/src/nss/lib/freebl/aeskeywrap.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * aeskeywrap.c - implement AES Key Wrap algorithm from RFC 3394 | 
| 3 |  |  * | 
| 4 |  |  * This Source Code Form is subject to the terms of the Mozilla Public | 
| 5 |  |  * License, v. 2.0. If a copy of the MPL was not distributed with this | 
| 6 |  |  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | 
| 7 |  |  | 
| 8 |  | #ifdef FREEBL_NO_DEPEND | 
| 9 |  | #include "stubs.h" | 
| 10 |  | #endif | 
| 11 |  |  | 
| 12 |  | #include <stddef.h> | 
| 13 |  |  | 
| 14 |  | #include "prcpucfg.h" | 
| 15 |  | #if defined(IS_LITTLE_ENDIAN) || defined(SHA_NO_LONG_LONG) | 
| 16 |  | #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 0 | 
| 17 |  | #else | 
| 18 |  | #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 1 | 
| 19 |  | #endif | 
| 20 |  | #include "prtypes.h" /* for PRUintXX */ | 
| 21 |  | #include "secport.h" /* for PORT_XXX */ | 
| 22 |  | #include "secerr.h" | 
| 23 |  | #include "blapi.h" /* for AES_ functions */ | 
| 24 |  | #include "rijndael.h" | 
| 25 |  |  | 
| 26 |  | struct AESKeyWrapContextStr { | 
| 27 |  |     AESContext aescx; | 
| 28 |  |     unsigned char iv[AES_KEY_WRAP_IV_BYTES]; | 
| 29 |  |     void *mem; /* Pointer to beginning of allocated memory. */ | 
| 30 |  | }; | 
| 31 |  |  | 
| 32 |  | /******************************************/ | 
| 33 |  | /* | 
| 34 |  | ** AES key wrap algorithm, RFC 3394 | 
| 35 |  | */ | 
| 36 |  |  | 
| 37 |  | AESKeyWrapContext * | 
| 38 |  | AESKeyWrap_AllocateContext(void) | 
| 39 | 0 | { | 
| 40 |  |     /* aligned_alloc is C11 so we have to do it the old way. */ | 
| 41 | 0 |     AESKeyWrapContext *ctx = PORT_ZAlloc(sizeof(AESKeyWrapContext) + 15); | 
| 42 | 0 |     if (ctx == NULL) { | 
| 43 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 44 | 0 |         return NULL; | 
| 45 | 0 |     } | 
| 46 | 0 |     ctx->mem = ctx; | 
| 47 | 0 |     return (AESKeyWrapContext *)(((uintptr_t)ctx + 15) & ~(uintptr_t)0x0F); | 
| 48 | 0 | } | 
| 49 |  |  | 
| 50 |  | SECStatus | 
| 51 |  | AESKeyWrap_InitContext(AESKeyWrapContext *cx, | 
| 52 |  |                        const unsigned char *key, | 
| 53 |  |                        unsigned int keylen, | 
| 54 |  |                        const unsigned char *iv, | 
| 55 |  |                        int x1, | 
| 56 |  |                        unsigned int encrypt, | 
| 57 |  |                        unsigned int x2) | 
| 58 | 0 | { | 
| 59 | 0 |     SECStatus rv = SECFailure; | 
| 60 | 0 |     if (!cx) { | 
| 61 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 62 | 0 |         return SECFailure; | 
| 63 | 0 |     } | 
| 64 | 0 |     if (iv) { | 
| 65 | 0 |         memcpy(cx->iv, iv, sizeof cx->iv); | 
| 66 | 0 |     } else { | 
| 67 | 0 |         memset(cx->iv, 0xA6, sizeof cx->iv); | 
| 68 | 0 |     } | 
| 69 | 0 |     rv = AES_InitContext(&cx->aescx, key, keylen, NULL, NSS_AES, encrypt, | 
| 70 | 0 |                          AES_BLOCK_SIZE); | 
| 71 | 0 |     return rv; | 
| 72 | 0 | } | 
| 73 |  |  | 
| 74 |  | /* | 
| 75 |  | ** Create a new AES context suitable for AES encryption/decryption. | 
| 76 |  | **  "key" raw key data | 
| 77 |  | **  "keylen" the number of bytes of key data (16, 24, or 32) | 
| 78 |  | */ | 
| 79 |  | extern AESKeyWrapContext * | 
| 80 |  | AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv, | 
| 81 |  |                          int encrypt, unsigned int keylen) | 
| 82 | 0 | { | 
| 83 | 0 |     SECStatus rv; | 
| 84 | 0 |     AESKeyWrapContext *cx = AESKeyWrap_AllocateContext(); | 
| 85 | 0 |     if (!cx) | 
| 86 | 0 |         return NULL; /* error is already set */ | 
| 87 | 0 |     rv = AESKeyWrap_InitContext(cx, key, keylen, iv, 0, encrypt, 0); | 
| 88 | 0 |     if (rv != SECSuccess) { | 
| 89 | 0 |         PORT_Free(cx->mem); | 
| 90 | 0 |         cx = NULL; /* error should already be set */ | 
| 91 | 0 |     } | 
| 92 | 0 |     return cx; | 
| 93 | 0 | } | 
| 94 |  |  | 
| 95 |  | /* | 
| 96 |  | ** Destroy a AES KeyWrap context. | 
| 97 |  | **  "cx" the context | 
| 98 |  | **  "freeit" if PR_TRUE then free the object as well as its sub-objects | 
| 99 |  | */ | 
| 100 |  | extern void | 
| 101 |  | AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit) | 
| 102 | 0 | { | 
| 103 | 0 |     if (cx) { | 
| 104 | 0 |         AES_DestroyContext(&cx->aescx, PR_FALSE); | 
| 105 |  |         /*  memset(cx, 0, sizeof *cx); */ | 
| 106 | 0 |         if (freeit) { | 
| 107 | 0 |             PORT_Free(cx->mem); | 
| 108 | 0 |         } | 
| 109 | 0 |     } | 
| 110 | 0 | } | 
| 111 |  |  | 
| 112 |  | #if !BIG_ENDIAN_WITH_64_BIT_REGISTERS | 
| 113 |  |  | 
| 114 |  | /* The AES Key Wrap algorithm has 64-bit values that are ALWAYS big-endian | 
| 115 |  | ** (Most significant byte first) in memory.  The only ALU operations done | 
| 116 |  | ** on them are increment, decrement, and XOR.  So, on little-endian CPUs, | 
| 117 |  | ** and on CPUs that lack 64-bit registers, these big-endian 64-bit operations | 
| 118 |  | ** are simulated in the following code.  This is thought to be faster and | 
| 119 |  | ** simpler than trying to convert the data to little-endian and back. | 
| 120 |  | */ | 
| 121 |  |  | 
| 122 |  | /* A and T point to two 64-bit values stored most signficant byte first | 
| 123 |  | ** (big endian).  This function increments the 64-bit value T, and then | 
| 124 |  | ** XORs it with A, changing A. | 
| 125 |  | */ | 
| 126 |  | static void | 
| 127 |  | increment_and_xor(unsigned char *A, unsigned char *T) | 
| 128 | 0 | { | 
| 129 | 0 |     if (!++T[7]) | 
| 130 | 0 |         if (!++T[6]) | 
| 131 | 0 |             if (!++T[5]) | 
| 132 | 0 |                 if (!++T[4]) | 
| 133 | 0 |                     if (!++T[3]) | 
| 134 | 0 |                         if (!++T[2]) | 
| 135 | 0 |                             if (!++T[1]) | 
| 136 | 0 |                                 ++T[0]; | 
| 137 |  | 
 | 
| 138 | 0 |     A[0] ^= T[0]; | 
| 139 | 0 |     A[1] ^= T[1]; | 
| 140 | 0 |     A[2] ^= T[2]; | 
| 141 | 0 |     A[3] ^= T[3]; | 
| 142 | 0 |     A[4] ^= T[4]; | 
| 143 | 0 |     A[5] ^= T[5]; | 
| 144 | 0 |     A[6] ^= T[6]; | 
| 145 | 0 |     A[7] ^= T[7]; | 
| 146 | 0 | } | 
| 147 |  |  | 
| 148 |  | /* A and T point to two 64-bit values stored most signficant byte first | 
| 149 |  | ** (big endian).  This function XORs T with A, giving a new A, then | 
| 150 |  | ** decrements the 64-bit value T. | 
| 151 |  | */ | 
| 152 |  | static void | 
| 153 |  | xor_and_decrement(PRUint64 *A, PRUint64 *T) | 
| 154 | 0 | { | 
| 155 | 0 |     unsigned char *TP = (unsigned char *)T; | 
| 156 | 0 |     const PRUint64 mask = 0xFF; | 
| 157 | 0 |     *A = ((*A & mask << 56) ^ (*T & mask << 56)) | | 
| 158 | 0 |          ((*A & mask << 48) ^ (*T & mask << 48)) | | 
| 159 | 0 |          ((*A & mask << 40) ^ (*T & mask << 40)) | | 
| 160 | 0 |          ((*A & mask << 32) ^ (*T & mask << 32)) | | 
| 161 | 0 |          ((*A & mask << 24) ^ (*T & mask << 23)) | | 
| 162 | 0 |          ((*A & mask << 16) ^ (*T & mask << 16)) | | 
| 163 | 0 |          ((*A & mask << 8) ^ (*T & mask << 8)) | | 
| 164 | 0 |          ((*A & mask) ^ (*T & mask)); | 
| 165 |  | 
 | 
| 166 | 0 |     if (!TP[7]--) | 
| 167 | 0 |         if (!TP[6]--) | 
| 168 | 0 |             if (!TP[5]--) | 
| 169 | 0 |                 if (!TP[4]--) | 
| 170 | 0 |                     if (!TP[3]--) | 
| 171 | 0 |                         if (!TP[2]--) | 
| 172 | 0 |                             if (!TP[1]--) | 
| 173 | 0 |                                 TP[0]--; | 
| 174 | 0 | } | 
| 175 |  |  | 
| 176 |  | /* Given an unsigned long t (in host byte order), store this value as a | 
| 177 |  | ** 64-bit big-endian value (MSB first) in *pt. | 
| 178 |  | */ | 
| 179 |  | static void | 
| 180 |  | set_t(unsigned char *pt, unsigned long t) | 
| 181 | 0 | { | 
| 182 | 0 |     pt[7] = (unsigned char)t; | 
| 183 | 0 |     t >>= 8; | 
| 184 | 0 |     pt[6] = (unsigned char)t; | 
| 185 | 0 |     t >>= 8; | 
| 186 | 0 |     pt[5] = (unsigned char)t; | 
| 187 | 0 |     t >>= 8; | 
| 188 | 0 |     pt[4] = (unsigned char)t; | 
| 189 | 0 |     t >>= 8; | 
| 190 | 0 |     pt[3] = (unsigned char)t; | 
| 191 | 0 |     t >>= 8; | 
| 192 | 0 |     pt[2] = (unsigned char)t; | 
| 193 | 0 |     t >>= 8; | 
| 194 | 0 |     pt[1] = (unsigned char)t; | 
| 195 | 0 |     t >>= 8; | 
| 196 | 0 |     pt[0] = (unsigned char)t; | 
| 197 | 0 | } | 
| 198 |  |  | 
| 199 |  | #endif | 
| 200 |  |  | 
| 201 |  | static void | 
| 202 |  | encode_PRUint32_BE(unsigned char *data, PRUint32 val) | 
| 203 | 0 | { | 
| 204 | 0 |     size_t i; | 
| 205 | 0 |     for (i = 0; i < sizeof(PRUint32); i++) { | 
| 206 | 0 |         data[i] = PORT_GET_BYTE_BE(val, i, sizeof(PRUint32)); | 
| 207 | 0 |     } | 
| 208 | 0 | } | 
| 209 |  |  | 
| 210 |  | static PRUint32 | 
| 211 |  | decode_PRUint32_BE(unsigned char *data) | 
| 212 | 0 | { | 
| 213 | 0 |     PRUint32 val = 0; | 
| 214 | 0 |     size_t i; | 
| 215 |  | 
 | 
| 216 | 0 |     for (i = 0; i < sizeof(PRUint32); i++) { | 
| 217 | 0 |         val = (val << PR_BITS_PER_BYTE) | data[i]; | 
| 218 | 0 |     } | 
| 219 | 0 |     return val; | 
| 220 | 0 | } | 
| 221 |  |  | 
| 222 |  | /* | 
| 223 |  | ** Perform AES key wrap W function. | 
| 224 |  | **  "cx" the context | 
| 225 |  | **  "iv" the iv is concatenated to the plain text for for executing the function | 
| 226 |  | **  "output" the output buffer to store the encrypted data. | 
| 227 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 228 |  | **     after some data is stored in output. | 
| 229 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 230 |  | **     stored in "output" | 
| 231 |  | **  "input" the input data | 
| 232 |  | **  "inputLen" the amount of input data | 
| 233 |  | */ | 
| 234 |  | extern SECStatus | 
| 235 |  | AESKeyWrap_W(AESKeyWrapContext *cx, unsigned char *iv, unsigned char *output, | 
| 236 |  |              unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 237 |  |              const unsigned char *input, unsigned int inputLen) | 
| 238 | 0 | { | 
| 239 | 0 |     PRUint64 *R = NULL; | 
| 240 | 0 |     unsigned int nBlocks; | 
| 241 | 0 |     unsigned int i, j; | 
| 242 | 0 |     unsigned int aesLen = AES_BLOCK_SIZE; | 
| 243 | 0 |     unsigned int outLen = inputLen + AES_KEY_WRAP_BLOCK_SIZE; | 
| 244 | 0 |     SECStatus s = SECFailure; | 
| 245 |  |     /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */ | 
| 246 | 0 |     PRUint64 t; | 
| 247 | 0 |     PRUint64 B[2]; | 
| 248 |  | 
 | 
| 249 | 0 | #define A B[0] | 
| 250 |  |  | 
| 251 |  |     /* Check args */ | 
| 252 | 0 |     if (inputLen < 2 * AES_KEY_WRAP_BLOCK_SIZE || | 
| 253 | 0 |         0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | 
| 254 | 0 |         PORT_SetError(SEC_ERROR_INPUT_LEN); | 
| 255 | 0 |         return s; | 
| 256 | 0 |     } | 
| 257 |  | #ifdef maybe | 
| 258 |  |     if (!output && pOutputLen) { /* caller is asking for output size */ | 
| 259 |  |         *pOutputLen = outLen; | 
| 260 |  |         return SECSuccess; | 
| 261 |  |     } | 
| 262 |  | #endif | 
| 263 | 0 |     if (maxOutputLen < outLen) { | 
| 264 | 0 |         PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| 265 | 0 |         return s; | 
| 266 | 0 |     } | 
| 267 | 0 |     if (cx == NULL || output == NULL || input == NULL) { | 
| 268 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 269 | 0 |         return s; | 
| 270 | 0 |     } | 
| 271 | 0 |     nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE; | 
| 272 | 0 |     R = PORT_NewArray(PRUint64, nBlocks + 1); | 
| 273 | 0 |     if (!R) | 
| 274 | 0 |         return s; /* error is already set. */ | 
| 275 |  |     /* | 
| 276 |  |     ** 1) Initialize variables. | 
| 277 |  |     */ | 
| 278 | 0 |     memcpy(&A, iv, AES_KEY_WRAP_IV_BYTES); | 
| 279 | 0 |     memcpy(&R[1], input, inputLen); | 
| 280 |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | 
| 281 |  |     t = 0; | 
| 282 |  | #else | 
| 283 | 0 |     memset(&t, 0, sizeof t); | 
| 284 | 0 | #endif | 
| 285 |  |     /* | 
| 286 |  |     ** 2) Calculate intermediate values. | 
| 287 |  |     */ | 
| 288 | 0 |     for (j = 0; j < 6; ++j) { | 
| 289 | 0 |         for (i = 1; i <= nBlocks; ++i) { | 
| 290 | 0 |             B[1] = R[i]; | 
| 291 | 0 |             s = AES_Encrypt(&cx->aescx, (unsigned char *)B, &aesLen, | 
| 292 | 0 |                             sizeof B, (unsigned char *)B, sizeof B); | 
| 293 | 0 |             if (s != SECSuccess) | 
| 294 | 0 |                 break; | 
| 295 | 0 |             R[i] = B[1]; | 
| 296 |  | /* here, increment t and XOR A with t (in big endian order); */ | 
| 297 |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | 
| 298 |  |             A ^= ++t; | 
| 299 |  | #else | 
| 300 | 0 |             increment_and_xor((unsigned char *)&A, (unsigned char *)&t); | 
| 301 | 0 | #endif | 
| 302 | 0 |         } | 
| 303 | 0 |     } | 
| 304 |  |     /* | 
| 305 |  |     ** 3) Output the results. | 
| 306 |  |     */ | 
| 307 | 0 |     if (s == SECSuccess) { | 
| 308 | 0 |         R[0] = A; | 
| 309 | 0 |         memcpy(output, &R[0], outLen); | 
| 310 | 0 |         if (pOutputLen) | 
| 311 | 0 |             *pOutputLen = outLen; | 
| 312 | 0 |     } else if (pOutputLen) { | 
| 313 | 0 |         *pOutputLen = 0; | 
| 314 | 0 |     } | 
| 315 | 0 |     PORT_ZFree(R, outLen); | 
| 316 | 0 |     return s; | 
| 317 | 0 | } | 
| 318 |  | #undef A | 
| 319 |  |  | 
| 320 |  | /* | 
| 321 |  | ** Perform AES key wrap W^-1 function. | 
| 322 |  | **  "cx" the context | 
| 323 |  | **  "iv" the input IV to verify against. If NULL, then skip verification. | 
| 324 |  | **  "ivOut" the output buffer to store the IV (optional). | 
| 325 |  | **  "output" the output buffer to store the decrypted data. | 
| 326 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 327 |  | **     after some data is stored in output. | 
| 328 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 329 |  | **     stored in "output" | 
| 330 |  | **  "input" the input data | 
| 331 |  | **  "inputLen" the amount of input data | 
| 332 |  | */ | 
| 333 |  | extern SECStatus | 
| 334 |  | AESKeyWrap_Winv(AESKeyWrapContext *cx, unsigned char *iv, | 
| 335 |  |                 unsigned char *ivOut, unsigned char *output, | 
| 336 |  |                 unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 337 |  |                 const unsigned char *input, unsigned int inputLen) | 
| 338 | 0 | { | 
| 339 | 0 |     PRUint64 *R = NULL; | 
| 340 | 0 |     unsigned int nBlocks; | 
| 341 | 0 |     unsigned int i, j; | 
| 342 | 0 |     unsigned int aesLen = AES_BLOCK_SIZE; | 
| 343 | 0 |     unsigned int outLen; | 
| 344 | 0 |     SECStatus s = SECFailure; | 
| 345 |  |     /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */ | 
| 346 | 0 |     PRUint64 t; | 
| 347 | 0 |     PRUint64 B[2]; | 
| 348 |  |  | 
| 349 |  |     /* Check args */ | 
| 350 | 0 |     if (inputLen < 3 * AES_KEY_WRAP_BLOCK_SIZE || | 
| 351 | 0 |         0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | 
| 352 | 0 |         PORT_SetError(SEC_ERROR_INPUT_LEN); | 
| 353 | 0 |         return s; | 
| 354 | 0 |     } | 
| 355 | 0 |     outLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE; | 
| 356 |  | #ifdef maybe | 
| 357 |  |     if (!output && pOutputLen) { /* caller is asking for output size */ | 
| 358 |  |         *pOutputLen = outLen; | 
| 359 |  |         return SECSuccess; | 
| 360 |  |     } | 
| 361 |  | #endif | 
| 362 | 0 |     if (maxOutputLen < outLen) { | 
| 363 | 0 |         PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| 364 | 0 |         return s; | 
| 365 | 0 |     } | 
| 366 | 0 |     if (cx == NULL || output == NULL || input == NULL) { | 
| 367 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 368 | 0 |         return s; | 
| 369 | 0 |     } | 
| 370 | 0 |     nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE; | 
| 371 | 0 |     R = PORT_NewArray(PRUint64, nBlocks); | 
| 372 | 0 |     if (!R) | 
| 373 | 0 |         return s; /* error is already set. */ | 
| 374 | 0 |     nBlocks--; | 
| 375 |  |     /* | 
| 376 |  |     ** 1) Initialize variables. | 
| 377 |  |     */ | 
| 378 | 0 |     memcpy(&R[0], input, inputLen); | 
| 379 | 0 |     B[0] = R[0]; | 
| 380 |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | 
| 381 |  |     t = 6UL * nBlocks; | 
| 382 |  | #else | 
| 383 | 0 |     set_t((unsigned char *)&t, 6UL * nBlocks); | 
| 384 | 0 | #endif | 
| 385 |  |     /* | 
| 386 |  |     ** 2) Calculate intermediate values. | 
| 387 |  |     */ | 
| 388 | 0 |     for (j = 0; j < 6; ++j) { | 
| 389 | 0 |         for (i = nBlocks; i; --i) { | 
| 390 |  | /* here, XOR A with t (in big endian order) and decrement t; */ | 
| 391 |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | 
| 392 |  |             B[0] ^= t--; | 
| 393 |  | #else | 
| 394 | 0 |             xor_and_decrement(&B[0], &t); | 
| 395 | 0 | #endif | 
| 396 | 0 |             B[1] = R[i]; | 
| 397 | 0 |             s = AES_Decrypt(&cx->aescx, (unsigned char *)B, &aesLen, | 
| 398 | 0 |                             sizeof B, (unsigned char *)B, sizeof B); | 
| 399 | 0 |             if (s != SECSuccess) | 
| 400 | 0 |                 break; | 
| 401 | 0 |             R[i] = B[1]; | 
| 402 | 0 |         } | 
| 403 | 0 |     } | 
| 404 |  |     /* | 
| 405 |  |     ** 3) Output the results. | 
| 406 |  |     */ | 
| 407 | 0 |     if (s == SECSuccess) { | 
| 408 | 0 |         int bad = (iv) && memcmp(&B[0], iv, AES_KEY_WRAP_IV_BYTES); | 
| 409 | 0 |         if (!bad) { | 
| 410 | 0 |             memcpy(output, &R[1], outLen); | 
| 411 | 0 |             if (pOutputLen) | 
| 412 | 0 |                 *pOutputLen = outLen; | 
| 413 | 0 |             if (ivOut) { | 
| 414 | 0 |                 memcpy(ivOut, &B[0], AES_KEY_WRAP_IV_BYTES); | 
| 415 | 0 |             } | 
| 416 | 0 |         } else { | 
| 417 | 0 |             s = SECFailure; | 
| 418 | 0 |             PORT_SetError(SEC_ERROR_BAD_DATA); | 
| 419 | 0 |             if (pOutputLen) | 
| 420 | 0 |                 *pOutputLen = 0; | 
| 421 | 0 |         } | 
| 422 | 0 |     } else if (pOutputLen) { | 
| 423 | 0 |         *pOutputLen = 0; | 
| 424 | 0 |     } | 
| 425 | 0 |     PORT_ZFree(R, inputLen); | 
| 426 | 0 |     return s; | 
| 427 | 0 | } | 
| 428 |  | #undef A | 
| 429 |  |  | 
| 430 |  | /* | 
| 431 |  | ** Perform AES key wrap. | 
| 432 |  | **  "cx" the context | 
| 433 |  | **  "output" the output buffer to store the encrypted data. | 
| 434 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 435 |  | **     after some data is stored in output. | 
| 436 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 437 |  | **     stored in "output" | 
| 438 |  | **  "input" the input data | 
| 439 |  | **  "inputLen" the amount of input data | 
| 440 |  | */ | 
| 441 |  | extern SECStatus | 
| 442 |  | AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output, | 
| 443 |  |                    unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 444 |  |                    const unsigned char *input, unsigned int inputLen) | 
| 445 | 0 | { | 
| 446 | 0 |     return AESKeyWrap_W(cx, cx->iv, output, pOutputLen, maxOutputLen, | 
| 447 | 0 |                         input, inputLen); | 
| 448 | 0 | } | 
| 449 |  |  | 
| 450 |  | /* | 
| 451 |  | ** Perform AES key unwrap. | 
| 452 |  | **  "cx" the context | 
| 453 |  | **  "output" the output buffer to store the decrypted data. | 
| 454 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 455 |  | **     after some data is stored in output. | 
| 456 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 457 |  | **     stored in "output" | 
| 458 |  | **  "input" the input data | 
| 459 |  | **  "inputLen" the amount of input data | 
| 460 |  | */ | 
| 461 |  | extern SECStatus | 
| 462 |  | AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output, | 
| 463 |  |                    unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 464 |  |                    const unsigned char *input, unsigned int inputLen) | 
| 465 | 0 | { | 
| 466 | 0 |     return AESKeyWrap_Winv(cx, cx->iv, NULL, output, pOutputLen, maxOutputLen, | 
| 467 | 0 |                            input, inputLen); | 
| 468 | 0 | } | 
| 469 |  |  | 
| 470 | 0 | #define BLOCK_PAD_POWER2(x, bs) (((bs) - ((x) & ((bs)-1))) & ((bs)-1)) | 
| 471 | 0 | #define AES_KEY_WRAP_ICV2 0xa6, 0x59, 0x59, 0xa6 | 
| 472 |  | #define AES_KEY_WRAP_ICV2_INT32 0xa65959a6 | 
| 473 | 0 | #define AES_KEY_WRAP_ICV2_LEN 4 | 
| 474 |  |  | 
| 475 |  | /* | 
| 476 |  | ** Perform AES key wrap with padding. | 
| 477 |  | **  "cx" the context | 
| 478 |  | **  "output" the output buffer to store the encrypted data. | 
| 479 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 480 |  | **     after some data is stored in output. | 
| 481 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 482 |  | **     stored in "output" | 
| 483 |  | **  "input" the input data | 
| 484 |  | **  "inputLen" the amount of input data | 
| 485 |  | */ | 
| 486 |  | extern SECStatus | 
| 487 |  | AESKeyWrap_EncryptKWP(AESKeyWrapContext *cx, unsigned char *output, | 
| 488 |  |                       unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 489 |  |                       const unsigned char *input, unsigned int inputLen) | 
| 490 | 0 | { | 
| 491 | 0 |     unsigned int padLen = BLOCK_PAD_POWER2(inputLen, AES_KEY_WRAP_BLOCK_SIZE); | 
| 492 | 0 |     unsigned int paddedInputLen = inputLen + padLen; | 
| 493 | 0 |     unsigned int outLen = paddedInputLen + AES_KEY_WRAP_BLOCK_SIZE; | 
| 494 | 0 |     unsigned char iv[AES_BLOCK_SIZE] = { AES_KEY_WRAP_ICV2 }; | 
| 495 | 0 |     unsigned char *newBuf; | 
| 496 | 0 |     SECStatus rv; | 
| 497 |  | 
 | 
| 498 | 0 |     *pOutputLen = outLen; | 
| 499 | 0 |     if (maxOutputLen < outLen) { | 
| 500 | 0 |         PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| 501 | 0 |         return SECFailure; | 
| 502 | 0 |     } | 
| 503 | 0 |     PORT_Assert((AES_KEY_WRAP_ICV2_LEN + sizeof(PRUint32)) == AES_KEY_WRAP_BLOCK_SIZE); | 
| 504 | 0 |     encode_PRUint32_BE(iv + AES_KEY_WRAP_ICV2_LEN, inputLen); | 
| 505 |  |  | 
| 506 |  |     /* If we can fit in an AES Block, just do and AES Encrypt, | 
| 507 |  |      * iv is big enough to handle this on the stack, so no need to allocate | 
| 508 |  |      */ | 
| 509 | 0 |     if (outLen == AES_BLOCK_SIZE) { | 
| 510 | 0 |         PORT_Assert(inputLen <= AES_KEY_WRAP_BLOCK_SIZE); | 
| 511 | 0 |         PORT_Memset(iv + AES_KEY_WRAP_BLOCK_SIZE, 0, AES_KEY_WRAP_BLOCK_SIZE); | 
| 512 | 0 |         PORT_Memcpy(iv + AES_KEY_WRAP_BLOCK_SIZE, input, inputLen); | 
| 513 | 0 |         rv = AES_Encrypt(&cx->aescx, output, pOutputLen, maxOutputLen, iv, | 
| 514 | 0 |                          outLen); | 
| 515 | 0 |         PORT_Memset(iv, 0, sizeof(iv)); | 
| 516 | 0 |         return rv; | 
| 517 | 0 |     } | 
| 518 |  |  | 
| 519 |  |     /* add padding to our input block */ | 
| 520 | 0 |     newBuf = PORT_ZAlloc(paddedInputLen); | 
| 521 | 0 |     if (newBuf == NULL) { | 
| 522 | 0 |         return SECFailure; | 
| 523 | 0 |     } | 
| 524 | 0 |     PORT_Memcpy(newBuf, input, inputLen); | 
| 525 |  | 
 | 
| 526 | 0 |     rv = AESKeyWrap_W(cx, iv, output, pOutputLen, maxOutputLen, | 
| 527 | 0 |                       newBuf, paddedInputLen); | 
| 528 | 0 |     PORT_ZFree(newBuf, paddedInputLen); | 
| 529 |  |     /* a little overkill, we only need to clear out the length, but this | 
| 530 |  |      * is easier to verify we got it all */ | 
| 531 | 0 |     PORT_Memset(iv, 0, sizeof(iv)); | 
| 532 | 0 |     return rv; | 
| 533 | 0 | } | 
| 534 |  |  | 
| 535 |  | /* | 
| 536 |  | ** Perform AES key unwrap with padding. | 
| 537 |  | **  "cx" the context | 
| 538 |  | **  "output" the output buffer to store the decrypted data. | 
| 539 |  | **  "pOutputLen" how much data is stored in "output". Set by the routine | 
| 540 |  | **     after some data is stored in output. | 
| 541 |  | **  "maxOutputLen" the maximum amount of data that can ever be | 
| 542 |  | **     stored in "output" | 
| 543 |  | **  "input" the input data | 
| 544 |  | **  "inputLen" the amount of input data | 
| 545 |  | */ | 
| 546 |  | extern SECStatus | 
| 547 |  | AESKeyWrap_DecryptKWP(AESKeyWrapContext *cx, unsigned char *output, | 
| 548 |  |                       unsigned int *pOutputLen, unsigned int maxOutputLen, | 
| 549 |  |                       const unsigned char *input, unsigned int inputLen) | 
| 550 | 0 | { | 
| 551 | 0 |     unsigned int padLen; | 
| 552 | 0 |     unsigned int padLen2; | 
| 553 | 0 |     unsigned int outLen; | 
| 554 | 0 |     unsigned int paddedLen; | 
| 555 | 0 |     unsigned int good; | 
| 556 | 0 |     unsigned char *newBuf = NULL; | 
| 557 | 0 |     unsigned char *allocBuf = NULL; | 
| 558 | 0 |     int i; | 
| 559 | 0 |     unsigned char iv[AES_BLOCK_SIZE]; | 
| 560 | 0 |     PRUint32 magic; | 
| 561 | 0 |     SECStatus rv = SECFailure; | 
| 562 |  | 
 | 
| 563 | 0 |     paddedLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE; | 
| 564 |  |     /* unwrap the padded result */ | 
| 565 | 0 |     if (inputLen == AES_BLOCK_SIZE) { | 
| 566 | 0 |         rv = AES_Decrypt(&cx->aescx, iv, &outLen, inputLen, input, inputLen); | 
| 567 | 0 |         newBuf = &iv[AES_KEY_WRAP_BLOCK_SIZE]; | 
| 568 | 0 |         outLen -= AES_KEY_WRAP_BLOCK_SIZE; | 
| 569 | 0 |     } else { | 
| 570 |  |         /* if the caller supplied enough space to hold the unpadded buffer, | 
| 571 |  |          * we can unwrap directly into that unpadded buffer. Otherwise | 
| 572 |  |          * we allocate a buffer that can hold the padding, and we'll copy | 
| 573 |  |          * the result in a later step */ | 
| 574 | 0 |         newBuf = output; | 
| 575 | 0 |         if (maxOutputLen < paddedLen) { | 
| 576 | 0 |             allocBuf = newBuf = PORT_Alloc(paddedLen); | 
| 577 | 0 |             if (!allocBuf) { | 
| 578 | 0 |                 return SECFailure; | 
| 579 | 0 |             } | 
| 580 | 0 |         } | 
| 581 |  |         /* We pass NULL for the first IV argument because we don't know | 
| 582 |  |          * what the IV has since in includes the length, so we don't have | 
| 583 |  |          * Winv verify it. We pass iv in the second argument to get the | 
| 584 |  |          * iv, which we verify below before we return anything */ | 
| 585 | 0 |         rv = AESKeyWrap_Winv(cx, NULL, iv, newBuf, &outLen, | 
| 586 | 0 |                              paddedLen, input, inputLen); | 
| 587 | 0 |     } | 
| 588 | 0 |     if (rv != SECSuccess) { | 
| 589 | 0 |         goto loser; | 
| 590 | 0 |     } | 
| 591 | 0 |     rv = SECFailure; | 
| 592 | 0 |     if (outLen != paddedLen) { | 
| 593 | 0 |         PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | 
| 594 | 0 |         goto loser; | 
| 595 | 0 |     } | 
| 596 |  |  | 
| 597 |  |     /* we verify the result in a constant time manner */ | 
| 598 |  |     /* verify ICV magic */ | 
| 599 | 0 |     magic = decode_PRUint32_BE(iv); | 
| 600 | 0 |     good = PORT_CT_EQ(magic, AES_KEY_WRAP_ICV2_INT32); | 
| 601 |  |     /* fetch and verify plain text length */ | 
| 602 | 0 |     outLen = decode_PRUint32_BE(iv + AES_KEY_WRAP_ICV2_LEN); | 
| 603 | 0 |     good &= PORT_CT_LE(outLen, paddedLen); | 
| 604 |  |     /* now verify the padding */ | 
| 605 | 0 |     padLen = paddedLen - outLen; | 
| 606 | 0 |     padLen2 = BLOCK_PAD_POWER2(outLen, AES_KEY_WRAP_BLOCK_SIZE); | 
| 607 | 0 |     good &= PORT_CT_EQ(padLen, padLen2); | 
| 608 | 0 |     for (i = 0; i < AES_KEY_WRAP_BLOCK_SIZE; i++) { | 
| 609 | 0 |         unsigned int doTest = PORT_CT_GT(padLen, i); | 
| 610 | 0 |         unsigned int result = PORT_CT_ZERO(newBuf[paddedLen - i - 1]); | 
| 611 | 0 |         good &= PORT_CT_SEL(doTest, result, PORT_CT_TRUE); | 
| 612 | 0 |     } | 
| 613 |  |  | 
| 614 |  |     /* now if anything was wrong, fail. At this point we will leak timing | 
| 615 |  |      * information, but we also 'leak' the error code as well. */ | 
| 616 | 0 |     if (!good) { | 
| 617 | 0 |         PORT_SetError(SEC_ERROR_BAD_DATA); | 
| 618 | 0 |         goto loser; | 
| 619 | 0 |     } | 
| 620 |  |  | 
| 621 |  |     /* now copy out the result */ | 
| 622 | 0 |     *pOutputLen = outLen; | 
| 623 | 0 |     if (maxOutputLen < outLen) { | 
| 624 | 0 |         PORT_SetError(SEC_ERROR_OUTPUT_LEN); | 
| 625 | 0 |         goto loser; | 
| 626 | 0 |     } | 
| 627 | 0 |     if (output != newBuf) { | 
| 628 | 0 |         PORT_Memcpy(output, newBuf, outLen); | 
| 629 | 0 |     } | 
| 630 | 0 |     rv = SECSuccess; | 
| 631 | 0 | loser: | 
| 632 |  |     /* if we failed, make sure we don't return any data to the user */ | 
| 633 | 0 |     if ((rv != SECSuccess) && (output == newBuf)) { | 
| 634 | 0 |         PORT_Memset(newBuf, 0, paddedLen); | 
| 635 | 0 |     } | 
| 636 |  |     /* clear out CSP sensitive data from the heap and stack */ | 
| 637 | 0 |     if (allocBuf) { | 
| 638 | 0 |         PORT_ZFree(allocBuf, paddedLen); | 
| 639 | 0 |     } | 
| 640 | 0 |     PORT_Memset(iv, 0, sizeof(iv)); | 
| 641 | 0 |     return rv; | 
| 642 | 0 | } |