/src/nspr/pr/src/misc/prdtoa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | | |
6 | | /* |
7 | | * This file is based on the third-party code dtoa.c. We minimize our |
8 | | * modifications to third-party code to make it easy to merge new versions. |
9 | | * The author of dtoa.c was not willing to add the parentheses suggested by |
10 | | * GCC, so we suppress these warnings. |
11 | | */ |
12 | | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) |
13 | | #pragma GCC diagnostic ignored "-Wparentheses" |
14 | | #endif |
15 | | |
16 | | #include "primpl.h" |
17 | | #include "prbit.h" |
18 | | |
19 | | #define MULTIPLE_THREADS |
20 | 0 | #define ACQUIRE_DTOA_LOCK(n) PR_Lock(dtoa_lock[n]) |
21 | 0 | #define FREE_DTOA_LOCK(n) PR_Unlock(dtoa_lock[n]) |
22 | | |
23 | | static PRLock *dtoa_lock[2]; |
24 | | |
25 | | void _PR_InitDtoa(void) |
26 | 1 | { |
27 | 1 | dtoa_lock[0] = PR_NewLock(); |
28 | 1 | dtoa_lock[1] = PR_NewLock(); |
29 | 1 | } |
30 | | |
31 | | void _PR_CleanupDtoa(void) |
32 | 0 | { |
33 | 0 | PR_DestroyLock(dtoa_lock[0]); |
34 | 0 | dtoa_lock[0] = NULL; |
35 | 0 | PR_DestroyLock(dtoa_lock[1]); |
36 | 0 | dtoa_lock[1] = NULL; |
37 | | |
38 | | /* FIXME: deal with freelist and p5s. */ |
39 | 0 | } |
40 | | |
41 | | #if !defined(__ARM_EABI__) \ |
42 | | && (defined(__arm) || defined(__arm__) || defined(__arm26__) \ |
43 | | || defined(__arm32__)) |
44 | | #define IEEE_ARM |
45 | | #elif defined(IS_LITTLE_ENDIAN) |
46 | | #define IEEE_8087 |
47 | | #else |
48 | | #define IEEE_MC68k |
49 | | #endif |
50 | | |
51 | 0 | #define Long PRInt32 |
52 | 0 | #define ULong PRUint32 |
53 | | #define NO_LONG_LONG |
54 | | |
55 | | #define No_Hex_NaN |
56 | | |
57 | | /**************************************************************** |
58 | | * |
59 | | * The author of this software is David M. Gay. |
60 | | * |
61 | | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
62 | | * |
63 | | * Permission to use, copy, modify, and distribute this software for any |
64 | | * purpose without fee is hereby granted, provided that this entire notice |
65 | | * is included in all copies of any software which is or includes a copy |
66 | | * or modification of this software and in all copies of the supporting |
67 | | * documentation for such software. |
68 | | * |
69 | | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
70 | | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
71 | | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
72 | | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
73 | | * |
74 | | ***************************************************************/ |
75 | | |
76 | | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
77 | | * with " at " changed at "@" and " dot " changed to "."). */ |
78 | | |
79 | | /* On a machine with IEEE extended-precision registers, it is |
80 | | * necessary to specify double-precision (53-bit) rounding precision |
81 | | * before invoking strtod or dtoa. If the machine uses (the equivalent |
82 | | * of) Intel 80x87 arithmetic, the call |
83 | | * _control87(PC_53, MCW_PC); |
84 | | * does this with many compilers. Whether this or another call is |
85 | | * appropriate depends on the compiler; for this to work, it may be |
86 | | * necessary to #include "float.h" or another system-dependent header |
87 | | * file. |
88 | | */ |
89 | | |
90 | | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
91 | | * |
92 | | * This strtod returns a nearest machine number to the input decimal |
93 | | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
94 | | * broken by the IEEE round-even rule. Otherwise ties are broken by |
95 | | * biased rounding (add half and chop). |
96 | | * |
97 | | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
98 | | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
99 | | * |
100 | | * Modifications: |
101 | | * |
102 | | * 1. We only require IEEE, IBM, or VAX double-precision |
103 | | * arithmetic (not IEEE double-extended). |
104 | | * 2. We get by with floating-point arithmetic in a case that |
105 | | * Clinger missed -- when we're computing d * 10^n |
106 | | * for a small integer d and the integer n is not too |
107 | | * much larger than 22 (the maximum integer k for which |
108 | | * we can represent 10^k exactly), we may be able to |
109 | | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
110 | | * 3. Rather than a bit-at-a-time adjustment of the binary |
111 | | * result in the hard case, we use floating-point |
112 | | * arithmetic to determine the adjustment to within |
113 | | * one bit; only in really hard cases do we need to |
114 | | * compute a second residual. |
115 | | * 4. Because of 3., we don't need a large table of powers of 10 |
116 | | * for ten-to-e (just some small tables, e.g. of 10^k |
117 | | * for 0 <= k <= 22). |
118 | | */ |
119 | | |
120 | | /* |
121 | | * #define IEEE_8087 for IEEE-arithmetic machines where the least |
122 | | * significant byte has the lowest address. |
123 | | * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
124 | | * significant byte has the lowest address. |
125 | | * #define IEEE_ARM for IEEE-arithmetic machines where the two words |
126 | | * in a double are stored in big endian order but the two shorts |
127 | | * in a word are still stored in little endian order. |
128 | | * #define Long int on machines with 32-bit ints and 64-bit longs. |
129 | | * #define IBM for IBM mainframe-style floating-point arithmetic. |
130 | | * #define VAX for VAX-style floating-point arithmetic (D_floating). |
131 | | * #define No_leftright to omit left-right logic in fast floating-point |
132 | | * computation of dtoa. |
133 | | * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
134 | | * and strtod and dtoa should round accordingly. |
135 | | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
136 | | * and Honor_FLT_ROUNDS is not #defined. |
137 | | * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
138 | | * that use extended-precision instructions to compute rounded |
139 | | * products and quotients) with IBM. |
140 | | * #define ROUND_BIASED for IEEE-format with biased rounding. |
141 | | * #define Inaccurate_Divide for IEEE-format with correctly rounded |
142 | | * products but inaccurate quotients, e.g., for Intel i860. |
143 | | * #define NO_LONG_LONG on machines that do not have a "long long" |
144 | | * integer type (of >= 64 bits). On such machines, you can |
145 | | * #define Just_16 to store 16 bits per 32-bit Long when doing |
146 | | * high-precision integer arithmetic. Whether this speeds things |
147 | | * up or slows things down depends on the machine and the number |
148 | | * being converted. If long long is available and the name is |
149 | | * something other than "long long", #define Llong to be the name, |
150 | | * and if "unsigned Llong" does not work as an unsigned version of |
151 | | * Llong, #define #ULLong to be the corresponding unsigned type. |
152 | | * #define KR_headers for old-style C function headers. |
153 | | * #define Bad_float_h if your system lacks a float.h or if it does not |
154 | | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
155 | | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
156 | | * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
157 | | * if memory is available and otherwise does something you deem |
158 | | * appropriate. If MALLOC is undefined, malloc will be invoked |
159 | | * directly -- and assumed always to succeed. Similarly, if you |
160 | | * want something other than the system's free() to be called to |
161 | | * recycle memory acquired from MALLOC, #define FREE to be the |
162 | | * name of the alternate routine. (FREE or free is only called in |
163 | | * pathological cases, e.g., in a dtoa call after a dtoa return in |
164 | | * mode 3 with thousands of digits requested.) |
165 | | * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
166 | | * memory allocations from a private pool of memory when possible. |
167 | | * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
168 | | * unless #defined to be a different length. This default length |
169 | | * suffices to get rid of MALLOC calls except for unusual cases, |
170 | | * such as decimal-to-binary conversion of a very long string of |
171 | | * digits. The longest string dtoa can return is about 751 bytes |
172 | | * long. For conversions by strtod of strings of 800 digits and |
173 | | * all dtoa conversions in single-threaded executions with 8-byte |
174 | | * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte |
175 | | * pointers, PRIVATE_MEM >= 7112 appears adequate. |
176 | | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
177 | | * Infinity and NaN (case insensitively). On some systems (e.g., |
178 | | * some HP systems), it may be necessary to #define NAN_WORD0 |
179 | | * appropriately -- to the most significant word of a quiet NaN. |
180 | | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
181 | | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
182 | | * strtod also accepts (case insensitively) strings of the form |
183 | | * NaN(x), where x is a string of hexadecimal digits and spaces; |
184 | | * if there is only one string of hexadecimal digits, it is taken |
185 | | * for the 52 fraction bits of the resulting NaN; if there are two |
186 | | * or more strings of hex digits, the first is for the high 20 bits, |
187 | | * the second and subsequent for the low 32 bits, with intervening |
188 | | * white space ignored; but if this results in none of the 52 |
189 | | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
190 | | * and NAN_WORD1 are used instead. |
191 | | * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
192 | | * multiple threads. In this case, you must provide (or suitably |
193 | | * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
194 | | * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
195 | | * in pow5mult, ensures lazy evaluation of only one copy of high |
196 | | * powers of 5; omitting this lock would introduce a small |
197 | | * probability of wasting memory, but would otherwise be harmless.) |
198 | | * You must also invoke freedtoa(s) to free the value s returned by |
199 | | * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
200 | | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
201 | | * avoids underflows on inputs whose result does not underflow. |
202 | | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
203 | | * floating-point numbers and flushes underflows to zero rather |
204 | | * than implementing gradual underflow, then you must also #define |
205 | | * Sudden_Underflow. |
206 | | * #define USE_LOCALE to use the current locale's decimal_point value. |
207 | | * #define SET_INEXACT if IEEE arithmetic is being used and extra |
208 | | * computation should be done to set the inexact flag when the |
209 | | * result is inexact and avoid setting inexact when the result |
210 | | * is exact. In this case, dtoa.c must be compiled in |
211 | | * an environment, perhaps provided by #include "dtoa.c" in a |
212 | | * suitable wrapper, that defines two functions, |
213 | | * int get_inexact(void); |
214 | | * void clear_inexact(void); |
215 | | * such that get_inexact() returns a nonzero value if the |
216 | | * inexact bit is already set, and clear_inexact() sets the |
217 | | * inexact bit to 0. When SET_INEXACT is #defined, strtod |
218 | | * also does extra computations to set the underflow and overflow |
219 | | * flags when appropriate (i.e., when the result is tiny and |
220 | | * inexact or when it is a numeric value rounded to +-infinity). |
221 | | * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
222 | | * the result overflows to +-Infinity or underflows to 0. |
223 | | */ |
224 | | |
225 | | #ifndef Long |
226 | | #define Long long |
227 | | #endif |
228 | | #ifndef ULong |
229 | | typedef unsigned Long ULong; |
230 | | #endif |
231 | | |
232 | | #ifdef DEBUG |
233 | | #include "stdio.h" |
234 | 0 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
235 | | #endif |
236 | | |
237 | | #include "stdlib.h" |
238 | | #include "string.h" |
239 | | |
240 | | #ifdef USE_LOCALE |
241 | | #include "locale.h" |
242 | | #endif |
243 | | |
244 | | #ifdef MALLOC |
245 | | #ifdef KR_headers |
246 | | extern char *MALLOC(); |
247 | | #else |
248 | | extern void *MALLOC(size_t); |
249 | | #endif |
250 | | #else |
251 | 0 | #define MALLOC malloc |
252 | | #endif |
253 | | |
254 | | #ifndef Omit_Private_Memory |
255 | | #ifndef PRIVATE_MEM |
256 | 0 | #define PRIVATE_MEM 2304 |
257 | | #endif |
258 | 0 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
259 | | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
260 | | #endif |
261 | | |
262 | | #undef IEEE_Arith |
263 | | #undef Avoid_Underflow |
264 | | #ifdef IEEE_MC68k |
265 | | #define IEEE_Arith |
266 | | #endif |
267 | | #ifdef IEEE_8087 |
268 | | #define IEEE_Arith |
269 | | #endif |
270 | | #ifdef IEEE_ARM |
271 | | #define IEEE_Arith |
272 | | #endif |
273 | | |
274 | | #include "errno.h" |
275 | | |
276 | | #ifdef Bad_float_h |
277 | | |
278 | | #ifdef IEEE_Arith |
279 | | #define DBL_DIG 15 |
280 | | #define DBL_MAX_10_EXP 308 |
281 | | #define DBL_MAX_EXP 1024 |
282 | | #define FLT_RADIX 2 |
283 | | #endif /*IEEE_Arith*/ |
284 | | |
285 | | #ifdef IBM |
286 | | #define DBL_DIG 16 |
287 | | #define DBL_MAX_10_EXP 75 |
288 | | #define DBL_MAX_EXP 63 |
289 | | #define FLT_RADIX 16 |
290 | | #define DBL_MAX 7.2370055773322621e+75 |
291 | | #endif |
292 | | |
293 | | #ifdef VAX |
294 | | #define DBL_DIG 16 |
295 | | #define DBL_MAX_10_EXP 38 |
296 | | #define DBL_MAX_EXP 127 |
297 | | #define FLT_RADIX 2 |
298 | | #define DBL_MAX 1.7014118346046923e+38 |
299 | | #endif |
300 | | |
301 | | #ifndef LONG_MAX |
302 | | #define LONG_MAX 2147483647 |
303 | | #endif |
304 | | |
305 | | #else /* ifndef Bad_float_h */ |
306 | | #include "float.h" |
307 | | #endif /* Bad_float_h */ |
308 | | |
309 | | #ifndef __MATH_H__ |
310 | | #include "math.h" |
311 | | #endif |
312 | | |
313 | | #ifdef __cplusplus |
314 | | extern "C" { |
315 | | #endif |
316 | | |
317 | | #ifndef CONST |
318 | | #ifdef KR_headers |
319 | | #define CONST /* blank */ |
320 | | #else |
321 | 0 | #define CONST const |
322 | | #endif |
323 | | #endif |
324 | | |
325 | | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + defined(VAX) + defined(IBM) != 1 |
326 | | Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined. |
327 | | #endif |
328 | | |
329 | | typedef union { |
330 | | double d; |
331 | | ULong L[2]; |
332 | | } U; |
333 | | |
334 | 0 | #define dval(x) (x).d |
335 | | #ifdef IEEE_8087 |
336 | 0 | #define word0(x) (x).L[1] |
337 | 0 | #define word1(x) (x).L[0] |
338 | | #else |
339 | | #define word0(x) (x).L[0] |
340 | | #define word1(x) (x).L[1] |
341 | | #endif |
342 | | |
343 | | /* The following definition of Storeinc is appropriate for MIPS processors. |
344 | | * An alternative that might be better on some machines is |
345 | | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
346 | | */ |
347 | | #if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX) |
348 | 0 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
349 | 0 | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
350 | | #else |
351 | | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
352 | | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
353 | | #endif |
354 | | |
355 | | /* #define P DBL_MANT_DIG */ |
356 | | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
357 | | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
358 | | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
359 | | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
360 | | |
361 | | #ifdef IEEE_Arith |
362 | 0 | #define Exp_shift 20 |
363 | 0 | #define Exp_shift1 20 |
364 | 0 | #define Exp_msk1 0x100000 |
365 | | #define Exp_msk11 0x100000 |
366 | 0 | #define Exp_mask 0x7ff00000 |
367 | 0 | #define P 53 |
368 | 0 | #define Bias 1023 |
369 | 0 | #define Emin (-1022) |
370 | 0 | #define Exp_1 0x3ff00000 |
371 | 0 | #define Exp_11 0x3ff00000 |
372 | 0 | #define Ebits 11 |
373 | 0 | #define Frac_mask 0xfffff |
374 | 0 | #define Frac_mask1 0xfffff |
375 | 0 | #define Ten_pmax 22 |
376 | 0 | #define Bletch 0x10 |
377 | 0 | #define Bndry_mask 0xfffff |
378 | 0 | #define Bndry_mask1 0xfffff |
379 | 0 | #define LSB 1 |
380 | 0 | #define Sign_bit 0x80000000 |
381 | 0 | #define Log2P 1 |
382 | | #define Tiny0 0 |
383 | 0 | #define Tiny1 1 |
384 | 0 | #define Quick_max 14 |
385 | 0 | #define Int_max 14 |
386 | | #ifndef NO_IEEE_Scale |
387 | | #define Avoid_Underflow |
388 | | #ifdef Flush_Denorm /* debugging option */ |
389 | | #undef Sudden_Underflow |
390 | | #endif |
391 | | #endif |
392 | | |
393 | | #ifndef Flt_Rounds |
394 | | #ifdef FLT_ROUNDS |
395 | 0 | #define Flt_Rounds FLT_ROUNDS |
396 | | #else |
397 | | #define Flt_Rounds 1 |
398 | | #endif |
399 | | #endif /*Flt_Rounds*/ |
400 | | |
401 | | #ifdef Honor_FLT_ROUNDS |
402 | | #define Rounding rounding |
403 | | #undef Check_FLT_ROUNDS |
404 | | #define Check_FLT_ROUNDS |
405 | | #else |
406 | | #define Rounding Flt_Rounds |
407 | | #endif |
408 | | |
409 | | #else /* ifndef IEEE_Arith */ |
410 | | #undef Check_FLT_ROUNDS |
411 | | #undef Honor_FLT_ROUNDS |
412 | | #undef SET_INEXACT |
413 | | #undef Sudden_Underflow |
414 | | #define Sudden_Underflow |
415 | | #ifdef IBM |
416 | | #undef Flt_Rounds |
417 | | #define Flt_Rounds 0 |
418 | | #define Exp_shift 24 |
419 | | #define Exp_shift1 24 |
420 | | #define Exp_msk1 0x1000000 |
421 | | #define Exp_msk11 0x1000000 |
422 | | #define Exp_mask 0x7f000000 |
423 | | #define P 14 |
424 | | #define Bias 65 |
425 | | #define Exp_1 0x41000000 |
426 | | #define Exp_11 0x41000000 |
427 | | #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
428 | | #define Frac_mask 0xffffff |
429 | | #define Frac_mask1 0xffffff |
430 | | #define Bletch 4 |
431 | | #define Ten_pmax 22 |
432 | | #define Bndry_mask 0xefffff |
433 | | #define Bndry_mask1 0xffffff |
434 | | #define LSB 1 |
435 | | #define Sign_bit 0x80000000 |
436 | | #define Log2P 4 |
437 | | #define Tiny0 0x100000 |
438 | | #define Tiny1 0 |
439 | | #define Quick_max 14 |
440 | | #define Int_max 15 |
441 | | #else /* VAX */ |
442 | | #undef Flt_Rounds |
443 | | #define Flt_Rounds 1 |
444 | | #define Exp_shift 23 |
445 | | #define Exp_shift1 7 |
446 | | #define Exp_msk1 0x80 |
447 | | #define Exp_msk11 0x800000 |
448 | | #define Exp_mask 0x7f80 |
449 | | #define P 56 |
450 | | #define Bias 129 |
451 | | #define Exp_1 0x40800000 |
452 | | #define Exp_11 0x4080 |
453 | | #define Ebits 8 |
454 | | #define Frac_mask 0x7fffff |
455 | | #define Frac_mask1 0xffff007f |
456 | | #define Ten_pmax 24 |
457 | | #define Bletch 2 |
458 | | #define Bndry_mask 0xffff007f |
459 | | #define Bndry_mask1 0xffff007f |
460 | | #define LSB 0x10000 |
461 | | #define Sign_bit 0x8000 |
462 | | #define Log2P 1 |
463 | | #define Tiny0 0x80 |
464 | | #define Tiny1 0 |
465 | | #define Quick_max 15 |
466 | | #define Int_max 15 |
467 | | #endif /* IBM, VAX */ |
468 | | #endif /* IEEE_Arith */ |
469 | | |
470 | | #ifndef IEEE_Arith |
471 | | #define ROUND_BIASED |
472 | | #endif |
473 | | |
474 | | #ifdef RND_PRODQUOT |
475 | | #define rounded_product(a,b) a = rnd_prod(a, b) |
476 | | #define rounded_quotient(a,b) a = rnd_quot(a, b) |
477 | | #ifdef KR_headers |
478 | | extern double rnd_prod(), rnd_quot(); |
479 | | #else |
480 | | extern double rnd_prod(double, double), rnd_quot(double, double); |
481 | | #endif |
482 | | #else |
483 | 0 | #define rounded_product(a,b) a *= b |
484 | 0 | #define rounded_quotient(a,b) a /= b |
485 | | #endif |
486 | | |
487 | 0 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
488 | 0 | #define Big1 0xffffffff |
489 | | |
490 | | #ifndef Pack_32 |
491 | | #define Pack_32 |
492 | | #endif |
493 | | |
494 | | #ifdef KR_headers |
495 | | #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) |
496 | | #else |
497 | | #define FFFFFFFF 0xffffffffUL |
498 | | #endif |
499 | | |
500 | | #ifdef NO_LONG_LONG |
501 | | #undef ULLong |
502 | | #ifdef Just_16 |
503 | | #undef Pack_32 |
504 | | /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
505 | | * This makes some inner loops simpler and sometimes saves work |
506 | | * during multiplications, but it often seems to make things slightly |
507 | | * slower. Hence the default is now to store 32 bits per Long. |
508 | | */ |
509 | | #endif |
510 | | #else /* long long available */ |
511 | | #ifndef Llong |
512 | | #define Llong long long |
513 | | #endif |
514 | | #ifndef ULLong |
515 | | #define ULLong unsigned Llong |
516 | | #endif |
517 | | #endif /* NO_LONG_LONG */ |
518 | | |
519 | | #ifndef MULTIPLE_THREADS |
520 | | #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ |
521 | | #define FREE_DTOA_LOCK(n) /*nothing*/ |
522 | | #endif |
523 | | |
524 | 0 | #define Kmax 7 |
525 | | |
526 | | struct |
527 | | Bigint { |
528 | | struct Bigint *next; |
529 | | int k, maxwds, sign, wds; |
530 | | ULong x[1]; |
531 | | }; |
532 | | |
533 | | typedef struct Bigint Bigint; |
534 | | |
535 | | static Bigint *freelist[Kmax+1]; |
536 | | |
537 | | static Bigint * |
538 | | Balloc |
539 | | #ifdef KR_headers |
540 | | (k) int k; |
541 | | #else |
542 | | (int k) |
543 | | #endif |
544 | 0 | { |
545 | 0 | int x; |
546 | 0 | Bigint *rv; |
547 | 0 | #ifndef Omit_Private_Memory |
548 | 0 | unsigned int len; |
549 | 0 | #endif |
550 | |
|
551 | 0 | ACQUIRE_DTOA_LOCK(0); |
552 | | /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ |
553 | | /* but this case seems very unlikely. */ |
554 | 0 | if (k <= Kmax && (rv = freelist[k])) { |
555 | 0 | freelist[k] = rv->next; |
556 | 0 | } |
557 | 0 | else { |
558 | 0 | x = 1 << k; |
559 | | #ifdef Omit_Private_Memory |
560 | | rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); |
561 | | #else |
562 | 0 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
563 | 0 | /sizeof(double); |
564 | 0 | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { |
565 | 0 | rv = (Bigint*)pmem_next; |
566 | 0 | pmem_next += len; |
567 | 0 | } |
568 | 0 | else { |
569 | 0 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
570 | 0 | } |
571 | 0 | #endif |
572 | 0 | rv->k = k; |
573 | 0 | rv->maxwds = x; |
574 | 0 | } |
575 | 0 | FREE_DTOA_LOCK(0); |
576 | 0 | rv->sign = rv->wds = 0; |
577 | 0 | return rv; |
578 | 0 | } |
579 | | |
580 | | static void |
581 | | Bfree |
582 | | #ifdef KR_headers |
583 | | (v) Bigint *v; |
584 | | #else |
585 | | (Bigint *v) |
586 | | #endif |
587 | 0 | { |
588 | 0 | if (v) { |
589 | 0 | if (v->k > Kmax) |
590 | | #ifdef FREE |
591 | | FREE((void*)v); |
592 | | #else |
593 | 0 | free((void*)v); |
594 | 0 | #endif |
595 | 0 | else { |
596 | 0 | ACQUIRE_DTOA_LOCK(0); |
597 | 0 | v->next = freelist[v->k]; |
598 | 0 | freelist[v->k] = v; |
599 | 0 | FREE_DTOA_LOCK(0); |
600 | 0 | } |
601 | 0 | } |
602 | 0 | } |
603 | | |
604 | 0 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
605 | 0 | y->wds*sizeof(Long) + 2*sizeof(int)) |
606 | | |
607 | | static Bigint * |
608 | | multadd |
609 | | #ifdef KR_headers |
610 | | (b, m, a) Bigint *b; int m, a; |
611 | | #else |
612 | | (Bigint *b, int m, int a) /* multiply by m and add a */ |
613 | | #endif |
614 | 0 | { |
615 | 0 | int i, wds; |
616 | | #ifdef ULLong |
617 | | ULong *x; |
618 | | ULLong carry, y; |
619 | | #else |
620 | 0 | ULong carry, *x, y; |
621 | 0 | #ifdef Pack_32 |
622 | 0 | ULong xi, z; |
623 | 0 | #endif |
624 | 0 | #endif |
625 | 0 | Bigint *b1; |
626 | |
|
627 | 0 | wds = b->wds; |
628 | 0 | x = b->x; |
629 | 0 | i = 0; |
630 | 0 | carry = a; |
631 | 0 | do { |
632 | | #ifdef ULLong |
633 | | y = *x * (ULLong)m + carry; |
634 | | carry = y >> 32; |
635 | | *x++ = y & FFFFFFFF; |
636 | | #else |
637 | 0 | #ifdef Pack_32 |
638 | 0 | xi = *x; |
639 | 0 | y = (xi & 0xffff) * m + carry; |
640 | 0 | z = (xi >> 16) * m + (y >> 16); |
641 | 0 | carry = z >> 16; |
642 | 0 | *x++ = (z << 16) + (y & 0xffff); |
643 | | #else |
644 | | y = *x * m + carry; |
645 | | carry = y >> 16; |
646 | | *x++ = y & 0xffff; |
647 | | #endif |
648 | 0 | #endif |
649 | 0 | } |
650 | 0 | while(++i < wds); |
651 | 0 | if (carry) { |
652 | 0 | if (wds >= b->maxwds) { |
653 | 0 | b1 = Balloc(b->k+1); |
654 | 0 | Bcopy(b1, b); |
655 | 0 | Bfree(b); |
656 | 0 | b = b1; |
657 | 0 | } |
658 | 0 | b->x[wds++] = carry; |
659 | 0 | b->wds = wds; |
660 | 0 | } |
661 | 0 | return b; |
662 | 0 | } |
663 | | |
664 | | static Bigint * |
665 | | s2b |
666 | | #ifdef KR_headers |
667 | | (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9; |
668 | | #else |
669 | | (CONST char *s, int nd0, int nd, ULong y9) |
670 | | #endif |
671 | 0 | { |
672 | 0 | Bigint *b; |
673 | 0 | int i, k; |
674 | 0 | Long x, y; |
675 | |
|
676 | 0 | x = (nd + 8) / 9; |
677 | 0 | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
678 | 0 | #ifdef Pack_32 |
679 | 0 | b = Balloc(k); |
680 | 0 | b->x[0] = y9; |
681 | 0 | b->wds = 1; |
682 | | #else |
683 | | b = Balloc(k+1); |
684 | | b->x[0] = y9 & 0xffff; |
685 | | b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; |
686 | | #endif |
687 | |
|
688 | 0 | i = 9; |
689 | 0 | if (9 < nd0) { |
690 | 0 | s += 9; |
691 | 0 | do { |
692 | 0 | b = multadd(b, 10, *s++ - '0'); |
693 | 0 | } |
694 | 0 | while(++i < nd0); |
695 | 0 | s++; |
696 | 0 | } |
697 | 0 | else { |
698 | 0 | s += 10; |
699 | 0 | } |
700 | 0 | for(; i < nd; i++) { |
701 | 0 | b = multadd(b, 10, *s++ - '0'); |
702 | 0 | } |
703 | 0 | return b; |
704 | 0 | } |
705 | | |
706 | | static int |
707 | | hi0bits |
708 | | #ifdef KR_headers |
709 | | (x) register ULong x; |
710 | | #else |
711 | | (register ULong x) |
712 | | #endif |
713 | 0 | { |
714 | 0 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
715 | 0 | return( (!x) ? 32 : pr_bitscan_clz32(x) ); |
716 | | #else |
717 | | register int k = 0; |
718 | | |
719 | | if (!(x & 0xffff0000)) { |
720 | | k = 16; |
721 | | x <<= 16; |
722 | | } |
723 | | if (!(x & 0xff000000)) { |
724 | | k += 8; |
725 | | x <<= 8; |
726 | | } |
727 | | if (!(x & 0xf0000000)) { |
728 | | k += 4; |
729 | | x <<= 4; |
730 | | } |
731 | | if (!(x & 0xc0000000)) { |
732 | | k += 2; |
733 | | x <<= 2; |
734 | | } |
735 | | if (!(x & 0x80000000)) { |
736 | | k++; |
737 | | if (!(x & 0x40000000)) { |
738 | | return 32; |
739 | | } |
740 | | } |
741 | | return k; |
742 | | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
743 | 0 | } |
744 | | |
745 | | static int |
746 | | lo0bits |
747 | | #ifdef KR_headers |
748 | | (y) ULong *y; |
749 | | #else |
750 | | (ULong *y) |
751 | | #endif |
752 | 0 | { |
753 | 0 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
754 | 0 | int k; |
755 | 0 | ULong x = *y; |
756 | |
|
757 | 0 | if (x>1) { |
758 | 0 | *y = ( x >> (k = pr_bitscan_ctz32(x)) ); |
759 | 0 | } |
760 | 0 | else { |
761 | 0 | k = ((x ^ 1) << 5); |
762 | 0 | } |
763 | | #else |
764 | | register int k; |
765 | | register ULong x = *y; |
766 | | |
767 | | if (x & 7) { |
768 | | if (x & 1) { |
769 | | return 0; |
770 | | } |
771 | | if (x & 2) { |
772 | | *y = x >> 1; |
773 | | return 1; |
774 | | } |
775 | | *y = x >> 2; |
776 | | return 2; |
777 | | } |
778 | | k = 0; |
779 | | if (!(x & 0xffff)) { |
780 | | k = 16; |
781 | | x >>= 16; |
782 | | } |
783 | | if (!(x & 0xff)) { |
784 | | k += 8; |
785 | | x >>= 8; |
786 | | } |
787 | | if (!(x & 0xf)) { |
788 | | k += 4; |
789 | | x >>= 4; |
790 | | } |
791 | | if (!(x & 0x3)) { |
792 | | k += 2; |
793 | | x >>= 2; |
794 | | } |
795 | | if (!(x & 1)) { |
796 | | k++; |
797 | | x >>= 1; |
798 | | if (!x) { |
799 | | return 32; |
800 | | } |
801 | | } |
802 | | *y = x; |
803 | | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
804 | 0 | return k; |
805 | 0 | } |
806 | | |
807 | | static Bigint * |
808 | | i2b |
809 | | #ifdef KR_headers |
810 | | (i) int i; |
811 | | #else |
812 | | (int i) |
813 | | #endif |
814 | 0 | { |
815 | 0 | Bigint *b; |
816 | |
|
817 | 0 | b = Balloc(1); |
818 | 0 | b->x[0] = i; |
819 | 0 | b->wds = 1; |
820 | 0 | return b; |
821 | 0 | } |
822 | | |
823 | | static Bigint * |
824 | | mult |
825 | | #ifdef KR_headers |
826 | | (a, b) Bigint *a, *b; |
827 | | #else |
828 | | (Bigint *a, Bigint *b) |
829 | | #endif |
830 | 0 | { |
831 | 0 | Bigint *c; |
832 | 0 | int k, wa, wb, wc; |
833 | 0 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
834 | 0 | ULong y; |
835 | | #ifdef ULLong |
836 | | ULLong carry, z; |
837 | | #else |
838 | 0 | ULong carry, z; |
839 | 0 | #ifdef Pack_32 |
840 | 0 | ULong z2; |
841 | 0 | #endif |
842 | 0 | #endif |
843 | |
|
844 | 0 | if (a->wds < b->wds) { |
845 | 0 | c = a; |
846 | 0 | a = b; |
847 | 0 | b = c; |
848 | 0 | } |
849 | 0 | k = a->k; |
850 | 0 | wa = a->wds; |
851 | 0 | wb = b->wds; |
852 | 0 | wc = wa + wb; |
853 | 0 | if (wc > a->maxwds) { |
854 | 0 | k++; |
855 | 0 | } |
856 | 0 | c = Balloc(k); |
857 | 0 | for(x = c->x, xa = x + wc; x < xa; x++) { |
858 | 0 | *x = 0; |
859 | 0 | } |
860 | 0 | xa = a->x; |
861 | 0 | xae = xa + wa; |
862 | 0 | xb = b->x; |
863 | 0 | xbe = xb + wb; |
864 | 0 | xc0 = c->x; |
865 | | #ifdef ULLong |
866 | | for(; xb < xbe; xc0++) { |
867 | | if (y = *xb++) { |
868 | | x = xa; |
869 | | xc = xc0; |
870 | | carry = 0; |
871 | | do { |
872 | | z = *x++ * (ULLong)y + *xc + carry; |
873 | | carry = z >> 32; |
874 | | *xc++ = z & FFFFFFFF; |
875 | | } |
876 | | while(x < xae); |
877 | | *xc = carry; |
878 | | } |
879 | | } |
880 | | #else |
881 | 0 | #ifdef Pack_32 |
882 | 0 | for(; xb < xbe; xb++, xc0++) { |
883 | 0 | if (y = *xb & 0xffff) { |
884 | 0 | x = xa; |
885 | 0 | xc = xc0; |
886 | 0 | carry = 0; |
887 | 0 | do { |
888 | 0 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
889 | 0 | carry = z >> 16; |
890 | 0 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
891 | 0 | carry = z2 >> 16; |
892 | 0 | Storeinc(xc, z2, z); |
893 | 0 | } |
894 | 0 | while(x < xae); |
895 | 0 | *xc = carry; |
896 | 0 | } |
897 | 0 | if (y = *xb >> 16) { |
898 | 0 | x = xa; |
899 | 0 | xc = xc0; |
900 | 0 | carry = 0; |
901 | 0 | z2 = *xc; |
902 | 0 | do { |
903 | 0 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
904 | 0 | carry = z >> 16; |
905 | 0 | Storeinc(xc, z, z2); |
906 | 0 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
907 | 0 | carry = z2 >> 16; |
908 | 0 | } |
909 | 0 | while(x < xae); |
910 | 0 | *xc = z2; |
911 | 0 | } |
912 | 0 | } |
913 | | #else |
914 | | for(; xb < xbe; xc0++) { |
915 | | if (y = *xb++) { |
916 | | x = xa; |
917 | | xc = xc0; |
918 | | carry = 0; |
919 | | do { |
920 | | z = *x++ * y + *xc + carry; |
921 | | carry = z >> 16; |
922 | | *xc++ = z & 0xffff; |
923 | | } |
924 | | while(x < xae); |
925 | | *xc = carry; |
926 | | } |
927 | | } |
928 | | #endif |
929 | 0 | #endif |
930 | 0 | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
931 | 0 | c->wds = wc; |
932 | 0 | return c; |
933 | 0 | } |
934 | | |
935 | | static Bigint *p5s; |
936 | | |
937 | | static Bigint * |
938 | | pow5mult |
939 | | #ifdef KR_headers |
940 | | (b, k) Bigint *b; int k; |
941 | | #else |
942 | | (Bigint *b, int k) |
943 | | #endif |
944 | 0 | { |
945 | 0 | Bigint *b1, *p5, *p51; |
946 | 0 | int i; |
947 | 0 | static int p05[3] = { 5, 25, 125 }; |
948 | |
|
949 | 0 | if (i = k & 3) { |
950 | 0 | b = multadd(b, p05[i-1], 0); |
951 | 0 | } |
952 | |
|
953 | 0 | if (!(k >>= 2)) { |
954 | 0 | return b; |
955 | 0 | } |
956 | 0 | if (!(p5 = p5s)) { |
957 | | /* first time */ |
958 | 0 | #ifdef MULTIPLE_THREADS |
959 | 0 | ACQUIRE_DTOA_LOCK(1); |
960 | 0 | if (!(p5 = p5s)) { |
961 | 0 | p5 = p5s = i2b(625); |
962 | 0 | p5->next = 0; |
963 | 0 | } |
964 | 0 | FREE_DTOA_LOCK(1); |
965 | | #else |
966 | | p5 = p5s = i2b(625); |
967 | | p5->next = 0; |
968 | | #endif |
969 | 0 | } |
970 | 0 | for(;;) { |
971 | 0 | if (k & 1) { |
972 | 0 | b1 = mult(b, p5); |
973 | 0 | Bfree(b); |
974 | 0 | b = b1; |
975 | 0 | } |
976 | 0 | if (!(k >>= 1)) { |
977 | 0 | break; |
978 | 0 | } |
979 | 0 | if (!(p51 = p5->next)) { |
980 | 0 | #ifdef MULTIPLE_THREADS |
981 | 0 | ACQUIRE_DTOA_LOCK(1); |
982 | 0 | if (!(p51 = p5->next)) { |
983 | 0 | p51 = p5->next = mult(p5,p5); |
984 | 0 | p51->next = 0; |
985 | 0 | } |
986 | 0 | FREE_DTOA_LOCK(1); |
987 | | #else |
988 | | p51 = p5->next = mult(p5,p5); |
989 | | p51->next = 0; |
990 | | #endif |
991 | 0 | } |
992 | 0 | p5 = p51; |
993 | 0 | } |
994 | 0 | return b; |
995 | 0 | } |
996 | | |
997 | | static Bigint * |
998 | | lshift |
999 | | #ifdef KR_headers |
1000 | | (b, k) Bigint *b; int k; |
1001 | | #else |
1002 | | (Bigint *b, int k) |
1003 | | #endif |
1004 | 0 | { |
1005 | 0 | int i, k1, n, n1; |
1006 | 0 | Bigint *b1; |
1007 | 0 | ULong *x, *x1, *xe, z; |
1008 | |
|
1009 | 0 | #ifdef Pack_32 |
1010 | 0 | n = k >> 5; |
1011 | | #else |
1012 | | n = k >> 4; |
1013 | | #endif |
1014 | 0 | k1 = b->k; |
1015 | 0 | n1 = n + b->wds + 1; |
1016 | 0 | for(i = b->maxwds; n1 > i; i <<= 1) { |
1017 | 0 | k1++; |
1018 | 0 | } |
1019 | 0 | b1 = Balloc(k1); |
1020 | 0 | x1 = b1->x; |
1021 | 0 | for(i = 0; i < n; i++) { |
1022 | 0 | *x1++ = 0; |
1023 | 0 | } |
1024 | 0 | x = b->x; |
1025 | 0 | xe = x + b->wds; |
1026 | 0 | #ifdef Pack_32 |
1027 | 0 | if (k &= 0x1f) { |
1028 | 0 | k1 = 32 - k; |
1029 | 0 | z = 0; |
1030 | 0 | do { |
1031 | 0 | *x1++ = *x << k | z; |
1032 | 0 | z = *x++ >> k1; |
1033 | 0 | } |
1034 | 0 | while(x < xe); |
1035 | 0 | if (*x1 = z) { |
1036 | 0 | ++n1; |
1037 | 0 | } |
1038 | 0 | } |
1039 | | #else |
1040 | | if (k &= 0xf) { |
1041 | | k1 = 16 - k; |
1042 | | z = 0; |
1043 | | do { |
1044 | | *x1++ = *x << k & 0xffff | z; |
1045 | | z = *x++ >> k1; |
1046 | | } |
1047 | | while(x < xe); |
1048 | | if (*x1 = z) { |
1049 | | ++n1; |
1050 | | } |
1051 | | } |
1052 | | #endif |
1053 | 0 | else do { |
1054 | 0 | *x1++ = *x++; |
1055 | 0 | } |
1056 | 0 | while(x < xe); |
1057 | 0 | b1->wds = n1 - 1; |
1058 | 0 | Bfree(b); |
1059 | 0 | return b1; |
1060 | 0 | } |
1061 | | |
1062 | | static int |
1063 | | cmp |
1064 | | #ifdef KR_headers |
1065 | | (a, b) Bigint *a, *b; |
1066 | | #else |
1067 | | (Bigint *a, Bigint *b) |
1068 | | #endif |
1069 | 0 | { |
1070 | 0 | ULong *xa, *xa0, *xb, *xb0; |
1071 | 0 | int i, j; |
1072 | |
|
1073 | 0 | i = a->wds; |
1074 | 0 | j = b->wds; |
1075 | 0 | #ifdef DEBUG |
1076 | 0 | if (i > 1 && !a->x[i-1]) { |
1077 | 0 | Bug("cmp called with a->x[a->wds-1] == 0"); |
1078 | 0 | } |
1079 | 0 | if (j > 1 && !b->x[j-1]) { |
1080 | 0 | Bug("cmp called with b->x[b->wds-1] == 0"); |
1081 | 0 | } |
1082 | 0 | #endif |
1083 | 0 | if (i -= j) { |
1084 | 0 | return i; |
1085 | 0 | } |
1086 | 0 | xa0 = a->x; |
1087 | 0 | xa = xa0 + j; |
1088 | 0 | xb0 = b->x; |
1089 | 0 | xb = xb0 + j; |
1090 | 0 | for(;;) { |
1091 | 0 | if (*--xa != *--xb) { |
1092 | 0 | return *xa < *xb ? -1 : 1; |
1093 | 0 | } |
1094 | 0 | if (xa <= xa0) { |
1095 | 0 | break; |
1096 | 0 | } |
1097 | 0 | } |
1098 | 0 | return 0; |
1099 | 0 | } |
1100 | | |
1101 | | static Bigint * |
1102 | | diff |
1103 | | #ifdef KR_headers |
1104 | | (a, b) Bigint *a, *b; |
1105 | | #else |
1106 | | (Bigint *a, Bigint *b) |
1107 | | #endif |
1108 | 0 | { |
1109 | 0 | Bigint *c; |
1110 | 0 | int i, wa, wb; |
1111 | 0 | ULong *xa, *xae, *xb, *xbe, *xc; |
1112 | | #ifdef ULLong |
1113 | | ULLong borrow, y; |
1114 | | #else |
1115 | 0 | ULong borrow, y; |
1116 | 0 | #ifdef Pack_32 |
1117 | 0 | ULong z; |
1118 | 0 | #endif |
1119 | 0 | #endif |
1120 | |
|
1121 | 0 | i = cmp(a,b); |
1122 | 0 | if (!i) { |
1123 | 0 | c = Balloc(0); |
1124 | 0 | c->wds = 1; |
1125 | 0 | c->x[0] = 0; |
1126 | 0 | return c; |
1127 | 0 | } |
1128 | 0 | if (i < 0) { |
1129 | 0 | c = a; |
1130 | 0 | a = b; |
1131 | 0 | b = c; |
1132 | 0 | i = 1; |
1133 | 0 | } |
1134 | 0 | else { |
1135 | 0 | i = 0; |
1136 | 0 | } |
1137 | 0 | c = Balloc(a->k); |
1138 | 0 | c->sign = i; |
1139 | 0 | wa = a->wds; |
1140 | 0 | xa = a->x; |
1141 | 0 | xae = xa + wa; |
1142 | 0 | wb = b->wds; |
1143 | 0 | xb = b->x; |
1144 | 0 | xbe = xb + wb; |
1145 | 0 | xc = c->x; |
1146 | 0 | borrow = 0; |
1147 | | #ifdef ULLong |
1148 | | do { |
1149 | | y = (ULLong)*xa++ - *xb++ - borrow; |
1150 | | borrow = y >> 32 & (ULong)1; |
1151 | | *xc++ = y & FFFFFFFF; |
1152 | | } |
1153 | | while(xb < xbe); |
1154 | | while(xa < xae) { |
1155 | | y = *xa++ - borrow; |
1156 | | borrow = y >> 32 & (ULong)1; |
1157 | | *xc++ = y & FFFFFFFF; |
1158 | | } |
1159 | | #else |
1160 | 0 | #ifdef Pack_32 |
1161 | 0 | do { |
1162 | 0 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
1163 | 0 | borrow = (y & 0x10000) >> 16; |
1164 | 0 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
1165 | 0 | borrow = (z & 0x10000) >> 16; |
1166 | 0 | Storeinc(xc, z, y); |
1167 | 0 | } |
1168 | 0 | while(xb < xbe); |
1169 | 0 | while(xa < xae) { |
1170 | 0 | y = (*xa & 0xffff) - borrow; |
1171 | 0 | borrow = (y & 0x10000) >> 16; |
1172 | 0 | z = (*xa++ >> 16) - borrow; |
1173 | 0 | borrow = (z & 0x10000) >> 16; |
1174 | 0 | Storeinc(xc, z, y); |
1175 | 0 | } |
1176 | | #else |
1177 | | do { |
1178 | | y = *xa++ - *xb++ - borrow; |
1179 | | borrow = (y & 0x10000) >> 16; |
1180 | | *xc++ = y & 0xffff; |
1181 | | } |
1182 | | while(xb < xbe); |
1183 | | while(xa < xae) { |
1184 | | y = *xa++ - borrow; |
1185 | | borrow = (y & 0x10000) >> 16; |
1186 | | *xc++ = y & 0xffff; |
1187 | | } |
1188 | | #endif |
1189 | 0 | #endif |
1190 | 0 | while(!*--xc) { |
1191 | 0 | wa--; |
1192 | 0 | } |
1193 | 0 | c->wds = wa; |
1194 | 0 | return c; |
1195 | 0 | } |
1196 | | |
1197 | | static double |
1198 | | ulp |
1199 | | #ifdef KR_headers |
1200 | | (dx) double dx; |
1201 | | #else |
1202 | | (double dx) |
1203 | | #endif |
1204 | 0 | { |
1205 | 0 | register Long L; |
1206 | 0 | U x, a; |
1207 | |
|
1208 | 0 | dval(x) = dx; |
1209 | 0 | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
1210 | | #ifndef Avoid_Underflow |
1211 | | #ifndef Sudden_Underflow |
1212 | | if (L > 0) { |
1213 | | #endif |
1214 | | #endif |
1215 | | #ifdef IBM |
1216 | | L |= Exp_msk1 >> 4; |
1217 | | #endif |
1218 | 0 | word0(a) = L; |
1219 | 0 | word1(a) = 0; |
1220 | | #ifndef Avoid_Underflow |
1221 | | #ifndef Sudden_Underflow |
1222 | | } |
1223 | | else { |
1224 | | L = -L >> Exp_shift; |
1225 | | if (L < Exp_shift) { |
1226 | | word0(a) = 0x80000 >> L; |
1227 | | word1(a) = 0; |
1228 | | } |
1229 | | else { |
1230 | | word0(a) = 0; |
1231 | | L -= Exp_shift; |
1232 | | word1(a) = L >= 31 ? 1 : 1 << 31 - L; |
1233 | | } |
1234 | | } |
1235 | | #endif |
1236 | | #endif |
1237 | 0 | return dval(a); |
1238 | 0 | } |
1239 | | |
1240 | | static double |
1241 | | b2d |
1242 | | #ifdef KR_headers |
1243 | | (a, e) Bigint *a; int *e; |
1244 | | #else |
1245 | | (Bigint *a, int *e) |
1246 | | #endif |
1247 | 0 | { |
1248 | 0 | ULong *xa, *xa0, w, y, z; |
1249 | 0 | int k; |
1250 | 0 | U d; |
1251 | | #ifdef VAX |
1252 | | ULong d0, d1; |
1253 | | #else |
1254 | 0 | #define d0 word0(d) |
1255 | 0 | #define d1 word1(d) |
1256 | 0 | #endif |
1257 | |
|
1258 | 0 | xa0 = a->x; |
1259 | 0 | xa = xa0 + a->wds; |
1260 | 0 | y = *--xa; |
1261 | 0 | #ifdef DEBUG |
1262 | 0 | if (!y) { |
1263 | 0 | Bug("zero y in b2d"); |
1264 | 0 | } |
1265 | 0 | #endif |
1266 | 0 | k = hi0bits(y); |
1267 | 0 | *e = 32 - k; |
1268 | 0 | #ifdef Pack_32 |
1269 | 0 | if (k < Ebits) { |
1270 | 0 | d0 = Exp_1 | y >> Ebits - k; |
1271 | 0 | w = xa > xa0 ? *--xa : 0; |
1272 | 0 | d1 = y << (32-Ebits) + k | w >> Ebits - k; |
1273 | 0 | goto ret_d; |
1274 | 0 | } |
1275 | 0 | z = xa > xa0 ? *--xa : 0; |
1276 | 0 | if (k -= Ebits) { |
1277 | 0 | d0 = Exp_1 | y << k | z >> 32 - k; |
1278 | 0 | y = xa > xa0 ? *--xa : 0; |
1279 | 0 | d1 = z << k | y >> 32 - k; |
1280 | 0 | } |
1281 | 0 | else { |
1282 | 0 | d0 = Exp_1 | y; |
1283 | 0 | d1 = z; |
1284 | 0 | } |
1285 | | #else |
1286 | | if (k < Ebits + 16) { |
1287 | | z = xa > xa0 ? *--xa : 0; |
1288 | | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
1289 | | w = xa > xa0 ? *--xa : 0; |
1290 | | y = xa > xa0 ? *--xa : 0; |
1291 | | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
1292 | | goto ret_d; |
1293 | | } |
1294 | | z = xa > xa0 ? *--xa : 0; |
1295 | | w = xa > xa0 ? *--xa : 0; |
1296 | | k -= Ebits + 16; |
1297 | | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
1298 | | y = xa > xa0 ? *--xa : 0; |
1299 | | d1 = w << k + 16 | y << k; |
1300 | | #endif |
1301 | 0 | ret_d: |
1302 | | #ifdef VAX |
1303 | | word0(d) = d0 >> 16 | d0 << 16; |
1304 | | word1(d) = d1 >> 16 | d1 << 16; |
1305 | | #else |
1306 | 0 | #undef d0 |
1307 | 0 | #undef d1 |
1308 | 0 | #endif |
1309 | 0 | return dval(d); |
1310 | 0 | } |
1311 | | |
1312 | | static Bigint * |
1313 | | d2b |
1314 | | #ifdef KR_headers |
1315 | | (dd, e, bits) double dd; int *e, *bits; |
1316 | | #else |
1317 | | (double dd, int *e, int *bits) |
1318 | | #endif |
1319 | 0 | { |
1320 | 0 | U d; |
1321 | 0 | Bigint *b; |
1322 | 0 | int de, k; |
1323 | 0 | ULong *x, y, z; |
1324 | 0 | #ifndef Sudden_Underflow |
1325 | 0 | int i; |
1326 | 0 | #endif |
1327 | | #ifdef VAX |
1328 | | ULong d0, d1; |
1329 | | #endif |
1330 | |
|
1331 | 0 | dval(d) = dd; |
1332 | | #ifdef VAX |
1333 | | d0 = word0(d) >> 16 | word0(d) << 16; |
1334 | | d1 = word1(d) >> 16 | word1(d) << 16; |
1335 | | #else |
1336 | 0 | #define d0 word0(d) |
1337 | 0 | #define d1 word1(d) |
1338 | 0 | #endif |
1339 | |
|
1340 | 0 | #ifdef Pack_32 |
1341 | 0 | b = Balloc(1); |
1342 | | #else |
1343 | | b = Balloc(2); |
1344 | | #endif |
1345 | 0 | x = b->x; |
1346 | |
|
1347 | 0 | z = d0 & Frac_mask; |
1348 | 0 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
1349 | | #ifdef Sudden_Underflow |
1350 | | de = (int)(d0 >> Exp_shift); |
1351 | | #ifndef IBM |
1352 | | z |= Exp_msk11; |
1353 | | #endif |
1354 | | #else |
1355 | 0 | if (de = (int)(d0 >> Exp_shift)) { |
1356 | 0 | z |= Exp_msk1; |
1357 | 0 | } |
1358 | 0 | #endif |
1359 | 0 | #ifdef Pack_32 |
1360 | 0 | if (y = d1) { |
1361 | 0 | if (k = lo0bits(&y)) { |
1362 | 0 | x[0] = y | z << 32 - k; |
1363 | 0 | z >>= k; |
1364 | 0 | } |
1365 | 0 | else { |
1366 | 0 | x[0] = y; |
1367 | 0 | } |
1368 | 0 | #ifndef Sudden_Underflow |
1369 | 0 | i = |
1370 | 0 | #endif |
1371 | 0 | b->wds = (x[1] = z) ? 2 : 1; |
1372 | 0 | } |
1373 | 0 | else { |
1374 | 0 | k = lo0bits(&z); |
1375 | 0 | x[0] = z; |
1376 | 0 | #ifndef Sudden_Underflow |
1377 | 0 | i = |
1378 | 0 | #endif |
1379 | 0 | b->wds = 1; |
1380 | 0 | k += 32; |
1381 | 0 | } |
1382 | | #else |
1383 | | if (y = d1) { |
1384 | | if (k = lo0bits(&y)) |
1385 | | if (k >= 16) { |
1386 | | x[0] = y | z << 32 - k & 0xffff; |
1387 | | x[1] = z >> k - 16 & 0xffff; |
1388 | | x[2] = z >> k; |
1389 | | i = 2; |
1390 | | } |
1391 | | else { |
1392 | | x[0] = y & 0xffff; |
1393 | | x[1] = y >> 16 | z << 16 - k & 0xffff; |
1394 | | x[2] = z >> k & 0xffff; |
1395 | | x[3] = z >> k+16; |
1396 | | i = 3; |
1397 | | } |
1398 | | else { |
1399 | | x[0] = y & 0xffff; |
1400 | | x[1] = y >> 16; |
1401 | | x[2] = z & 0xffff; |
1402 | | x[3] = z >> 16; |
1403 | | i = 3; |
1404 | | } |
1405 | | } |
1406 | | else { |
1407 | | #ifdef DEBUG |
1408 | | if (!z) { |
1409 | | Bug("Zero passed to d2b"); |
1410 | | } |
1411 | | #endif |
1412 | | k = lo0bits(&z); |
1413 | | if (k >= 16) { |
1414 | | x[0] = z; |
1415 | | i = 0; |
1416 | | } |
1417 | | else { |
1418 | | x[0] = z & 0xffff; |
1419 | | x[1] = z >> 16; |
1420 | | i = 1; |
1421 | | } |
1422 | | k += 32; |
1423 | | } |
1424 | | while(!x[i]) { |
1425 | | --i; |
1426 | | } |
1427 | | b->wds = i + 1; |
1428 | | #endif |
1429 | 0 | #ifndef Sudden_Underflow |
1430 | 0 | if (de) { |
1431 | 0 | #endif |
1432 | | #ifdef IBM |
1433 | | *e = (de - Bias - (P-1) << 2) + k; |
1434 | | *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); |
1435 | | #else |
1436 | 0 | *e = de - Bias - (P-1) + k; |
1437 | 0 | *bits = P - k; |
1438 | 0 | #endif |
1439 | 0 | #ifndef Sudden_Underflow |
1440 | 0 | } |
1441 | 0 | else { |
1442 | 0 | *e = de - Bias - (P-1) + 1 + k; |
1443 | 0 | #ifdef Pack_32 |
1444 | 0 | *bits = 32*i - hi0bits(x[i-1]); |
1445 | | #else |
1446 | | *bits = (i+2)*16 - hi0bits(x[i]); |
1447 | | #endif |
1448 | 0 | } |
1449 | 0 | #endif |
1450 | 0 | return b; |
1451 | 0 | } |
1452 | | #undef d0 |
1453 | | #undef d1 |
1454 | | |
1455 | | static double |
1456 | | ratio |
1457 | | #ifdef KR_headers |
1458 | | (a, b) Bigint *a, *b; |
1459 | | #else |
1460 | | (Bigint *a, Bigint *b) |
1461 | | #endif |
1462 | 0 | { |
1463 | 0 | U da, db; |
1464 | 0 | int k, ka, kb; |
1465 | |
|
1466 | 0 | dval(da) = b2d(a, &ka); |
1467 | 0 | dval(db) = b2d(b, &kb); |
1468 | 0 | #ifdef Pack_32 |
1469 | 0 | k = ka - kb + 32*(a->wds - b->wds); |
1470 | | #else |
1471 | | k = ka - kb + 16*(a->wds - b->wds); |
1472 | | #endif |
1473 | | #ifdef IBM |
1474 | | if (k > 0) { |
1475 | | word0(da) += (k >> 2)*Exp_msk1; |
1476 | | if (k &= 3) { |
1477 | | dval(da) *= 1 << k; |
1478 | | } |
1479 | | } |
1480 | | else { |
1481 | | k = -k; |
1482 | | word0(db) += (k >> 2)*Exp_msk1; |
1483 | | if (k &= 3) { |
1484 | | dval(db) *= 1 << k; |
1485 | | } |
1486 | | } |
1487 | | #else |
1488 | 0 | if (k > 0) { |
1489 | 0 | word0(da) += k*Exp_msk1; |
1490 | 0 | } |
1491 | 0 | else { |
1492 | 0 | k = -k; |
1493 | 0 | word0(db) += k*Exp_msk1; |
1494 | 0 | } |
1495 | 0 | #endif |
1496 | 0 | return dval(da) / dval(db); |
1497 | 0 | } |
1498 | | |
1499 | | static CONST double |
1500 | | tens[] = { |
1501 | | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
1502 | | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
1503 | | 1e20, 1e21, 1e22 |
1504 | | #ifdef VAX |
1505 | | , 1e23, 1e24 |
1506 | | #endif |
1507 | | }; |
1508 | | |
1509 | | static CONST double |
1510 | | #ifdef IEEE_Arith |
1511 | | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
1512 | | static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
1513 | | #ifdef Avoid_Underflow |
1514 | | 9007199254740992.*9007199254740992.e-256 |
1515 | | /* = 2^106 * 1e-53 */ |
1516 | | #else |
1517 | | 1e-256 |
1518 | | #endif |
1519 | | }; |
1520 | | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1521 | | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1522 | 0 | #define Scale_Bit 0x10 |
1523 | 0 | #define n_bigtens 5 |
1524 | | #else |
1525 | | #ifdef IBM |
1526 | | bigtens[] = { 1e16, 1e32, 1e64 }; |
1527 | | static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; |
1528 | | #define n_bigtens 3 |
1529 | | #else |
1530 | | bigtens[] = { 1e16, 1e32 }; |
1531 | | static CONST double tinytens[] = { 1e-16, 1e-32 }; |
1532 | | #define n_bigtens 2 |
1533 | | #endif |
1534 | | #endif |
1535 | | |
1536 | | #ifndef IEEE_Arith |
1537 | | #undef INFNAN_CHECK |
1538 | | #endif |
1539 | | |
1540 | | #ifdef INFNAN_CHECK |
1541 | | |
1542 | | #ifndef NAN_WORD0 |
1543 | | #define NAN_WORD0 0x7ff80000 |
1544 | | #endif |
1545 | | |
1546 | | #ifndef NAN_WORD1 |
1547 | | #define NAN_WORD1 0 |
1548 | | #endif |
1549 | | |
1550 | | static int |
1551 | | match |
1552 | | #ifdef KR_headers |
1553 | | (sp, t) char **sp, *t; |
1554 | | #else |
1555 | | (CONST char **sp, char *t) |
1556 | | #endif |
1557 | | { |
1558 | | int c, d; |
1559 | | CONST char *s = *sp; |
1560 | | |
1561 | | while(d = *t++) { |
1562 | | if ((c = *++s) >= 'A' && c <= 'Z') { |
1563 | | c += 'a' - 'A'; |
1564 | | } |
1565 | | if (c != d) { |
1566 | | return 0; |
1567 | | } |
1568 | | } |
1569 | | *sp = s + 1; |
1570 | | return 1; |
1571 | | } |
1572 | | |
1573 | | #ifndef No_Hex_NaN |
1574 | | static void |
1575 | | hexnan |
1576 | | #ifdef KR_headers |
1577 | | (rvp, sp) double *rvp; CONST char **sp; |
1578 | | #else |
1579 | | (double *rvp, CONST char **sp) |
1580 | | #endif |
1581 | | { |
1582 | | ULong c, x[2]; |
1583 | | CONST char *s; |
1584 | | int havedig, udx0, xshift; |
1585 | | |
1586 | | x[0] = x[1] = 0; |
1587 | | havedig = xshift = 0; |
1588 | | udx0 = 1; |
1589 | | s = *sp; |
1590 | | while(c = *(CONST unsigned char*)++s) { |
1591 | | if (c >= '0' && c <= '9') { |
1592 | | c -= '0'; |
1593 | | } |
1594 | | else if (c >= 'a' && c <= 'f') { |
1595 | | c += 10 - 'a'; |
1596 | | } |
1597 | | else if (c >= 'A' && c <= 'F') { |
1598 | | c += 10 - 'A'; |
1599 | | } |
1600 | | else if (c <= ' ') { |
1601 | | if (udx0 && havedig) { |
1602 | | udx0 = 0; |
1603 | | xshift = 1; |
1604 | | } |
1605 | | continue; |
1606 | | } |
1607 | | else if (/*(*/ c == ')' && havedig) { |
1608 | | *sp = s + 1; |
1609 | | break; |
1610 | | } |
1611 | | else { |
1612 | | return; /* invalid form: don't change *sp */ |
1613 | | } |
1614 | | havedig = 1; |
1615 | | if (xshift) { |
1616 | | xshift = 0; |
1617 | | x[0] = x[1]; |
1618 | | x[1] = 0; |
1619 | | } |
1620 | | if (udx0) { |
1621 | | x[0] = (x[0] << 4) | (x[1] >> 28); |
1622 | | } |
1623 | | x[1] = (x[1] << 4) | c; |
1624 | | } |
1625 | | if ((x[0] &= 0xfffff) || x[1]) { |
1626 | | word0(*rvp) = Exp_mask | x[0]; |
1627 | | word1(*rvp) = x[1]; |
1628 | | } |
1629 | | } |
1630 | | #endif /*No_Hex_NaN*/ |
1631 | | #endif /* INFNAN_CHECK */ |
1632 | | |
1633 | | PR_IMPLEMENT(double) |
1634 | | PR_strtod |
1635 | | #ifdef KR_headers |
1636 | | (s00, se) CONST char *s00; char **se; |
1637 | | #else |
1638 | | (CONST char *s00, char **se) |
1639 | | #endif |
1640 | 0 | { |
1641 | 0 | #ifdef Avoid_Underflow |
1642 | 0 | int scale; |
1643 | 0 | #endif |
1644 | 0 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
1645 | 0 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
1646 | 0 | CONST char *s, *s0, *s1; |
1647 | 0 | double aadj, aadj1, adj; |
1648 | 0 | U aadj2, rv, rv0; |
1649 | 0 | Long L; |
1650 | 0 | ULong y, z; |
1651 | 0 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
1652 | | #ifdef SET_INEXACT |
1653 | | int inexact, oldinexact; |
1654 | | #endif |
1655 | | #ifdef Honor_FLT_ROUNDS |
1656 | | int rounding; |
1657 | | #endif |
1658 | | #ifdef USE_LOCALE |
1659 | | CONST char *s2; |
1660 | | #endif |
1661 | |
|
1662 | 0 | if (!_pr_initialized) { |
1663 | 0 | _PR_ImplicitInitialization(); |
1664 | 0 | } |
1665 | |
|
1666 | 0 | sign = nz0 = nz = 0; |
1667 | 0 | dval(rv) = 0.; |
1668 | 0 | for(s = s00;; s++) switch(*s) { |
1669 | 0 | case '-': |
1670 | 0 | sign = 1; |
1671 | | /* no break */ |
1672 | 0 | case '+': |
1673 | 0 | if (*++s) { |
1674 | 0 | goto break2; |
1675 | 0 | } |
1676 | | /* no break */ |
1677 | 0 | case 0: |
1678 | 0 | goto ret0; |
1679 | 0 | case '\t': |
1680 | 0 | case '\n': |
1681 | 0 | case '\v': |
1682 | 0 | case '\f': |
1683 | 0 | case '\r': |
1684 | 0 | case ' ': |
1685 | 0 | continue; |
1686 | 0 | default: |
1687 | 0 | goto break2; |
1688 | 0 | } |
1689 | 0 | break2: |
1690 | 0 | if (*s == '0') { |
1691 | 0 | nz0 = 1; |
1692 | 0 | while(*++s == '0') ; |
1693 | 0 | if (!*s) { |
1694 | 0 | goto ret; |
1695 | 0 | } |
1696 | 0 | } |
1697 | 0 | s0 = s; |
1698 | 0 | y = z = 0; |
1699 | 0 | for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
1700 | 0 | if (nd < 9) { |
1701 | 0 | y = 10*y + c - '0'; |
1702 | 0 | } |
1703 | 0 | else if (nd < 16) { |
1704 | 0 | z = 10*z + c - '0'; |
1705 | 0 | } |
1706 | 0 | nd0 = nd; |
1707 | | #ifdef USE_LOCALE |
1708 | | s1 = localeconv()->decimal_point; |
1709 | | if (c == *s1) { |
1710 | | c = '.'; |
1711 | | if (*++s1) { |
1712 | | s2 = s; |
1713 | | for(;;) { |
1714 | | if (*++s2 != *s1) { |
1715 | | c = 0; |
1716 | | break; |
1717 | | } |
1718 | | if (!*++s1) { |
1719 | | s = s2; |
1720 | | break; |
1721 | | } |
1722 | | } |
1723 | | } |
1724 | | } |
1725 | | #endif |
1726 | 0 | if (c == '.') { |
1727 | 0 | c = *++s; |
1728 | 0 | if (!nd) { |
1729 | 0 | for(; c == '0'; c = *++s) { |
1730 | 0 | nz++; |
1731 | 0 | } |
1732 | 0 | if (c > '0' && c <= '9') { |
1733 | 0 | s0 = s; |
1734 | 0 | nf += nz; |
1735 | 0 | nz = 0; |
1736 | 0 | goto have_dig; |
1737 | 0 | } |
1738 | 0 | goto dig_done; |
1739 | 0 | } |
1740 | 0 | for(; c >= '0' && c <= '9'; c = *++s) { |
1741 | 0 | have_dig: |
1742 | 0 | nz++; |
1743 | 0 | if (c -= '0') { |
1744 | 0 | nf += nz; |
1745 | 0 | for(i = 1; i < nz; i++) |
1746 | 0 | if (nd++ < 9) { |
1747 | 0 | y *= 10; |
1748 | 0 | } |
1749 | 0 | else if (nd <= DBL_DIG + 1) { |
1750 | 0 | z *= 10; |
1751 | 0 | } |
1752 | 0 | if (nd++ < 9) { |
1753 | 0 | y = 10*y + c; |
1754 | 0 | } |
1755 | 0 | else if (nd <= DBL_DIG + 1) { |
1756 | 0 | z = 10*z + c; |
1757 | 0 | } |
1758 | 0 | nz = 0; |
1759 | 0 | } |
1760 | 0 | } |
1761 | 0 | } |
1762 | 0 | dig_done: |
1763 | 0 | if (nd > 64 * 1024) { |
1764 | 0 | goto ret0; |
1765 | 0 | } |
1766 | 0 | e = 0; |
1767 | 0 | if (c == 'e' || c == 'E') { |
1768 | 0 | if (!nd && !nz && !nz0) { |
1769 | 0 | goto ret0; |
1770 | 0 | } |
1771 | 0 | s00 = s; |
1772 | 0 | esign = 0; |
1773 | 0 | switch(c = *++s) { |
1774 | 0 | case '-': |
1775 | 0 | esign = 1; |
1776 | 0 | case '+': |
1777 | 0 | c = *++s; |
1778 | 0 | } |
1779 | 0 | if (c >= '0' && c <= '9') { |
1780 | 0 | while(c == '0') { |
1781 | 0 | c = *++s; |
1782 | 0 | } |
1783 | 0 | if (c > '0' && c <= '9') { |
1784 | 0 | L = c - '0'; |
1785 | 0 | s1 = s; |
1786 | 0 | while((c = *++s) >= '0' && c <= '9') { |
1787 | 0 | L = 10*L + c - '0'; |
1788 | 0 | } |
1789 | 0 | if (s - s1 > 8 || L > 19999) |
1790 | | /* Avoid confusion from exponents |
1791 | | * so large that e might overflow. |
1792 | | */ |
1793 | 0 | { |
1794 | 0 | e = 19999; /* safe for 16 bit ints */ |
1795 | 0 | } |
1796 | 0 | else { |
1797 | 0 | e = (int)L; |
1798 | 0 | } |
1799 | 0 | if (esign) { |
1800 | 0 | e = -e; |
1801 | 0 | } |
1802 | 0 | } |
1803 | 0 | else { |
1804 | 0 | e = 0; |
1805 | 0 | } |
1806 | 0 | } |
1807 | 0 | else { |
1808 | 0 | s = s00; |
1809 | 0 | } |
1810 | 0 | } |
1811 | 0 | if (!nd) { |
1812 | 0 | if (!nz && !nz0) { |
1813 | | #ifdef INFNAN_CHECK |
1814 | | /* Check for Nan and Infinity */ |
1815 | | switch(c) { |
1816 | | case 'i': |
1817 | | case 'I': |
1818 | | if (match(&s,"nf")) { |
1819 | | --s; |
1820 | | if (!match(&s,"inity")) { |
1821 | | ++s; |
1822 | | } |
1823 | | word0(rv) = 0x7ff00000; |
1824 | | word1(rv) = 0; |
1825 | | goto ret; |
1826 | | } |
1827 | | break; |
1828 | | case 'n': |
1829 | | case 'N': |
1830 | | if (match(&s, "an")) { |
1831 | | word0(rv) = NAN_WORD0; |
1832 | | word1(rv) = NAN_WORD1; |
1833 | | #ifndef No_Hex_NaN |
1834 | | if (*s == '(') { /*)*/ |
1835 | | hexnan(&rv, &s); |
1836 | | } |
1837 | | #endif |
1838 | | goto ret; |
1839 | | } |
1840 | | } |
1841 | | #endif /* INFNAN_CHECK */ |
1842 | 0 | ret0: |
1843 | 0 | s = s00; |
1844 | 0 | sign = 0; |
1845 | 0 | } |
1846 | 0 | goto ret; |
1847 | 0 | } |
1848 | 0 | e1 = e -= nf; |
1849 | | |
1850 | | /* Now we have nd0 digits, starting at s0, followed by a |
1851 | | * decimal point, followed by nd-nd0 digits. The number we're |
1852 | | * after is the integer represented by those digits times |
1853 | | * 10**e */ |
1854 | |
|
1855 | 0 | if (!nd0) { |
1856 | 0 | nd0 = nd; |
1857 | 0 | } |
1858 | 0 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
1859 | 0 | dval(rv) = y; |
1860 | 0 | if (k > 9) { |
1861 | | #ifdef SET_INEXACT |
1862 | | if (k > DBL_DIG) { |
1863 | | oldinexact = get_inexact(); |
1864 | | } |
1865 | | #endif |
1866 | 0 | dval(rv) = tens[k - 9] * dval(rv) + z; |
1867 | 0 | } |
1868 | 0 | bd0 = 0; |
1869 | 0 | if (nd <= DBL_DIG |
1870 | 0 | #ifndef RND_PRODQUOT |
1871 | 0 | #ifndef Honor_FLT_ROUNDS |
1872 | 0 | && Flt_Rounds == 1 |
1873 | 0 | #endif |
1874 | 0 | #endif |
1875 | 0 | ) { |
1876 | 0 | if (!e) { |
1877 | 0 | goto ret; |
1878 | 0 | } |
1879 | 0 | if (e > 0) { |
1880 | 0 | if (e <= Ten_pmax) { |
1881 | | #ifdef VAX |
1882 | | goto vax_ovfl_check; |
1883 | | #else |
1884 | | #ifdef Honor_FLT_ROUNDS |
1885 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1886 | | if (sign) { |
1887 | | rv = -rv; |
1888 | | sign = 0; |
1889 | | } |
1890 | | #endif |
1891 | 0 | /* rv = */ rounded_product(dval(rv), tens[e]); |
1892 | 0 | goto ret; |
1893 | 0 | #endif |
1894 | 0 | } |
1895 | 0 | i = DBL_DIG - nd; |
1896 | 0 | if (e <= Ten_pmax + i) { |
1897 | | /* A fancier test would sometimes let us do |
1898 | | * this for larger i values. |
1899 | | */ |
1900 | | #ifdef Honor_FLT_ROUNDS |
1901 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1902 | | if (sign) { |
1903 | | rv = -rv; |
1904 | | sign = 0; |
1905 | | } |
1906 | | #endif |
1907 | 0 | e -= i; |
1908 | 0 | dval(rv) *= tens[i]; |
1909 | | #ifdef VAX |
1910 | | /* VAX exponent range is so narrow we must |
1911 | | * worry about overflow here... |
1912 | | */ |
1913 | | vax_ovfl_check: |
1914 | | word0(rv) -= P*Exp_msk1; |
1915 | | /* rv = */ rounded_product(dval(rv), tens[e]); |
1916 | | if ((word0(rv) & Exp_mask) |
1917 | | > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
1918 | | goto ovfl; |
1919 | | } |
1920 | | word0(rv) += P*Exp_msk1; |
1921 | | #else |
1922 | 0 | /* rv = */ rounded_product(dval(rv), tens[e]); |
1923 | 0 | #endif |
1924 | 0 | goto ret; |
1925 | 0 | } |
1926 | 0 | } |
1927 | 0 | #ifndef Inaccurate_Divide |
1928 | 0 | else if (e >= -Ten_pmax) { |
1929 | | #ifdef Honor_FLT_ROUNDS |
1930 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1931 | | if (sign) { |
1932 | | rv = -rv; |
1933 | | sign = 0; |
1934 | | } |
1935 | | #endif |
1936 | 0 | /* rv = */ rounded_quotient(dval(rv), tens[-e]); |
1937 | 0 | goto ret; |
1938 | 0 | } |
1939 | 0 | #endif |
1940 | 0 | } |
1941 | 0 | e1 += nd - k; |
1942 | |
|
1943 | 0 | #ifdef IEEE_Arith |
1944 | | #ifdef SET_INEXACT |
1945 | | inexact = 1; |
1946 | | if (k <= DBL_DIG) { |
1947 | | oldinexact = get_inexact(); |
1948 | | } |
1949 | | #endif |
1950 | 0 | #ifdef Avoid_Underflow |
1951 | 0 | scale = 0; |
1952 | 0 | #endif |
1953 | | #ifdef Honor_FLT_ROUNDS |
1954 | | if ((rounding = Flt_Rounds) >= 2) { |
1955 | | if (sign) { |
1956 | | rounding = rounding == 2 ? 0 : 2; |
1957 | | } |
1958 | | else if (rounding != 2) { |
1959 | | rounding = 0; |
1960 | | } |
1961 | | } |
1962 | | #endif |
1963 | 0 | #endif /*IEEE_Arith*/ |
1964 | | |
1965 | | /* Get starting approximation = rv * 10**e1 */ |
1966 | |
|
1967 | 0 | if (e1 > 0) { |
1968 | 0 | if (i = e1 & 15) { |
1969 | 0 | dval(rv) *= tens[i]; |
1970 | 0 | } |
1971 | 0 | if (e1 &= ~15) { |
1972 | 0 | if (e1 > DBL_MAX_10_EXP) { |
1973 | 0 | ovfl: |
1974 | 0 | #ifndef NO_ERRNO |
1975 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
1976 | 0 | #endif |
1977 | | /* Can't trust HUGE_VAL */ |
1978 | 0 | #ifdef IEEE_Arith |
1979 | | #ifdef Honor_FLT_ROUNDS |
1980 | | switch(rounding) { |
1981 | | case 0: /* toward 0 */ |
1982 | | case 3: /* toward -infinity */ |
1983 | | word0(rv) = Big0; |
1984 | | word1(rv) = Big1; |
1985 | | break; |
1986 | | default: |
1987 | | word0(rv) = Exp_mask; |
1988 | | word1(rv) = 0; |
1989 | | } |
1990 | | #else /*Honor_FLT_ROUNDS*/ |
1991 | 0 | word0(rv) = Exp_mask; |
1992 | 0 | word1(rv) = 0; |
1993 | 0 | #endif /*Honor_FLT_ROUNDS*/ |
1994 | | #ifdef SET_INEXACT |
1995 | | /* set overflow bit */ |
1996 | | dval(rv0) = 1e300; |
1997 | | dval(rv0) *= dval(rv0); |
1998 | | #endif |
1999 | | #else /*IEEE_Arith*/ |
2000 | | word0(rv) = Big0; |
2001 | | word1(rv) = Big1; |
2002 | | #endif /*IEEE_Arith*/ |
2003 | 0 | if (bd0) { |
2004 | 0 | goto retfree; |
2005 | 0 | } |
2006 | 0 | goto ret; |
2007 | 0 | } |
2008 | 0 | e1 >>= 4; |
2009 | 0 | for(j = 0; e1 > 1; j++, e1 >>= 1) |
2010 | 0 | if (e1 & 1) { |
2011 | 0 | dval(rv) *= bigtens[j]; |
2012 | 0 | } |
2013 | | /* The last multiplication could overflow. */ |
2014 | 0 | word0(rv) -= P*Exp_msk1; |
2015 | 0 | dval(rv) *= bigtens[j]; |
2016 | 0 | if ((z = word0(rv) & Exp_mask) |
2017 | 0 | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
2018 | 0 | goto ovfl; |
2019 | 0 | } |
2020 | 0 | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
2021 | | /* set to largest number */ |
2022 | | /* (Can't trust DBL_MAX) */ |
2023 | 0 | word0(rv) = Big0; |
2024 | 0 | word1(rv) = Big1; |
2025 | 0 | } |
2026 | 0 | else { |
2027 | 0 | word0(rv) += P*Exp_msk1; |
2028 | 0 | } |
2029 | 0 | } |
2030 | 0 | } |
2031 | 0 | else if (e1 < 0) { |
2032 | 0 | e1 = -e1; |
2033 | 0 | if (i = e1 & 15) { |
2034 | 0 | dval(rv) /= tens[i]; |
2035 | 0 | } |
2036 | 0 | if (e1 >>= 4) { |
2037 | 0 | if (e1 >= 1 << n_bigtens) { |
2038 | 0 | goto undfl; |
2039 | 0 | } |
2040 | 0 | #ifdef Avoid_Underflow |
2041 | 0 | if (e1 & Scale_Bit) { |
2042 | 0 | scale = 2*P; |
2043 | 0 | } |
2044 | 0 | for(j = 0; e1 > 0; j++, e1 >>= 1) |
2045 | 0 | if (e1 & 1) { |
2046 | 0 | dval(rv) *= tinytens[j]; |
2047 | 0 | } |
2048 | 0 | if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) |
2049 | 0 | >> Exp_shift)) > 0) { |
2050 | | /* scaled rv is denormal; zap j low bits */ |
2051 | 0 | if (j >= 32) { |
2052 | 0 | word1(rv) = 0; |
2053 | 0 | if (j >= 53) { |
2054 | 0 | word0(rv) = (P+2)*Exp_msk1; |
2055 | 0 | } |
2056 | 0 | else { |
2057 | 0 | word0(rv) &= 0xffffffff << j-32; |
2058 | 0 | } |
2059 | 0 | } |
2060 | 0 | else { |
2061 | 0 | word1(rv) &= 0xffffffff << j; |
2062 | 0 | } |
2063 | 0 | } |
2064 | | #else |
2065 | | for(j = 0; e1 > 1; j++, e1 >>= 1) |
2066 | | if (e1 & 1) { |
2067 | | dval(rv) *= tinytens[j]; |
2068 | | } |
2069 | | /* The last multiplication could underflow. */ |
2070 | | dval(rv0) = dval(rv); |
2071 | | dval(rv) *= tinytens[j]; |
2072 | | if (!dval(rv)) { |
2073 | | dval(rv) = 2.*dval(rv0); |
2074 | | dval(rv) *= tinytens[j]; |
2075 | | #endif |
2076 | 0 | if (!dval(rv)) { |
2077 | 0 | undfl: |
2078 | 0 | dval(rv) = 0.; |
2079 | 0 | #ifndef NO_ERRNO |
2080 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
2081 | 0 | #endif |
2082 | 0 | if (bd0) { |
2083 | 0 | goto retfree; |
2084 | 0 | } |
2085 | 0 | goto ret; |
2086 | 0 | } |
2087 | | #ifndef Avoid_Underflow |
2088 | | word0(rv) = Tiny0; |
2089 | | word1(rv) = Tiny1; |
2090 | | /* The refinement below will clean |
2091 | | * this approximation up. |
2092 | | */ |
2093 | | } |
2094 | | #endif |
2095 | 0 | } |
2096 | 0 | } |
2097 | | |
2098 | | /* Now the hard part -- adjusting rv to the correct value.*/ |
2099 | | |
2100 | | /* Put digits into bd: true value = bd * 10^e */ |
2101 | | |
2102 | 0 | bd0 = s2b(s0, nd0, nd, y); |
2103 | |
|
2104 | 0 | for(;;) { |
2105 | 0 | bd = Balloc(bd0->k); |
2106 | 0 | Bcopy(bd, bd0); |
2107 | 0 | bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */ |
2108 | 0 | bs = i2b(1); |
2109 | |
|
2110 | 0 | if (e >= 0) { |
2111 | 0 | bb2 = bb5 = 0; |
2112 | 0 | bd2 = bd5 = e; |
2113 | 0 | } |
2114 | 0 | else { |
2115 | 0 | bb2 = bb5 = -e; |
2116 | 0 | bd2 = bd5 = 0; |
2117 | 0 | } |
2118 | 0 | if (bbe >= 0) { |
2119 | 0 | bb2 += bbe; |
2120 | 0 | } |
2121 | 0 | else { |
2122 | 0 | bd2 -= bbe; |
2123 | 0 | } |
2124 | 0 | bs2 = bb2; |
2125 | | #ifdef Honor_FLT_ROUNDS |
2126 | | if (rounding != 1) { |
2127 | | bs2++; |
2128 | | } |
2129 | | #endif |
2130 | 0 | #ifdef Avoid_Underflow |
2131 | 0 | j = bbe - scale; |
2132 | 0 | i = j + bbbits - 1; /* logb(rv) */ |
2133 | 0 | if (i < Emin) { /* denormal */ |
2134 | 0 | j += P - Emin; |
2135 | 0 | } |
2136 | 0 | else { |
2137 | 0 | j = P + 1 - bbbits; |
2138 | 0 | } |
2139 | | #else /*Avoid_Underflow*/ |
2140 | | #ifdef Sudden_Underflow |
2141 | | #ifdef IBM |
2142 | | j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); |
2143 | | #else |
2144 | | j = P + 1 - bbbits; |
2145 | | #endif |
2146 | | #else /*Sudden_Underflow*/ |
2147 | | j = bbe; |
2148 | | i = j + bbbits - 1; /* logb(rv) */ |
2149 | | if (i < Emin) { /* denormal */ |
2150 | | j += P - Emin; |
2151 | | } |
2152 | | else { |
2153 | | j = P + 1 - bbbits; |
2154 | | } |
2155 | | #endif /*Sudden_Underflow*/ |
2156 | | #endif /*Avoid_Underflow*/ |
2157 | 0 | bb2 += j; |
2158 | 0 | bd2 += j; |
2159 | 0 | #ifdef Avoid_Underflow |
2160 | 0 | bd2 += scale; |
2161 | 0 | #endif |
2162 | 0 | i = bb2 < bd2 ? bb2 : bd2; |
2163 | 0 | if (i > bs2) { |
2164 | 0 | i = bs2; |
2165 | 0 | } |
2166 | 0 | if (i > 0) { |
2167 | 0 | bb2 -= i; |
2168 | 0 | bd2 -= i; |
2169 | 0 | bs2 -= i; |
2170 | 0 | } |
2171 | 0 | if (bb5 > 0) { |
2172 | 0 | bs = pow5mult(bs, bb5); |
2173 | 0 | bb1 = mult(bs, bb); |
2174 | 0 | Bfree(bb); |
2175 | 0 | bb = bb1; |
2176 | 0 | } |
2177 | 0 | if (bb2 > 0) { |
2178 | 0 | bb = lshift(bb, bb2); |
2179 | 0 | } |
2180 | 0 | if (bd5 > 0) { |
2181 | 0 | bd = pow5mult(bd, bd5); |
2182 | 0 | } |
2183 | 0 | if (bd2 > 0) { |
2184 | 0 | bd = lshift(bd, bd2); |
2185 | 0 | } |
2186 | 0 | if (bs2 > 0) { |
2187 | 0 | bs = lshift(bs, bs2); |
2188 | 0 | } |
2189 | 0 | delta = diff(bb, bd); |
2190 | 0 | dsign = delta->sign; |
2191 | 0 | delta->sign = 0; |
2192 | 0 | i = cmp(delta, bs); |
2193 | | #ifdef Honor_FLT_ROUNDS |
2194 | | if (rounding != 1) { |
2195 | | if (i < 0) { |
2196 | | /* Error is less than an ulp */ |
2197 | | if (!delta->x[0] && delta->wds <= 1) { |
2198 | | /* exact */ |
2199 | | #ifdef SET_INEXACT |
2200 | | inexact = 0; |
2201 | | #endif |
2202 | | break; |
2203 | | } |
2204 | | if (rounding) { |
2205 | | if (dsign) { |
2206 | | adj = 1.; |
2207 | | goto apply_adj; |
2208 | | } |
2209 | | } |
2210 | | else if (!dsign) { |
2211 | | adj = -1.; |
2212 | | if (!word1(rv) |
2213 | | && !(word0(rv) & Frac_mask)) { |
2214 | | y = word0(rv) & Exp_mask; |
2215 | | #ifdef Avoid_Underflow |
2216 | | if (!scale || y > 2*P*Exp_msk1) |
2217 | | #else |
2218 | | if (y) |
2219 | | #endif |
2220 | | { |
2221 | | delta = lshift(delta,Log2P); |
2222 | | if (cmp(delta, bs) <= 0) { |
2223 | | adj = -0.5; |
2224 | | } |
2225 | | } |
2226 | | } |
2227 | | apply_adj: |
2228 | | #ifdef Avoid_Underflow |
2229 | | if (scale && (y = word0(rv) & Exp_mask) |
2230 | | <= 2*P*Exp_msk1) { |
2231 | | word0(adj) += (2*P+1)*Exp_msk1 - y; |
2232 | | } |
2233 | | #else |
2234 | | #ifdef Sudden_Underflow |
2235 | | if ((word0(rv) & Exp_mask) <= |
2236 | | P*Exp_msk1) { |
2237 | | word0(rv) += P*Exp_msk1; |
2238 | | dval(rv) += adj*ulp(dval(rv)); |
2239 | | word0(rv) -= P*Exp_msk1; |
2240 | | } |
2241 | | else |
2242 | | #endif /*Sudden_Underflow*/ |
2243 | | #endif /*Avoid_Underflow*/ |
2244 | | dval(rv) += adj*ulp(dval(rv)); |
2245 | | } |
2246 | | break; |
2247 | | } |
2248 | | adj = ratio(delta, bs); |
2249 | | if (adj < 1.) { |
2250 | | adj = 1.; |
2251 | | } |
2252 | | if (adj <= 0x7ffffffe) { |
2253 | | /* adj = rounding ? ceil(adj) : floor(adj); */ |
2254 | | y = adj; |
2255 | | if (y != adj) { |
2256 | | if (!((rounding>>1) ^ dsign)) { |
2257 | | y++; |
2258 | | } |
2259 | | adj = y; |
2260 | | } |
2261 | | } |
2262 | | #ifdef Avoid_Underflow |
2263 | | if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) { |
2264 | | word0(adj) += (2*P+1)*Exp_msk1 - y; |
2265 | | } |
2266 | | #else |
2267 | | #ifdef Sudden_Underflow |
2268 | | if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
2269 | | word0(rv) += P*Exp_msk1; |
2270 | | adj *= ulp(dval(rv)); |
2271 | | if (dsign) { |
2272 | | dval(rv) += adj; |
2273 | | } |
2274 | | else { |
2275 | | dval(rv) -= adj; |
2276 | | } |
2277 | | word0(rv) -= P*Exp_msk1; |
2278 | | goto cont; |
2279 | | } |
2280 | | #endif /*Sudden_Underflow*/ |
2281 | | #endif /*Avoid_Underflow*/ |
2282 | | adj *= ulp(dval(rv)); |
2283 | | if (dsign) { |
2284 | | dval(rv) += adj; |
2285 | | } |
2286 | | else { |
2287 | | dval(rv) -= adj; |
2288 | | } |
2289 | | goto cont; |
2290 | | } |
2291 | | #endif /*Honor_FLT_ROUNDS*/ |
2292 | |
|
2293 | 0 | if (i < 0) { |
2294 | | /* Error is less than half an ulp -- check for |
2295 | | * special case of mantissa a power of two. |
2296 | | */ |
2297 | 0 | if (dsign || word1(rv) || word0(rv) & Bndry_mask |
2298 | 0 | #ifdef IEEE_Arith |
2299 | 0 | #ifdef Avoid_Underflow |
2300 | 0 | || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
2301 | | #else |
2302 | | || (word0(rv) & Exp_mask) <= Exp_msk1 |
2303 | | #endif |
2304 | 0 | #endif |
2305 | 0 | ) { |
2306 | | #ifdef SET_INEXACT |
2307 | | if (!delta->x[0] && delta->wds <= 1) { |
2308 | | inexact = 0; |
2309 | | } |
2310 | | #endif |
2311 | 0 | break; |
2312 | 0 | } |
2313 | 0 | if (!delta->x[0] && delta->wds <= 1) { |
2314 | | /* exact result */ |
2315 | | #ifdef SET_INEXACT |
2316 | | inexact = 0; |
2317 | | #endif |
2318 | 0 | break; |
2319 | 0 | } |
2320 | 0 | delta = lshift(delta,Log2P); |
2321 | 0 | if (cmp(delta, bs) > 0) { |
2322 | 0 | goto drop_down; |
2323 | 0 | } |
2324 | 0 | break; |
2325 | 0 | } |
2326 | 0 | if (i == 0) { |
2327 | | /* exactly half-way between */ |
2328 | 0 | if (dsign) { |
2329 | 0 | if ((word0(rv) & Bndry_mask1) == Bndry_mask1 |
2330 | 0 | && word1(rv) == ( |
2331 | 0 | #ifdef Avoid_Underflow |
2332 | 0 | (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) |
2333 | 0 | ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
2334 | 0 | #endif |
2335 | 0 | 0xffffffff)) { |
2336 | | /*boundary case -- increment exponent*/ |
2337 | 0 | word0(rv) = (word0(rv) & Exp_mask) |
2338 | 0 | + Exp_msk1 |
2339 | | #ifdef IBM |
2340 | | | Exp_msk1 >> 4 |
2341 | | #endif |
2342 | 0 | ; |
2343 | 0 | word1(rv) = 0; |
2344 | 0 | #ifdef Avoid_Underflow |
2345 | 0 | dsign = 0; |
2346 | 0 | #endif |
2347 | 0 | break; |
2348 | 0 | } |
2349 | 0 | } |
2350 | 0 | else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { |
2351 | 0 | drop_down: |
2352 | | /* boundary case -- decrement exponent */ |
2353 | | #ifdef Sudden_Underflow /*{{*/ |
2354 | | L = word0(rv) & Exp_mask; |
2355 | | #ifdef IBM |
2356 | | if (L < Exp_msk1) |
2357 | | #else |
2358 | | #ifdef Avoid_Underflow |
2359 | | if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) |
2360 | | #else |
2361 | | if (L <= Exp_msk1) |
2362 | | #endif /*Avoid_Underflow*/ |
2363 | | #endif /*IBM*/ |
2364 | | goto undfl; |
2365 | | L -= Exp_msk1; |
2366 | | #else /*Sudden_Underflow}{*/ |
2367 | 0 | #ifdef Avoid_Underflow |
2368 | 0 | if (scale) { |
2369 | 0 | L = word0(rv) & Exp_mask; |
2370 | 0 | if (L <= (2*P+1)*Exp_msk1) { |
2371 | 0 | if (L > (P+2)*Exp_msk1) |
2372 | | /* round even ==> */ |
2373 | | /* accept rv */ |
2374 | 0 | { |
2375 | 0 | break; |
2376 | 0 | } |
2377 | | /* rv = smallest denormal */ |
2378 | 0 | goto undfl; |
2379 | 0 | } |
2380 | 0 | } |
2381 | 0 | #endif /*Avoid_Underflow*/ |
2382 | 0 | L = (word0(rv) & Exp_mask) - Exp_msk1; |
2383 | 0 | #endif /*Sudden_Underflow}}*/ |
2384 | 0 | word0(rv) = L | Bndry_mask1; |
2385 | 0 | word1(rv) = 0xffffffff; |
2386 | | #ifdef IBM |
2387 | | goto cont; |
2388 | | #else |
2389 | 0 | break; |
2390 | 0 | #endif |
2391 | 0 | } |
2392 | 0 | #ifndef ROUND_BIASED |
2393 | 0 | if (!(word1(rv) & LSB)) { |
2394 | 0 | break; |
2395 | 0 | } |
2396 | 0 | #endif |
2397 | 0 | if (dsign) { |
2398 | 0 | dval(rv) += ulp(dval(rv)); |
2399 | 0 | } |
2400 | 0 | #ifndef ROUND_BIASED |
2401 | 0 | else { |
2402 | 0 | dval(rv) -= ulp(dval(rv)); |
2403 | 0 | #ifndef Sudden_Underflow |
2404 | 0 | if (!dval(rv)) { |
2405 | 0 | goto undfl; |
2406 | 0 | } |
2407 | 0 | #endif |
2408 | 0 | } |
2409 | 0 | #ifdef Avoid_Underflow |
2410 | 0 | dsign = 1 - dsign; |
2411 | 0 | #endif |
2412 | 0 | #endif |
2413 | 0 | break; |
2414 | 0 | } |
2415 | 0 | if ((aadj = ratio(delta, bs)) <= 2.) { |
2416 | 0 | if (dsign) { |
2417 | 0 | aadj = aadj1 = 1.; |
2418 | 0 | } |
2419 | 0 | else if (word1(rv) || word0(rv) & Bndry_mask) { |
2420 | 0 | #ifndef Sudden_Underflow |
2421 | 0 | if (word1(rv) == Tiny1 && !word0(rv)) { |
2422 | 0 | goto undfl; |
2423 | 0 | } |
2424 | 0 | #endif |
2425 | 0 | aadj = 1.; |
2426 | 0 | aadj1 = -1.; |
2427 | 0 | } |
2428 | 0 | else { |
2429 | | /* special case -- power of FLT_RADIX to be */ |
2430 | | /* rounded down... */ |
2431 | |
|
2432 | 0 | if (aadj < 2./FLT_RADIX) { |
2433 | 0 | aadj = 1./FLT_RADIX; |
2434 | 0 | } |
2435 | 0 | else { |
2436 | 0 | aadj *= 0.5; |
2437 | 0 | } |
2438 | 0 | aadj1 = -aadj; |
2439 | 0 | } |
2440 | 0 | } |
2441 | 0 | else { |
2442 | 0 | aadj *= 0.5; |
2443 | 0 | aadj1 = dsign ? aadj : -aadj; |
2444 | | #ifdef Check_FLT_ROUNDS |
2445 | | switch(Rounding) { |
2446 | | case 2: /* towards +infinity */ |
2447 | | aadj1 -= 0.5; |
2448 | | break; |
2449 | | case 0: /* towards 0 */ |
2450 | | case 3: /* towards -infinity */ |
2451 | | aadj1 += 0.5; |
2452 | | } |
2453 | | #else |
2454 | 0 | if (Flt_Rounds == 0) { |
2455 | 0 | aadj1 += 0.5; |
2456 | 0 | } |
2457 | 0 | #endif /*Check_FLT_ROUNDS*/ |
2458 | 0 | } |
2459 | 0 | y = word0(rv) & Exp_mask; |
2460 | | |
2461 | | /* Check for overflow */ |
2462 | |
|
2463 | 0 | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
2464 | 0 | dval(rv0) = dval(rv); |
2465 | 0 | word0(rv) -= P*Exp_msk1; |
2466 | 0 | adj = aadj1 * ulp(dval(rv)); |
2467 | 0 | dval(rv) += adj; |
2468 | 0 | if ((word0(rv) & Exp_mask) >= |
2469 | 0 | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
2470 | 0 | if (word0(rv0) == Big0 && word1(rv0) == Big1) { |
2471 | 0 | goto ovfl; |
2472 | 0 | } |
2473 | 0 | word0(rv) = Big0; |
2474 | 0 | word1(rv) = Big1; |
2475 | 0 | goto cont; |
2476 | 0 | } |
2477 | 0 | else { |
2478 | 0 | word0(rv) += P*Exp_msk1; |
2479 | 0 | } |
2480 | 0 | } |
2481 | 0 | else { |
2482 | 0 | #ifdef Avoid_Underflow |
2483 | 0 | if (scale && y <= 2*P*Exp_msk1) { |
2484 | 0 | if (aadj <= 0x7fffffff) { |
2485 | 0 | if ((z = aadj) <= 0) { |
2486 | 0 | z = 1; |
2487 | 0 | } |
2488 | 0 | aadj = z; |
2489 | 0 | aadj1 = dsign ? aadj : -aadj; |
2490 | 0 | } |
2491 | 0 | dval(aadj2) = aadj1; |
2492 | 0 | word0(aadj2) += (2*P+1)*Exp_msk1 - y; |
2493 | 0 | aadj1 = dval(aadj2); |
2494 | 0 | } |
2495 | 0 | adj = aadj1 * ulp(dval(rv)); |
2496 | 0 | dval(rv) += adj; |
2497 | | #else |
2498 | | #ifdef Sudden_Underflow |
2499 | | if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
2500 | | dval(rv0) = dval(rv); |
2501 | | word0(rv) += P*Exp_msk1; |
2502 | | adj = aadj1 * ulp(dval(rv)); |
2503 | | dval(rv) += adj; |
2504 | | #ifdef IBM |
2505 | | if ((word0(rv) & Exp_mask) < P*Exp_msk1) |
2506 | | #else |
2507 | | if ((word0(rv) & Exp_mask) <= P*Exp_msk1) |
2508 | | #endif |
2509 | | { |
2510 | | if (word0(rv0) == Tiny0 |
2511 | | && word1(rv0) == Tiny1) { |
2512 | | goto undfl; |
2513 | | } |
2514 | | word0(rv) = Tiny0; |
2515 | | word1(rv) = Tiny1; |
2516 | | goto cont; |
2517 | | } |
2518 | | else { |
2519 | | word0(rv) -= P*Exp_msk1; |
2520 | | } |
2521 | | } |
2522 | | else { |
2523 | | adj = aadj1 * ulp(dval(rv)); |
2524 | | dval(rv) += adj; |
2525 | | } |
2526 | | #else /*Sudden_Underflow*/ |
2527 | | /* Compute adj so that the IEEE rounding rules will |
2528 | | * correctly round rv + adj in some half-way cases. |
2529 | | * If rv * ulp(rv) is denormalized (i.e., |
2530 | | * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid |
2531 | | * trouble from bits lost to denormalization; |
2532 | | * example: 1.2e-307 . |
2533 | | */ |
2534 | | if (y <= (P-1)*Exp_msk1 && aadj > 1.) { |
2535 | | aadj1 = (double)(int)(aadj + 0.5); |
2536 | | if (!dsign) { |
2537 | | aadj1 = -aadj1; |
2538 | | } |
2539 | | } |
2540 | | adj = aadj1 * ulp(dval(rv)); |
2541 | | dval(rv) += adj; |
2542 | | #endif /*Sudden_Underflow*/ |
2543 | | #endif /*Avoid_Underflow*/ |
2544 | 0 | } |
2545 | 0 | z = word0(rv) & Exp_mask; |
2546 | 0 | #ifndef SET_INEXACT |
2547 | 0 | #ifdef Avoid_Underflow |
2548 | 0 | if (!scale) |
2549 | 0 | #endif |
2550 | 0 | if (y == z) { |
2551 | | /* Can we stop now? */ |
2552 | 0 | L = (Long)aadj; |
2553 | 0 | aadj -= L; |
2554 | | /* The tolerances below are conservative. */ |
2555 | 0 | if (dsign || word1(rv) || word0(rv) & Bndry_mask) { |
2556 | 0 | if (aadj < .4999999 || aadj > .5000001) { |
2557 | 0 | break; |
2558 | 0 | } |
2559 | 0 | } |
2560 | 0 | else if (aadj < .4999999/FLT_RADIX) { |
2561 | 0 | break; |
2562 | 0 | } |
2563 | 0 | } |
2564 | 0 | #endif |
2565 | 0 | cont: |
2566 | 0 | Bfree(bb); |
2567 | 0 | Bfree(bd); |
2568 | 0 | Bfree(bs); |
2569 | 0 | Bfree(delta); |
2570 | 0 | } |
2571 | | #ifdef SET_INEXACT |
2572 | | if (inexact) { |
2573 | | if (!oldinexact) { |
2574 | | word0(rv0) = Exp_1 + (70 << Exp_shift); |
2575 | | word1(rv0) = 0; |
2576 | | dval(rv0) += 1.; |
2577 | | } |
2578 | | } |
2579 | | else if (!oldinexact) { |
2580 | | clear_inexact(); |
2581 | | } |
2582 | | #endif |
2583 | 0 | #ifdef Avoid_Underflow |
2584 | 0 | if (scale) { |
2585 | 0 | word0(rv0) = Exp_1 - 2*P*Exp_msk1; |
2586 | 0 | word1(rv0) = 0; |
2587 | 0 | dval(rv) *= dval(rv0); |
2588 | 0 | #ifndef NO_ERRNO |
2589 | | /* try to avoid the bug of testing an 8087 register value */ |
2590 | 0 | if (word0(rv) == 0 && word1(rv) == 0) { |
2591 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
2592 | 0 | } |
2593 | 0 | #endif |
2594 | 0 | } |
2595 | 0 | #endif /* Avoid_Underflow */ |
2596 | | #ifdef SET_INEXACT |
2597 | | if (inexact && !(word0(rv) & Exp_mask)) { |
2598 | | /* set underflow bit */ |
2599 | | dval(rv0) = 1e-300; |
2600 | | dval(rv0) *= dval(rv0); |
2601 | | } |
2602 | | #endif |
2603 | 0 | retfree: |
2604 | 0 | Bfree(bb); |
2605 | 0 | Bfree(bd); |
2606 | 0 | Bfree(bs); |
2607 | 0 | Bfree(bd0); |
2608 | 0 | Bfree(delta); |
2609 | 0 | ret: |
2610 | 0 | if (se) { |
2611 | 0 | *se = (char *)s; |
2612 | 0 | } |
2613 | 0 | return sign ? -dval(rv) : dval(rv); |
2614 | 0 | } |
2615 | | |
2616 | | static int |
2617 | | quorem |
2618 | | #ifdef KR_headers |
2619 | | (b, S) Bigint *b, *S; |
2620 | | #else |
2621 | | (Bigint *b, Bigint *S) |
2622 | | #endif |
2623 | 0 | { |
2624 | 0 | int n; |
2625 | 0 | ULong *bx, *bxe, q, *sx, *sxe; |
2626 | | #ifdef ULLong |
2627 | | ULLong borrow, carry, y, ys; |
2628 | | #else |
2629 | 0 | ULong borrow, carry, y, ys; |
2630 | 0 | #ifdef Pack_32 |
2631 | 0 | ULong si, z, zs; |
2632 | 0 | #endif |
2633 | 0 | #endif |
2634 | |
|
2635 | 0 | n = S->wds; |
2636 | 0 | #ifdef DEBUG |
2637 | 0 | /*debug*/ if (b->wds > n) |
2638 | 0 | /*debug*/{ |
2639 | 0 | Bug("oversize b in quorem"); |
2640 | 0 | } |
2641 | 0 | #endif |
2642 | 0 | if (b->wds < n) { |
2643 | 0 | return 0; |
2644 | 0 | } |
2645 | 0 | sx = S->x; |
2646 | 0 | sxe = sx + --n; |
2647 | 0 | bx = b->x; |
2648 | 0 | bxe = bx + n; |
2649 | 0 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
2650 | 0 | #ifdef DEBUG |
2651 | 0 | /*debug*/ if (q > 9) |
2652 | 0 | /*debug*/{ |
2653 | 0 | Bug("oversized quotient in quorem"); |
2654 | 0 | } |
2655 | 0 | #endif |
2656 | 0 | if (q) { |
2657 | 0 | borrow = 0; |
2658 | 0 | carry = 0; |
2659 | 0 | do { |
2660 | | #ifdef ULLong |
2661 | | ys = *sx++ * (ULLong)q + carry; |
2662 | | carry = ys >> 32; |
2663 | | y = *bx - (ys & FFFFFFFF) - borrow; |
2664 | | borrow = y >> 32 & (ULong)1; |
2665 | | *bx++ = y & FFFFFFFF; |
2666 | | #else |
2667 | 0 | #ifdef Pack_32 |
2668 | 0 | si = *sx++; |
2669 | 0 | ys = (si & 0xffff) * q + carry; |
2670 | 0 | zs = (si >> 16) * q + (ys >> 16); |
2671 | 0 | carry = zs >> 16; |
2672 | 0 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2673 | 0 | borrow = (y & 0x10000) >> 16; |
2674 | 0 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2675 | 0 | borrow = (z & 0x10000) >> 16; |
2676 | 0 | Storeinc(bx, z, y); |
2677 | | #else |
2678 | | ys = *sx++ * q + carry; |
2679 | | carry = ys >> 16; |
2680 | | y = *bx - (ys & 0xffff) - borrow; |
2681 | | borrow = (y & 0x10000) >> 16; |
2682 | | *bx++ = y & 0xffff; |
2683 | | #endif |
2684 | 0 | #endif |
2685 | 0 | } |
2686 | 0 | while(sx <= sxe); |
2687 | 0 | if (!*bxe) { |
2688 | 0 | bx = b->x; |
2689 | 0 | while(--bxe > bx && !*bxe) { |
2690 | 0 | --n; |
2691 | 0 | } |
2692 | 0 | b->wds = n; |
2693 | 0 | } |
2694 | 0 | } |
2695 | 0 | if (cmp(b, S) >= 0) { |
2696 | 0 | q++; |
2697 | 0 | borrow = 0; |
2698 | 0 | carry = 0; |
2699 | 0 | bx = b->x; |
2700 | 0 | sx = S->x; |
2701 | 0 | do { |
2702 | | #ifdef ULLong |
2703 | | ys = *sx++ + carry; |
2704 | | carry = ys >> 32; |
2705 | | y = *bx - (ys & FFFFFFFF) - borrow; |
2706 | | borrow = y >> 32 & (ULong)1; |
2707 | | *bx++ = y & FFFFFFFF; |
2708 | | #else |
2709 | 0 | #ifdef Pack_32 |
2710 | 0 | si = *sx++; |
2711 | 0 | ys = (si & 0xffff) + carry; |
2712 | 0 | zs = (si >> 16) + (ys >> 16); |
2713 | 0 | carry = zs >> 16; |
2714 | 0 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2715 | 0 | borrow = (y & 0x10000) >> 16; |
2716 | 0 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2717 | 0 | borrow = (z & 0x10000) >> 16; |
2718 | 0 | Storeinc(bx, z, y); |
2719 | | #else |
2720 | | ys = *sx++ + carry; |
2721 | | carry = ys >> 16; |
2722 | | y = *bx - (ys & 0xffff) - borrow; |
2723 | | borrow = (y & 0x10000) >> 16; |
2724 | | *bx++ = y & 0xffff; |
2725 | | #endif |
2726 | 0 | #endif |
2727 | 0 | } |
2728 | 0 | while(sx <= sxe); |
2729 | 0 | bx = b->x; |
2730 | 0 | bxe = bx + n; |
2731 | 0 | if (!*bxe) { |
2732 | 0 | while(--bxe > bx && !*bxe) { |
2733 | 0 | --n; |
2734 | 0 | } |
2735 | 0 | b->wds = n; |
2736 | 0 | } |
2737 | 0 | } |
2738 | 0 | return q; |
2739 | 0 | } |
2740 | | |
2741 | | #ifndef MULTIPLE_THREADS |
2742 | | static char *dtoa_result; |
2743 | | #endif |
2744 | | |
2745 | | static char * |
2746 | | #ifdef KR_headers |
2747 | | rv_alloc(i) int i; |
2748 | | #else |
2749 | | rv_alloc(int i) |
2750 | | #endif |
2751 | 0 | { |
2752 | 0 | int j, k, *r; |
2753 | |
|
2754 | 0 | j = sizeof(ULong); |
2755 | 0 | for(k = 0; |
2756 | 0 | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; |
2757 | 0 | j <<= 1) { |
2758 | 0 | k++; |
2759 | 0 | } |
2760 | 0 | r = (int*)Balloc(k); |
2761 | 0 | *r = k; |
2762 | 0 | return |
2763 | | #ifndef MULTIPLE_THREADS |
2764 | | dtoa_result = |
2765 | | #endif |
2766 | 0 | (char *)(r+1); |
2767 | 0 | } |
2768 | | |
2769 | | static char * |
2770 | | #ifdef KR_headers |
2771 | | nrv_alloc(s, rve, n) char *s, **rve; int n; |
2772 | | #else |
2773 | | nrv_alloc(char *s, char **rve, int n) |
2774 | | #endif |
2775 | 0 | { |
2776 | 0 | char *rv, *t; |
2777 | |
|
2778 | 0 | t = rv = rv_alloc(n); |
2779 | 0 | while(*t = *s++) { |
2780 | 0 | t++; |
2781 | 0 | } |
2782 | 0 | if (rve) { |
2783 | 0 | *rve = t; |
2784 | 0 | } |
2785 | 0 | return rv; |
2786 | 0 | } |
2787 | | |
2788 | | /* freedtoa(s) must be used to free values s returned by dtoa |
2789 | | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
2790 | | * but for consistency with earlier versions of dtoa, it is optional |
2791 | | * when MULTIPLE_THREADS is not defined. |
2792 | | */ |
2793 | | |
2794 | | static void |
2795 | | #ifdef KR_headers |
2796 | | freedtoa(s) char *s; |
2797 | | #else |
2798 | | freedtoa(char *s) |
2799 | | #endif |
2800 | 0 | { |
2801 | 0 | Bigint *b = (Bigint *)((int *)s - 1); |
2802 | 0 | b->maxwds = 1 << (b->k = *(int*)b); |
2803 | 0 | Bfree(b); |
2804 | | #ifndef MULTIPLE_THREADS |
2805 | | if (s == dtoa_result) { |
2806 | | dtoa_result = 0; |
2807 | | } |
2808 | | #endif |
2809 | 0 | } |
2810 | | |
2811 | | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
2812 | | * |
2813 | | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
2814 | | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
2815 | | * |
2816 | | * Modifications: |
2817 | | * 1. Rather than iterating, we use a simple numeric overestimate |
2818 | | * to determine k = floor(log10(d)). We scale relevant |
2819 | | * quantities using O(log2(k)) rather than O(k) multiplications. |
2820 | | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
2821 | | * try to generate digits strictly left to right. Instead, we |
2822 | | * compute with fewer bits and propagate the carry if necessary |
2823 | | * when rounding the final digit up. This is often faster. |
2824 | | * 3. Under the assumption that input will be rounded nearest, |
2825 | | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
2826 | | * That is, we allow equality in stopping tests when the |
2827 | | * round-nearest rule will give the same floating-point value |
2828 | | * as would satisfaction of the stopping test with strict |
2829 | | * inequality. |
2830 | | * 4. We remove common factors of powers of 2 from relevant |
2831 | | * quantities. |
2832 | | * 5. When converting floating-point integers less than 1e16, |
2833 | | * we use floating-point arithmetic rather than resorting |
2834 | | * to multiple-precision integers. |
2835 | | * 6. When asked to produce fewer than 15 digits, we first try |
2836 | | * to get by with floating-point arithmetic; we resort to |
2837 | | * multiple-precision integer arithmetic only if we cannot |
2838 | | * guarantee that the floating-point calculation has given |
2839 | | * the correctly rounded result. For k requested digits and |
2840 | | * "uniformly" distributed input, the probability is |
2841 | | * something like 10^(k-15) that we must resort to the Long |
2842 | | * calculation. |
2843 | | */ |
2844 | | |
2845 | | static char * |
2846 | | dtoa |
2847 | | #ifdef KR_headers |
2848 | | (dd, mode, ndigits, decpt, sign, rve) |
2849 | | double dd; int mode, ndigits, *decpt, *sign; char **rve; |
2850 | | #else |
2851 | | (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) |
2852 | | #endif |
2853 | 0 | { |
2854 | | /* Arguments ndigits, decpt, sign are similar to those |
2855 | | of ecvt and fcvt; trailing zeros are suppressed from |
2856 | | the returned string. If not null, *rve is set to point |
2857 | | to the end of the return value. If d is +-Infinity or NaN, |
2858 | | then *decpt is set to 9999. |
2859 | | |
2860 | | mode: |
2861 | | 0 ==> shortest string that yields d when read in |
2862 | | and rounded to nearest. |
2863 | | 1 ==> like 0, but with Steele & White stopping rule; |
2864 | | e.g. with IEEE P754 arithmetic , mode 0 gives |
2865 | | 1e23 whereas mode 1 gives 9.999999999999999e22. |
2866 | | 2 ==> max(1,ndigits) significant digits. This gives a |
2867 | | return value similar to that of ecvt, except |
2868 | | that trailing zeros are suppressed. |
2869 | | 3 ==> through ndigits past the decimal point. This |
2870 | | gives a return value similar to that from fcvt, |
2871 | | except that trailing zeros are suppressed, and |
2872 | | ndigits can be negative. |
2873 | | 4,5 ==> similar to 2 and 3, respectively, but (in |
2874 | | round-nearest mode) with the tests of mode 0 to |
2875 | | possibly return a shorter string that rounds to d. |
2876 | | With IEEE arithmetic and compilation with |
2877 | | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
2878 | | as modes 2 and 3 when FLT_ROUNDS != 1. |
2879 | | 6-9 ==> Debugging modes similar to mode - 4: don't try |
2880 | | fast floating-point estimate (if applicable). |
2881 | | |
2882 | | Values of mode other than 0-9 are treated as mode 0. |
2883 | | |
2884 | | Sufficient space is allocated to the return value |
2885 | | to hold the suppressed trailing zeros. |
2886 | | */ |
2887 | |
|
2888 | 0 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
2889 | 0 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
2890 | 0 | spec_case, try_quick; |
2891 | 0 | Long L; |
2892 | 0 | #ifndef Sudden_Underflow |
2893 | 0 | int denorm; |
2894 | 0 | ULong x; |
2895 | 0 | #endif |
2896 | 0 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
2897 | 0 | U d, d2, eps; |
2898 | 0 | double ds; |
2899 | 0 | char *s, *s0; |
2900 | | #ifdef Honor_FLT_ROUNDS |
2901 | | int rounding; |
2902 | | #endif |
2903 | | #ifdef SET_INEXACT |
2904 | | int inexact, oldinexact; |
2905 | | #endif |
2906 | |
|
2907 | | #ifndef MULTIPLE_THREADS |
2908 | | if (dtoa_result) { |
2909 | | freedtoa(dtoa_result); |
2910 | | dtoa_result = 0; |
2911 | | } |
2912 | | #endif |
2913 | |
|
2914 | 0 | dval(d) = dd; |
2915 | 0 | if (word0(d) & Sign_bit) { |
2916 | | /* set sign for everything, including 0's and NaNs */ |
2917 | 0 | *sign = 1; |
2918 | 0 | word0(d) &= ~Sign_bit; /* clear sign bit */ |
2919 | 0 | } |
2920 | 0 | else { |
2921 | 0 | *sign = 0; |
2922 | 0 | } |
2923 | |
|
2924 | 0 | #if defined(IEEE_Arith) + defined(VAX) |
2925 | 0 | #ifdef IEEE_Arith |
2926 | 0 | if ((word0(d) & Exp_mask) == Exp_mask) |
2927 | | #else |
2928 | | if (word0(d) == 0x8000) |
2929 | | #endif |
2930 | 0 | { |
2931 | | /* Infinity or NaN */ |
2932 | 0 | *decpt = 9999; |
2933 | 0 | #ifdef IEEE_Arith |
2934 | 0 | if (!word1(d) && !(word0(d) & 0xfffff)) { |
2935 | 0 | return nrv_alloc("Infinity", rve, 8); |
2936 | 0 | } |
2937 | 0 | #endif |
2938 | 0 | return nrv_alloc("NaN", rve, 3); |
2939 | 0 | } |
2940 | 0 | #endif |
2941 | | #ifdef IBM |
2942 | | dval(d) += 0; /* normalize */ |
2943 | | #endif |
2944 | 0 | if (!dval(d)) { |
2945 | 0 | *decpt = 1; |
2946 | 0 | return nrv_alloc("0", rve, 1); |
2947 | 0 | } |
2948 | | |
2949 | | #ifdef SET_INEXACT |
2950 | | try_quick = oldinexact = get_inexact(); |
2951 | | inexact = 1; |
2952 | | #endif |
2953 | | #ifdef Honor_FLT_ROUNDS |
2954 | | if ((rounding = Flt_Rounds) >= 2) { |
2955 | | if (*sign) { |
2956 | | rounding = rounding == 2 ? 0 : 2; |
2957 | | } |
2958 | | else if (rounding != 2) { |
2959 | | rounding = 0; |
2960 | | } |
2961 | | } |
2962 | | #endif |
2963 | | |
2964 | 0 | b = d2b(dval(d), &be, &bbits); |
2965 | | #ifdef Sudden_Underflow |
2966 | | i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); |
2967 | | #else |
2968 | 0 | if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) { |
2969 | 0 | #endif |
2970 | 0 | dval(d2) = dval(d); |
2971 | 0 | word0(d2) &= Frac_mask1; |
2972 | 0 | word0(d2) |= Exp_11; |
2973 | | #ifdef IBM |
2974 | | if (j = 11 - hi0bits(word0(d2) & Frac_mask)) { |
2975 | | dval(d2) /= 1 << j; |
2976 | | } |
2977 | | #endif |
2978 | | |
2979 | | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
2980 | | * log10(x) = log(x) / log(10) |
2981 | | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
2982 | | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
2983 | | * |
2984 | | * This suggests computing an approximation k to log10(d) by |
2985 | | * |
2986 | | * k = (i - Bias)*0.301029995663981 |
2987 | | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
2988 | | * |
2989 | | * We want k to be too large rather than too small. |
2990 | | * The error in the first-order Taylor series approximation |
2991 | | * is in our favor, so we just round up the constant enough |
2992 | | * to compensate for any error in the multiplication of |
2993 | | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
2994 | | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
2995 | | * adding 1e-13 to the constant term more than suffices. |
2996 | | * Hence we adjust the constant term to 0.1760912590558. |
2997 | | * (We could get a more accurate k by invoking log10, |
2998 | | * but this is probably not worthwhile.) |
2999 | | */ |
3000 | |
|
3001 | 0 | i -= Bias; |
3002 | | #ifdef IBM |
3003 | | i <<= 2; |
3004 | | i += j; |
3005 | | #endif |
3006 | 0 | #ifndef Sudden_Underflow |
3007 | 0 | denorm = 0; |
3008 | 0 | } |
3009 | 0 | else { |
3010 | | /* d is denormalized */ |
3011 | |
|
3012 | 0 | i = bbits + be + (Bias + (P-1) - 1); |
3013 | 0 | x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 |
3014 | 0 | : word1(d) << 32 - i; |
3015 | 0 | dval(d2) = x; |
3016 | 0 | word0(d2) -= 31*Exp_msk1; /* adjust exponent */ |
3017 | 0 | i -= (Bias + (P-1) - 1) + 1; |
3018 | 0 | denorm = 1; |
3019 | 0 | } |
3020 | 0 | #endif |
3021 | 0 | ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
3022 | 0 | k = (int)ds; |
3023 | 0 | if (ds < 0. && ds != k) { |
3024 | 0 | k--; /* want k = floor(ds) */ |
3025 | 0 | } |
3026 | 0 | k_check = 1; |
3027 | 0 | if (k >= 0 && k <= Ten_pmax) { |
3028 | 0 | if (dval(d) < tens[k]) { |
3029 | 0 | k--; |
3030 | 0 | } |
3031 | 0 | k_check = 0; |
3032 | 0 | } |
3033 | 0 | j = bbits - i - 1; |
3034 | 0 | if (j >= 0) { |
3035 | 0 | b2 = 0; |
3036 | 0 | s2 = j; |
3037 | 0 | } |
3038 | 0 | else { |
3039 | 0 | b2 = -j; |
3040 | 0 | s2 = 0; |
3041 | 0 | } |
3042 | 0 | if (k >= 0) { |
3043 | 0 | b5 = 0; |
3044 | 0 | s5 = k; |
3045 | 0 | s2 += k; |
3046 | 0 | } |
3047 | 0 | else { |
3048 | 0 | b2 -= k; |
3049 | 0 | b5 = -k; |
3050 | 0 | s5 = 0; |
3051 | 0 | } |
3052 | 0 | if (mode < 0 || mode > 9) { |
3053 | 0 | mode = 0; |
3054 | 0 | } |
3055 | |
|
3056 | 0 | #ifndef SET_INEXACT |
3057 | | #ifdef Check_FLT_ROUNDS |
3058 | | try_quick = Rounding == 1; |
3059 | | #else |
3060 | 0 | try_quick = 1; |
3061 | 0 | #endif |
3062 | 0 | #endif /*SET_INEXACT*/ |
3063 | |
|
3064 | 0 | if (mode > 5) { |
3065 | 0 | mode -= 4; |
3066 | 0 | try_quick = 0; |
3067 | 0 | } |
3068 | 0 | leftright = 1; |
3069 | 0 | switch(mode) { |
3070 | 0 | case 0: |
3071 | 0 | case 1: |
3072 | 0 | ilim = ilim1 = -1; |
3073 | 0 | i = 18; |
3074 | 0 | ndigits = 0; |
3075 | 0 | break; |
3076 | 0 | case 2: |
3077 | 0 | leftright = 0; |
3078 | | /* no break */ |
3079 | 0 | case 4: |
3080 | 0 | if (ndigits <= 0) { |
3081 | 0 | ndigits = 1; |
3082 | 0 | } |
3083 | 0 | ilim = ilim1 = i = ndigits; |
3084 | 0 | break; |
3085 | 0 | case 3: |
3086 | 0 | leftright = 0; |
3087 | | /* no break */ |
3088 | 0 | case 5: |
3089 | 0 | i = ndigits + k + 1; |
3090 | 0 | ilim = i; |
3091 | 0 | ilim1 = i - 1; |
3092 | 0 | if (i <= 0) { |
3093 | 0 | i = 1; |
3094 | 0 | } |
3095 | 0 | } |
3096 | 0 | s = s0 = rv_alloc(i); |
3097 | |
|
3098 | | #ifdef Honor_FLT_ROUNDS |
3099 | | if (mode > 1 && rounding != 1) { |
3100 | | leftright = 0; |
3101 | | } |
3102 | | #endif |
3103 | |
|
3104 | 0 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
3105 | | |
3106 | | /* Try to get by with floating-point arithmetic. */ |
3107 | |
|
3108 | 0 | i = 0; |
3109 | 0 | dval(d2) = dval(d); |
3110 | 0 | k0 = k; |
3111 | 0 | ilim0 = ilim; |
3112 | 0 | ieps = 2; /* conservative */ |
3113 | 0 | if (k > 0) { |
3114 | 0 | ds = tens[k&0xf]; |
3115 | 0 | j = k >> 4; |
3116 | 0 | if (j & Bletch) { |
3117 | | /* prevent overflows */ |
3118 | 0 | j &= Bletch - 1; |
3119 | 0 | dval(d) /= bigtens[n_bigtens-1]; |
3120 | 0 | ieps++; |
3121 | 0 | } |
3122 | 0 | for(; j; j >>= 1, i++) |
3123 | 0 | if (j & 1) { |
3124 | 0 | ieps++; |
3125 | 0 | ds *= bigtens[i]; |
3126 | 0 | } |
3127 | 0 | dval(d) /= ds; |
3128 | 0 | } |
3129 | 0 | else if (j1 = -k) { |
3130 | 0 | dval(d) *= tens[j1 & 0xf]; |
3131 | 0 | for(j = j1 >> 4; j; j >>= 1, i++) |
3132 | 0 | if (j & 1) { |
3133 | 0 | ieps++; |
3134 | 0 | dval(d) *= bigtens[i]; |
3135 | 0 | } |
3136 | 0 | } |
3137 | 0 | if (k_check && dval(d) < 1. && ilim > 0) { |
3138 | 0 | if (ilim1 <= 0) { |
3139 | 0 | goto fast_failed; |
3140 | 0 | } |
3141 | 0 | ilim = ilim1; |
3142 | 0 | k--; |
3143 | 0 | dval(d) *= 10.; |
3144 | 0 | ieps++; |
3145 | 0 | } |
3146 | 0 | dval(eps) = ieps*dval(d) + 7.; |
3147 | 0 | word0(eps) -= (P-1)*Exp_msk1; |
3148 | 0 | if (ilim == 0) { |
3149 | 0 | S = mhi = 0; |
3150 | 0 | dval(d) -= 5.; |
3151 | 0 | if (dval(d) > dval(eps)) { |
3152 | 0 | goto one_digit; |
3153 | 0 | } |
3154 | 0 | if (dval(d) < -dval(eps)) { |
3155 | 0 | goto no_digits; |
3156 | 0 | } |
3157 | 0 | goto fast_failed; |
3158 | 0 | } |
3159 | 0 | #ifndef No_leftright |
3160 | 0 | if (leftright) { |
3161 | | /* Use Steele & White method of only |
3162 | | * generating digits needed. |
3163 | | */ |
3164 | 0 | dval(eps) = 0.5/tens[ilim-1] - dval(eps); |
3165 | 0 | for(i = 0;;) { |
3166 | 0 | L = dval(d); |
3167 | 0 | dval(d) -= L; |
3168 | 0 | *s++ = '0' + (int)L; |
3169 | 0 | if (dval(d) < dval(eps)) { |
3170 | 0 | goto ret1; |
3171 | 0 | } |
3172 | 0 | if (1. - dval(d) < dval(eps)) { |
3173 | 0 | goto bump_up; |
3174 | 0 | } |
3175 | 0 | if (++i >= ilim) { |
3176 | 0 | break; |
3177 | 0 | } |
3178 | 0 | dval(eps) *= 10.; |
3179 | 0 | dval(d) *= 10.; |
3180 | 0 | } |
3181 | 0 | } |
3182 | 0 | else { |
3183 | 0 | #endif |
3184 | | /* Generate ilim digits, then fix them up. */ |
3185 | 0 | dval(eps) *= tens[ilim-1]; |
3186 | 0 | for(i = 1;; i++, dval(d) *= 10.) { |
3187 | 0 | L = (Long)(dval(d)); |
3188 | 0 | if (!(dval(d) -= L)) { |
3189 | 0 | ilim = i; |
3190 | 0 | } |
3191 | 0 | *s++ = '0' + (int)L; |
3192 | 0 | if (i == ilim) { |
3193 | 0 | if (dval(d) > 0.5 + dval(eps)) { |
3194 | 0 | goto bump_up; |
3195 | 0 | } |
3196 | 0 | else if (dval(d) < 0.5 - dval(eps)) { |
3197 | 0 | while(*--s == '0'); |
3198 | 0 | s++; |
3199 | 0 | goto ret1; |
3200 | 0 | } |
3201 | 0 | break; |
3202 | 0 | } |
3203 | 0 | } |
3204 | 0 | #ifndef No_leftright |
3205 | 0 | } |
3206 | 0 | #endif |
3207 | 0 | fast_failed: |
3208 | 0 | s = s0; |
3209 | 0 | dval(d) = dval(d2); |
3210 | 0 | k = k0; |
3211 | 0 | ilim = ilim0; |
3212 | 0 | } |
3213 | | |
3214 | | /* Do we have a "small" integer? */ |
3215 | | |
3216 | 0 | if (be >= 0 && k <= Int_max) { |
3217 | | /* Yes. */ |
3218 | 0 | ds = tens[k]; |
3219 | 0 | if (ndigits < 0 && ilim <= 0) { |
3220 | 0 | S = mhi = 0; |
3221 | 0 | if (ilim < 0 || dval(d) <= 5*ds) { |
3222 | 0 | goto no_digits; |
3223 | 0 | } |
3224 | 0 | goto one_digit; |
3225 | 0 | } |
3226 | 0 | for(i = 1; i <= k+1; i++, dval(d) *= 10.) { |
3227 | 0 | L = (Long)(dval(d) / ds); |
3228 | 0 | dval(d) -= L*ds; |
3229 | | #ifdef Check_FLT_ROUNDS |
3230 | | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
3231 | | if (dval(d) < 0) { |
3232 | | L--; |
3233 | | dval(d) += ds; |
3234 | | } |
3235 | | #endif |
3236 | 0 | *s++ = '0' + (int)L; |
3237 | 0 | if (!dval(d)) { |
3238 | | #ifdef SET_INEXACT |
3239 | | inexact = 0; |
3240 | | #endif |
3241 | 0 | break; |
3242 | 0 | } |
3243 | 0 | if (i == ilim) { |
3244 | | #ifdef Honor_FLT_ROUNDS |
3245 | | if (mode > 1) |
3246 | | switch(rounding) { |
3247 | | case 0: goto ret1; |
3248 | | case 2: goto bump_up; |
3249 | | } |
3250 | | #endif |
3251 | 0 | dval(d) += dval(d); |
3252 | 0 | if (dval(d) > ds || dval(d) == ds && L & 1) { |
3253 | 0 | bump_up: |
3254 | 0 | while(*--s == '9') |
3255 | 0 | if (s == s0) { |
3256 | 0 | k++; |
3257 | 0 | *s = '0'; |
3258 | 0 | break; |
3259 | 0 | } |
3260 | 0 | ++*s++; |
3261 | 0 | } |
3262 | 0 | break; |
3263 | 0 | } |
3264 | 0 | } |
3265 | 0 | goto ret1; |
3266 | 0 | } |
3267 | | |
3268 | 0 | m2 = b2; |
3269 | 0 | m5 = b5; |
3270 | 0 | mhi = mlo = 0; |
3271 | 0 | if (leftright) { |
3272 | 0 | i = |
3273 | 0 | #ifndef Sudden_Underflow |
3274 | 0 | denorm ? be + (Bias + (P-1) - 1 + 1) : |
3275 | 0 | #endif |
3276 | | #ifdef IBM |
3277 | | 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); |
3278 | | #else |
3279 | 0 | 1 + P - bbits; |
3280 | 0 | #endif |
3281 | 0 | b2 += i; |
3282 | 0 | s2 += i; |
3283 | 0 | mhi = i2b(1); |
3284 | 0 | } |
3285 | 0 | if (m2 > 0 && s2 > 0) { |
3286 | 0 | i = m2 < s2 ? m2 : s2; |
3287 | 0 | b2 -= i; |
3288 | 0 | m2 -= i; |
3289 | 0 | s2 -= i; |
3290 | 0 | } |
3291 | 0 | if (b5 > 0) { |
3292 | 0 | if (leftright) { |
3293 | 0 | if (m5 > 0) { |
3294 | 0 | mhi = pow5mult(mhi, m5); |
3295 | 0 | b1 = mult(mhi, b); |
3296 | 0 | Bfree(b); |
3297 | 0 | b = b1; |
3298 | 0 | } |
3299 | 0 | if (j = b5 - m5) { |
3300 | 0 | b = pow5mult(b, j); |
3301 | 0 | } |
3302 | 0 | } |
3303 | 0 | else { |
3304 | 0 | b = pow5mult(b, b5); |
3305 | 0 | } |
3306 | 0 | } |
3307 | 0 | S = i2b(1); |
3308 | 0 | if (s5 > 0) { |
3309 | 0 | S = pow5mult(S, s5); |
3310 | 0 | } |
3311 | | |
3312 | | /* Check for special case that d is a normalized power of 2. */ |
3313 | |
|
3314 | 0 | spec_case = 0; |
3315 | 0 | if ((mode < 2 || leftright) |
3316 | | #ifdef Honor_FLT_ROUNDS |
3317 | | && rounding == 1 |
3318 | | #endif |
3319 | 0 | ) { |
3320 | 0 | if (!word1(d) && !(word0(d) & Bndry_mask) |
3321 | 0 | #ifndef Sudden_Underflow |
3322 | 0 | && word0(d) & (Exp_mask & ~Exp_msk1) |
3323 | 0 | #endif |
3324 | 0 | ) { |
3325 | | /* The special case */ |
3326 | 0 | b2 += Log2P; |
3327 | 0 | s2 += Log2P; |
3328 | 0 | spec_case = 1; |
3329 | 0 | } |
3330 | 0 | } |
3331 | | |
3332 | | /* Arrange for convenient computation of quotients: |
3333 | | * shift left if necessary so divisor has 4 leading 0 bits. |
3334 | | * |
3335 | | * Perhaps we should just compute leading 28 bits of S once |
3336 | | * and for all and pass them and a shift to quorem, so it |
3337 | | * can do shifts and ors to compute the numerator for q. |
3338 | | */ |
3339 | 0 | #ifdef Pack_32 |
3340 | 0 | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) { |
3341 | 0 | i = 32 - i; |
3342 | 0 | } |
3343 | | #else |
3344 | | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) { |
3345 | | i = 16 - i; |
3346 | | } |
3347 | | #endif |
3348 | 0 | if (i > 4) { |
3349 | 0 | i -= 4; |
3350 | 0 | b2 += i; |
3351 | 0 | m2 += i; |
3352 | 0 | s2 += i; |
3353 | 0 | } |
3354 | 0 | else if (i < 4) { |
3355 | 0 | i += 28; |
3356 | 0 | b2 += i; |
3357 | 0 | m2 += i; |
3358 | 0 | s2 += i; |
3359 | 0 | } |
3360 | 0 | if (b2 > 0) { |
3361 | 0 | b = lshift(b, b2); |
3362 | 0 | } |
3363 | 0 | if (s2 > 0) { |
3364 | 0 | S = lshift(S, s2); |
3365 | 0 | } |
3366 | 0 | if (k_check) { |
3367 | 0 | if (cmp(b,S) < 0) { |
3368 | 0 | k--; |
3369 | 0 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
3370 | 0 | if (leftright) { |
3371 | 0 | mhi = multadd(mhi, 10, 0); |
3372 | 0 | } |
3373 | 0 | ilim = ilim1; |
3374 | 0 | } |
3375 | 0 | } |
3376 | 0 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
3377 | 0 | if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { |
3378 | | /* no digits, fcvt style */ |
3379 | 0 | no_digits: |
3380 | 0 | k = -1 - ndigits; |
3381 | 0 | goto ret; |
3382 | 0 | } |
3383 | 0 | one_digit: |
3384 | 0 | *s++ = '1'; |
3385 | 0 | k++; |
3386 | 0 | goto ret; |
3387 | 0 | } |
3388 | 0 | if (leftright) { |
3389 | 0 | if (m2 > 0) { |
3390 | 0 | mhi = lshift(mhi, m2); |
3391 | 0 | } |
3392 | | |
3393 | | /* Compute mlo -- check for special case |
3394 | | * that d is a normalized power of 2. |
3395 | | */ |
3396 | |
|
3397 | 0 | mlo = mhi; |
3398 | 0 | if (spec_case) { |
3399 | 0 | mhi = Balloc(mhi->k); |
3400 | 0 | Bcopy(mhi, mlo); |
3401 | 0 | mhi = lshift(mhi, Log2P); |
3402 | 0 | } |
3403 | |
|
3404 | 0 | for(i = 1;; i++) { |
3405 | 0 | dig = quorem(b,S) + '0'; |
3406 | | /* Do we yet have the shortest decimal string |
3407 | | * that will round to d? |
3408 | | */ |
3409 | 0 | j = cmp(b, mlo); |
3410 | 0 | delta = diff(S, mhi); |
3411 | 0 | j1 = delta->sign ? 1 : cmp(b, delta); |
3412 | 0 | Bfree(delta); |
3413 | 0 | #ifndef ROUND_BIASED |
3414 | 0 | if (j1 == 0 && mode != 1 && !(word1(d) & 1) |
3415 | | #ifdef Honor_FLT_ROUNDS |
3416 | | && rounding >= 1 |
3417 | | #endif |
3418 | 0 | ) { |
3419 | 0 | if (dig == '9') { |
3420 | 0 | goto round_9_up; |
3421 | 0 | } |
3422 | 0 | if (j > 0) { |
3423 | 0 | dig++; |
3424 | 0 | } |
3425 | | #ifdef SET_INEXACT |
3426 | | else if (!b->x[0] && b->wds <= 1) { |
3427 | | inexact = 0; |
3428 | | } |
3429 | | #endif |
3430 | 0 | *s++ = dig; |
3431 | 0 | goto ret; |
3432 | 0 | } |
3433 | 0 | #endif |
3434 | 0 | if (j < 0 || j == 0 && mode != 1 |
3435 | 0 | #ifndef ROUND_BIASED |
3436 | 0 | && !(word1(d) & 1) |
3437 | 0 | #endif |
3438 | 0 | ) { |
3439 | 0 | if (!b->x[0] && b->wds <= 1) { |
3440 | | #ifdef SET_INEXACT |
3441 | | inexact = 0; |
3442 | | #endif |
3443 | 0 | goto accept_dig; |
3444 | 0 | } |
3445 | | #ifdef Honor_FLT_ROUNDS |
3446 | | if (mode > 1) |
3447 | | switch(rounding) { |
3448 | | case 0: goto accept_dig; |
3449 | | case 2: goto keep_dig; |
3450 | | } |
3451 | | #endif /*Honor_FLT_ROUNDS*/ |
3452 | 0 | if (j1 > 0) { |
3453 | 0 | b = lshift(b, 1); |
3454 | 0 | j1 = cmp(b, S); |
3455 | 0 | if ((j1 > 0 || j1 == 0 && dig & 1) |
3456 | 0 | && dig++ == '9') { |
3457 | 0 | goto round_9_up; |
3458 | 0 | } |
3459 | 0 | } |
3460 | 0 | accept_dig: |
3461 | 0 | *s++ = dig; |
3462 | 0 | goto ret; |
3463 | 0 | } |
3464 | 0 | if (j1 > 0) { |
3465 | | #ifdef Honor_FLT_ROUNDS |
3466 | | if (!rounding) { |
3467 | | goto accept_dig; |
3468 | | } |
3469 | | #endif |
3470 | 0 | if (dig == '9') { /* possible if i == 1 */ |
3471 | 0 | round_9_up: |
3472 | 0 | *s++ = '9'; |
3473 | 0 | goto roundoff; |
3474 | 0 | } |
3475 | 0 | *s++ = dig + 1; |
3476 | 0 | goto ret; |
3477 | 0 | } |
3478 | | #ifdef Honor_FLT_ROUNDS |
3479 | | keep_dig: |
3480 | | #endif |
3481 | 0 | *s++ = dig; |
3482 | 0 | if (i == ilim) { |
3483 | 0 | break; |
3484 | 0 | } |
3485 | 0 | b = multadd(b, 10, 0); |
3486 | 0 | if (mlo == mhi) { |
3487 | 0 | mlo = mhi = multadd(mhi, 10, 0); |
3488 | 0 | } |
3489 | 0 | else { |
3490 | 0 | mlo = multadd(mlo, 10, 0); |
3491 | 0 | mhi = multadd(mhi, 10, 0); |
3492 | 0 | } |
3493 | 0 | } |
3494 | 0 | } |
3495 | 0 | else |
3496 | 0 | for(i = 1;; i++) { |
3497 | 0 | *s++ = dig = quorem(b,S) + '0'; |
3498 | 0 | if (!b->x[0] && b->wds <= 1) { |
3499 | | #ifdef SET_INEXACT |
3500 | | inexact = 0; |
3501 | | #endif |
3502 | 0 | goto ret; |
3503 | 0 | } |
3504 | 0 | if (i >= ilim) { |
3505 | 0 | break; |
3506 | 0 | } |
3507 | 0 | b = multadd(b, 10, 0); |
3508 | 0 | } |
3509 | | |
3510 | | /* Round off last digit */ |
3511 | | |
3512 | | #ifdef Honor_FLT_ROUNDS |
3513 | | switch(rounding) { |
3514 | | case 0: goto trimzeros; |
3515 | | case 2: goto roundoff; |
3516 | | } |
3517 | | #endif |
3518 | 0 | b = lshift(b, 1); |
3519 | 0 | j = cmp(b, S); |
3520 | 0 | if (j > 0 || j == 0 && dig & 1) { |
3521 | 0 | roundoff: |
3522 | 0 | while(*--s == '9') |
3523 | 0 | if (s == s0) { |
3524 | 0 | k++; |
3525 | 0 | *s++ = '1'; |
3526 | 0 | goto ret; |
3527 | 0 | } |
3528 | 0 | ++*s++; |
3529 | 0 | } |
3530 | 0 | else { |
3531 | | #ifdef Honor_FLT_ROUNDS |
3532 | | trimzeros: |
3533 | | #endif |
3534 | 0 | while(*--s == '0'); |
3535 | 0 | s++; |
3536 | 0 | } |
3537 | 0 | ret: |
3538 | 0 | Bfree(S); |
3539 | 0 | if (mhi) { |
3540 | 0 | if (mlo && mlo != mhi) { |
3541 | 0 | Bfree(mlo); |
3542 | 0 | } |
3543 | 0 | Bfree(mhi); |
3544 | 0 | } |
3545 | 0 | ret1: |
3546 | | #ifdef SET_INEXACT |
3547 | | if (inexact) { |
3548 | | if (!oldinexact) { |
3549 | | word0(d) = Exp_1 + (70 << Exp_shift); |
3550 | | word1(d) = 0; |
3551 | | dval(d) += 1.; |
3552 | | } |
3553 | | } |
3554 | | else if (!oldinexact) { |
3555 | | clear_inexact(); |
3556 | | } |
3557 | | #endif |
3558 | 0 | Bfree(b); |
3559 | 0 | *s = 0; |
3560 | 0 | *decpt = k + 1; |
3561 | 0 | if (rve) { |
3562 | 0 | *rve = s; |
3563 | 0 | } |
3564 | 0 | return s0; |
3565 | 0 | } |
3566 | | #ifdef __cplusplus |
3567 | | } |
3568 | | #endif |
3569 | | |
3570 | | PR_IMPLEMENT(PRStatus) |
3571 | | PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits, |
3572 | | PRIntn *decpt, PRIntn *sign, char **rve, char *buf, PRSize bufsize) |
3573 | 0 | { |
3574 | 0 | char *result; |
3575 | 0 | PRSize resultlen; |
3576 | 0 | PRStatus rv = PR_FAILURE; |
3577 | |
|
3578 | 0 | if (!_pr_initialized) { |
3579 | 0 | _PR_ImplicitInitialization(); |
3580 | 0 | } |
3581 | |
|
3582 | 0 | if (mode < 0 || mode > 3) { |
3583 | 0 | PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0); |
3584 | 0 | return rv; |
3585 | 0 | } |
3586 | 0 | result = dtoa(d, mode, ndigits, decpt, sign, rve); |
3587 | 0 | if (!result) { |
3588 | 0 | PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0); |
3589 | 0 | return rv; |
3590 | 0 | } |
3591 | 0 | resultlen = strlen(result)+1; |
3592 | 0 | if (bufsize < resultlen) { |
3593 | 0 | PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); |
3594 | 0 | } else { |
3595 | 0 | memcpy(buf, result, resultlen); |
3596 | 0 | if (rve) { |
3597 | 0 | *rve = buf + (*rve - result); |
3598 | 0 | } |
3599 | 0 | rv = PR_SUCCESS; |
3600 | 0 | } |
3601 | 0 | freedtoa(result); |
3602 | 0 | return rv; |
3603 | 0 | } |
3604 | | |
3605 | | /* |
3606 | | ** conversion routines for floating point |
3607 | | ** prcsn - number of digits of precision to generate floating |
3608 | | ** point value. |
3609 | | ** This should be reparameterized so that you can send in a |
3610 | | ** prcn for the positive and negative ranges. For now, |
3611 | | ** conform to the ECMA JavaScript spec which says numbers |
3612 | | ** less than 1e-6 are in scientific notation. |
3613 | | ** Also, the ECMA spec says that there should always be a |
3614 | | ** '+' or '-' after the 'e' in scientific notation |
3615 | | */ |
3616 | | PR_IMPLEMENT(void) |
3617 | | PR_cnvtf(char *buf, int bufsz, int prcsn, double dfval) |
3618 | 0 | { |
3619 | 0 | PRIntn decpt, sign, numdigits; |
3620 | 0 | char *num, *nump; |
3621 | 0 | char *bufp = buf; |
3622 | 0 | char *endnum; |
3623 | 0 | U fval; |
3624 | |
|
3625 | 0 | dval(fval) = dfval; |
3626 | | /* If anything fails, we store an empty string in 'buf' */ |
3627 | 0 | num = (char*)PR_MALLOC(bufsz); |
3628 | 0 | if (num == NULL) { |
3629 | 0 | buf[0] = '\0'; |
3630 | 0 | return; |
3631 | 0 | } |
3632 | | /* XXX Why use mode 1? */ |
3633 | 0 | if (PR_dtoa(dval(fval),1,prcsn,&decpt,&sign,&endnum,num,bufsz) |
3634 | 0 | == PR_FAILURE) { |
3635 | 0 | buf[0] = '\0'; |
3636 | 0 | goto done; |
3637 | 0 | } |
3638 | 0 | numdigits = endnum - num; |
3639 | 0 | nump = num; |
3640 | |
|
3641 | 0 | if (sign && |
3642 | 0 | !(word0(fval) == Sign_bit && word1(fval) == 0) && |
3643 | 0 | !((word0(fval) & Exp_mask) == Exp_mask && |
3644 | 0 | (word1(fval) || (word0(fval) & 0xfffff)))) { |
3645 | 0 | *bufp++ = '-'; |
3646 | 0 | } |
3647 | |
|
3648 | 0 | if (decpt == 9999) { |
3649 | 0 | while ((*bufp++ = *nump++) != 0) {} /* nothing to execute */ |
3650 | 0 | goto done; |
3651 | 0 | } |
3652 | | |
3653 | 0 | if (decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5) { |
3654 | 0 | *bufp++ = *nump++; |
3655 | 0 | if (numdigits != 1) { |
3656 | 0 | *bufp++ = '.'; |
3657 | 0 | } |
3658 | |
|
3659 | 0 | while (*nump != '\0') { |
3660 | 0 | *bufp++ = *nump++; |
3661 | 0 | } |
3662 | 0 | *bufp++ = 'e'; |
3663 | 0 | PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt-1); |
3664 | 0 | } else if (decpt >= 0) { |
3665 | 0 | if (decpt == 0) { |
3666 | 0 | *bufp++ = '0'; |
3667 | 0 | } else { |
3668 | 0 | while (decpt--) { |
3669 | 0 | if (*nump != '\0') { |
3670 | 0 | *bufp++ = *nump++; |
3671 | 0 | } else { |
3672 | 0 | *bufp++ = '0'; |
3673 | 0 | } |
3674 | 0 | } |
3675 | 0 | } |
3676 | 0 | if (*nump != '\0') { |
3677 | 0 | *bufp++ = '.'; |
3678 | 0 | while (*nump != '\0') { |
3679 | 0 | *bufp++ = *nump++; |
3680 | 0 | } |
3681 | 0 | } |
3682 | 0 | *bufp++ = '\0'; |
3683 | 0 | } else if (decpt < 0) { |
3684 | 0 | *bufp++ = '0'; |
3685 | 0 | *bufp++ = '.'; |
3686 | 0 | while (decpt++) { |
3687 | 0 | *bufp++ = '0'; |
3688 | 0 | } |
3689 | |
|
3690 | 0 | while (*nump != '\0') { |
3691 | 0 | *bufp++ = *nump++; |
3692 | 0 | } |
3693 | 0 | *bufp++ = '\0'; |
3694 | 0 | } |
3695 | 0 | done: |
3696 | 0 | PR_DELETE(num); |
3697 | 0 | } |