| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* This Source Code Form is subject to the terms of the Mozilla Public | 
| 2 |  |  * License, v. 2.0. If a copy of the MPL was not distributed with this | 
| 3 |  |  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | 
| 4 |  |  | 
| 5 |  | /* | 
| 6 |  |  * Diffie-Hellman parameter generation, key generation, and secret derivation. | 
| 7 |  |  * KEA secret generation and verification. | 
| 8 |  |  */ | 
| 9 |  | #ifdef FREEBL_NO_DEPEND | 
| 10 |  | #include "stubs.h" | 
| 11 |  | #endif | 
| 12 |  |  | 
| 13 |  | #include "prerr.h" | 
| 14 |  | #include "secerr.h" | 
| 15 |  |  | 
| 16 |  | #include "blapi.h" | 
| 17 |  | #include "blapii.h" | 
| 18 |  | #include "secitem.h" | 
| 19 |  | #include "mpi.h" | 
| 20 |  | #include "secmpi.h" | 
| 21 |  |  | 
| 22 | 0 | #define KEA_DERIVED_SECRET_LEN 128 | 
| 23 |  |  | 
| 24 |  | /* Lengths are in bytes. */ | 
| 25 |  | static unsigned int | 
| 26 |  | dh_GetSecretKeyLen(unsigned int primeLen) | 
| 27 | 903 | { | 
| 28 |  |     /* Based on Table 2 in NIST SP 800-57. */ | 
| 29 | 903 |     if (primeLen >= 1920) { /* 15360 bits */ | 
| 30 | 0 |         return 64;          /* 512 bits */ | 
| 31 | 0 |     } | 
| 32 | 903 |     if (primeLen >= 960) { /* 7680 bits */ | 
| 33 | 33 |         return 48;         /* 384 bits */ | 
| 34 | 33 |     } | 
| 35 | 870 |     if (primeLen >= 384) { /* 3072 bits */ | 
| 36 | 131 |         return 32;         /* 256 bits */ | 
| 37 | 131 |     } | 
| 38 | 739 |     if (primeLen >= 256) { /* 2048 bits */ | 
| 39 | 739 |         return 28;         /* 224 bits */ | 
| 40 | 739 |     } | 
| 41 | 0 |     return 20; /* 160 bits */ | 
| 42 | 739 | } | 
| 43 |  |  | 
| 44 |  | SECStatus | 
| 45 |  | DH_GenParam(int primeLen, DHParams **params) | 
| 46 | 0 | { | 
| 47 | 0 |     PLArenaPool *arena; | 
| 48 | 0 |     DHParams *dhparams; | 
| 49 | 0 |     unsigned char *ab = NULL; | 
| 50 | 0 |     mp_int p, q, a, h, psub1, test; | 
| 51 | 0 |     mp_err err = MP_OKAY; | 
| 52 | 0 |     SECStatus rv = SECSuccess; | 
| 53 | 0 |     if (!params || primeLen < 0) { | 
| 54 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 55 | 0 |         return SECFailure; | 
| 56 | 0 |     } | 
| 57 | 0 |     arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | 
| 58 | 0 |     if (!arena) { | 
| 59 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 60 | 0 |         return SECFailure; | 
| 61 | 0 |     } | 
| 62 | 0 |     dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams)); | 
| 63 | 0 |     if (!dhparams) { | 
| 64 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 65 | 0 |         PORT_FreeArena(arena, PR_TRUE); | 
| 66 | 0 |         return SECFailure; | 
| 67 | 0 |     } | 
| 68 | 0 |     dhparams->arena = arena; | 
| 69 | 0 |     MP_DIGITS(&p) = 0; | 
| 70 | 0 |     MP_DIGITS(&q) = 0; | 
| 71 | 0 |     MP_DIGITS(&a) = 0; | 
| 72 | 0 |     MP_DIGITS(&h) = 0; | 
| 73 | 0 |     MP_DIGITS(&psub1) = 0; | 
| 74 | 0 |     MP_DIGITS(&test) = 0; | 
| 75 | 0 |     CHECK_MPI_OK(mp_init(&p)); | 
| 76 | 0 |     CHECK_MPI_OK(mp_init(&q)); | 
| 77 | 0 |     CHECK_MPI_OK(mp_init(&a)); | 
| 78 | 0 |     CHECK_MPI_OK(mp_init(&h)); | 
| 79 | 0 |     CHECK_MPI_OK(mp_init(&psub1)); | 
| 80 | 0 |     CHECK_MPI_OK(mp_init(&test)); | 
| 81 |  |     /* generate prime with MPI, uses Miller-Rabin to generate safe prime. */ | 
| 82 | 0 |     CHECK_SEC_OK(generate_prime(&p, primeLen)); | 
| 83 |  |     /* construct Sophie-Germain prime q = (p-1)/2. */ | 
| 84 | 0 |     CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1)); | 
| 85 | 0 |     CHECK_MPI_OK(mp_div_2(&psub1, &q)); | 
| 86 |  |     /* construct a generator from the prime. */ | 
| 87 | 0 |     ab = PORT_Alloc(primeLen); | 
| 88 | 0 |     if (!ab) { | 
| 89 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 90 | 0 |         rv = SECFailure; | 
| 91 | 0 |         goto cleanup; | 
| 92 | 0 |     } | 
| 93 |  |     /* generate a candidate number a in p's field */ | 
| 94 | 0 |     CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(ab, primeLen)); | 
| 95 | 0 |     CHECK_MPI_OK(mp_read_unsigned_octets(&a, ab, primeLen)); | 
| 96 |  |     /* force a < p (note that quot(a/p) <= 1) */ | 
| 97 | 0 |     if (mp_cmp(&a, &p) > 0) | 
| 98 | 0 |         CHECK_MPI_OK(mp_sub(&a, &p, &a)); | 
| 99 | 0 |     do { | 
| 100 |  |         /* check that a is in the range [2..p-1] */ | 
| 101 | 0 |         if (mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) { | 
| 102 |  |             /* a is outside of the allowed range.  Set a=3 and keep going. */ | 
| 103 | 0 |             mp_set(&a, 3); | 
| 104 | 0 |         } | 
| 105 |  |         /* if a**q mod p != 1 then a is a generator */ | 
| 106 | 0 |         CHECK_MPI_OK(mp_exptmod(&a, &q, &p, &test)); | 
| 107 | 0 |         if (mp_cmp_d(&test, 1) != 0) | 
| 108 | 0 |             break; | 
| 109 |  |         /* increment the candidate and try again. */ | 
| 110 | 0 |         CHECK_MPI_OK(mp_add_d(&a, 1, &a)); | 
| 111 | 0 |     } while (PR_TRUE); | 
| 112 | 0 |     MPINT_TO_SECITEM(&p, &dhparams->prime, arena); | 
| 113 | 0 |     MPINT_TO_SECITEM(&a, &dhparams->base, arena); | 
| 114 | 0 |     *params = dhparams; | 
| 115 | 0 | cleanup: | 
| 116 | 0 |     mp_clear(&p); | 
| 117 | 0 |     mp_clear(&q); | 
| 118 | 0 |     mp_clear(&a); | 
| 119 | 0 |     mp_clear(&h); | 
| 120 | 0 |     mp_clear(&psub1); | 
| 121 | 0 |     mp_clear(&test); | 
| 122 | 0 |     if (ab) { | 
| 123 | 0 |         PORT_ZFree(ab, primeLen); | 
| 124 | 0 |     } | 
| 125 | 0 |     if (err) { | 
| 126 | 0 |         MP_TO_SEC_ERROR(err); | 
| 127 | 0 |         rv = SECFailure; | 
| 128 | 0 |     } | 
| 129 | 0 |     if (rv != SECSuccess) { | 
| 130 | 0 |         PORT_FreeArena(arena, PR_TRUE); | 
| 131 | 0 |     } | 
| 132 | 0 |     return rv; | 
| 133 | 0 | } | 
| 134 |  |  | 
| 135 |  | SECStatus | 
| 136 |  | DH_NewKey(DHParams *params, DHPrivateKey **privKey) | 
| 137 | 903 | { | 
| 138 | 903 |     PLArenaPool *arena; | 
| 139 | 903 |     DHPrivateKey *key; | 
| 140 | 903 |     mp_int g, xa, p, Ya; | 
| 141 | 903 |     mp_err err = MP_OKAY; | 
| 142 | 903 |     SECStatus rv = SECSuccess; | 
| 143 | 903 |     if (!params || !privKey) { | 
| 144 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 145 | 0 |         return SECFailure; | 
| 146 | 0 |     } | 
| 147 | 903 |     arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | 
| 148 | 903 |     if (!arena) { | 
| 149 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 150 | 0 |         return SECFailure; | 
| 151 | 0 |     } | 
| 152 | 903 |     key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey)); | 
| 153 | 903 |     if (!key) { | 
| 154 | 0 |         PORT_SetError(SEC_ERROR_NO_MEMORY); | 
| 155 | 0 |         PORT_FreeArena(arena, PR_TRUE); | 
| 156 | 0 |         return SECFailure; | 
| 157 | 0 |     } | 
| 158 | 903 |     key->arena = arena; | 
| 159 | 903 |     MP_DIGITS(&g) = 0; | 
| 160 | 903 |     MP_DIGITS(&xa) = 0; | 
| 161 | 903 |     MP_DIGITS(&p) = 0; | 
| 162 | 903 |     MP_DIGITS(&Ya) = 0; | 
| 163 | 903 |     CHECK_MPI_OK(mp_init(&g)); | 
| 164 | 903 |     CHECK_MPI_OK(mp_init(&xa)); | 
| 165 | 903 |     CHECK_MPI_OK(mp_init(&p)); | 
| 166 | 903 |     CHECK_MPI_OK(mp_init(&Ya)); | 
| 167 |  |     /* Set private key's p */ | 
| 168 | 903 |     CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->prime, ¶ms->prime)); | 
| 169 | 903 |     SECITEM_TO_MPINT(key->prime, &p); | 
| 170 |  |     /* Set private key's g */ | 
| 171 | 903 |     CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->base, ¶ms->base)); | 
| 172 | 903 |     SECITEM_TO_MPINT(key->base, &g); | 
| 173 |  |     /* Generate private key xa */ | 
| 174 | 903 |     SECITEM_AllocItem(arena, &key->privateValue, | 
| 175 | 903 |                       dh_GetSecretKeyLen(params->prime.len)); | 
| 176 | 903 |     CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data, | 
| 177 | 903 |                                                key->privateValue.len)); | 
| 178 | 903 |     SECITEM_TO_MPINT(key->privateValue, &xa); | 
| 179 |  |     /* xa < p */ | 
| 180 | 903 |     CHECK_MPI_OK(mp_mod(&xa, &p, &xa)); | 
| 181 |  |     /* Compute public key Ya = g ** xa mod p */ | 
| 182 | 903 |     CHECK_MPI_OK(mp_exptmod(&g, &xa, &p, &Ya)); | 
| 183 | 903 |     MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena); | 
| 184 | 903 |     *privKey = key; | 
| 185 | 903 | cleanup: | 
| 186 | 903 |     mp_clear(&g); | 
| 187 | 903 |     mp_clear(&xa); | 
| 188 | 903 |     mp_clear(&p); | 
| 189 | 903 |     mp_clear(&Ya); | 
| 190 | 903 |     if (err) { | 
| 191 | 0 |         MP_TO_SEC_ERROR(err); | 
| 192 | 0 |         rv = SECFailure; | 
| 193 | 0 |     } | 
| 194 | 903 |     if (rv) { | 
| 195 | 0 |         *privKey = NULL; | 
| 196 | 0 |         PORT_FreeArena(arena, PR_TRUE); | 
| 197 | 0 |     } | 
| 198 | 903 |     return rv; | 
| 199 | 903 | } | 
| 200 |  |  | 
| 201 |  | SECStatus | 
| 202 |  | DH_Derive(SECItem *publicValue, | 
| 203 |  |           SECItem *prime, | 
| 204 |  |           SECItem *privateValue, | 
| 205 |  |           SECItem *derivedSecret, | 
| 206 |  |           unsigned int outBytes) | 
| 207 | 974 | { | 
| 208 | 974 |     mp_int p, Xa, Yb, ZZ, psub1; | 
| 209 | 974 |     mp_err err = MP_OKAY; | 
| 210 | 974 |     unsigned int len = 0; | 
| 211 | 974 |     unsigned int nb; | 
| 212 | 974 |     unsigned char *secret = NULL; | 
| 213 | 974 |     if (!publicValue || !publicValue->len || !prime || !prime->len || | 
| 214 | 974 |         !privateValue || !privateValue->len || !derivedSecret) { | 
| 215 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 216 | 0 |         return SECFailure; | 
| 217 | 0 |     } | 
| 218 | 974 |     memset(derivedSecret, 0, sizeof *derivedSecret); | 
| 219 | 974 |     MP_DIGITS(&p) = 0; | 
| 220 | 974 |     MP_DIGITS(&Xa) = 0; | 
| 221 | 974 |     MP_DIGITS(&Yb) = 0; | 
| 222 | 974 |     MP_DIGITS(&ZZ) = 0; | 
| 223 | 974 |     MP_DIGITS(&psub1) = 0; | 
| 224 | 974 |     CHECK_MPI_OK(mp_init(&p)); | 
| 225 | 974 |     CHECK_MPI_OK(mp_init(&Xa)); | 
| 226 | 974 |     CHECK_MPI_OK(mp_init(&Yb)); | 
| 227 | 974 |     CHECK_MPI_OK(mp_init(&ZZ)); | 
| 228 | 974 |     CHECK_MPI_OK(mp_init(&psub1)); | 
| 229 | 974 |     SECITEM_TO_MPINT(*publicValue, &Yb); | 
| 230 | 974 |     SECITEM_TO_MPINT(*privateValue, &Xa); | 
| 231 | 974 |     SECITEM_TO_MPINT(*prime, &p); | 
| 232 | 974 |     CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1)); | 
| 233 |  |  | 
| 234 |  |     /* We assume that the modulus, p, is a safe prime. That is, p = 2q+1 where | 
| 235 |  |      * q is also a prime. Thus the orders of the subgroups are factors of 2q: | 
| 236 |  |      * namely 1, 2, q and 2q. | 
| 237 |  |      * | 
| 238 |  |      * We check that the peer's public value isn't zero (which isn't in the | 
| 239 |  |      * group), one (subgroup of order one) or p-1 (subgroup of order 2). We | 
| 240 |  |      * also check that the public value is less than p, to avoid being fooled | 
| 241 |  |      * by values like p+1 or 2*p-1. | 
| 242 |  |      * | 
| 243 |  |      * Thus we must be operating in the subgroup of size q or 2q. */ | 
| 244 | 974 |     if (mp_cmp_d(&Yb, 1) <= 0 || | 
| 245 | 974 |         mp_cmp(&Yb, &psub1) >= 0) { | 
| 246 | 0 |         err = MP_BADARG; | 
| 247 | 0 |         goto cleanup; | 
| 248 | 0 |     } | 
| 249 |  |  | 
| 250 |  |     /* ZZ = (Yb)**Xa mod p */ | 
| 251 | 974 |     CHECK_MPI_OK(mp_exptmod(&Yb, &Xa, &p, &ZZ)); | 
| 252 |  |     /* number of bytes in the derived secret */ | 
| 253 | 974 |     len = mp_unsigned_octet_size(&ZZ); | 
| 254 | 974 |     if (len <= 0) { | 
| 255 | 0 |         err = MP_BADARG; | 
| 256 | 0 |         goto cleanup; | 
| 257 | 0 |     } | 
| 258 |  |  | 
| 259 |  |     /* | 
| 260 |  |      * We check to make sure that ZZ is not equal to 0, 1 or -1 mod p. | 
| 261 |  |      * This helps guard against small subgroup attacks, since an attacker | 
| 262 |  |      * using a subgroup of size N will produce 0, 1 or -1 with probability 1/N. | 
| 263 |  |      * When the protocol is executed within a properly large subgroup, the | 
| 264 |  |      * probability of this result will be negligibly small.  For example, | 
| 265 |  |      * with a safe prime of the form 2q+1, the probability will be 1/q. | 
| 266 |  |      * | 
| 267 |  |      * We return MP_BADARG because this is probably the result of a bad | 
| 268 |  |      * public value or a bad prime having been provided. | 
| 269 |  |      */ | 
| 270 | 974 |     if (mp_cmp_d(&ZZ, 0) == 0 || mp_cmp_d(&ZZ, 1) == 0 || | 
| 271 | 974 |         mp_cmp(&ZZ, &psub1) == 0) { | 
| 272 | 0 |         err = MP_BADARG; | 
| 273 | 0 |         goto cleanup; | 
| 274 | 0 |     } | 
| 275 |  |  | 
| 276 |  |     /* allocate a buffer which can hold the entire derived secret. */ | 
| 277 | 974 |     secret = PORT_Alloc(len); | 
| 278 | 974 |     if (secret == NULL) { | 
| 279 | 0 |         err = MP_MEM; | 
| 280 | 0 |         goto cleanup; | 
| 281 | 0 |     } | 
| 282 |  |     /* grab the derived secret */ | 
| 283 | 974 |     err = mp_to_unsigned_octets(&ZZ, secret, len); | 
| 284 | 974 |     if (err >= 0) | 
| 285 | 974 |         err = MP_OKAY; | 
| 286 |  |     /* | 
| 287 |  |     ** if outBytes is 0 take all of the bytes from the derived secret. | 
| 288 |  |     ** if outBytes is not 0 take exactly outBytes from the derived secret, zero | 
| 289 |  |     ** pad at the beginning if necessary, and truncate beginning bytes | 
| 290 |  |     ** if necessary. | 
| 291 |  |     */ | 
| 292 | 974 |     if (outBytes > 0) | 
| 293 | 971 |         nb = outBytes; | 
| 294 | 3 |     else | 
| 295 | 3 |         nb = len; | 
| 296 | 974 |     if (SECITEM_AllocItem(NULL, derivedSecret, nb) == NULL) { | 
| 297 | 0 |         err = MP_MEM; | 
| 298 | 0 |         goto cleanup; | 
| 299 | 0 |     } | 
| 300 | 974 |     if (len < nb) { | 
| 301 | 0 |         unsigned int offset = nb - len; | 
| 302 | 0 |         memset(derivedSecret->data, 0, offset); | 
| 303 | 0 |         memcpy(derivedSecret->data + offset, secret, len); | 
| 304 | 974 |     } else { | 
| 305 | 974 |         memcpy(derivedSecret->data, secret + len - nb, nb); | 
| 306 | 974 |     } | 
| 307 | 974 | cleanup: | 
| 308 | 974 |     mp_clear(&p); | 
| 309 | 974 |     mp_clear(&Xa); | 
| 310 | 974 |     mp_clear(&Yb); | 
| 311 | 974 |     mp_clear(&ZZ); | 
| 312 | 974 |     mp_clear(&psub1); | 
| 313 | 974 |     if (secret) { | 
| 314 |  |         /* free the buffer allocated for the full secret. */ | 
| 315 | 974 |         PORT_ZFree(secret, len); | 
| 316 | 974 |     } | 
| 317 | 974 |     if (err) { | 
| 318 | 0 |         MP_TO_SEC_ERROR(err); | 
| 319 | 0 |         if (derivedSecret->data) | 
| 320 | 0 |             PORT_ZFree(derivedSecret->data, derivedSecret->len); | 
| 321 | 0 |         return SECFailure; | 
| 322 | 0 |     } | 
| 323 | 974 |     return SECSuccess; | 
| 324 | 974 | } | 
| 325 |  |  | 
| 326 |  | SECStatus | 
| 327 |  | KEA_Derive(SECItem *prime, | 
| 328 |  |            SECItem *public1, | 
| 329 |  |            SECItem *public2, | 
| 330 |  |            SECItem *private1, | 
| 331 |  |            SECItem *private2, | 
| 332 |  |            SECItem *derivedSecret) | 
| 333 | 0 | { | 
| 334 | 0 |     mp_int p, Y, R, r, x, t, u, w; | 
| 335 | 0 |     mp_err err; | 
| 336 | 0 |     unsigned char *secret = NULL; | 
| 337 | 0 |     unsigned int len = 0, offset; | 
| 338 | 0 |     if (!prime || !public1 || !public2 || !private1 || !private2 || | 
| 339 | 0 |         !derivedSecret) { | 
| 340 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 341 | 0 |         return SECFailure; | 
| 342 | 0 |     } | 
| 343 | 0 |     memset(derivedSecret, 0, sizeof *derivedSecret); | 
| 344 | 0 |     MP_DIGITS(&p) = 0; | 
| 345 | 0 |     MP_DIGITS(&Y) = 0; | 
| 346 | 0 |     MP_DIGITS(&R) = 0; | 
| 347 | 0 |     MP_DIGITS(&r) = 0; | 
| 348 | 0 |     MP_DIGITS(&x) = 0; | 
| 349 | 0 |     MP_DIGITS(&t) = 0; | 
| 350 | 0 |     MP_DIGITS(&u) = 0; | 
| 351 | 0 |     MP_DIGITS(&w) = 0; | 
| 352 | 0 |     CHECK_MPI_OK(mp_init(&p)); | 
| 353 | 0 |     CHECK_MPI_OK(mp_init(&Y)); | 
| 354 | 0 |     CHECK_MPI_OK(mp_init(&R)); | 
| 355 | 0 |     CHECK_MPI_OK(mp_init(&r)); | 
| 356 | 0 |     CHECK_MPI_OK(mp_init(&x)); | 
| 357 | 0 |     CHECK_MPI_OK(mp_init(&t)); | 
| 358 | 0 |     CHECK_MPI_OK(mp_init(&u)); | 
| 359 | 0 |     CHECK_MPI_OK(mp_init(&w)); | 
| 360 | 0 |     SECITEM_TO_MPINT(*prime, &p); | 
| 361 | 0 |     SECITEM_TO_MPINT(*public1, &Y); | 
| 362 | 0 |     SECITEM_TO_MPINT(*public2, &R); | 
| 363 | 0 |     SECITEM_TO_MPINT(*private1, &r); | 
| 364 | 0 |     SECITEM_TO_MPINT(*private2, &x); | 
| 365 |  |     /* t = DH(Y, r, p) = Y ** r mod p */ | 
| 366 | 0 |     CHECK_MPI_OK(mp_exptmod(&Y, &r, &p, &t)); | 
| 367 |  |     /* u = DH(R, x, p) = R ** x mod p */ | 
| 368 | 0 |     CHECK_MPI_OK(mp_exptmod(&R, &x, &p, &u)); | 
| 369 |  |     /* w = (t + u) mod p */ | 
| 370 | 0 |     CHECK_MPI_OK(mp_addmod(&t, &u, &p, &w)); | 
| 371 |  |     /* allocate a buffer for the full derived secret */ | 
| 372 | 0 |     len = mp_unsigned_octet_size(&w); | 
| 373 | 0 |     secret = PORT_Alloc(len); | 
| 374 | 0 |     if (secret == NULL) { | 
| 375 | 0 |         err = MP_MEM; | 
| 376 | 0 |         goto cleanup; | 
| 377 | 0 |     } | 
| 378 |  |     /* grab the secret */ | 
| 379 | 0 |     err = mp_to_unsigned_octets(&w, secret, len); | 
| 380 | 0 |     if (err > 0) | 
| 381 | 0 |         err = MP_OKAY; | 
| 382 |  |     /* allocate output buffer */ | 
| 383 | 0 |     if (SECITEM_AllocItem(NULL, derivedSecret, KEA_DERIVED_SECRET_LEN) == NULL) { | 
| 384 | 0 |         err = MP_MEM; | 
| 385 | 0 |         goto cleanup; | 
| 386 | 0 |     } | 
| 387 | 0 |     memset(derivedSecret->data, 0, derivedSecret->len); | 
| 388 |  |     /* copy in the 128 lsb of the secret */ | 
| 389 | 0 |     if (len >= KEA_DERIVED_SECRET_LEN) { | 
| 390 | 0 |         memcpy(derivedSecret->data, secret + (len - KEA_DERIVED_SECRET_LEN), | 
| 391 | 0 |                KEA_DERIVED_SECRET_LEN); | 
| 392 | 0 |     } else { | 
| 393 | 0 |         offset = KEA_DERIVED_SECRET_LEN - len; | 
| 394 | 0 |         memcpy(derivedSecret->data + offset, secret, len); | 
| 395 | 0 |     } | 
| 396 | 0 | cleanup: | 
| 397 | 0 |     mp_clear(&p); | 
| 398 | 0 |     mp_clear(&Y); | 
| 399 | 0 |     mp_clear(&R); | 
| 400 | 0 |     mp_clear(&r); | 
| 401 | 0 |     mp_clear(&x); | 
| 402 | 0 |     mp_clear(&t); | 
| 403 | 0 |     mp_clear(&u); | 
| 404 | 0 |     mp_clear(&w); | 
| 405 | 0 |     if (secret) | 
| 406 | 0 |         PORT_ZFree(secret, len); | 
| 407 | 0 |     if (err) { | 
| 408 | 0 |         MP_TO_SEC_ERROR(err); | 
| 409 | 0 |         if (derivedSecret->data) | 
| 410 | 0 |             PORT_ZFree(derivedSecret->data, derivedSecret->len); | 
| 411 | 0 |         return SECFailure; | 
| 412 | 0 |     } | 
| 413 | 0 |     return SECSuccess; | 
| 414 | 0 | } | 
| 415 |  |  | 
| 416 |  | /* Test counts based on the fact the prime and subprime | 
| 417 |  |  * were given to us */ | 
| 418 |  | static int | 
| 419 |  | dh_prime_testcount(int prime_length) | 
| 420 | 0 | { | 
| 421 | 0 |     if (prime_length < 1024) { | 
| 422 | 0 |         return 50; | 
| 423 | 0 |     } else if (prime_length < 2048) { | 
| 424 | 0 |         return 40; | 
| 425 | 0 |     } else if (prime_length < 3072) { | 
| 426 | 0 |         return 56; | 
| 427 | 0 |     } | 
| 428 | 0 |     return 64; | 
| 429 | 0 | } | 
| 430 |  |  | 
| 431 |  | PRBool | 
| 432 |  | KEA_PrimeCheck(SECItem *prime) | 
| 433 | 0 | { | 
| 434 | 0 |     mp_int p; | 
| 435 | 0 |     mp_err err = 0; | 
| 436 | 0 |     MP_DIGITS(&p) = 0; | 
| 437 | 0 |     CHECK_MPI_OK(mp_init(&p)); | 
| 438 | 0 |     SECITEM_TO_MPINT(*prime, &p); | 
| 439 | 0 |     CHECK_MPI_OK(mpp_pprime_secure(&p, dh_prime_testcount(prime->len))); | 
| 440 | 0 | cleanup: | 
| 441 | 0 |     mp_clear(&p); | 
| 442 | 0 |     return err ? PR_FALSE : PR_TRUE; | 
| 443 | 0 | } | 
| 444 |  |  | 
| 445 |  | PRBool | 
| 446 |  | KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime) | 
| 447 | 0 | { | 
| 448 | 0 |     mp_int p, q, y, r; | 
| 449 | 0 |     mp_err err; | 
| 450 | 0 |     int cmp = 1; /* default is false */ | 
| 451 | 0 |     if (!Y || !prime || !subPrime) { | 
| 452 | 0 |         PORT_SetError(SEC_ERROR_INVALID_ARGS); | 
| 453 | 0 |         return SECFailure; | 
| 454 | 0 |     } | 
| 455 | 0 |     MP_DIGITS(&p) = 0; | 
| 456 | 0 |     MP_DIGITS(&q) = 0; | 
| 457 | 0 |     MP_DIGITS(&y) = 0; | 
| 458 | 0 |     MP_DIGITS(&r) = 0; | 
| 459 | 0 |     CHECK_MPI_OK(mp_init(&p)); | 
| 460 | 0 |     CHECK_MPI_OK(mp_init(&q)); | 
| 461 | 0 |     CHECK_MPI_OK(mp_init(&y)); | 
| 462 | 0 |     CHECK_MPI_OK(mp_init(&r)); | 
| 463 | 0 |     SECITEM_TO_MPINT(*prime, &p); | 
| 464 | 0 |     SECITEM_TO_MPINT(*subPrime, &q); | 
| 465 | 0 |     SECITEM_TO_MPINT(*Y, &y); | 
| 466 |  |     /* compute r = y**q mod p */ | 
| 467 | 0 |     CHECK_MPI_OK(mp_exptmod(&y, &q, &p, &r)); | 
| 468 |  |     /* compare to 1 */ | 
| 469 | 0 |     cmp = mp_cmp_d(&r, 1); | 
| 470 | 0 | cleanup: | 
| 471 | 0 |     mp_clear(&p); | 
| 472 | 0 |     mp_clear(&q); | 
| 473 | 0 |     mp_clear(&y); | 
| 474 | 0 |     mp_clear(&r); | 
| 475 | 0 |     if (err) { | 
| 476 | 0 |         MP_TO_SEC_ERROR(err); | 
| 477 | 0 |         return PR_FALSE; | 
| 478 | 0 |     } | 
| 479 | 0 |     return (cmp == 0) ? PR_TRUE : PR_FALSE; | 
| 480 | 0 | } |