; |
2012 | | |
2013 | 0 | case 'j': |
2014 | | /* day number of year ( 001 - 366 ) */ |
2015 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1); |
2016 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2017 | 0 | break; |
2018 | | |
2019 | 0 | case 'm': |
2020 | | /* month number ( 01 - 12 ) */ |
2021 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1); |
2022 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2023 | 0 | break; |
2024 | | |
2025 | 0 | case 'M': |
2026 | | /* minute ( 00 - 59 ) */ |
2027 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min ); |
2028 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2029 | 0 | break; |
2030 | | |
2031 | 0 | case 'p': |
2032 | | /* locale's equivalent of either AM or PM */ |
2033 | 0 | ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" ); |
2034 | 0 | break; |
2035 | | |
2036 | 0 | case 'S': |
2037 | | /* seconds ( 00 - 61 ), allows for leap seconds */ |
2038 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec ); |
2039 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2040 | 0 | break; |
2041 | | |
2042 | 0 | case 'U': |
2043 | | /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */ |
2044 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) ); |
2045 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2046 | 0 | break; |
2047 | | |
2048 | 0 | case 'w': |
2049 | | /* weekday number ( 0 - 6 ), Sunday = 0 */ |
2050 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday ); |
2051 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2052 | 0 | break; |
2053 | | |
2054 | 0 | case 'W': |
2055 | | /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */ |
2056 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) ); |
2057 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2058 | 0 | break; |
2059 | | |
2060 | 0 | case 'x': |
2061 | | /* Date representation */ |
2062 | 0 | PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time ); |
2063 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2064 | 0 | break; |
2065 | | |
2066 | 0 | case 'X': |
2067 | | /* Time representation. */ |
2068 | 0 | PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time ); |
2069 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2070 | 0 | break; |
2071 | | |
2072 | 0 | case 'y': |
2073 | | /* year within century ( 00 - 99 ) */ |
2074 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 ); |
2075 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2076 | 0 | break; |
2077 | | |
2078 | 0 | case 'Y': |
2079 | | /* year as ccyy ( for example 1986 ) */ |
2080 | 0 | PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year ); |
2081 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2082 | 0 | break; |
2083 | | |
2084 | 0 | case 'Z': |
2085 | | /* Time zone name or no characters if no time zone exists. |
2086 | | * Since time zone name is supposed to be independant of locale, we |
2087 | | * defer to PR_FormatTime() for this option. |
2088 | | */ |
2089 | 0 | PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time ); |
2090 | 0 | ADDSTR( bufPtr, bufSize, tmpBuf ); |
2091 | 0 | break; |
2092 | | |
2093 | 0 | default: |
2094 | | /* Unknown format. Simply copy format into output buffer. */ |
2095 | 0 | ADDCHAR( bufPtr, bufSize, '%' ); |
2096 | 0 | ADDCHAR( bufPtr, bufSize, *fmtPtr ); |
2097 | 0 | break; |
2098 | |
|
2099 | 0 | } |
2100 | 0 | } |
2101 | 0 | } |
2102 | | |
2103 | 0 | ADDCHAR( bufPtr, bufSize, '\0' ); |
2104 | 0 | return (PRUint32)(bufPtr - buf - 1); |
2105 | 0 | } |
2106 | | |
2107 | | |
2108 | | |
2109 | | /*********************************************************************************** |
2110 | | * |
2111 | | * Description: |
2112 | | * Returns the week number of the year (0-53) for the given time. firstDayOfWeek |
2113 | | * is the day on which the week is considered to start (0=Sun, 1=Mon, ...). |
2114 | | * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words, |
2115 | | * a partial week at the start of the year is considered week 0. |
2116 | | * |
2117 | | **********************************************************************************/ |
2118 | | |
2119 | | static unsigned int |
2120 | | pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek) |
2121 | 0 | { |
2122 | 0 | int dayOfWeek; |
2123 | 0 | int dayOfYear; |
2124 | | |
2125 | | /* Get the day of the year for the given time then adjust it to represent the |
2126 | | * first day of the week containing the given time. |
2127 | | */ |
2128 | 0 | dayOfWeek = time->tm_wday - firstDayOfWeek; |
2129 | 0 | if (dayOfWeek < 0) { |
2130 | 0 | dayOfWeek += 7; |
2131 | 0 | } |
2132 | |
|
2133 | 0 | dayOfYear = time->tm_yday - dayOfWeek; |
2134 | |
|
2135 | 0 | if( dayOfYear <= 0 ) |
2136 | 0 | { |
2137 | | /* If dayOfYear is <= 0, it is in the first partial week of the year. */ |
2138 | 0 | return 0; |
2139 | 0 | } |
2140 | | |
2141 | | /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there |
2142 | | * are any days left over ( dayOfYear % 7 ). Because we are only counting to |
2143 | | * the first day of the week containing the given time, rather than to the |
2144 | | * actual day representing the given time, any days in week 0 will be "absorbed" |
2145 | | * as extra days in the given week. |
2146 | | */ |
2147 | 0 | return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 ); |
2148 | |
|
2149 | 0 | } |
2150 | | |