/src/nss/lib/freebl/ecl/ecp_jm.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* This Source Code Form is subject to the terms of the Mozilla Public | 
| 2 |  |  * License, v. 2.0. If a copy of the MPL was not distributed with this | 
| 3 |  |  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | 
| 4 |  |  | 
| 5 |  | #include "ecp.h" | 
| 6 |  | #include "ecl-priv.h" | 
| 7 |  | #include "mplogic.h" | 
| 8 |  | #include <stdlib.h> | 
| 9 |  |  | 
| 10 | 0 | #define MAX_SCRATCH 6 | 
| 11 |  |  | 
| 12 |  | /* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses | 
| 13 |  |  * Modified Jacobian coordinates. | 
| 14 |  |  * | 
| 15 |  |  * Assumes input is already field-encoded using field_enc, and returns | 
| 16 |  |  * output that is still field-encoded. | 
| 17 |  |  * | 
| 18 |  |  */ | 
| 19 |  | static mp_err | 
| 20 |  | ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz, | 
| 21 |  |                  const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz, | 
| 22 |  |                  mp_int *raz4, mp_int scratch[], const ECGroup *group) | 
| 23 | 0 | { | 
| 24 | 0 |     mp_err res = MP_OKAY; | 
| 25 | 0 |     mp_int *t0, *t1, *M, *S; | 
| 26 |  | 
 | 
| 27 | 0 |     t0 = &scratch[0]; | 
| 28 | 0 |     t1 = &scratch[1]; | 
| 29 | 0 |     M = &scratch[2]; | 
| 30 | 0 |     S = &scratch[3]; | 
| 31 |  | 
 | 
| 32 |  | #if MAX_SCRATCH < 4 | 
| 33 |  | #error "Scratch array defined too small " | 
| 34 |  | #endif | 
| 35 |  |  | 
| 36 |  |     /* Check for point at infinity */ | 
| 37 | 0 |     if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { | 
| 38 |  |         /* Set r = pt at infinity by setting rz = 0 */ | 
| 39 |  | 
 | 
| 40 | 0 |         MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); | 
| 41 | 0 |         goto CLEANUP; | 
| 42 | 0 |     } | 
| 43 |  |  | 
| 44 |  |     /* M = 3 (px^2) + a*(pz^4) */ | 
| 45 | 0 |     MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth)); | 
| 46 | 0 |     MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth)); | 
| 47 | 0 |     MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth)); | 
| 48 | 0 |     MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth)); | 
| 49 |  |  | 
| 50 |  |     /* rz = 2 * py * pz */ | 
| 51 | 0 |     MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth)); | 
| 52 | 0 |     MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth)); | 
| 53 |  |  | 
| 54 |  |     /* t0 = 2y^2 , t1 = 8y^4 */ | 
| 55 | 0 |     MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth)); | 
| 56 | 0 |     MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth)); | 
| 57 | 0 |     MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth)); | 
| 58 | 0 |     MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth)); | 
| 59 |  |  | 
| 60 |  |     /* S = 4 * px * py^2 = 2 * px * t0 */ | 
| 61 | 0 |     MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth)); | 
| 62 | 0 |     MP_CHECKOK(group->meth->field_add(S, S, S, group->meth)); | 
| 63 |  |  | 
| 64 |  |     /* rx = M^2 - 2S */ | 
| 65 | 0 |     MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth)); | 
| 66 | 0 |     MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); | 
| 67 | 0 |     MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); | 
| 68 |  |  | 
| 69 |  |     /* ry = M * (S - rx) - t1 */ | 
| 70 | 0 |     MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth)); | 
| 71 | 0 |     MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth)); | 
| 72 | 0 |     MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth)); | 
| 73 |  |  | 
| 74 |  |     /* ra*z^4 = 2*t1*(apz4) */ | 
| 75 | 0 |     MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth)); | 
| 76 | 0 |     MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth)); | 
| 77 |  |  | 
| 78 | 0 | CLEANUP: | 
| 79 | 0 |     return res; | 
| 80 | 0 | } | 
| 81 |  |  | 
| 82 |  | /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is | 
| 83 |  |  * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical. | 
| 84 |  |  * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is | 
| 85 |  |  * already field-encoded using field_enc, and returns output that is still | 
| 86 |  |  * field-encoded. */ | 
| 87 |  | static mp_err | 
| 88 |  | ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, | 
| 89 |  |                      const mp_int *paz4, const mp_int *qx, | 
| 90 |  |                      const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, | 
| 91 |  |                      mp_int *raz4, mp_int scratch[], const ECGroup *group) | 
| 92 | 0 | { | 
| 93 | 0 |     mp_err res = MP_OKAY; | 
| 94 | 0 |     mp_int *A, *B, *C, *D, *C2, *C3; | 
| 95 |  | 
 | 
| 96 | 0 |     A = &scratch[0]; | 
| 97 | 0 |     B = &scratch[1]; | 
| 98 | 0 |     C = &scratch[2]; | 
| 99 | 0 |     D = &scratch[3]; | 
| 100 | 0 |     C2 = &scratch[4]; | 
| 101 | 0 |     C3 = &scratch[5]; | 
| 102 |  | 
 | 
| 103 |  | #if MAX_SCRATCH < 6 | 
| 104 |  | #error "Scratch array defined too small " | 
| 105 |  | #endif | 
| 106 |  |  | 
| 107 |  |     /* If either P or Q is the point at infinity, then return the other | 
| 108 |  |      * point */ | 
| 109 | 0 |     if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { | 
| 110 | 0 |         MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); | 
| 111 | 0 |         MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); | 
| 112 | 0 |         MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); | 
| 113 | 0 |         MP_CHECKOK(group->meth->field_mul(raz4, &group->curvea, raz4, group->meth)); | 
| 114 | 0 |         goto CLEANUP; | 
| 115 | 0 |     } | 
| 116 | 0 |     if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { | 
| 117 | 0 |         MP_CHECKOK(mp_copy(px, rx)); | 
| 118 | 0 |         MP_CHECKOK(mp_copy(py, ry)); | 
| 119 | 0 |         MP_CHECKOK(mp_copy(pz, rz)); | 
| 120 | 0 |         MP_CHECKOK(mp_copy(paz4, raz4)); | 
| 121 | 0 |         goto CLEANUP; | 
| 122 | 0 |     } | 
| 123 |  |  | 
| 124 |  |     /* A = qx * pz^2, B = qy * pz^3 */ | 
| 125 | 0 |     MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth)); | 
| 126 | 0 |     MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth)); | 
| 127 | 0 |     MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth)); | 
| 128 | 0 |     MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth)); | 
| 129 |  |  | 
| 130 |  |     /* Check P == Q */ | 
| 131 | 0 |     if (mp_cmp(A, px) == 0) { | 
| 132 | 0 |         if (mp_cmp(B, py) == 0) { | 
| 133 |  |             /* If Px == Qx && Py == Qy, double P. */ | 
| 134 | 0 |             return ec_GFp_pt_dbl_jm(px, py, pz, paz4, rx, ry, rz, raz4, | 
| 135 | 0 |                                     scratch, group); | 
| 136 | 0 |         } | 
| 137 |  |         /* If Px == Qx && Py != Qy, return point at infinity. */ | 
| 138 | 0 |         return ec_GFp_pt_set_inf_jac(rx, ry, rz); | 
| 139 | 0 |     } | 
| 140 |  |  | 
| 141 |  |     /* C = A - px, D = B - py */ | 
| 142 | 0 |     MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth)); | 
| 143 | 0 |     MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth)); | 
| 144 |  |  | 
| 145 |  |     /* C2 = C^2, C3 = C^3 */ | 
| 146 | 0 |     MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth)); | 
| 147 | 0 |     MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth)); | 
| 148 |  |  | 
| 149 |  |     /* rz = pz * C */ | 
| 150 | 0 |     MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth)); | 
| 151 |  |  | 
| 152 |  |     /* C = px * C^2 */ | 
| 153 | 0 |     MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth)); | 
| 154 |  |     /* A = D^2 */ | 
| 155 | 0 |     MP_CHECKOK(group->meth->field_sqr(D, A, group->meth)); | 
| 156 |  |  | 
| 157 |  |     /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ | 
| 158 | 0 |     MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth)); | 
| 159 | 0 |     MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth)); | 
| 160 | 0 |     MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth)); | 
| 161 |  |  | 
| 162 |  |     /* C3 = py * C^3 */ | 
| 163 | 0 |     MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth)); | 
| 164 |  |  | 
| 165 |  |     /* ry = D * (px * C^2 - rx) - py * C^3 */ | 
| 166 | 0 |     MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth)); | 
| 167 | 0 |     MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth)); | 
| 168 | 0 |     MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth)); | 
| 169 |  |  | 
| 170 |  |     /* raz4 = a * rz^4 */ | 
| 171 | 0 |     MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); | 
| 172 | 0 |     MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); | 
| 173 | 0 |     MP_CHECKOK(group->meth->field_mul(raz4, &group->curvea, raz4, group->meth)); | 
| 174 | 0 | CLEANUP: | 
| 175 | 0 |     return res; | 
| 176 | 0 | } | 
| 177 |  |  | 
| 178 |  | /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic | 
| 179 |  |  * curve points P and R can be identical. Uses mixed Modified-Jacobian | 
| 180 |  |  * co-ordinates for doubling and Chudnovsky Jacobian coordinates for | 
| 181 |  |  * additions. Assumes input is already field-encoded using field_enc, and | 
| 182 |  |  * returns output that is still field-encoded. Uses 5-bit window NAF | 
| 183 |  |  * method (algorithm 11) for scalar-point multiplication from Brown, | 
| 184 |  |  * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic | 
| 185 |  |  * Curves Over Prime Fields. */ | 
| 186 |  | mp_err | 
| 187 |  | ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, | 
| 188 |  |                       mp_int *rx, mp_int *ry, const ECGroup *group) | 
| 189 | 0 | { | 
| 190 | 0 |     mp_err res = MP_OKAY; | 
| 191 | 0 |     mp_int precomp[16][2], rz, tpx, tpy; | 
| 192 | 0 |     mp_int raz4; | 
| 193 | 0 |     mp_int scratch[MAX_SCRATCH]; | 
| 194 | 0 |     signed char *naf = NULL; | 
| 195 | 0 |     int i, orderBitSize = 0; | 
| 196 |  | 
 | 
| 197 | 0 |     MP_DIGITS(&rz) = 0; | 
| 198 | 0 |     MP_DIGITS(&raz4) = 0; | 
| 199 | 0 |     MP_DIGITS(&tpx) = 0; | 
| 200 | 0 |     MP_DIGITS(&tpy) = 0; | 
| 201 | 0 |     for (i = 0; i < 16; i++) { | 
| 202 | 0 |         MP_DIGITS(&precomp[i][0]) = 0; | 
| 203 | 0 |         MP_DIGITS(&precomp[i][1]) = 0; | 
| 204 | 0 |     } | 
| 205 | 0 |     for (i = 0; i < MAX_SCRATCH; i++) { | 
| 206 | 0 |         MP_DIGITS(&scratch[i]) = 0; | 
| 207 | 0 |     } | 
| 208 |  | 
 | 
| 209 | 0 |     ARGCHK(group != NULL, MP_BADARG); | 
| 210 | 0 |     ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); | 
| 211 |  |  | 
| 212 |  |     /* initialize precomputation table */ | 
| 213 | 0 |     MP_CHECKOK(mp_init(&tpx)); | 
| 214 | 0 |     MP_CHECKOK(mp_init(&tpy)); | 
| 215 | 0 |     ; | 
| 216 | 0 |     MP_CHECKOK(mp_init(&rz)); | 
| 217 | 0 |     MP_CHECKOK(mp_init(&raz4)); | 
| 218 |  |  | 
| 219 | 0 |     for (i = 0; i < 16; i++) { | 
| 220 | 0 |         MP_CHECKOK(mp_init(&precomp[i][0])); | 
| 221 | 0 |         MP_CHECKOK(mp_init(&precomp[i][1])); | 
| 222 | 0 |     } | 
| 223 | 0 |     for (i = 0; i < MAX_SCRATCH; i++) { | 
| 224 | 0 |         MP_CHECKOK(mp_init(&scratch[i])); | 
| 225 | 0 |     } | 
| 226 |  |  | 
| 227 |  |     /* Set out[8] = P */ | 
| 228 | 0 |     MP_CHECKOK(mp_copy(px, &precomp[8][0])); | 
| 229 | 0 |     MP_CHECKOK(mp_copy(py, &precomp[8][1])); | 
| 230 |  |  | 
| 231 |  |     /* Set (tpx, tpy) = 2P */ | 
| 232 | 0 |     MP_CHECKOK(group->point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy, | 
| 233 | 0 |                                 group)); | 
| 234 |  |  | 
| 235 |  |     /* Set 3P, 5P, ..., 15P */ | 
| 236 | 0 |     for (i = 8; i < 15; i++) { | 
| 237 | 0 |         MP_CHECKOK(group->point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy, | 
| 238 | 0 |                                     &precomp[i + 1][0], &precomp[i + 1][1], | 
| 239 | 0 |                                     group)); | 
| 240 | 0 |     } | 
| 241 |  |  | 
| 242 |  |     /* Set -15P, -13P, ..., -P */ | 
| 243 | 0 |     for (i = 0; i < 8; i++) { | 
| 244 | 0 |         MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0])); | 
| 245 | 0 |         MP_CHECKOK(group->meth->field_neg(&precomp[15 - i][1], &precomp[i][1], | 
| 246 | 0 |                                           group->meth)); | 
| 247 | 0 |     } | 
| 248 |  |  | 
| 249 |  |     /* R = inf */ | 
| 250 | 0 |     MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); | 
| 251 |  |  | 
| 252 | 0 |     orderBitSize = mpl_significant_bits(&group->order); | 
| 253 |  |  | 
| 254 |  |     /* Allocate memory for NAF */ | 
| 255 | 0 |     naf = (signed char *)malloc(sizeof(signed char) * (orderBitSize + 1)); | 
| 256 | 0 |     if (naf == NULL) { | 
| 257 | 0 |         res = MP_MEM; | 
| 258 | 0 |         goto CLEANUP; | 
| 259 | 0 |     } | 
| 260 |  |  | 
| 261 |  |     /* Compute 5NAF */ | 
| 262 | 0 |     ec_compute_wNAF(naf, orderBitSize, n, 5); | 
| 263 |  |  | 
| 264 |  |     /* wNAF method */ | 
| 265 | 0 |     for (i = orderBitSize; i >= 0; i--) { | 
| 266 |  |         /* R = 2R */ | 
| 267 | 0 |         ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, | 
| 268 | 0 |                          &raz4, scratch, group); | 
| 269 | 0 |         if (naf[i] != 0) { | 
| 270 | 0 |             ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4, | 
| 271 | 0 |                                  &precomp[(naf[i] + 15) / 2][0], | 
| 272 | 0 |                                  &precomp[(naf[i] + 15) / 2][1], rx, ry, | 
| 273 | 0 |                                  &rz, &raz4, scratch, group); | 
| 274 | 0 |         } | 
| 275 | 0 |     } | 
| 276 |  |  | 
| 277 |  |     /* convert result S to affine coordinates */ | 
| 278 | 0 |     MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); | 
| 279 |  |  | 
| 280 | 0 | CLEANUP: | 
| 281 | 0 |     for (i = 0; i < MAX_SCRATCH; i++) { | 
| 282 | 0 |         mp_clear(&scratch[i]); | 
| 283 | 0 |     } | 
| 284 | 0 |     for (i = 0; i < 16; i++) { | 
| 285 | 0 |         mp_clear(&precomp[i][0]); | 
| 286 | 0 |         mp_clear(&precomp[i][1]); | 
| 287 | 0 |     } | 
| 288 | 0 |     mp_clear(&tpx); | 
| 289 | 0 |     mp_clear(&tpy); | 
| 290 | 0 |     mp_clear(&rz); | 
| 291 | 0 |     mp_clear(&raz4); | 
| 292 | 0 |     if (naf) { | 
| 293 | 0 |         memset(naf, 0, orderBitSize + 1); | 
| 294 | 0 |     } | 
| 295 | 0 |     free(naf); | 
| 296 | 0 |     return res; | 
| 297 | 0 | } |