/src/nss/lib/certhigh/certvfy.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | #include "nspr.h" |
5 | | #include "secerr.h" |
6 | | #include "secport.h" |
7 | | #include "seccomon.h" |
8 | | #include "secoid.h" |
9 | | #include "genname.h" |
10 | | #include "keyhi.h" |
11 | | #include "cert.h" |
12 | | #include "certdb.h" |
13 | | #include "certi.h" |
14 | | #include "cryptohi.h" |
15 | | |
16 | | #ifndef NSS_DISABLE_LIBPKIX |
17 | | #include "pkix.h" |
18 | | #include "pkix_pl_cert.h" |
19 | | #else |
20 | | #include "nss.h" |
21 | | #endif /* NSS_DISABLE_LIBPKIX */ |
22 | | |
23 | | #include "nsspki.h" |
24 | | #include "pkitm.h" |
25 | | #include "pkim.h" |
26 | | #include "pki3hack.h" |
27 | | #include "base.h" |
28 | | #include "keyi.h" |
29 | | |
30 | | /* |
31 | | * Check the validity times of a certificate |
32 | | */ |
33 | | SECStatus |
34 | | CERT_CertTimesValid(CERTCertificate *c) |
35 | 0 | { |
36 | 0 | SECCertTimeValidity valid = CERT_CheckCertValidTimes(c, PR_Now(), PR_TRUE); |
37 | 0 | return (valid == secCertTimeValid) ? SECSuccess : SECFailure; |
38 | 0 | } |
39 | | |
40 | | static SECStatus |
41 | | checkKeyParams(const SECAlgorithmID *sigAlgorithm, const SECKEYPublicKey *key) |
42 | 0 | { |
43 | 0 | SECStatus rv; |
44 | 0 | SECOidTag sigAlg; |
45 | 0 | SECOidTag curve; |
46 | 0 | PRUint32 policyFlags = 0; |
47 | 0 | PRInt32 minLen, len; |
48 | |
|
49 | 0 | sigAlg = SECOID_GetAlgorithmTag(sigAlgorithm); |
50 | |
|
51 | 0 | switch (sigAlg) { |
52 | 0 | case SEC_OID_ANSIX962_ECDSA_SHA1_SIGNATURE: |
53 | 0 | case SEC_OID_ANSIX962_ECDSA_SHA224_SIGNATURE: |
54 | 0 | case SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE: |
55 | 0 | case SEC_OID_ANSIX962_ECDSA_SHA384_SIGNATURE: |
56 | 0 | case SEC_OID_ANSIX962_ECDSA_SHA512_SIGNATURE: |
57 | 0 | if (key->keyType != ecKey) { |
58 | 0 | PORT_SetError(SEC_ERROR_INVALID_ALGORITHM); |
59 | 0 | return SECFailure; |
60 | 0 | } |
61 | | |
62 | 0 | curve = SECKEY_GetECCOid(&key->u.ec.DEREncodedParams); |
63 | 0 | if (curve != 0) { |
64 | 0 | if (NSS_GetAlgorithmPolicy(curve, &policyFlags) == SECFailure || |
65 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
66 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
67 | 0 | return SECFailure; |
68 | 0 | } |
69 | 0 | return SECSuccess; |
70 | 0 | } |
71 | 0 | PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE); |
72 | 0 | return SECFailure; |
73 | | |
74 | 0 | case SEC_OID_PKCS1_RSA_PSS_SIGNATURE: { |
75 | 0 | PORTCheapArenaPool tmpArena; |
76 | 0 | SECOidTag hashAlg; |
77 | 0 | SECOidTag maskHashAlg; |
78 | |
|
79 | 0 | PORT_InitCheapArena(&tmpArena, DER_DEFAULT_CHUNKSIZE); |
80 | 0 | rv = sec_DecodeRSAPSSParams(&tmpArena.arena, |
81 | 0 | &sigAlgorithm->parameters, |
82 | 0 | &hashAlg, &maskHashAlg, NULL); |
83 | 0 | PORT_DestroyCheapArena(&tmpArena); |
84 | 0 | if (rv != SECSuccess) { |
85 | 0 | return SECFailure; |
86 | 0 | } |
87 | | |
88 | 0 | if (NSS_GetAlgorithmPolicy(hashAlg, &policyFlags) == SECSuccess && |
89 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
90 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
91 | 0 | return SECFailure; |
92 | 0 | } |
93 | 0 | if (NSS_GetAlgorithmPolicy(maskHashAlg, &policyFlags) == SECSuccess && |
94 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
95 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
96 | 0 | return SECFailure; |
97 | 0 | } |
98 | 0 | } |
99 | | /* fall through to RSA key checking */ |
100 | 0 | case SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION: |
101 | 0 | case SEC_OID_PKCS1_SHA1_WITH_RSA_ENCRYPTION: |
102 | 0 | case SEC_OID_PKCS1_SHA256_WITH_RSA_ENCRYPTION: |
103 | 0 | case SEC_OID_PKCS1_SHA384_WITH_RSA_ENCRYPTION: |
104 | 0 | case SEC_OID_PKCS1_SHA512_WITH_RSA_ENCRYPTION: |
105 | 0 | case SEC_OID_ISO_SHA_WITH_RSA_SIGNATURE: |
106 | 0 | case SEC_OID_ISO_SHA1_WITH_RSA_SIGNATURE: |
107 | 0 | if (key->keyType != rsaKey && key->keyType != rsaPssKey) { |
108 | 0 | PORT_SetError(SEC_ERROR_INVALID_ALGORITHM); |
109 | 0 | return SECFailure; |
110 | 0 | } |
111 | | |
112 | 0 | len = 8 * key->u.rsa.modulus.len; |
113 | |
|
114 | 0 | rv = NSS_OptionGet(NSS_RSA_MIN_KEY_SIZE, &minLen); |
115 | 0 | if (rv != SECSuccess) { |
116 | 0 | return SECFailure; |
117 | 0 | } |
118 | | |
119 | 0 | if (len < minLen) { |
120 | 0 | return SECFailure; |
121 | 0 | } |
122 | | |
123 | 0 | return SECSuccess; |
124 | 0 | case SEC_OID_ANSIX9_DSA_SIGNATURE: |
125 | 0 | case SEC_OID_ANSIX9_DSA_SIGNATURE_WITH_SHA1_DIGEST: |
126 | 0 | case SEC_OID_BOGUS_DSA_SIGNATURE_WITH_SHA1_DIGEST: |
127 | 0 | case SEC_OID_SDN702_DSA_SIGNATURE: |
128 | 0 | case SEC_OID_NIST_DSA_SIGNATURE_WITH_SHA224_DIGEST: |
129 | 0 | case SEC_OID_NIST_DSA_SIGNATURE_WITH_SHA256_DIGEST: |
130 | 0 | if (key->keyType != dsaKey) { |
131 | 0 | PORT_SetError(SEC_ERROR_INVALID_ALGORITHM); |
132 | 0 | return SECFailure; |
133 | 0 | } |
134 | | |
135 | 0 | len = 8 * key->u.dsa.params.prime.len; |
136 | |
|
137 | 0 | rv = NSS_OptionGet(NSS_DSA_MIN_KEY_SIZE, &minLen); |
138 | 0 | if (rv != SECSuccess) { |
139 | 0 | return SECFailure; |
140 | 0 | } |
141 | | |
142 | 0 | if (len < minLen) { |
143 | 0 | return SECFailure; |
144 | 0 | } |
145 | | |
146 | 0 | return SECSuccess; |
147 | 0 | default: |
148 | 0 | return SECSuccess; |
149 | 0 | } |
150 | 0 | } |
151 | | |
152 | | /* |
153 | | * verify the signature of a signed data object with the given DER publickey |
154 | | */ |
155 | | SECStatus |
156 | | CERT_VerifySignedDataWithPublicKey(const CERTSignedData *sd, |
157 | | SECKEYPublicKey *pubKey, |
158 | | void *wincx) |
159 | 0 | { |
160 | 0 | SECStatus rv; |
161 | 0 | SECItem sig; |
162 | 0 | SECOidTag sigAlg; |
163 | 0 | SECOidTag encAlg; |
164 | 0 | SECOidTag hashAlg; |
165 | 0 | CK_MECHANISM_TYPE mech; |
166 | 0 | PRUint32 policyFlags; |
167 | |
|
168 | 0 | if (!pubKey || !sd) { |
169 | 0 | PORT_SetError(PR_INVALID_ARGUMENT_ERROR); |
170 | 0 | return SECFailure; |
171 | 0 | } |
172 | | |
173 | | /* Can we use this algorithm for signature verification? */ |
174 | 0 | sigAlg = SECOID_GetAlgorithmTag(&sd->signatureAlgorithm); |
175 | 0 | rv = sec_DecodeSigAlg(pubKey, sigAlg, |
176 | 0 | &sd->signatureAlgorithm.parameters, |
177 | 0 | &encAlg, &hashAlg, &mech, NULL); |
178 | 0 | if (rv != SECSuccess) { |
179 | 0 | return SECFailure; /* error is set */ |
180 | 0 | } |
181 | 0 | rv = NSS_GetAlgorithmPolicy(encAlg, &policyFlags); |
182 | 0 | if (rv == SECSuccess && |
183 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
184 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
185 | 0 | return SECFailure; |
186 | 0 | } |
187 | 0 | rv = NSS_GetAlgorithmPolicy(hashAlg, &policyFlags); |
188 | 0 | if (rv == SECSuccess && |
189 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
190 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
191 | 0 | return SECFailure; |
192 | 0 | } |
193 | 0 | rv = checkKeyParams(&sd->signatureAlgorithm, pubKey); |
194 | 0 | if (rv != SECSuccess) { |
195 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
196 | 0 | return SECFailure; |
197 | 0 | } |
198 | | |
199 | | /* check the signature */ |
200 | 0 | sig = sd->signature; |
201 | | /* convert sig->len from bit counts to byte count. */ |
202 | 0 | DER_ConvertBitString(&sig); |
203 | |
|
204 | 0 | rv = VFY_VerifyDataWithAlgorithmID(sd->data.data, sd->data.len, pubKey, |
205 | 0 | &sig, &sd->signatureAlgorithm, |
206 | 0 | &hashAlg, wincx); |
207 | 0 | if (rv != SECSuccess) { |
208 | 0 | return SECFailure; /* error is set */ |
209 | 0 | } |
210 | | |
211 | | /* for some algorithms, hash algorithm is only known after verification */ |
212 | 0 | rv = NSS_GetAlgorithmPolicy(hashAlg, &policyFlags); |
213 | 0 | if (rv == SECSuccess && |
214 | 0 | !(policyFlags & NSS_USE_ALG_IN_CERT_SIGNATURE)) { |
215 | 0 | PORT_SetError(SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED); |
216 | 0 | return SECFailure; |
217 | 0 | } |
218 | 0 | return SECSuccess; |
219 | 0 | } |
220 | | |
221 | | /* |
222 | | * verify the signature of a signed data object with the given DER publickey |
223 | | */ |
224 | | SECStatus |
225 | | CERT_VerifySignedDataWithPublicKeyInfo(CERTSignedData *sd, |
226 | | CERTSubjectPublicKeyInfo *pubKeyInfo, |
227 | | void *wincx) |
228 | 0 | { |
229 | 0 | SECKEYPublicKey *pubKey; |
230 | 0 | SECStatus rv = SECFailure; |
231 | | |
232 | | /* get cert's public key */ |
233 | 0 | pubKey = SECKEY_ExtractPublicKey(pubKeyInfo); |
234 | 0 | if (pubKey) { |
235 | 0 | rv = CERT_VerifySignedDataWithPublicKey(sd, pubKey, wincx); |
236 | 0 | SECKEY_DestroyPublicKey(pubKey); |
237 | 0 | } |
238 | 0 | return rv; |
239 | 0 | } |
240 | | |
241 | | /* |
242 | | * verify the signature of a signed data object with the given certificate |
243 | | */ |
244 | | SECStatus |
245 | | CERT_VerifySignedData(CERTSignedData *sd, CERTCertificate *cert, |
246 | | PRTime t, void *wincx) |
247 | 0 | { |
248 | 0 | SECKEYPublicKey *pubKey = 0; |
249 | 0 | SECStatus rv = SECFailure; |
250 | 0 | SECCertTimeValidity validity; |
251 | | |
252 | | /* check the certificate's validity */ |
253 | 0 | validity = CERT_CheckCertValidTimes(cert, t, PR_FALSE); |
254 | 0 | if (validity != secCertTimeValid) { |
255 | 0 | return rv; |
256 | 0 | } |
257 | | |
258 | | /* get cert's public key */ |
259 | 0 | pubKey = CERT_ExtractPublicKey(cert); |
260 | 0 | if (pubKey) { |
261 | 0 | rv = CERT_VerifySignedDataWithPublicKey(sd, pubKey, wincx); |
262 | 0 | SECKEY_DestroyPublicKey(pubKey); |
263 | 0 | } |
264 | 0 | return rv; |
265 | 0 | } |
266 | | |
267 | | SECStatus |
268 | | SEC_CheckCRL(CERTCertDBHandle *handle, CERTCertificate *cert, |
269 | | CERTCertificate *caCert, PRTime t, void *wincx) |
270 | 0 | { |
271 | 0 | return CERT_CheckCRL(cert, caCert, NULL, t, wincx); |
272 | 0 | } |
273 | | |
274 | | /* |
275 | | * Find the issuer of a cert. Use the authorityKeyID if it exists. |
276 | | */ |
277 | | CERTCertificate * |
278 | | CERT_FindCertIssuer(CERTCertificate *cert, PRTime validTime, SECCertUsage usage) |
279 | 0 | { |
280 | 0 | NSSCertificate *me; |
281 | 0 | NSSTime *nssTime; |
282 | 0 | NSSTrustDomain *td; |
283 | 0 | NSSCryptoContext *cc; |
284 | 0 | NSSCertificate *chain[3]; |
285 | 0 | NSSUsage nssUsage; |
286 | 0 | PRStatus status; |
287 | |
|
288 | 0 | me = STAN_GetNSSCertificate(cert); |
289 | 0 | if (!me) { |
290 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
291 | 0 | return NULL; |
292 | 0 | } |
293 | 0 | nssTime = NSSTime_SetPRTime(NULL, validTime); |
294 | 0 | nssUsage.anyUsage = PR_FALSE; |
295 | 0 | nssUsage.nss3usage = usage; |
296 | 0 | nssUsage.nss3lookingForCA = PR_TRUE; |
297 | 0 | memset(chain, 0, 3 * sizeof(NSSCertificate *)); |
298 | 0 | td = STAN_GetDefaultTrustDomain(); |
299 | 0 | cc = STAN_GetDefaultCryptoContext(); |
300 | 0 | (void)NSSCertificate_BuildChain(me, nssTime, &nssUsage, NULL, |
301 | 0 | chain, 2, NULL, &status, td, cc); |
302 | 0 | nss_ZFreeIf(nssTime); |
303 | 0 | if (status == PR_SUCCESS) { |
304 | 0 | PORT_Assert(me == chain[0]); |
305 | | /* if it's a root, the chain will only have one cert */ |
306 | 0 | if (!chain[1]) { |
307 | | /* already has a reference from the call to BuildChain */ |
308 | 0 | return cert; |
309 | 0 | } |
310 | 0 | NSSCertificate_Destroy(chain[0]); /* the first cert in the chain */ |
311 | 0 | return STAN_GetCERTCertificate(chain[1]); /* return the 2nd */ |
312 | 0 | } |
313 | 0 | if (chain[0]) { |
314 | 0 | PORT_Assert(me == chain[0]); |
315 | 0 | NSSCertificate_Destroy(chain[0]); /* the first cert in the chain */ |
316 | 0 | } |
317 | 0 | PORT_SetError(SEC_ERROR_UNKNOWN_ISSUER); |
318 | 0 | return NULL; |
319 | 0 | } |
320 | | |
321 | | /* |
322 | | * return required trust flags for various cert usages for CAs |
323 | | */ |
324 | | SECStatus |
325 | | CERT_TrustFlagsForCACertUsage(SECCertUsage usage, |
326 | | unsigned int *retFlags, |
327 | | SECTrustType *retTrustType) |
328 | 0 | { |
329 | 0 | unsigned int requiredFlags; |
330 | 0 | SECTrustType trustType; |
331 | |
|
332 | 0 | switch (usage) { |
333 | 0 | case certUsageSSLClient: |
334 | 0 | requiredFlags = CERTDB_TRUSTED_CLIENT_CA; |
335 | 0 | trustType = trustSSL; |
336 | 0 | break; |
337 | 0 | case certUsageSSLServer: |
338 | 0 | case certUsageSSLCA: |
339 | 0 | requiredFlags = CERTDB_TRUSTED_CA; |
340 | 0 | trustType = trustSSL; |
341 | 0 | break; |
342 | 0 | case certUsageIPsec: |
343 | 0 | requiredFlags = CERTDB_TRUSTED_CA; |
344 | 0 | trustType = trustSSL; |
345 | 0 | break; |
346 | 0 | case certUsageSSLServerWithStepUp: |
347 | 0 | requiredFlags = CERTDB_TRUSTED_CA | CERTDB_GOVT_APPROVED_CA; |
348 | 0 | trustType = trustSSL; |
349 | 0 | break; |
350 | 0 | case certUsageEmailSigner: |
351 | 0 | case certUsageEmailRecipient: |
352 | 0 | requiredFlags = CERTDB_TRUSTED_CA; |
353 | 0 | trustType = trustEmail; |
354 | 0 | break; |
355 | 0 | case certUsageObjectSigner: |
356 | 0 | requiredFlags = CERTDB_TRUSTED_CA; |
357 | 0 | trustType = trustObjectSigning; |
358 | 0 | break; |
359 | 0 | case certUsageVerifyCA: |
360 | 0 | case certUsageAnyCA: |
361 | 0 | case certUsageStatusResponder: |
362 | 0 | requiredFlags = CERTDB_TRUSTED_CA; |
363 | 0 | trustType = trustTypeNone; |
364 | 0 | break; |
365 | 0 | default: |
366 | 0 | PORT_Assert(0); |
367 | 0 | goto loser; |
368 | 0 | } |
369 | 0 | if (retFlags != NULL) { |
370 | 0 | *retFlags = requiredFlags; |
371 | 0 | } |
372 | 0 | if (retTrustType != NULL) { |
373 | 0 | *retTrustType = trustType; |
374 | 0 | } |
375 | |
|
376 | 0 | return (SECSuccess); |
377 | 0 | loser: |
378 | 0 | return (SECFailure); |
379 | 0 | } |
380 | | |
381 | | void |
382 | | cert_AddToVerifyLog(CERTVerifyLog *log, CERTCertificate *cert, long error, |
383 | | unsigned int depth, void *arg) |
384 | 0 | { |
385 | 0 | CERTVerifyLogNode *node, *tnode; |
386 | |
|
387 | 0 | PORT_Assert(log != NULL); |
388 | |
|
389 | 0 | node = (CERTVerifyLogNode *)PORT_ArenaAlloc(log->arena, |
390 | 0 | sizeof(CERTVerifyLogNode)); |
391 | 0 | if (node != NULL) { |
392 | 0 | node->cert = CERT_DupCertificate(cert); |
393 | 0 | node->error = error; |
394 | 0 | node->depth = depth; |
395 | 0 | node->arg = arg; |
396 | |
|
397 | 0 | if (log->tail == NULL) { |
398 | | /* empty list */ |
399 | 0 | log->head = log->tail = node; |
400 | 0 | node->prev = NULL; |
401 | 0 | node->next = NULL; |
402 | 0 | } else if (depth >= log->tail->depth) { |
403 | | /* add to tail */ |
404 | 0 | node->prev = log->tail; |
405 | 0 | log->tail->next = node; |
406 | 0 | log->tail = node; |
407 | 0 | node->next = NULL; |
408 | 0 | } else if (depth < log->head->depth) { |
409 | | /* add at head */ |
410 | 0 | node->prev = NULL; |
411 | 0 | node->next = log->head; |
412 | 0 | log->head->prev = node; |
413 | 0 | log->head = node; |
414 | 0 | } else { |
415 | | /* add in middle */ |
416 | 0 | tnode = log->tail; |
417 | 0 | while (tnode != NULL) { |
418 | 0 | if (depth >= tnode->depth) { |
419 | | /* insert after tnode */ |
420 | 0 | node->prev = tnode; |
421 | 0 | node->next = tnode->next; |
422 | 0 | tnode->next->prev = node; |
423 | 0 | tnode->next = node; |
424 | 0 | break; |
425 | 0 | } |
426 | | |
427 | 0 | tnode = tnode->prev; |
428 | 0 | } |
429 | 0 | } |
430 | |
|
431 | 0 | log->count++; |
432 | 0 | } |
433 | 0 | return; |
434 | 0 | } |
435 | | |
436 | | #define EXIT_IF_NOT_LOGGING(log) \ |
437 | 0 | if (log == NULL) { \ |
438 | 0 | goto loser; \ |
439 | 0 | } |
440 | | |
441 | | #define LOG_ERROR_OR_EXIT(log, cert, depth, arg) \ |
442 | 0 | if (log != NULL) { \ |
443 | 0 | cert_AddToVerifyLog(log, cert, PORT_GetError(), depth, \ |
444 | 0 | (void *)(PRWord)arg); \ |
445 | 0 | } else { \ |
446 | 0 | goto loser; \ |
447 | 0 | } |
448 | | |
449 | | #define LOG_ERROR(log, cert, depth, arg) \ |
450 | 0 | if (log != NULL) { \ |
451 | 0 | cert_AddToVerifyLog(log, cert, PORT_GetError(), depth, \ |
452 | 0 | (void *)(PRWord)arg); \ |
453 | 0 | } |
454 | | |
455 | | /* /C=CN/O=WoSign CA Limited/CN=CA \xE6\xB2\x83\xE9\x80\x9A\xE6\xA0\xB9\xE8\xAF\x81\xE4\xB9\xA6 |
456 | | * Using a consistent naming convention, this would actually be called |
457 | | * 'CA沃通根证书DN', but since GCC 6.2.1 apparently can't handle UTF-8 |
458 | | * identifiers, this will have to do. |
459 | | */ |
460 | | static const unsigned char CAWoSignRootDN[72] = { |
461 | | 0x30, 0x46, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
462 | | 0x43, 0x4E, 0x31, 0x1A, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x11, |
463 | | 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x43, 0x41, 0x20, 0x4C, 0x69, 0x6D, |
464 | | 0x69, 0x74, 0x65, 0x64, 0x31, 0x1B, 0x30, 0x19, 0x06, 0x03, 0x55, 0x04, 0x03, |
465 | | 0x0C, 0x12, 0x43, 0x41, 0x20, 0xE6, 0xB2, 0x83, 0xE9, 0x80, 0x9A, 0xE6, 0xA0, |
466 | | 0xB9, 0xE8, 0xAF, 0x81, 0xE4, 0xB9, 0xA6 |
467 | | }; |
468 | | |
469 | | /* /C=CN/O=WoSign CA Limited/CN=CA WoSign ECC Root */ |
470 | | static const unsigned char CAWoSignECCRootDN[72] = { |
471 | | 0x30, 0x46, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
472 | | 0x43, 0x4E, 0x31, 0x1A, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x11, |
473 | | 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x43, 0x41, 0x20, 0x4C, 0x69, 0x6D, |
474 | | 0x69, 0x74, 0x65, 0x64, 0x31, 0x1B, 0x30, 0x19, 0x06, 0x03, 0x55, 0x04, 0x03, |
475 | | 0x13, 0x12, 0x43, 0x41, 0x20, 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x45, |
476 | | 0x43, 0x43, 0x20, 0x52, 0x6F, 0x6F, 0x74 |
477 | | }; |
478 | | |
479 | | /* /C=CN/O=WoSign CA Limited/CN=Certification Authority of WoSign */ |
480 | | static const unsigned char CertificationAuthorityofWoSignDN[87] = { |
481 | | 0x30, 0x55, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
482 | | 0x43, 0x4E, 0x31, 0x1A, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x11, |
483 | | 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x43, 0x41, 0x20, 0x4C, 0x69, 0x6D, |
484 | | 0x69, 0x74, 0x65, 0x64, 0x31, 0x2A, 0x30, 0x28, 0x06, 0x03, 0x55, 0x04, 0x03, |
485 | | 0x13, 0x21, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, |
486 | | 0x6F, 0x6E, 0x20, 0x41, 0x75, 0x74, 0x68, 0x6F, 0x72, 0x69, 0x74, 0x79, 0x20, |
487 | | 0x6F, 0x66, 0x20, 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E |
488 | | }; |
489 | | |
490 | | /* /C=CN/O=WoSign CA Limited/CN=Certification Authority of WoSign G2 */ |
491 | | static const unsigned char CertificationAuthorityofWoSignG2DN[90] = { |
492 | | 0x30, 0x58, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
493 | | 0x43, 0x4E, 0x31, 0x1A, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x11, |
494 | | 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x43, 0x41, 0x20, 0x4C, 0x69, 0x6D, |
495 | | 0x69, 0x74, 0x65, 0x64, 0x31, 0x2D, 0x30, 0x2B, 0x06, 0x03, 0x55, 0x04, 0x03, |
496 | | 0x13, 0x24, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, |
497 | | 0x6F, 0x6E, 0x20, 0x41, 0x75, 0x74, 0x68, 0x6F, 0x72, 0x69, 0x74, 0x79, 0x20, |
498 | | 0x6F, 0x66, 0x20, 0x57, 0x6F, 0x53, 0x69, 0x67, 0x6E, 0x20, 0x47, 0x32 |
499 | | }; |
500 | | |
501 | | /* /C=IL/O=StartCom Ltd./OU=Secure Digital Certificate Signing/CN=StartCom Certification Authority */ |
502 | | static const unsigned char StartComCertificationAuthorityDN[127] = { |
503 | | 0x30, 0x7D, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
504 | | 0x49, 0x4C, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x0D, |
505 | | 0x53, 0x74, 0x61, 0x72, 0x74, 0x43, 0x6F, 0x6D, 0x20, 0x4C, 0x74, 0x64, 0x2E, |
506 | | 0x31, 0x2B, 0x30, 0x29, 0x06, 0x03, 0x55, 0x04, 0x0B, 0x13, 0x22, 0x53, 0x65, |
507 | | 0x63, 0x75, 0x72, 0x65, 0x20, 0x44, 0x69, 0x67, 0x69, 0x74, 0x61, 0x6C, 0x20, |
508 | | 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x20, 0x53, |
509 | | 0x69, 0x67, 0x6E, 0x69, 0x6E, 0x67, 0x31, 0x29, 0x30, 0x27, 0x06, 0x03, 0x55, |
510 | | 0x04, 0x03, 0x13, 0x20, 0x53, 0x74, 0x61, 0x72, 0x74, 0x43, 0x6F, 0x6D, 0x20, |
511 | | 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, |
512 | | 0x20, 0x41, 0x75, 0x74, 0x68, 0x6F, 0x72, 0x69, 0x74, 0x79 |
513 | | }; |
514 | | |
515 | | /* /C=IL/O=StartCom Ltd./CN=StartCom Certification Authority G2 */ |
516 | | static const unsigned char StartComCertificationAuthorityG2DN[85] = { |
517 | | 0x30, 0x53, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, |
518 | | 0x49, 0x4C, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55, 0x04, 0x0A, 0x13, 0x0D, |
519 | | 0x53, 0x74, 0x61, 0x72, 0x74, 0x43, 0x6F, 0x6D, 0x20, 0x4C, 0x74, 0x64, 0x2E, |
520 | | 0x31, 0x2C, 0x30, 0x2A, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x23, 0x53, 0x74, |
521 | | 0x61, 0x72, 0x74, 0x43, 0x6F, 0x6D, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, |
522 | | 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x20, 0x41, 0x75, 0x74, 0x68, 0x6F, |
523 | | 0x72, 0x69, 0x74, 0x79, 0x20, 0x47, 0x32 |
524 | | }; |
525 | | |
526 | | struct DataAndLength { |
527 | | const unsigned char *data; |
528 | | PRUint32 len; |
529 | | }; |
530 | | |
531 | | static const struct DataAndLength StartComAndWoSignDNs[] = { |
532 | | { CAWoSignRootDN, |
533 | | sizeof(CAWoSignRootDN) }, |
534 | | { CAWoSignECCRootDN, |
535 | | sizeof(CAWoSignECCRootDN) }, |
536 | | { CertificationAuthorityofWoSignDN, |
537 | | sizeof(CertificationAuthorityofWoSignDN) }, |
538 | | { CertificationAuthorityofWoSignG2DN, |
539 | | sizeof(CertificationAuthorityofWoSignG2DN) }, |
540 | | { StartComCertificationAuthorityDN, |
541 | | sizeof(StartComCertificationAuthorityDN) }, |
542 | | { StartComCertificationAuthorityG2DN, |
543 | | sizeof(StartComCertificationAuthorityG2DN) }, |
544 | | }; |
545 | | |
546 | | static PRBool |
547 | | CertIsStartComOrWoSign(const CERTCertificate *cert) |
548 | 0 | { |
549 | 0 | int i; |
550 | 0 | const struct DataAndLength *dn = StartComAndWoSignDNs; |
551 | |
|
552 | 0 | for (i = 0; i < sizeof(StartComAndWoSignDNs) / sizeof(struct DataAndLength); ++i, dn++) { |
553 | 0 | if (cert->derSubject.len == dn->len && |
554 | 0 | memcmp(cert->derSubject.data, dn->data, dn->len) == 0) { |
555 | 0 | return PR_TRUE; |
556 | 0 | } |
557 | 0 | } |
558 | 0 | return PR_FALSE; |
559 | 0 | } |
560 | | |
561 | | SECStatus |
562 | | isIssuerCertAllowedAtCertIssuanceTime(CERTCertificate *issuerCert, |
563 | | CERTCertificate *referenceCert) |
564 | 0 | { |
565 | 0 | if (!issuerCert || !referenceCert) { |
566 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
567 | 0 | return SECFailure; |
568 | 0 | } |
569 | | |
570 | 0 | if (CertIsStartComOrWoSign(issuerCert)) { |
571 | | /* PRTime is microseconds since the epoch, whereas JS time is milliseconds. |
572 | | * (new Date("2016-10-21T00:00:00Z")).getTime() * 1000 |
573 | | */ |
574 | 0 | static const PRTime OCTOBER_21_2016 = 1477008000000000; |
575 | |
|
576 | 0 | PRTime notBefore, notAfter; |
577 | 0 | SECStatus rv; |
578 | |
|
579 | 0 | rv = CERT_GetCertTimes(referenceCert, ¬Before, ¬After); |
580 | 0 | if (rv != SECSuccess) |
581 | 0 | return rv; |
582 | | |
583 | 0 | if (notBefore > OCTOBER_21_2016) { |
584 | 0 | return SECFailure; |
585 | 0 | } |
586 | 0 | } |
587 | | |
588 | 0 | return SECSuccess; |
589 | 0 | } |
590 | | |
591 | | static SECStatus |
592 | | cert_VerifyCertChainOld(CERTCertDBHandle *handle, CERTCertificate *cert, |
593 | | PRBool checkSig, PRBool *sigerror, |
594 | | SECCertUsage certUsage, PRTime t, void *wincx, |
595 | | CERTVerifyLog *log, PRBool *revoked) |
596 | 0 | { |
597 | 0 | SECTrustType trustType; |
598 | 0 | CERTBasicConstraints basicConstraint; |
599 | 0 | CERTCertificate *issuerCert = NULL; |
600 | 0 | CERTCertificate *subjectCert = NULL; |
601 | 0 | CERTCertificate *badCert = NULL; |
602 | 0 | PRBool isca; |
603 | 0 | SECStatus rv; |
604 | 0 | SECStatus rvFinal = SECSuccess; |
605 | 0 | int count; |
606 | 0 | int currentPathLen = 0; |
607 | 0 | int pathLengthLimit = CERT_UNLIMITED_PATH_CONSTRAINT; |
608 | 0 | unsigned int caCertType; |
609 | 0 | unsigned int requiredCAKeyUsage; |
610 | 0 | unsigned int requiredFlags; |
611 | 0 | PLArenaPool *arena = NULL; |
612 | 0 | CERTGeneralName *namesList = NULL; |
613 | 0 | CERTCertificate **certsList = NULL; |
614 | 0 | int certsListLen = 16; |
615 | 0 | int namesCount = 0; |
616 | 0 | PRBool subjectCertIsSelfIssued; |
617 | 0 | CERTCertTrust issuerTrust; |
618 | |
|
619 | 0 | if (revoked) { |
620 | 0 | *revoked = PR_FALSE; |
621 | 0 | } |
622 | |
|
623 | 0 | if (CERT_KeyUsageAndTypeForCertUsage(certUsage, PR_TRUE, |
624 | 0 | &requiredCAKeyUsage, |
625 | 0 | &caCertType) != |
626 | 0 | SECSuccess) { |
627 | 0 | PORT_Assert(0); |
628 | 0 | EXIT_IF_NOT_LOGGING(log); |
629 | 0 | requiredCAKeyUsage = 0; |
630 | 0 | caCertType = 0; |
631 | 0 | } |
632 | | |
633 | 0 | switch (certUsage) { |
634 | 0 | case certUsageSSLClient: |
635 | 0 | case certUsageSSLServer: |
636 | 0 | case certUsageIPsec: |
637 | 0 | case certUsageSSLCA: |
638 | 0 | case certUsageSSLServerWithStepUp: |
639 | 0 | case certUsageEmailSigner: |
640 | 0 | case certUsageEmailRecipient: |
641 | 0 | case certUsageObjectSigner: |
642 | 0 | case certUsageVerifyCA: |
643 | 0 | case certUsageAnyCA: |
644 | 0 | case certUsageStatusResponder: |
645 | 0 | if (CERT_TrustFlagsForCACertUsage(certUsage, &requiredFlags, |
646 | 0 | &trustType) != SECSuccess) { |
647 | 0 | PORT_Assert(0); |
648 | 0 | EXIT_IF_NOT_LOGGING(log); |
649 | | /* XXX continuing with requiredFlags = 0 seems wrong. It'll |
650 | | * cause the following test to be true incorrectly: |
651 | | * flags = SEC_GET_TRUST_FLAGS(issuerCert->trust, trustType); |
652 | | * if (( flags & requiredFlags ) == requiredFlags) { |
653 | | * rv = rvFinal; |
654 | | * goto done; |
655 | | * } |
656 | | * There are three other instances of this problem. |
657 | | */ |
658 | 0 | requiredFlags = 0; |
659 | 0 | trustType = trustSSL; |
660 | 0 | } |
661 | 0 | break; |
662 | 0 | default: |
663 | 0 | PORT_Assert(0); |
664 | 0 | EXIT_IF_NOT_LOGGING(log); |
665 | 0 | requiredFlags = 0; |
666 | 0 | trustType = trustSSL; /* This used to be 0, but we need something |
667 | | * that matches the enumeration type. |
668 | | */ |
669 | 0 | caCertType = 0; |
670 | 0 | } |
671 | | |
672 | 0 | subjectCert = CERT_DupCertificate(cert); |
673 | 0 | if (subjectCert == NULL) { |
674 | 0 | goto loser; |
675 | 0 | } |
676 | | |
677 | 0 | arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); |
678 | 0 | if (arena == NULL) { |
679 | 0 | goto loser; |
680 | 0 | } |
681 | | |
682 | 0 | certsList = PORT_ZNewArray(CERTCertificate *, certsListLen); |
683 | 0 | if (certsList == NULL) |
684 | 0 | goto loser; |
685 | | |
686 | | /* RFC 3280 says that the name constraints will apply to the names |
687 | | ** in the leaf (EE) cert, whether it is self issued or not, so |
688 | | ** we pretend that it is not. |
689 | | */ |
690 | 0 | subjectCertIsSelfIssued = PR_FALSE; |
691 | 0 | for (count = 0; count < CERT_MAX_CERT_CHAIN; count++) { |
692 | 0 | PRBool validCAOverride = PR_FALSE; |
693 | | |
694 | | /* Construct a list of names for the current and all previous |
695 | | * certifcates (except leaf (EE) certs, root CAs, and self-issued |
696 | | * intermediate CAs) to be verified against the name constraints |
697 | | * extension of the issuer certificate. |
698 | | */ |
699 | 0 | if (subjectCertIsSelfIssued == PR_FALSE) { |
700 | 0 | CERTGeneralName *subjectNameList; |
701 | 0 | int subjectNameListLen; |
702 | 0 | int i; |
703 | 0 | PRBool getSubjectCN = (!count && |
704 | 0 | (certUsage == certUsageSSLServer || certUsage == certUsageIPsec)); |
705 | 0 | subjectNameList = |
706 | 0 | CERT_GetConstrainedCertificateNames(subjectCert, arena, |
707 | 0 | getSubjectCN); |
708 | 0 | if (!subjectNameList) |
709 | 0 | goto loser; |
710 | 0 | subjectNameListLen = CERT_GetNamesLength(subjectNameList); |
711 | 0 | if (!subjectNameListLen) |
712 | 0 | goto loser; |
713 | 0 | if (certsListLen <= namesCount + subjectNameListLen) { |
714 | 0 | CERTCertificate **tmpCertsList; |
715 | 0 | certsListLen = (namesCount + subjectNameListLen) * 2; |
716 | 0 | tmpCertsList = |
717 | 0 | (CERTCertificate **)PORT_Realloc(certsList, |
718 | 0 | certsListLen * |
719 | 0 | sizeof(CERTCertificate *)); |
720 | 0 | if (tmpCertsList == NULL) { |
721 | 0 | goto loser; |
722 | 0 | } |
723 | 0 | certsList = tmpCertsList; |
724 | 0 | } |
725 | 0 | for (i = 0; i < subjectNameListLen; i++) { |
726 | 0 | certsList[namesCount + i] = subjectCert; |
727 | 0 | } |
728 | 0 | namesCount += subjectNameListLen; |
729 | 0 | namesList = cert_CombineNamesLists(namesList, subjectNameList); |
730 | 0 | } |
731 | | |
732 | | /* check if the cert has an unsupported critical extension */ |
733 | 0 | if (subjectCert->options.bits.hasUnsupportedCriticalExt) { |
734 | 0 | PORT_SetError(SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION); |
735 | 0 | LOG_ERROR_OR_EXIT(log, subjectCert, count, 0); |
736 | 0 | } |
737 | | |
738 | | /* check that the signatureAlgorithm field of the certificate |
739 | | * matches the signature field of the tbsCertificate */ |
740 | 0 | if (SECOID_CompareAlgorithmID( |
741 | 0 | &subjectCert->signatureWrap.signatureAlgorithm, |
742 | 0 | &subjectCert->signature)) { |
743 | 0 | PORT_SetError(SEC_ERROR_ALGORITHM_MISMATCH); |
744 | 0 | LOG_ERROR(log, subjectCert, count, 0); |
745 | 0 | goto loser; |
746 | 0 | } |
747 | | |
748 | | /* find the certificate of the issuer */ |
749 | 0 | issuerCert = CERT_FindCertIssuer(subjectCert, t, certUsage); |
750 | 0 | if (!issuerCert) { |
751 | 0 | PORT_SetError(SEC_ERROR_UNKNOWN_ISSUER); |
752 | 0 | LOG_ERROR(log, subjectCert, count, 0); |
753 | 0 | goto loser; |
754 | 0 | } |
755 | | |
756 | | /* verify the signature on the cert */ |
757 | 0 | if (checkSig) { |
758 | 0 | rv = CERT_VerifySignedData(&subjectCert->signatureWrap, |
759 | 0 | issuerCert, t, wincx); |
760 | |
|
761 | 0 | if (rv != SECSuccess) { |
762 | 0 | if (sigerror) { |
763 | 0 | *sigerror = PR_TRUE; |
764 | 0 | } |
765 | 0 | if (PORT_GetError() == SEC_ERROR_EXPIRED_CERTIFICATE) { |
766 | 0 | PORT_SetError(SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE); |
767 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, 0); |
768 | 0 | } else { |
769 | 0 | if (PORT_GetError() != |
770 | 0 | SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED) { |
771 | 0 | PORT_SetError(SEC_ERROR_BAD_SIGNATURE); |
772 | 0 | } |
773 | 0 | LOG_ERROR_OR_EXIT(log, subjectCert, count, 0); |
774 | 0 | } |
775 | 0 | } |
776 | 0 | } |
777 | | |
778 | | /* If the basicConstraint extension is included in an immediate CA |
779 | | * certificate, make sure that the isCA flag is on. If the |
780 | | * pathLenConstraint component exists, it must be greater than the |
781 | | * number of CA certificates we have seen so far. If the extension |
782 | | * is omitted, we will assume that this is a CA certificate with |
783 | | * an unlimited pathLenConstraint (since it already passes the |
784 | | * netscape-cert-type extension checking). |
785 | | */ |
786 | | |
787 | 0 | rv = CERT_FindBasicConstraintExten(issuerCert, &basicConstraint); |
788 | 0 | if (rv != SECSuccess) { |
789 | 0 | if (PORT_GetError() != SEC_ERROR_EXTENSION_NOT_FOUND) { |
790 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, 0); |
791 | 0 | } |
792 | 0 | pathLengthLimit = CERT_UNLIMITED_PATH_CONSTRAINT; |
793 | | /* no basic constraints found, we aren't (yet) a CA. */ |
794 | 0 | isca = PR_FALSE; |
795 | 0 | } else { |
796 | 0 | if (basicConstraint.isCA == PR_FALSE) { |
797 | 0 | PORT_SetError(SEC_ERROR_CA_CERT_INVALID); |
798 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, 0); |
799 | 0 | } |
800 | 0 | pathLengthLimit = basicConstraint.pathLenConstraint; |
801 | 0 | isca = PR_TRUE; |
802 | 0 | } |
803 | | /* make sure that the path len constraint is properly set.*/ |
804 | 0 | if (pathLengthLimit >= 0 && currentPathLen > pathLengthLimit) { |
805 | 0 | PORT_SetError(SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID); |
806 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, pathLengthLimit); |
807 | 0 | } |
808 | | |
809 | | /* make sure that the entire chain is within the name space of the |
810 | | * current issuer certificate. |
811 | | */ |
812 | 0 | rv = CERT_CompareNameSpace(issuerCert, namesList, certsList, |
813 | 0 | arena, &badCert); |
814 | 0 | if (rv != SECSuccess || badCert != NULL) { |
815 | 0 | PORT_SetError(SEC_ERROR_CERT_NOT_IN_NAME_SPACE); |
816 | 0 | LOG_ERROR_OR_EXIT(log, badCert, count + 1, 0); |
817 | 0 | goto loser; |
818 | 0 | } |
819 | | |
820 | 0 | rv = isIssuerCertAllowedAtCertIssuanceTime(issuerCert, cert); |
821 | 0 | if (rv != SECSuccess) { |
822 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_ISSUER); |
823 | 0 | LOG_ERROR(log, issuerCert, count + 1, 0); |
824 | 0 | goto loser; |
825 | 0 | } |
826 | | |
827 | | /* XXX - the error logging may need to go down into CRL stuff at some |
828 | | * point |
829 | | */ |
830 | | /* check revoked list (issuer) */ |
831 | 0 | rv = SEC_CheckCRL(handle, subjectCert, issuerCert, t, wincx); |
832 | 0 | if (rv == SECFailure) { |
833 | 0 | if (revoked) { |
834 | 0 | *revoked = PR_TRUE; |
835 | 0 | } |
836 | 0 | LOG_ERROR_OR_EXIT(log, subjectCert, count, 0); |
837 | 0 | } else if (rv == SECWouldBlock) { |
838 | | /* We found something fishy, so we intend to issue an |
839 | | * error to the user, but the user may wish to continue |
840 | | * processing, in which case we better make sure nothing |
841 | | * worse has happened... so keep cranking the loop */ |
842 | 0 | rvFinal = SECFailure; |
843 | 0 | if (revoked) { |
844 | 0 | *revoked = PR_TRUE; |
845 | 0 | } |
846 | 0 | LOG_ERROR(log, subjectCert, count, 0); |
847 | 0 | } |
848 | | |
849 | 0 | if (CERT_GetCertTrust(issuerCert, &issuerTrust) == SECSuccess) { |
850 | | /* we have some trust info, but this does NOT imply that this |
851 | | * cert is actually trusted for any purpose. The cert may be |
852 | | * explicitly UNtrusted. We won't know until we examine the |
853 | | * trust bits. |
854 | | */ |
855 | 0 | unsigned int flags; |
856 | |
|
857 | 0 | if (certUsage != certUsageAnyCA && |
858 | 0 | certUsage != certUsageStatusResponder) { |
859 | | |
860 | | /* |
861 | | * XXX This choice of trustType seems arbitrary. |
862 | | */ |
863 | 0 | if (certUsage == certUsageVerifyCA) { |
864 | 0 | if (subjectCert->nsCertType & NS_CERT_TYPE_EMAIL_CA) { |
865 | 0 | trustType = trustEmail; |
866 | 0 | } else if (subjectCert->nsCertType & NS_CERT_TYPE_SSL_CA) { |
867 | 0 | trustType = trustSSL; |
868 | 0 | } else { |
869 | 0 | trustType = trustObjectSigning; |
870 | 0 | } |
871 | 0 | } |
872 | |
|
873 | 0 | flags = SEC_GET_TRUST_FLAGS(&issuerTrust, trustType); |
874 | 0 | if ((flags & requiredFlags) == requiredFlags) { |
875 | | /* we found a trusted one, so return */ |
876 | 0 | rv = rvFinal; |
877 | 0 | goto done; |
878 | 0 | } |
879 | 0 | if (flags & CERTDB_VALID_CA) { |
880 | 0 | validCAOverride = PR_TRUE; |
881 | 0 | } |
882 | | /* is it explicitly distrusted? */ |
883 | 0 | if ((flags & CERTDB_TERMINAL_RECORD) && |
884 | 0 | ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0)) { |
885 | | /* untrusted -- the cert is explicitly untrusted, not |
886 | | * just that it doesn't chain to a trusted cert */ |
887 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_ISSUER); |
888 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, flags); |
889 | 0 | } |
890 | 0 | } else { |
891 | | /* Check if we have any valid trust when cheching for |
892 | | * certUsageAnyCA or certUsageStatusResponder. */ |
893 | 0 | for (trustType = trustSSL; trustType < trustTypeNone; |
894 | 0 | trustType++) { |
895 | 0 | flags = SEC_GET_TRUST_FLAGS(&issuerTrust, trustType); |
896 | 0 | if ((flags & requiredFlags) == requiredFlags) { |
897 | 0 | rv = rvFinal; |
898 | 0 | goto done; |
899 | 0 | } |
900 | 0 | if (flags & CERTDB_VALID_CA) |
901 | 0 | validCAOverride = PR_TRUE; |
902 | 0 | } |
903 | | /* We have 2 separate loops because we want any single trust |
904 | | * bit to allow this usage to return trusted. Only if none of |
905 | | * the trust bits are on do we check to see if the cert is |
906 | | * untrusted */ |
907 | 0 | for (trustType = trustSSL; trustType < trustTypeNone; |
908 | 0 | trustType++) { |
909 | 0 | flags = SEC_GET_TRUST_FLAGS(&issuerTrust, trustType); |
910 | | /* is it explicitly distrusted? */ |
911 | 0 | if ((flags & CERTDB_TERMINAL_RECORD) && |
912 | 0 | ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0)) { |
913 | | /* untrusted -- the cert is explicitly untrusted, not |
914 | | * just that it doesn't chain to a trusted cert */ |
915 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_ISSUER); |
916 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, flags); |
917 | 0 | } |
918 | 0 | } |
919 | 0 | } |
920 | 0 | } |
921 | | |
922 | 0 | if (!validCAOverride) { |
923 | | /* |
924 | | * Make sure that if this is an intermediate CA in the chain that |
925 | | * it was given permission by its signer to be a CA. |
926 | | */ |
927 | | /* |
928 | | * if basicConstraints says it is a ca, then we check the |
929 | | * nsCertType. If the nsCertType has any CA bits set, then |
930 | | * it must have the right one. |
931 | | */ |
932 | 0 | if (!isca || (issuerCert->nsCertType & NS_CERT_TYPE_CA)) { |
933 | 0 | isca = (issuerCert->nsCertType & caCertType) ? PR_TRUE : PR_FALSE; |
934 | 0 | } |
935 | |
|
936 | 0 | if (!isca) { |
937 | 0 | PORT_SetError(SEC_ERROR_CA_CERT_INVALID); |
938 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, 0); |
939 | 0 | } |
940 | | |
941 | | /* make sure key usage allows cert signing */ |
942 | 0 | if (CERT_CheckKeyUsage(issuerCert, requiredCAKeyUsage) != SECSuccess) { |
943 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_KEY_USAGE); |
944 | 0 | LOG_ERROR_OR_EXIT(log, issuerCert, count + 1, requiredCAKeyUsage); |
945 | 0 | } |
946 | 0 | } |
947 | | |
948 | | /* make sure that the issuer is not self signed. If it is, then |
949 | | * stop here to prevent looping. |
950 | | */ |
951 | 0 | if (issuerCert->isRoot) { |
952 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_ISSUER); |
953 | 0 | LOG_ERROR(log, issuerCert, count + 1, 0); |
954 | 0 | goto loser; |
955 | 0 | } |
956 | | /* The issuer cert will be the subject cert in the next loop. |
957 | | * A cert is self-issued if its subject and issuer are equal and |
958 | | * both are of non-zero length. |
959 | | */ |
960 | 0 | subjectCertIsSelfIssued = (PRBool) |
961 | 0 | SECITEM_ItemsAreEqual(&issuerCert->derIssuer, |
962 | 0 | &issuerCert->derSubject) && |
963 | 0 | issuerCert->derSubject.len > |
964 | 0 | 0; |
965 | 0 | if (subjectCertIsSelfIssued == PR_FALSE) { |
966 | | /* RFC 3280 says only non-self-issued intermediate CA certs |
967 | | * count in path length. |
968 | | */ |
969 | 0 | ++currentPathLen; |
970 | 0 | } |
971 | |
|
972 | 0 | CERT_DestroyCertificate(subjectCert); |
973 | 0 | subjectCert = issuerCert; |
974 | 0 | issuerCert = NULL; |
975 | 0 | } |
976 | | |
977 | 0 | PORT_SetError(SEC_ERROR_UNKNOWN_ISSUER); |
978 | 0 | LOG_ERROR(log, subjectCert, count, 0); |
979 | 0 | loser: |
980 | 0 | rv = SECFailure; |
981 | 0 | done: |
982 | 0 | if (certsList != NULL) { |
983 | 0 | PORT_Free(certsList); |
984 | 0 | } |
985 | 0 | if (issuerCert) { |
986 | 0 | CERT_DestroyCertificate(issuerCert); |
987 | 0 | } |
988 | |
|
989 | 0 | if (subjectCert) { |
990 | 0 | CERT_DestroyCertificate(subjectCert); |
991 | 0 | } |
992 | |
|
993 | 0 | if (arena != NULL) { |
994 | 0 | PORT_FreeArena(arena, PR_FALSE); |
995 | 0 | } |
996 | 0 | return rv; |
997 | 0 | } |
998 | | |
999 | | SECStatus |
1000 | | cert_VerifyCertChain(CERTCertDBHandle *handle, CERTCertificate *cert, |
1001 | | PRBool checkSig, PRBool *sigerror, |
1002 | | SECCertUsage certUsage, PRTime t, void *wincx, |
1003 | | CERTVerifyLog *log, PRBool *revoked) |
1004 | 0 | { |
1005 | 0 | if (CERT_GetUsePKIXForValidation()) { |
1006 | 0 | return cert_VerifyCertChainPkix(cert, checkSig, certUsage, t, |
1007 | 0 | wincx, log, sigerror, revoked); |
1008 | 0 | } |
1009 | 0 | return cert_VerifyCertChainOld(handle, cert, checkSig, sigerror, |
1010 | 0 | certUsage, t, wincx, log, revoked); |
1011 | 0 | } |
1012 | | |
1013 | | SECStatus |
1014 | | CERT_VerifyCertChain(CERTCertDBHandle *handle, CERTCertificate *cert, |
1015 | | PRBool checkSig, SECCertUsage certUsage, PRTime t, |
1016 | | void *wincx, CERTVerifyLog *log) |
1017 | 0 | { |
1018 | 0 | return cert_VerifyCertChain(handle, cert, checkSig, NULL, certUsage, t, |
1019 | 0 | wincx, log, NULL); |
1020 | 0 | } |
1021 | | |
1022 | | /* |
1023 | | * verify that a CA can sign a certificate with the requested usage. |
1024 | | */ |
1025 | | SECStatus |
1026 | | CERT_VerifyCACertForUsage(CERTCertDBHandle *handle, CERTCertificate *cert, |
1027 | | PRBool checkSig, SECCertUsage certUsage, PRTime t, |
1028 | | void *wincx, CERTVerifyLog *log) |
1029 | 0 | { |
1030 | 0 | SECTrustType trustType; |
1031 | 0 | CERTBasicConstraints basicConstraint; |
1032 | 0 | PRBool isca; |
1033 | 0 | PRBool validCAOverride = PR_FALSE; |
1034 | 0 | SECStatus rv; |
1035 | 0 | SECStatus rvFinal = SECSuccess; |
1036 | 0 | unsigned int flags; |
1037 | 0 | unsigned int caCertType; |
1038 | 0 | unsigned int requiredCAKeyUsage; |
1039 | 0 | unsigned int requiredFlags; |
1040 | 0 | CERTCertificate *issuerCert; |
1041 | 0 | CERTCertTrust certTrust; |
1042 | |
|
1043 | 0 | if (CERT_KeyUsageAndTypeForCertUsage(certUsage, PR_TRUE, |
1044 | 0 | &requiredCAKeyUsage, |
1045 | 0 | &caCertType) != SECSuccess) { |
1046 | 0 | PORT_Assert(0); |
1047 | 0 | EXIT_IF_NOT_LOGGING(log); |
1048 | 0 | requiredCAKeyUsage = 0; |
1049 | 0 | caCertType = 0; |
1050 | 0 | } |
1051 | | |
1052 | 0 | switch (certUsage) { |
1053 | 0 | case certUsageSSLClient: |
1054 | 0 | case certUsageSSLServer: |
1055 | 0 | case certUsageIPsec: |
1056 | 0 | case certUsageSSLCA: |
1057 | 0 | case certUsageSSLServerWithStepUp: |
1058 | 0 | case certUsageEmailSigner: |
1059 | 0 | case certUsageEmailRecipient: |
1060 | 0 | case certUsageObjectSigner: |
1061 | 0 | case certUsageVerifyCA: |
1062 | 0 | case certUsageStatusResponder: |
1063 | 0 | if (CERT_TrustFlagsForCACertUsage(certUsage, &requiredFlags, |
1064 | 0 | &trustType) != SECSuccess) { |
1065 | 0 | PORT_Assert(0); |
1066 | 0 | EXIT_IF_NOT_LOGGING(log); |
1067 | 0 | requiredFlags = 0; |
1068 | 0 | trustType = trustSSL; |
1069 | 0 | } |
1070 | 0 | break; |
1071 | 0 | default: |
1072 | 0 | PORT_Assert(0); |
1073 | 0 | EXIT_IF_NOT_LOGGING(log); |
1074 | 0 | requiredFlags = 0; |
1075 | 0 | trustType = trustSSL; /* This used to be 0, but we need something |
1076 | | * that matches the enumeration type. |
1077 | | */ |
1078 | 0 | caCertType = 0; |
1079 | 0 | } |
1080 | | |
1081 | | /* If the basicConstraint extension is included in an intermmediate CA |
1082 | | * certificate, make sure that the isCA flag is on. If the |
1083 | | * pathLenConstraint component exists, it must be greater than the |
1084 | | * number of CA certificates we have seen so far. If the extension |
1085 | | * is omitted, we will assume that this is a CA certificate with |
1086 | | * an unlimited pathLenConstraint (since it already passes the |
1087 | | * netscape-cert-type extension checking). |
1088 | | */ |
1089 | | |
1090 | 0 | rv = CERT_FindBasicConstraintExten(cert, &basicConstraint); |
1091 | 0 | if (rv != SECSuccess) { |
1092 | 0 | if (PORT_GetError() != SEC_ERROR_EXTENSION_NOT_FOUND) { |
1093 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, 0); |
1094 | 0 | } |
1095 | | /* no basic constraints found, we aren't (yet) a CA. */ |
1096 | 0 | isca = PR_FALSE; |
1097 | 0 | } else { |
1098 | 0 | if (basicConstraint.isCA == PR_FALSE) { |
1099 | 0 | PORT_SetError(SEC_ERROR_CA_CERT_INVALID); |
1100 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, 0); |
1101 | 0 | } |
1102 | | |
1103 | | /* can't check path length if we don't know the previous path */ |
1104 | 0 | isca = PR_TRUE; |
1105 | 0 | } |
1106 | | |
1107 | 0 | if (CERT_GetCertTrust(cert, &certTrust) == SECSuccess) { |
1108 | | /* we have some trust info, but this does NOT imply that this |
1109 | | * cert is actually trusted for any purpose. The cert may be |
1110 | | * explicitly UNtrusted. We won't know until we examine the |
1111 | | * trust bits. |
1112 | | */ |
1113 | 0 | if (certUsage == certUsageStatusResponder) { |
1114 | | /* Check the special case of certUsageStatusResponder */ |
1115 | 0 | issuerCert = CERT_FindCertIssuer(cert, t, certUsage); |
1116 | 0 | if (issuerCert) { |
1117 | 0 | if (SEC_CheckCRL(handle, cert, issuerCert, t, wincx) != |
1118 | 0 | SECSuccess) { |
1119 | 0 | PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE); |
1120 | 0 | CERT_DestroyCertificate(issuerCert); |
1121 | 0 | goto loser; |
1122 | 0 | } |
1123 | 0 | CERT_DestroyCertificate(issuerCert); |
1124 | 0 | } |
1125 | | /* XXX We have NOT determined that this cert is trusted. |
1126 | | * For years, NSS has treated this as trusted, |
1127 | | * but it seems incorrect. |
1128 | | */ |
1129 | 0 | rv = rvFinal; |
1130 | 0 | goto done; |
1131 | 0 | } |
1132 | | |
1133 | | /* |
1134 | | * check the trust params of the issuer |
1135 | | */ |
1136 | 0 | flags = SEC_GET_TRUST_FLAGS(&certTrust, trustType); |
1137 | 0 | if ((flags & requiredFlags) == requiredFlags) { |
1138 | | /* we found a trusted one, so return */ |
1139 | 0 | rv = rvFinal; |
1140 | 0 | goto done; |
1141 | 0 | } |
1142 | 0 | if (flags & CERTDB_VALID_CA) { |
1143 | 0 | validCAOverride = PR_TRUE; |
1144 | 0 | } |
1145 | | /* is it explicitly distrusted? */ |
1146 | 0 | if ((flags & CERTDB_TERMINAL_RECORD) && |
1147 | 0 | ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0)) { |
1148 | | /* untrusted -- the cert is explicitly untrusted, not |
1149 | | * just that it doesn't chain to a trusted cert */ |
1150 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_CERT); |
1151 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, flags); |
1152 | 0 | } |
1153 | 0 | } |
1154 | 0 | if (!validCAOverride) { |
1155 | | /* |
1156 | | * Make sure that if this is an intermediate CA in the chain that |
1157 | | * it was given permission by its signer to be a CA. |
1158 | | */ |
1159 | | /* |
1160 | | * if basicConstraints says it is a ca, then we check the |
1161 | | * nsCertType. If the nsCertType has any CA bits set, then |
1162 | | * it must have the right one. |
1163 | | */ |
1164 | 0 | if (!isca || (cert->nsCertType & NS_CERT_TYPE_CA)) { |
1165 | 0 | isca = (cert->nsCertType & caCertType) ? PR_TRUE : PR_FALSE; |
1166 | 0 | } |
1167 | |
|
1168 | 0 | if (!isca) { |
1169 | 0 | PORT_SetError(SEC_ERROR_CA_CERT_INVALID); |
1170 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, 0); |
1171 | 0 | } |
1172 | | |
1173 | | /* make sure key usage allows cert signing */ |
1174 | 0 | if (CERT_CheckKeyUsage(cert, requiredCAKeyUsage) != SECSuccess) { |
1175 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_KEY_USAGE); |
1176 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, requiredCAKeyUsage); |
1177 | 0 | } |
1178 | 0 | } |
1179 | | /* make sure that the issuer is not self signed. If it is, then |
1180 | | * stop here to prevent looping. |
1181 | | */ |
1182 | 0 | if (cert->isRoot) { |
1183 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_ISSUER); |
1184 | 0 | LOG_ERROR(log, cert, 0, 0); |
1185 | 0 | goto loser; |
1186 | 0 | } |
1187 | | |
1188 | 0 | return CERT_VerifyCertChain(handle, cert, checkSig, certUsage, t, |
1189 | 0 | wincx, log); |
1190 | 0 | loser: |
1191 | 0 | rv = SECFailure; |
1192 | 0 | done: |
1193 | 0 | return rv; |
1194 | 0 | } |
1195 | | |
1196 | | #define NEXT_USAGE() \ |
1197 | 0 | { \ |
1198 | 0 | i *= 2; \ |
1199 | 0 | certUsage++; \ |
1200 | 0 | continue; \ |
1201 | 0 | } |
1202 | | |
1203 | | #define VALID_USAGE() \ |
1204 | 0 | { \ |
1205 | 0 | NEXT_USAGE(); \ |
1206 | 0 | } |
1207 | | |
1208 | | #define INVALID_USAGE() \ |
1209 | 0 | { \ |
1210 | 0 | if (returnedUsages) { \ |
1211 | 0 | *returnedUsages &= (~i); \ |
1212 | 0 | } \ |
1213 | 0 | if (PR_TRUE == requiredUsage) { \ |
1214 | 0 | valid = SECFailure; \ |
1215 | 0 | } \ |
1216 | 0 | NEXT_USAGE(); \ |
1217 | 0 | } |
1218 | | |
1219 | | /* |
1220 | | * check the leaf cert against trust and usage. |
1221 | | * returns success if the cert is not distrusted. If the cert is |
1222 | | * trusted, then the trusted bool will be true. |
1223 | | * returns failure if the cert is distrusted. If failure, flags |
1224 | | * will return the flag bits that indicated distrust. |
1225 | | */ |
1226 | | SECStatus |
1227 | | cert_CheckLeafTrust(CERTCertificate *cert, SECCertUsage certUsage, |
1228 | | unsigned int *failedFlags, PRBool *trusted) |
1229 | 0 | { |
1230 | 0 | unsigned int flags; |
1231 | 0 | CERTCertTrust trust; |
1232 | |
|
1233 | 0 | *failedFlags = 0; |
1234 | 0 | *trusted = PR_FALSE; |
1235 | | |
1236 | | /* check trust flags to see if this cert is directly trusted */ |
1237 | 0 | if (CERT_GetCertTrust(cert, &trust) == SECSuccess) { |
1238 | 0 | switch (certUsage) { |
1239 | 0 | case certUsageSSLClient: |
1240 | 0 | case certUsageSSLServer: |
1241 | 0 | case certUsageIPsec: |
1242 | 0 | flags = trust.sslFlags; |
1243 | | |
1244 | | /* is the cert directly trusted or not trusted ? */ |
1245 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1246 | | * authoritative */ |
1247 | 0 | if (flags & CERTDB_TRUSTED) { /* trust this cert */ |
1248 | 0 | *trusted = PR_TRUE; |
1249 | 0 | return SECSuccess; |
1250 | 0 | } else { /* don't trust this cert */ |
1251 | 0 | *failedFlags = flags; |
1252 | 0 | return SECFailure; |
1253 | 0 | } |
1254 | 0 | } |
1255 | 0 | break; |
1256 | 0 | case certUsageSSLServerWithStepUp: |
1257 | | /* XXX - step up certs can't be directly trusted, only distrust */ |
1258 | 0 | flags = trust.sslFlags; |
1259 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1260 | | * authoritative */ |
1261 | 0 | if ((flags & CERTDB_TRUSTED) == 0) { |
1262 | | /* don't trust this cert */ |
1263 | 0 | *failedFlags = flags; |
1264 | 0 | return SECFailure; |
1265 | 0 | } |
1266 | 0 | } |
1267 | 0 | break; |
1268 | 0 | case certUsageSSLCA: |
1269 | 0 | flags = trust.sslFlags; |
1270 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1271 | | * authoritative */ |
1272 | 0 | if ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0) { |
1273 | | /* don't trust this cert */ |
1274 | 0 | *failedFlags = flags; |
1275 | 0 | return SECFailure; |
1276 | 0 | } |
1277 | 0 | } |
1278 | 0 | break; |
1279 | 0 | case certUsageEmailSigner: |
1280 | 0 | case certUsageEmailRecipient: |
1281 | 0 | flags = trust.emailFlags; |
1282 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1283 | | * authoritative */ |
1284 | 0 | if (flags & CERTDB_TRUSTED) { /* trust this cert */ |
1285 | 0 | *trusted = PR_TRUE; |
1286 | 0 | return SECSuccess; |
1287 | 0 | } else { /* don't trust this cert */ |
1288 | 0 | *failedFlags = flags; |
1289 | 0 | return SECFailure; |
1290 | 0 | } |
1291 | 0 | } |
1292 | | |
1293 | 0 | break; |
1294 | 0 | case certUsageObjectSigner: |
1295 | 0 | flags = trust.objectSigningFlags; |
1296 | |
|
1297 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1298 | | * authoritative */ |
1299 | 0 | if (flags & CERTDB_TRUSTED) { /* trust this cert */ |
1300 | 0 | *trusted = PR_TRUE; |
1301 | 0 | return SECSuccess; |
1302 | 0 | } else { /* don't trust this cert */ |
1303 | 0 | *failedFlags = flags; |
1304 | 0 | return SECFailure; |
1305 | 0 | } |
1306 | 0 | } |
1307 | 0 | break; |
1308 | 0 | case certUsageVerifyCA: |
1309 | 0 | case certUsageStatusResponder: |
1310 | 0 | flags = trust.sslFlags; |
1311 | | /* is the cert directly trusted or not trusted ? */ |
1312 | 0 | if ((flags & (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) == |
1313 | 0 | (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) { |
1314 | 0 | *trusted = PR_TRUE; |
1315 | 0 | return SECSuccess; |
1316 | 0 | } |
1317 | 0 | flags = trust.emailFlags; |
1318 | | /* is the cert directly trusted or not trusted ? */ |
1319 | 0 | if ((flags & (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) == |
1320 | 0 | (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) { |
1321 | 0 | *trusted = PR_TRUE; |
1322 | 0 | return SECSuccess; |
1323 | 0 | } |
1324 | 0 | flags = trust.objectSigningFlags; |
1325 | | /* is the cert directly trusted or not trusted ? */ |
1326 | 0 | if ((flags & (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) == |
1327 | 0 | (CERTDB_VALID_CA | CERTDB_TRUSTED_CA)) { |
1328 | 0 | *trusted = PR_TRUE; |
1329 | 0 | return SECSuccess; |
1330 | 0 | } |
1331 | | /* fall through to test distrust */ |
1332 | 0 | case certUsageAnyCA: |
1333 | 0 | case certUsageUserCertImport: |
1334 | | /* do we distrust these certs explicitly */ |
1335 | 0 | flags = trust.sslFlags; |
1336 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1337 | | * authoritative */ |
1338 | 0 | if ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0) { |
1339 | 0 | *failedFlags = flags; |
1340 | 0 | return SECFailure; |
1341 | 0 | } |
1342 | 0 | } |
1343 | 0 | flags = trust.emailFlags; |
1344 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1345 | | * authoritative */ |
1346 | 0 | if ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0) { |
1347 | 0 | *failedFlags = flags; |
1348 | 0 | return SECFailure; |
1349 | 0 | } |
1350 | 0 | } |
1351 | | /* fall through */ |
1352 | 0 | case certUsageProtectedObjectSigner: |
1353 | 0 | flags = trust.objectSigningFlags; |
1354 | 0 | if (flags & CERTDB_TERMINAL_RECORD) { /* the trust record is |
1355 | | * authoritative */ |
1356 | 0 | if ((flags & (CERTDB_TRUSTED | CERTDB_TRUSTED_CA)) == 0) { |
1357 | 0 | *failedFlags = flags; |
1358 | 0 | return SECFailure; |
1359 | 0 | } |
1360 | 0 | } |
1361 | 0 | break; |
1362 | 0 | } |
1363 | 0 | } |
1364 | 0 | return SECSuccess; |
1365 | 0 | } |
1366 | | |
1367 | | /* |
1368 | | * verify a certificate by checking if it's valid and that we |
1369 | | * trust the issuer. |
1370 | | * |
1371 | | * certificateUsage contains a bitfield of all cert usages that are |
1372 | | * required for verification to succeed |
1373 | | * |
1374 | | * a bitfield of cert usages is returned in *returnedUsages |
1375 | | * if requiredUsages is non-zero, the returned bitmap is only |
1376 | | * for those required usages, otherwise it is for all usages |
1377 | | * |
1378 | | */ |
1379 | | SECStatus |
1380 | | CERT_VerifyCertificate(CERTCertDBHandle *handle, CERTCertificate *cert, |
1381 | | PRBool checkSig, SECCertificateUsage requiredUsages, PRTime t, |
1382 | | void *wincx, CERTVerifyLog *log, SECCertificateUsage *returnedUsages) |
1383 | 0 | { |
1384 | 0 | SECStatus rv; |
1385 | 0 | SECStatus valid; |
1386 | 0 | unsigned int requiredKeyUsage; |
1387 | 0 | unsigned int requiredCertType; |
1388 | 0 | unsigned int flags; |
1389 | 0 | unsigned int certType; |
1390 | 0 | PRBool allowOverride; |
1391 | 0 | SECCertTimeValidity validity; |
1392 | 0 | CERTStatusConfig *statusConfig; |
1393 | 0 | PRInt32 i; |
1394 | 0 | SECCertUsage certUsage = 0; |
1395 | 0 | PRBool checkedOCSP = PR_FALSE; |
1396 | 0 | PRBool checkAllUsages = PR_FALSE; |
1397 | 0 | PRBool revoked = PR_FALSE; |
1398 | 0 | PRBool sigerror = PR_FALSE; |
1399 | 0 | PRBool trusted = PR_FALSE; |
1400 | |
|
1401 | 0 | if (!requiredUsages) { |
1402 | | /* there are no required usages, so the user probably wants to |
1403 | | get status for all usages */ |
1404 | 0 | checkAllUsages = PR_TRUE; |
1405 | 0 | } |
1406 | |
|
1407 | 0 | if (returnedUsages) { |
1408 | 0 | *returnedUsages = 0; |
1409 | 0 | } else { |
1410 | | /* we don't have a place to return status for all usages, |
1411 | | so we can skip checks for usages that aren't required */ |
1412 | 0 | checkAllUsages = PR_FALSE; |
1413 | 0 | } |
1414 | 0 | valid = SECSuccess; /* start off assuming cert is valid */ |
1415 | | |
1416 | | /* make sure that the cert is valid at time t */ |
1417 | 0 | allowOverride = (PRBool)((requiredUsages & certificateUsageSSLServer) || |
1418 | 0 | (requiredUsages & certificateUsageSSLServerWithStepUp) || |
1419 | 0 | (requiredUsages & certificateUsageIPsec)); |
1420 | 0 | validity = CERT_CheckCertValidTimes(cert, t, allowOverride); |
1421 | 0 | if (validity != secCertTimeValid) { |
1422 | 0 | valid = SECFailure; |
1423 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, validity); |
1424 | 0 | } |
1425 | | |
1426 | | /* check key usage and netscape cert type */ |
1427 | 0 | cert_GetCertType(cert); |
1428 | 0 | certType = cert->nsCertType; |
1429 | |
|
1430 | 0 | for (i = 1; i <= certificateUsageHighest && |
1431 | 0 | (SECSuccess == valid || returnedUsages || log);) { |
1432 | 0 | PRBool requiredUsage = (i & requiredUsages) ? PR_TRUE : PR_FALSE; |
1433 | 0 | if (PR_FALSE == requiredUsage && PR_FALSE == checkAllUsages) { |
1434 | 0 | NEXT_USAGE(); |
1435 | 0 | } |
1436 | 0 | if (returnedUsages) { |
1437 | 0 | *returnedUsages |= i; /* start off assuming this usage is valid */ |
1438 | 0 | } |
1439 | 0 | switch (certUsage) { |
1440 | 0 | case certUsageSSLClient: |
1441 | 0 | case certUsageSSLServer: |
1442 | 0 | case certUsageSSLServerWithStepUp: |
1443 | 0 | case certUsageSSLCA: |
1444 | 0 | case certUsageEmailSigner: |
1445 | 0 | case certUsageEmailRecipient: |
1446 | 0 | case certUsageObjectSigner: |
1447 | 0 | case certUsageStatusResponder: |
1448 | 0 | case certUsageIPsec: |
1449 | 0 | rv = CERT_KeyUsageAndTypeForCertUsage(certUsage, PR_FALSE, |
1450 | 0 | &requiredKeyUsage, |
1451 | 0 | &requiredCertType); |
1452 | 0 | if (rv != SECSuccess) { |
1453 | 0 | PORT_Assert(0); |
1454 | | /* EXIT_IF_NOT_LOGGING(log); XXX ??? */ |
1455 | 0 | requiredKeyUsage = 0; |
1456 | 0 | requiredCertType = 0; |
1457 | 0 | INVALID_USAGE(); |
1458 | 0 | } |
1459 | 0 | break; |
1460 | | |
1461 | 0 | case certUsageAnyCA: |
1462 | 0 | case certUsageProtectedObjectSigner: |
1463 | 0 | case certUsageUserCertImport: |
1464 | 0 | case certUsageVerifyCA: |
1465 | | /* these usages cannot be verified */ |
1466 | 0 | NEXT_USAGE(); |
1467 | |
|
1468 | 0 | default: |
1469 | 0 | PORT_Assert(0); |
1470 | 0 | requiredKeyUsage = 0; |
1471 | 0 | requiredCertType = 0; |
1472 | 0 | INVALID_USAGE(); |
1473 | 0 | } |
1474 | 0 | if (CERT_CheckKeyUsage(cert, requiredKeyUsage) != SECSuccess) { |
1475 | 0 | if (PR_TRUE == requiredUsage) { |
1476 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_KEY_USAGE); |
1477 | 0 | } |
1478 | 0 | LOG_ERROR(log, cert, 0, requiredKeyUsage); |
1479 | 0 | INVALID_USAGE(); |
1480 | 0 | } |
1481 | 0 | if (!(certType & requiredCertType)) { |
1482 | 0 | if (PR_TRUE == requiredUsage) { |
1483 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_CERT_TYPE); |
1484 | 0 | } |
1485 | 0 | LOG_ERROR(log, cert, 0, requiredCertType); |
1486 | 0 | INVALID_USAGE(); |
1487 | 0 | } |
1488 | | |
1489 | 0 | rv = cert_CheckLeafTrust(cert, certUsage, &flags, &trusted); |
1490 | 0 | if (rv == SECFailure) { |
1491 | 0 | if (PR_TRUE == requiredUsage) { |
1492 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_CERT); |
1493 | 0 | } |
1494 | 0 | LOG_ERROR(log, cert, 0, flags); |
1495 | 0 | INVALID_USAGE(); |
1496 | 0 | } else if (trusted) { |
1497 | 0 | VALID_USAGE(); |
1498 | 0 | } |
1499 | | |
1500 | 0 | if (PR_TRUE == revoked || PR_TRUE == sigerror) { |
1501 | 0 | INVALID_USAGE(); |
1502 | 0 | } |
1503 | | |
1504 | 0 | rv = cert_VerifyCertChain(handle, cert, |
1505 | 0 | checkSig, &sigerror, |
1506 | 0 | certUsage, t, wincx, log, |
1507 | 0 | &revoked); |
1508 | |
|
1509 | 0 | if (rv != SECSuccess) { |
1510 | | /* EXIT_IF_NOT_LOGGING(log); XXX ???? */ |
1511 | 0 | INVALID_USAGE(); |
1512 | 0 | } |
1513 | | |
1514 | | /* |
1515 | | * Check OCSP revocation status, but only if the cert we are checking |
1516 | | * is not a status responder itself. We only do this in the case |
1517 | | * where we checked the cert chain (above); explicit trust "wins" |
1518 | | * (avoids status checking, just as it avoids CRL checking) by |
1519 | | * bypassing this code. |
1520 | | */ |
1521 | | |
1522 | 0 | if (PR_FALSE == checkedOCSP) { |
1523 | 0 | checkedOCSP = PR_TRUE; /* only check OCSP once */ |
1524 | 0 | statusConfig = CERT_GetStatusConfig(handle); |
1525 | 0 | if (requiredUsages != certificateUsageStatusResponder && |
1526 | 0 | statusConfig != NULL) { |
1527 | 0 | if (statusConfig->statusChecker != NULL) { |
1528 | 0 | rv = (*statusConfig->statusChecker)(handle, cert, |
1529 | 0 | t, wincx); |
1530 | 0 | if (rv != SECSuccess) { |
1531 | 0 | LOG_ERROR(log, cert, 0, 0); |
1532 | 0 | revoked = PR_TRUE; |
1533 | 0 | INVALID_USAGE(); |
1534 | 0 | } |
1535 | 0 | } |
1536 | 0 | } |
1537 | 0 | } |
1538 | | |
1539 | 0 | NEXT_USAGE(); |
1540 | 0 | } |
1541 | | |
1542 | 0 | loser: |
1543 | 0 | return (valid); |
1544 | 0 | } |
1545 | | |
1546 | | SECStatus |
1547 | | CERT_VerifyCert(CERTCertDBHandle *handle, CERTCertificate *cert, |
1548 | | PRBool checkSig, SECCertUsage certUsage, PRTime t, |
1549 | | void *wincx, CERTVerifyLog *log) |
1550 | 0 | { |
1551 | 0 | return cert_VerifyCertWithFlags(handle, cert, checkSig, certUsage, t, |
1552 | 0 | CERT_VERIFYCERT_USE_DEFAULTS, wincx, log); |
1553 | 0 | } |
1554 | | |
1555 | | SECStatus |
1556 | | cert_VerifyCertWithFlags(CERTCertDBHandle *handle, CERTCertificate *cert, |
1557 | | PRBool checkSig, SECCertUsage certUsage, PRTime t, |
1558 | | PRUint32 flags, void *wincx, CERTVerifyLog *log) |
1559 | 0 | { |
1560 | 0 | SECStatus rv; |
1561 | 0 | unsigned int requiredKeyUsage; |
1562 | 0 | unsigned int requiredCertType; |
1563 | 0 | unsigned int failedFlags; |
1564 | 0 | unsigned int certType; |
1565 | 0 | PRBool trusted; |
1566 | 0 | PRBool allowOverride; |
1567 | 0 | SECCertTimeValidity validity; |
1568 | 0 | CERTStatusConfig *statusConfig; |
1569 | |
|
1570 | | #ifdef notdef |
1571 | | /* check if this cert is in the Evil list */ |
1572 | | rv = CERT_CheckForEvilCert(cert); |
1573 | | if (rv != SECSuccess) { |
1574 | | PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE); |
1575 | | LOG_ERROR_OR_EXIT(log, cert, 0, 0); |
1576 | | } |
1577 | | #endif |
1578 | | |
1579 | | /* make sure that the cert is valid at time t */ |
1580 | 0 | allowOverride = (PRBool)((certUsage == certUsageSSLServer) || |
1581 | 0 | (certUsage == certUsageSSLServerWithStepUp) || |
1582 | 0 | (certUsage == certUsageIPsec)); |
1583 | 0 | validity = CERT_CheckCertValidTimes(cert, t, allowOverride); |
1584 | 0 | if (validity != secCertTimeValid) { |
1585 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, validity); |
1586 | 0 | } |
1587 | | |
1588 | | /* check key usage and netscape cert type */ |
1589 | 0 | cert_GetCertType(cert); |
1590 | 0 | certType = cert->nsCertType; |
1591 | 0 | switch (certUsage) { |
1592 | 0 | case certUsageSSLClient: |
1593 | 0 | case certUsageSSLServer: |
1594 | 0 | case certUsageSSLServerWithStepUp: |
1595 | 0 | case certUsageIPsec: |
1596 | 0 | case certUsageSSLCA: |
1597 | 0 | case certUsageEmailSigner: |
1598 | 0 | case certUsageEmailRecipient: |
1599 | 0 | case certUsageObjectSigner: |
1600 | 0 | case certUsageStatusResponder: |
1601 | 0 | rv = CERT_KeyUsageAndTypeForCertUsage(certUsage, PR_FALSE, |
1602 | 0 | &requiredKeyUsage, |
1603 | 0 | &requiredCertType); |
1604 | 0 | if (rv != SECSuccess) { |
1605 | 0 | PORT_Assert(0); |
1606 | 0 | EXIT_IF_NOT_LOGGING(log); |
1607 | 0 | requiredKeyUsage = 0; |
1608 | 0 | requiredCertType = 0; |
1609 | 0 | } |
1610 | 0 | break; |
1611 | 0 | case certUsageVerifyCA: |
1612 | 0 | case certUsageAnyCA: |
1613 | 0 | requiredKeyUsage = KU_KEY_CERT_SIGN; |
1614 | 0 | requiredCertType = NS_CERT_TYPE_CA; |
1615 | 0 | if (!(certType & NS_CERT_TYPE_CA)) { |
1616 | 0 | certType |= NS_CERT_TYPE_CA; |
1617 | 0 | } |
1618 | 0 | break; |
1619 | 0 | default: |
1620 | 0 | PORT_Assert(0); |
1621 | 0 | EXIT_IF_NOT_LOGGING(log); |
1622 | 0 | requiredKeyUsage = 0; |
1623 | 0 | requiredCertType = 0; |
1624 | 0 | } |
1625 | 0 | if (CERT_CheckKeyUsage(cert, requiredKeyUsage) != SECSuccess) { |
1626 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_KEY_USAGE); |
1627 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, requiredKeyUsage); |
1628 | 0 | } |
1629 | 0 | if (!(certType & requiredCertType)) { |
1630 | 0 | PORT_SetError(SEC_ERROR_INADEQUATE_CERT_TYPE); |
1631 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, requiredCertType); |
1632 | 0 | } |
1633 | | |
1634 | 0 | rv = cert_CheckLeafTrust(cert, certUsage, &failedFlags, &trusted); |
1635 | 0 | if (rv == SECFailure) { |
1636 | 0 | PORT_SetError(SEC_ERROR_UNTRUSTED_CERT); |
1637 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, failedFlags); |
1638 | 0 | } else if (trusted) { |
1639 | 0 | goto done; |
1640 | 0 | } |
1641 | | |
1642 | 0 | rv = CERT_VerifyCertChain(handle, cert, checkSig, certUsage, |
1643 | 0 | t, wincx, log); |
1644 | 0 | if (rv != SECSuccess) { |
1645 | 0 | EXIT_IF_NOT_LOGGING(log); |
1646 | 0 | } |
1647 | | |
1648 | | /* |
1649 | | * Check revocation status, but only if the cert we are checking is not a |
1650 | | * status responder itself and the caller did not ask us to skip the check. |
1651 | | * We only do this in the case where we checked the cert chain (above); |
1652 | | * explicit trust "wins" (avoids status checking, just as it avoids CRL |
1653 | | * checking, which is all done inside VerifyCertChain) by bypassing this |
1654 | | * code. |
1655 | | */ |
1656 | 0 | if (!(flags & CERT_VERIFYCERT_SKIP_OCSP) && |
1657 | 0 | certUsage != certUsageStatusResponder) { |
1658 | 0 | statusConfig = CERT_GetStatusConfig(handle); |
1659 | 0 | if (statusConfig && statusConfig->statusChecker) { |
1660 | 0 | rv = (*statusConfig->statusChecker)(handle, cert, |
1661 | 0 | t, wincx); |
1662 | 0 | if (rv != SECSuccess) { |
1663 | 0 | LOG_ERROR_OR_EXIT(log, cert, 0, 0); |
1664 | 0 | } |
1665 | 0 | } |
1666 | 0 | } |
1667 | | |
1668 | 0 | done: |
1669 | 0 | if (log && log->head) { |
1670 | 0 | return SECFailure; |
1671 | 0 | } |
1672 | 0 | return (SECSuccess); |
1673 | | |
1674 | 0 | loser: |
1675 | 0 | rv = SECFailure; |
1676 | |
|
1677 | 0 | return (rv); |
1678 | 0 | } |
1679 | | |
1680 | | /* |
1681 | | * verify a certificate by checking if its valid and that we |
1682 | | * trust the issuer. Verify time against now. |
1683 | | */ |
1684 | | SECStatus |
1685 | | CERT_VerifyCertificateNow(CERTCertDBHandle *handle, CERTCertificate *cert, |
1686 | | PRBool checkSig, SECCertificateUsage requiredUsages, |
1687 | | void *wincx, SECCertificateUsage *returnedUsages) |
1688 | 0 | { |
1689 | 0 | return (CERT_VerifyCertificate(handle, cert, checkSig, |
1690 | 0 | requiredUsages, PR_Now(), wincx, NULL, returnedUsages)); |
1691 | 0 | } |
1692 | | |
1693 | | /* obsolete, do not use for new code */ |
1694 | | SECStatus |
1695 | | CERT_VerifyCertNow(CERTCertDBHandle *handle, CERTCertificate *cert, |
1696 | | PRBool checkSig, SECCertUsage certUsage, void *wincx) |
1697 | 0 | { |
1698 | 0 | return (CERT_VerifyCert(handle, cert, checkSig, |
1699 | 0 | certUsage, PR_Now(), wincx, NULL)); |
1700 | 0 | } |
1701 | | |
1702 | | /* [ FROM pcertdb.c ] */ |
1703 | | /* |
1704 | | * Supported usage values and types: |
1705 | | * certUsageSSLClient |
1706 | | * certUsageSSLServer |
1707 | | * certUsageSSLServerWithStepUp |
1708 | | * certUsageIPsec |
1709 | | * certUsageEmailSigner |
1710 | | * certUsageEmailRecipient |
1711 | | * certUsageObjectSigner |
1712 | | */ |
1713 | | |
1714 | | CERTCertificate * |
1715 | | CERT_FindMatchingCert(CERTCertDBHandle *handle, SECItem *derName, |
1716 | | CERTCertOwner owner, SECCertUsage usage, |
1717 | | PRBool preferTrusted, PRTime validTime, PRBool validOnly) |
1718 | 0 | { |
1719 | 0 | CERTCertList *certList = NULL; |
1720 | 0 | CERTCertificate *cert = NULL; |
1721 | 0 | CERTCertTrust certTrust; |
1722 | 0 | unsigned int requiredTrustFlags; |
1723 | 0 | SECTrustType requiredTrustType; |
1724 | 0 | unsigned int flags; |
1725 | |
|
1726 | 0 | PRBool lookingForCA = PR_FALSE; |
1727 | 0 | SECStatus rv; |
1728 | 0 | CERTCertListNode *node; |
1729 | 0 | CERTCertificate *saveUntrustedCA = NULL; |
1730 | | |
1731 | | /* if preferTrusted is set, must be a CA cert */ |
1732 | 0 | PORT_Assert(!(preferTrusted && (owner != certOwnerCA))); |
1733 | |
|
1734 | 0 | if (owner == certOwnerCA) { |
1735 | 0 | lookingForCA = PR_TRUE; |
1736 | 0 | if (preferTrusted) { |
1737 | 0 | rv = CERT_TrustFlagsForCACertUsage(usage, &requiredTrustFlags, |
1738 | 0 | &requiredTrustType); |
1739 | 0 | if (rv != SECSuccess) { |
1740 | 0 | goto loser; |
1741 | 0 | } |
1742 | 0 | requiredTrustFlags |= CERTDB_VALID_CA; |
1743 | 0 | } |
1744 | 0 | } |
1745 | | |
1746 | 0 | certList = CERT_CreateSubjectCertList(NULL, handle, derName, validTime, |
1747 | 0 | validOnly); |
1748 | 0 | if (certList != NULL) { |
1749 | 0 | rv = CERT_FilterCertListByUsage(certList, usage, lookingForCA); |
1750 | 0 | if (rv != SECSuccess) { |
1751 | 0 | goto loser; |
1752 | 0 | } |
1753 | | |
1754 | 0 | node = CERT_LIST_HEAD(certList); |
1755 | |
|
1756 | 0 | while (!CERT_LIST_END(node, certList)) { |
1757 | 0 | cert = node->cert; |
1758 | | |
1759 | | /* looking for a trusted CA cert */ |
1760 | 0 | if ((owner == certOwnerCA) && preferTrusted && |
1761 | 0 | (requiredTrustType != trustTypeNone)) { |
1762 | |
|
1763 | 0 | if (CERT_GetCertTrust(cert, &certTrust) != SECSuccess) { |
1764 | 0 | flags = 0; |
1765 | 0 | } else { |
1766 | 0 | flags = SEC_GET_TRUST_FLAGS(&certTrust, requiredTrustType); |
1767 | 0 | } |
1768 | |
|
1769 | 0 | if ((flags & requiredTrustFlags) != requiredTrustFlags) { |
1770 | | /* cert is not trusted */ |
1771 | | /* if this is the first cert to get this far, then save |
1772 | | * it, so we can use it if we can't find a trusted one |
1773 | | */ |
1774 | 0 | if (saveUntrustedCA == NULL) { |
1775 | 0 | saveUntrustedCA = cert; |
1776 | 0 | } |
1777 | 0 | goto endloop; |
1778 | 0 | } |
1779 | 0 | } |
1780 | | /* if we got this far, then this cert meets all criteria */ |
1781 | 0 | break; |
1782 | | |
1783 | 0 | endloop: |
1784 | 0 | node = CERT_LIST_NEXT(node); |
1785 | 0 | cert = NULL; |
1786 | 0 | } |
1787 | | |
1788 | | /* use the saved one if we have it */ |
1789 | 0 | if (cert == NULL) { |
1790 | 0 | cert = saveUntrustedCA; |
1791 | 0 | } |
1792 | | |
1793 | | /* if we found one then bump the ref count before freeing the list */ |
1794 | 0 | if (cert != NULL) { |
1795 | | /* bump the ref count */ |
1796 | 0 | cert = CERT_DupCertificate(cert); |
1797 | 0 | } |
1798 | |
|
1799 | 0 | CERT_DestroyCertList(certList); |
1800 | 0 | } |
1801 | | |
1802 | 0 | return (cert); |
1803 | | |
1804 | 0 | loser: |
1805 | 0 | if (certList != NULL) { |
1806 | 0 | CERT_DestroyCertList(certList); |
1807 | 0 | } |
1808 | |
|
1809 | 0 | return (NULL); |
1810 | 0 | } |
1811 | | |
1812 | | /* [ From certdb.c ] */ |
1813 | | /* |
1814 | | * Filter a list of certificates, removing those certs that do not have |
1815 | | * one of the named CA certs somewhere in their cert chain. |
1816 | | * |
1817 | | * "certList" - the list of certificates to filter |
1818 | | * "nCANames" - number of CA names |
1819 | | * "caNames" - array of CA names in string(rfc 1485) form |
1820 | | * "usage" - what use the certs are for, this is used when |
1821 | | * selecting CA certs |
1822 | | */ |
1823 | | SECStatus |
1824 | | CERT_FilterCertListByCANames(CERTCertList *certList, int nCANames, |
1825 | | char **caNames, SECCertUsage usage) |
1826 | 0 | { |
1827 | 0 | CERTCertificate *issuerCert = NULL; |
1828 | 0 | CERTCertificate *subjectCert; |
1829 | 0 | CERTCertListNode *node, *freenode; |
1830 | 0 | CERTCertificate *cert; |
1831 | 0 | int n; |
1832 | 0 | char **names; |
1833 | 0 | PRBool found; |
1834 | 0 | PRTime time; |
1835 | |
|
1836 | 0 | if (nCANames <= 0) { |
1837 | 0 | return (SECSuccess); |
1838 | 0 | } |
1839 | | |
1840 | 0 | time = PR_Now(); |
1841 | |
|
1842 | 0 | node = CERT_LIST_HEAD(certList); |
1843 | |
|
1844 | 0 | while (!CERT_LIST_END(node, certList)) { |
1845 | 0 | cert = node->cert; |
1846 | |
|
1847 | 0 | subjectCert = CERT_DupCertificate(cert); |
1848 | | |
1849 | | /* traverse the CA certs for this cert */ |
1850 | 0 | found = PR_FALSE; |
1851 | 0 | while (subjectCert != NULL) { |
1852 | 0 | n = nCANames; |
1853 | 0 | names = caNames; |
1854 | |
|
1855 | 0 | if (subjectCert->issuerName != NULL) { |
1856 | 0 | while (n > 0) { |
1857 | 0 | if (PORT_Strcmp(*names, subjectCert->issuerName) == 0) { |
1858 | 0 | found = PR_TRUE; |
1859 | 0 | break; |
1860 | 0 | } |
1861 | | |
1862 | 0 | n--; |
1863 | 0 | names++; |
1864 | 0 | } |
1865 | 0 | } |
1866 | |
|
1867 | 0 | if (found) { |
1868 | 0 | break; |
1869 | 0 | } |
1870 | | |
1871 | 0 | issuerCert = CERT_FindCertIssuer(subjectCert, time, usage); |
1872 | 0 | if (issuerCert == subjectCert) { |
1873 | 0 | CERT_DestroyCertificate(issuerCert); |
1874 | 0 | issuerCert = NULL; |
1875 | 0 | break; |
1876 | 0 | } |
1877 | 0 | CERT_DestroyCertificate(subjectCert); |
1878 | 0 | subjectCert = issuerCert; |
1879 | 0 | } |
1880 | 0 | CERT_DestroyCertificate(subjectCert); |
1881 | 0 | if (!found) { |
1882 | | /* CA was not found, so remove this cert from the list */ |
1883 | 0 | freenode = node; |
1884 | 0 | node = CERT_LIST_NEXT(node); |
1885 | 0 | CERT_RemoveCertListNode(freenode); |
1886 | 0 | } else { |
1887 | | /* CA was found, so leave it in the list */ |
1888 | 0 | node = CERT_LIST_NEXT(node); |
1889 | 0 | } |
1890 | 0 | } |
1891 | |
|
1892 | 0 | return (SECSuccess); |
1893 | 0 | } |
1894 | | |
1895 | | /* |
1896 | | * Given a certificate, return a string containing the nickname, and possibly |
1897 | | * one of the validity strings, based on the current validity state of the |
1898 | | * certificate. |
1899 | | * |
1900 | | * "arena" - arena to allocate returned string from. If NULL, then heap |
1901 | | * is used. |
1902 | | * "cert" - the cert to get nickname from |
1903 | | * "expiredString" - the string to append to the nickname if the cert is |
1904 | | * expired. |
1905 | | * "notYetGoodString" - the string to append to the nickname if the cert is |
1906 | | * not yet good. |
1907 | | */ |
1908 | | char * |
1909 | | CERT_GetCertNicknameWithValidity(PLArenaPool *arena, CERTCertificate *cert, |
1910 | | char *expiredString, char *notYetGoodString) |
1911 | 0 | { |
1912 | 0 | SECCertTimeValidity validity; |
1913 | 0 | char *nickname = NULL, *tmpstr = NULL; |
1914 | 0 | const char *srcNickname = cert->nickname; |
1915 | 0 | if (!srcNickname) { |
1916 | 0 | srcNickname = "{???}"; |
1917 | 0 | } |
1918 | |
|
1919 | 0 | validity = CERT_CheckCertValidTimes(cert, PR_Now(), PR_FALSE); |
1920 | | |
1921 | | /* if the cert is good, then just use the nickname directly */ |
1922 | 0 | if (validity == secCertTimeValid) { |
1923 | 0 | if (arena == NULL) { |
1924 | 0 | nickname = PORT_Strdup(srcNickname); |
1925 | 0 | } else { |
1926 | 0 | nickname = PORT_ArenaStrdup(arena, srcNickname); |
1927 | 0 | } |
1928 | |
|
1929 | 0 | if (nickname == NULL) { |
1930 | 0 | goto loser; |
1931 | 0 | } |
1932 | 0 | } else { |
1933 | | |
1934 | | /* if the cert is not valid, then tack one of the strings on the |
1935 | | * end |
1936 | | */ |
1937 | 0 | if (validity == secCertTimeExpired) { |
1938 | 0 | tmpstr = PR_smprintf("%s%s", srcNickname, |
1939 | 0 | expiredString); |
1940 | 0 | } else if (validity == secCertTimeNotValidYet) { |
1941 | | /* not yet valid */ |
1942 | 0 | tmpstr = PR_smprintf("%s%s", srcNickname, |
1943 | 0 | notYetGoodString); |
1944 | 0 | } else { |
1945 | | /* undetermined */ |
1946 | 0 | tmpstr = PR_smprintf("%s", |
1947 | 0 | "(NULL) (Validity Unknown)"); |
1948 | 0 | } |
1949 | |
|
1950 | 0 | if (tmpstr == NULL) { |
1951 | 0 | goto loser; |
1952 | 0 | } |
1953 | | |
1954 | 0 | if (arena) { |
1955 | | /* copy the string into the arena and free the malloc'd one */ |
1956 | 0 | nickname = PORT_ArenaStrdup(arena, tmpstr); |
1957 | 0 | PORT_Free(tmpstr); |
1958 | 0 | } else { |
1959 | 0 | nickname = tmpstr; |
1960 | 0 | } |
1961 | 0 | if (nickname == NULL) { |
1962 | 0 | goto loser; |
1963 | 0 | } |
1964 | 0 | } |
1965 | 0 | return (nickname); |
1966 | | |
1967 | 0 | loser: |
1968 | 0 | return (NULL); |
1969 | 0 | } |
1970 | | |
1971 | | /* |
1972 | | * Collect the nicknames from all certs in a CertList. If the cert is not |
1973 | | * valid, append a string to that nickname. |
1974 | | * |
1975 | | * "certList" - the list of certificates |
1976 | | * "expiredString" - the string to append to the nickname of any expired cert |
1977 | | * "notYetGoodString" - the string to append to the nickname of any cert |
1978 | | * that is not yet valid |
1979 | | */ |
1980 | | CERTCertNicknames * |
1981 | | CERT_NicknameStringsFromCertList(CERTCertList *certList, char *expiredString, |
1982 | | char *notYetGoodString) |
1983 | 0 | { |
1984 | 0 | CERTCertNicknames *names; |
1985 | 0 | PLArenaPool *arena; |
1986 | 0 | CERTCertListNode *node; |
1987 | 0 | char **nn; |
1988 | | |
1989 | | /* allocate an arena */ |
1990 | 0 | arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE); |
1991 | 0 | if (arena == NULL) { |
1992 | 0 | return (NULL); |
1993 | 0 | } |
1994 | | |
1995 | | /* allocate the structure */ |
1996 | 0 | names = PORT_ArenaAlloc(arena, sizeof(CERTCertNicknames)); |
1997 | 0 | if (names == NULL) { |
1998 | 0 | goto loser; |
1999 | 0 | } |
2000 | | |
2001 | | /* init the structure */ |
2002 | 0 | names->arena = arena; |
2003 | 0 | names->head = NULL; |
2004 | 0 | names->numnicknames = 0; |
2005 | 0 | names->nicknames = NULL; |
2006 | 0 | names->totallen = 0; |
2007 | | |
2008 | | /* count the certs in the list */ |
2009 | 0 | node = CERT_LIST_HEAD(certList); |
2010 | 0 | while (!CERT_LIST_END(node, certList)) { |
2011 | 0 | names->numnicknames++; |
2012 | 0 | node = CERT_LIST_NEXT(node); |
2013 | 0 | } |
2014 | | |
2015 | | /* allocate nicknames array */ |
2016 | 0 | names->nicknames = PORT_ArenaAlloc(arena, |
2017 | 0 | sizeof(char *) * names->numnicknames); |
2018 | 0 | if (names->nicknames == NULL) { |
2019 | 0 | goto loser; |
2020 | 0 | } |
2021 | | |
2022 | | /* just in case printf can't deal with null strings */ |
2023 | 0 | if (expiredString == NULL) { |
2024 | 0 | expiredString = ""; |
2025 | 0 | } |
2026 | |
|
2027 | 0 | if (notYetGoodString == NULL) { |
2028 | 0 | notYetGoodString = ""; |
2029 | 0 | } |
2030 | | |
2031 | | /* traverse the list of certs and collect the nicknames */ |
2032 | 0 | nn = names->nicknames; |
2033 | 0 | node = CERT_LIST_HEAD(certList); |
2034 | 0 | while (!CERT_LIST_END(node, certList)) { |
2035 | 0 | *nn = CERT_GetCertNicknameWithValidity(arena, node->cert, |
2036 | 0 | expiredString, |
2037 | 0 | notYetGoodString); |
2038 | 0 | if (*nn == NULL) { |
2039 | 0 | goto loser; |
2040 | 0 | } |
2041 | | |
2042 | 0 | names->totallen += PORT_Strlen(*nn); |
2043 | |
|
2044 | 0 | nn++; |
2045 | 0 | node = CERT_LIST_NEXT(node); |
2046 | 0 | } |
2047 | | |
2048 | 0 | return (names); |
2049 | | |
2050 | 0 | loser: |
2051 | 0 | PORT_FreeArena(arena, PR_FALSE); |
2052 | 0 | return (NULL); |
2053 | 0 | } |
2054 | | |
2055 | | /* |
2056 | | * Extract the nickname from a nickmake string that may have either |
2057 | | * expiredString or notYetGoodString appended. |
2058 | | * |
2059 | | * Args: |
2060 | | * "namestring" - the string containing the nickname, and possibly |
2061 | | * one of the validity label strings |
2062 | | * "expiredString" - the expired validity label string |
2063 | | * "notYetGoodString" - the not yet good validity label string |
2064 | | * |
2065 | | * Returns the raw nickname |
2066 | | */ |
2067 | | char * |
2068 | | CERT_ExtractNicknameString(char *namestring, char *expiredString, |
2069 | | char *notYetGoodString) |
2070 | 0 | { |
2071 | 0 | int explen, nyglen, namelen; |
2072 | 0 | int retlen; |
2073 | 0 | char *retstr; |
2074 | |
|
2075 | 0 | namelen = PORT_Strlen(namestring); |
2076 | 0 | explen = PORT_Strlen(expiredString); |
2077 | 0 | nyglen = PORT_Strlen(notYetGoodString); |
2078 | |
|
2079 | 0 | if (namelen > explen) { |
2080 | 0 | if (PORT_Strcmp(expiredString, &namestring[namelen - explen]) == 0) { |
2081 | 0 | retlen = namelen - explen; |
2082 | 0 | retstr = (char *)PORT_Alloc(retlen + 1); |
2083 | 0 | if (retstr == NULL) { |
2084 | 0 | goto loser; |
2085 | 0 | } |
2086 | | |
2087 | 0 | PORT_Memcpy(retstr, namestring, retlen); |
2088 | 0 | retstr[retlen] = '\0'; |
2089 | 0 | goto done; |
2090 | 0 | } |
2091 | 0 | } |
2092 | | |
2093 | 0 | if (namelen > nyglen) { |
2094 | 0 | if (PORT_Strcmp(notYetGoodString, &namestring[namelen - nyglen]) == 0) { |
2095 | 0 | retlen = namelen - nyglen; |
2096 | 0 | retstr = (char *)PORT_Alloc(retlen + 1); |
2097 | 0 | if (retstr == NULL) { |
2098 | 0 | goto loser; |
2099 | 0 | } |
2100 | | |
2101 | 0 | PORT_Memcpy(retstr, namestring, retlen); |
2102 | 0 | retstr[retlen] = '\0'; |
2103 | 0 | goto done; |
2104 | 0 | } |
2105 | 0 | } |
2106 | | |
2107 | | /* if name string is shorter than either invalid string, then it must |
2108 | | * be a raw nickname |
2109 | | */ |
2110 | 0 | retstr = PORT_Strdup(namestring); |
2111 | |
|
2112 | 0 | done: |
2113 | 0 | return (retstr); |
2114 | | |
2115 | 0 | loser: |
2116 | 0 | return (NULL); |
2117 | 0 | } |
2118 | | |
2119 | | CERTCertList * |
2120 | | CERT_GetCertChainFromCert(CERTCertificate *cert, PRTime time, SECCertUsage usage) |
2121 | 0 | { |
2122 | 0 | CERTCertList *chain = NULL; |
2123 | 0 | int count = 0; |
2124 | |
|
2125 | 0 | if (NULL == cert) { |
2126 | 0 | return NULL; |
2127 | 0 | } |
2128 | | |
2129 | 0 | cert = CERT_DupCertificate(cert); |
2130 | 0 | if (NULL == cert) { |
2131 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
2132 | 0 | return NULL; |
2133 | 0 | } |
2134 | | |
2135 | 0 | chain = CERT_NewCertList(); |
2136 | 0 | if (NULL == chain) { |
2137 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
2138 | 0 | return NULL; |
2139 | 0 | } |
2140 | | |
2141 | 0 | while (cert != NULL && ++count <= CERT_MAX_CERT_CHAIN) { |
2142 | 0 | if (SECSuccess != CERT_AddCertToListTail(chain, cert)) { |
2143 | | /* return partial chain */ |
2144 | 0 | PORT_SetError(SEC_ERROR_NO_MEMORY); |
2145 | 0 | return chain; |
2146 | 0 | } |
2147 | | |
2148 | 0 | if (cert->isRoot) { |
2149 | | /* return complete chain */ |
2150 | 0 | return chain; |
2151 | 0 | } |
2152 | | |
2153 | 0 | cert = CERT_FindCertIssuer(cert, time, usage); |
2154 | 0 | } |
2155 | | |
2156 | | /* return partial chain */ |
2157 | 0 | PORT_SetError(SEC_ERROR_UNKNOWN_ISSUER); |
2158 | 0 | return chain; |
2159 | 0 | } |