/src/nss/lib/softoken/sftkhmac.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | #include "seccomon.h" |
6 | | #include "secerr.h" |
7 | | #include "blapi.h" |
8 | | #include "pkcs11i.h" |
9 | | #include "softoken.h" |
10 | | #include "hmacct.h" |
11 | | |
12 | | /* Wrappers to avoid undefined behavior calling functions through a pointer of incorrect type. */ |
13 | | static void |
14 | | SFTKMAC_CMAC_Destroy(void *ctx, PRBool freeit) |
15 | 0 | { |
16 | 0 | CMACContext *cctx = ctx; |
17 | 0 | CMAC_Destroy(cctx, freeit); |
18 | 0 | } |
19 | | |
20 | | static void |
21 | | SFTKMAC_HMAC_Destroy(void *ctx, PRBool freeit) |
22 | 0 | { |
23 | 0 | HMACContext *hctx = ctx; |
24 | 0 | HMAC_Destroy(hctx, freeit); |
25 | 0 | } |
26 | | |
27 | | /* sftk_HMACMechanismToHash converts a PKCS#11 MAC mechanism into a freebl hash |
28 | | * type. */ |
29 | | HASH_HashType |
30 | | sftk_HMACMechanismToHash(CK_MECHANISM_TYPE mech) |
31 | 0 | { |
32 | 0 | switch (mech) { |
33 | 0 | case CKM_MD2_HMAC: |
34 | 0 | return HASH_AlgMD2; |
35 | 0 | case CKM_MD5_HMAC: |
36 | 0 | case CKM_SSL3_MD5_MAC: |
37 | 0 | return HASH_AlgMD5; |
38 | 0 | case CKM_SHA_1_HMAC: |
39 | 0 | case CKM_SSL3_SHA1_MAC: |
40 | 0 | return HASH_AlgSHA1; |
41 | 0 | case CKM_SHA224_HMAC: |
42 | 0 | return HASH_AlgSHA224; |
43 | 0 | case CKM_SHA256_HMAC: |
44 | 0 | return HASH_AlgSHA256; |
45 | 0 | case CKM_SHA384_HMAC: |
46 | 0 | return HASH_AlgSHA384; |
47 | 0 | case CKM_SHA512_HMAC: |
48 | 0 | return HASH_AlgSHA512; |
49 | 0 | case CKM_SHA3_224_HMAC: |
50 | 0 | return HASH_AlgSHA3_224; |
51 | 0 | case CKM_SHA3_256_HMAC: |
52 | 0 | return HASH_AlgSHA3_256; |
53 | 0 | case CKM_SHA3_384_HMAC: |
54 | 0 | return HASH_AlgSHA3_384; |
55 | 0 | case CKM_SHA3_512_HMAC: |
56 | 0 | return HASH_AlgSHA3_512; |
57 | 0 | } |
58 | 0 | return HASH_AlgNULL; |
59 | 0 | } |
60 | | |
61 | | static sftk_MACConstantTimeCtx * |
62 | | SetupMAC(CK_MECHANISM_PTR mech, SFTKObject *key) |
63 | 0 | { |
64 | 0 | CK_NSS_MAC_CONSTANT_TIME_PARAMS *params = |
65 | 0 | (CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter; |
66 | 0 | sftk_MACConstantTimeCtx *ctx; |
67 | 0 | HASH_HashType alg; |
68 | 0 | SFTKAttribute *keyval; |
69 | 0 | unsigned char secret[sizeof(ctx->secret)]; |
70 | 0 | unsigned int secretLength; |
71 | |
|
72 | 0 | if (mech->ulParameterLen != sizeof(CK_NSS_MAC_CONSTANT_TIME_PARAMS)) { |
73 | 0 | return NULL; |
74 | 0 | } |
75 | | |
76 | 0 | alg = sftk_HMACMechanismToHash(params->macAlg); |
77 | 0 | if (alg == HASH_AlgNULL) { |
78 | 0 | return NULL; |
79 | 0 | } |
80 | | |
81 | 0 | keyval = sftk_FindAttribute(key, CKA_VALUE); |
82 | 0 | if (keyval == NULL) { |
83 | 0 | return NULL; |
84 | 0 | } |
85 | 0 | secretLength = keyval->attrib.ulValueLen; |
86 | 0 | if (secretLength > sizeof(secret)) { |
87 | 0 | sftk_FreeAttribute(keyval); |
88 | 0 | return NULL; |
89 | 0 | } |
90 | 0 | memcpy(secret, keyval->attrib.pValue, secretLength); |
91 | 0 | sftk_FreeAttribute(keyval); |
92 | |
|
93 | 0 | ctx = PORT_Alloc(sizeof(sftk_MACConstantTimeCtx)); |
94 | 0 | if (!ctx) { |
95 | 0 | PORT_Memset(secret, 0, secretLength); |
96 | 0 | return NULL; |
97 | 0 | } |
98 | | |
99 | 0 | memcpy(ctx->secret, secret, secretLength); |
100 | 0 | ctx->secretLength = secretLength; |
101 | 0 | ctx->hash = HASH_GetRawHashObject(alg); |
102 | 0 | ctx->totalLength = params->ulBodyTotalLen; |
103 | 0 | PORT_Memset(secret, 0, secretLength); |
104 | |
|
105 | 0 | return ctx; |
106 | 0 | } |
107 | | |
108 | | sftk_MACConstantTimeCtx * |
109 | | sftk_HMACConstantTime_New(CK_MECHANISM_PTR mech, SFTKObject *key) |
110 | 0 | { |
111 | 0 | CK_NSS_MAC_CONSTANT_TIME_PARAMS *params = |
112 | 0 | (CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter; |
113 | 0 | sftk_MACConstantTimeCtx *ctx; |
114 | |
|
115 | 0 | if (params->ulHeaderLen > sizeof(ctx->header)) { |
116 | 0 | return NULL; |
117 | 0 | } |
118 | 0 | ctx = SetupMAC(mech, key); |
119 | 0 | if (!ctx) { |
120 | 0 | return NULL; |
121 | 0 | } |
122 | | |
123 | 0 | ctx->headerLength = params->ulHeaderLen; |
124 | 0 | memcpy(ctx->header, params->pHeader, params->ulHeaderLen); |
125 | 0 | return ctx; |
126 | 0 | } |
127 | | |
128 | | sftk_MACConstantTimeCtx * |
129 | | sftk_SSLv3MACConstantTime_New(CK_MECHANISM_PTR mech, SFTKObject *key) |
130 | 0 | { |
131 | 0 | CK_NSS_MAC_CONSTANT_TIME_PARAMS *params = |
132 | 0 | (CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter; |
133 | 0 | unsigned int padLength = 40, j; |
134 | 0 | sftk_MACConstantTimeCtx *ctx; |
135 | |
|
136 | 0 | if (params->macAlg != CKM_SSL3_MD5_MAC && |
137 | 0 | params->macAlg != CKM_SSL3_SHA1_MAC) { |
138 | 0 | return NULL; |
139 | 0 | } |
140 | 0 | ctx = SetupMAC(mech, key); |
141 | 0 | if (!ctx) { |
142 | 0 | return NULL; |
143 | 0 | } |
144 | | |
145 | 0 | if (params->macAlg == CKM_SSL3_MD5_MAC) { |
146 | 0 | padLength = 48; |
147 | 0 | } |
148 | |
|
149 | 0 | ctx->headerLength = |
150 | 0 | ctx->secretLength + |
151 | 0 | padLength + |
152 | 0 | params->ulHeaderLen; |
153 | |
|
154 | 0 | if (ctx->headerLength > sizeof(ctx->header)) { |
155 | 0 | goto loser; |
156 | 0 | } |
157 | | |
158 | 0 | j = 0; |
159 | 0 | memcpy(&ctx->header[j], ctx->secret, ctx->secretLength); |
160 | 0 | j += ctx->secretLength; |
161 | 0 | memset(&ctx->header[j], 0x36, padLength); |
162 | 0 | j += padLength; |
163 | 0 | memcpy(&ctx->header[j], params->pHeader, params->ulHeaderLen); |
164 | |
|
165 | 0 | return ctx; |
166 | | |
167 | 0 | loser: |
168 | 0 | PORT_Free(ctx); |
169 | 0 | return NULL; |
170 | 0 | } |
171 | | |
172 | | void |
173 | | sftk_HMACConstantTime_Update(void *pctx, const unsigned char *data, unsigned int len) |
174 | 0 | { |
175 | 0 | sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx; |
176 | 0 | PORT_CheckSuccess(HMAC_ConstantTime( |
177 | 0 | ctx->mac, NULL, sizeof(ctx->mac), |
178 | 0 | ctx->hash, |
179 | 0 | ctx->secret, ctx->secretLength, |
180 | 0 | ctx->header, ctx->headerLength, |
181 | 0 | data, len, |
182 | 0 | ctx->totalLength)); |
183 | 0 | } |
184 | | |
185 | | void |
186 | | sftk_SSLv3MACConstantTime_Update(void *pctx, const unsigned char *data, unsigned int len) |
187 | 0 | { |
188 | 0 | sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx; |
189 | 0 | PORT_CheckSuccess(SSLv3_MAC_ConstantTime( |
190 | 0 | ctx->mac, NULL, sizeof(ctx->mac), |
191 | 0 | ctx->hash, |
192 | 0 | ctx->secret, ctx->secretLength, |
193 | 0 | ctx->header, ctx->headerLength, |
194 | 0 | data, len, |
195 | 0 | ctx->totalLength)); |
196 | 0 | } |
197 | | |
198 | | void |
199 | | sftk_MACConstantTime_EndHash(void *pctx, unsigned char *out, unsigned int *outLength, |
200 | | unsigned int maxLength) |
201 | 0 | { |
202 | 0 | const sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx; |
203 | 0 | unsigned int toCopy = ctx->hash->length; |
204 | 0 | if (toCopy > maxLength) { |
205 | 0 | toCopy = maxLength; |
206 | 0 | } |
207 | 0 | memcpy(out, ctx->mac, toCopy); |
208 | 0 | if (outLength) { |
209 | 0 | *outLength = toCopy; |
210 | 0 | } |
211 | 0 | } |
212 | | |
213 | | void |
214 | | sftk_MACConstantTime_DestroyContext(void *pctx, PRBool free) |
215 | 0 | { |
216 | 0 | PORT_ZFree(pctx, sizeof(sftk_MACConstantTimeCtx)); |
217 | 0 | } |
218 | | |
219 | | CK_RV |
220 | | sftk_MAC_Create(CK_MECHANISM_TYPE mech, SFTKObject *key, sftk_MACCtx **ret_ctx) |
221 | 0 | { |
222 | 0 | CK_RV ret; |
223 | |
|
224 | 0 | if (ret_ctx == NULL || key == NULL) { |
225 | 0 | return CKR_HOST_MEMORY; |
226 | 0 | } |
227 | | |
228 | 0 | *ret_ctx = PORT_New(sftk_MACCtx); |
229 | 0 | if (*ret_ctx == NULL) { |
230 | 0 | return CKR_HOST_MEMORY; |
231 | 0 | } |
232 | | |
233 | 0 | ret = sftk_MAC_Init(*ret_ctx, mech, key); |
234 | 0 | if (ret != CKR_OK) { |
235 | 0 | sftk_MAC_DestroyContext(*ret_ctx, PR_TRUE); |
236 | 0 | } |
237 | |
|
238 | 0 | return ret; |
239 | 0 | } |
240 | | |
241 | | CK_RV |
242 | | sftk_MAC_Init(sftk_MACCtx *ctx, CK_MECHANISM_TYPE mech, SFTKObject *key) |
243 | 0 | { |
244 | 0 | SFTKAttribute *keyval = NULL; |
245 | 0 | PRBool isFIPS = sftk_isFIPS(key->slot->slotID); |
246 | 0 | CK_RV ret = CKR_OK; |
247 | | |
248 | | /* Find the actual value of the key. */ |
249 | 0 | keyval = sftk_FindAttribute(key, CKA_VALUE); |
250 | 0 | if (keyval == NULL) { |
251 | 0 | ret = CKR_KEY_SIZE_RANGE; |
252 | 0 | goto done; |
253 | 0 | } |
254 | | |
255 | 0 | ret = sftk_MAC_InitRaw(ctx, mech, |
256 | 0 | (const unsigned char *)keyval->attrib.pValue, |
257 | 0 | keyval->attrib.ulValueLen, isFIPS); |
258 | |
|
259 | 0 | done: |
260 | 0 | if (keyval) { |
261 | 0 | sftk_FreeAttribute(keyval); |
262 | 0 | } |
263 | 0 | return ret; |
264 | 0 | } |
265 | | |
266 | | CK_RV |
267 | | sftk_MAC_InitRaw(sftk_MACCtx *ctx, CK_MECHANISM_TYPE mech, const unsigned char *key, unsigned int key_len, PRBool isFIPS) |
268 | 0 | { |
269 | 0 | const SECHashObject *hashObj = NULL; |
270 | 0 | CK_RV ret = CKR_OK; |
271 | |
|
272 | 0 | if (ctx == NULL) { |
273 | 0 | return CKR_HOST_MEMORY; |
274 | 0 | } |
275 | | |
276 | | /* Clear the context before use. */ |
277 | 0 | PORT_Memset(ctx, 0, sizeof(*ctx)); |
278 | | |
279 | | /* Save the mech. */ |
280 | 0 | ctx->mech = mech; |
281 | | |
282 | | /* Initialize the correct MAC context. */ |
283 | 0 | switch (mech) { |
284 | 0 | case CKM_MD2_HMAC: |
285 | 0 | case CKM_MD5_HMAC: |
286 | 0 | case CKM_SHA_1_HMAC: |
287 | 0 | case CKM_SHA224_HMAC: |
288 | 0 | case CKM_SHA256_HMAC: |
289 | 0 | case CKM_SHA384_HMAC: |
290 | 0 | case CKM_SHA512_HMAC: |
291 | 0 | case CKM_SHA3_224_HMAC: |
292 | 0 | case CKM_SHA3_256_HMAC: |
293 | 0 | case CKM_SHA3_384_HMAC: |
294 | 0 | case CKM_SHA3_512_HMAC: |
295 | 0 | hashObj = HASH_GetRawHashObject(sftk_HMACMechanismToHash(mech)); |
296 | | |
297 | | /* Because we condition above only on hashes we know to be valid, |
298 | | * hashObj should never be NULL. This assert is only useful when |
299 | | * adding a new hash function (for which only partial support has |
300 | | * been added); thus there is no need to turn it into an if and |
301 | | * avoid the NULL dereference on the following line. */ |
302 | 0 | PR_ASSERT(hashObj != NULL); |
303 | 0 | ctx->mac_size = hashObj->length; |
304 | |
|
305 | 0 | goto hmac; |
306 | 0 | case CKM_AES_CMAC: |
307 | 0 | ctx->mac.cmac = CMAC_Create(CMAC_AES, key, key_len); |
308 | 0 | ctx->destroy_func = SFTKMAC_CMAC_Destroy; |
309 | | |
310 | | /* Copy the behavior of sftk_doCMACInit here. */ |
311 | 0 | if (ctx->mac.cmac == NULL) { |
312 | 0 | if (PORT_GetError() == SEC_ERROR_INVALID_ARGS) { |
313 | 0 | ret = CKR_KEY_SIZE_RANGE; |
314 | 0 | goto done; |
315 | 0 | } |
316 | | |
317 | 0 | ret = CKR_HOST_MEMORY; |
318 | 0 | goto done; |
319 | 0 | } |
320 | | |
321 | 0 | ctx->mac_size = AES_BLOCK_SIZE; |
322 | |
|
323 | 0 | goto done; |
324 | 0 | default: |
325 | 0 | ret = CKR_MECHANISM_PARAM_INVALID; |
326 | 0 | goto done; |
327 | 0 | } |
328 | | |
329 | 0 | hmac: |
330 | 0 | ctx->mac.hmac = HMAC_Create(hashObj, key, key_len, isFIPS); |
331 | 0 | ctx->destroy_func = SFTKMAC_HMAC_Destroy; |
332 | | |
333 | | /* Copy the behavior of sftk_doHMACInit here. */ |
334 | 0 | if (ctx->mac.hmac == NULL) { |
335 | 0 | if (PORT_GetError() == SEC_ERROR_INVALID_ARGS) { |
336 | 0 | ret = CKR_KEY_SIZE_RANGE; |
337 | 0 | goto done; |
338 | 0 | } |
339 | 0 | ret = CKR_HOST_MEMORY; |
340 | 0 | goto done; |
341 | 0 | } |
342 | | |
343 | | /* Semantics: HMAC and CMAC should behave the same. Begin HMAC now. */ |
344 | 0 | HMAC_Begin(ctx->mac.hmac); |
345 | |
|
346 | 0 | done: |
347 | | /* Handle a failure: ctx->mac.raw should be NULL, but make sure |
348 | | * destroy_func isn't set. */ |
349 | 0 | if (ret != CKR_OK) { |
350 | 0 | ctx->destroy_func = NULL; |
351 | 0 | } |
352 | |
|
353 | 0 | return ret; |
354 | 0 | } |
355 | | |
356 | | CK_RV |
357 | | sftk_MAC_Reset(sftk_MACCtx *ctx) |
358 | 0 | { |
359 | | /* Useful for resetting the state of MAC prior to calling update again |
360 | | * |
361 | | * This lets the caller keep a single MAC instance and re-use it as long |
362 | | * as the key stays the same. */ |
363 | 0 | switch (ctx->mech) { |
364 | 0 | case CKM_MD2_HMAC: |
365 | 0 | case CKM_MD5_HMAC: |
366 | 0 | case CKM_SHA_1_HMAC: |
367 | 0 | case CKM_SHA224_HMAC: |
368 | 0 | case CKM_SHA256_HMAC: |
369 | 0 | case CKM_SHA384_HMAC: |
370 | 0 | case CKM_SHA512_HMAC: |
371 | 0 | case CKM_SHA3_224_HMAC: |
372 | 0 | case CKM_SHA3_256_HMAC: |
373 | 0 | case CKM_SHA3_384_HMAC: |
374 | 0 | case CKM_SHA3_512_HMAC: |
375 | 0 | HMAC_Begin(ctx->mac.hmac); |
376 | 0 | break; |
377 | 0 | case CKM_AES_CMAC: |
378 | 0 | if (CMAC_Begin(ctx->mac.cmac) != SECSuccess) { |
379 | 0 | return CKR_FUNCTION_FAILED; |
380 | 0 | } |
381 | 0 | break; |
382 | 0 | default: |
383 | | /* This shouldn't happen -- asserting indicates partial support |
384 | | * for a new MAC type. */ |
385 | 0 | PR_ASSERT(PR_FALSE); |
386 | 0 | return CKR_FUNCTION_FAILED; |
387 | 0 | } |
388 | | |
389 | 0 | return CKR_OK; |
390 | 0 | } |
391 | | |
392 | | CK_RV |
393 | | sftk_MAC_Update(sftk_MACCtx *ctx, const CK_BYTE *data, unsigned int data_len) |
394 | 0 | { |
395 | 0 | switch (ctx->mech) { |
396 | 0 | case CKM_MD2_HMAC: |
397 | 0 | case CKM_MD5_HMAC: |
398 | 0 | case CKM_SHA_1_HMAC: |
399 | 0 | case CKM_SHA224_HMAC: |
400 | 0 | case CKM_SHA256_HMAC: |
401 | 0 | case CKM_SHA384_HMAC: |
402 | 0 | case CKM_SHA512_HMAC: |
403 | 0 | case CKM_SHA3_224_HMAC: |
404 | 0 | case CKM_SHA3_256_HMAC: |
405 | 0 | case CKM_SHA3_384_HMAC: |
406 | 0 | case CKM_SHA3_512_HMAC: |
407 | | /* HMAC doesn't indicate failure in the return code. */ |
408 | 0 | HMAC_Update(ctx->mac.hmac, data, data_len); |
409 | 0 | break; |
410 | 0 | case CKM_AES_CMAC: |
411 | | /* CMAC indicates failure in the return code, however this is |
412 | | * unlikely to occur. */ |
413 | 0 | if (CMAC_Update(ctx->mac.cmac, data, data_len) != SECSuccess) { |
414 | 0 | return CKR_FUNCTION_FAILED; |
415 | 0 | } |
416 | 0 | break; |
417 | 0 | default: |
418 | | /* This shouldn't happen -- asserting indicates partial support |
419 | | * for a new MAC type. */ |
420 | 0 | PR_ASSERT(PR_FALSE); |
421 | 0 | return CKR_FUNCTION_FAILED; |
422 | 0 | } |
423 | 0 | return CKR_OK; |
424 | 0 | } |
425 | | |
426 | | CK_RV |
427 | | sftk_MAC_End(sftk_MACCtx *ctx, CK_BYTE_PTR result, unsigned int *result_len, unsigned int max_result_len) |
428 | 0 | { |
429 | 0 | unsigned int actual_result_len; |
430 | |
|
431 | 0 | switch (ctx->mech) { |
432 | 0 | case CKM_MD2_HMAC: |
433 | 0 | case CKM_MD5_HMAC: |
434 | 0 | case CKM_SHA_1_HMAC: |
435 | 0 | case CKM_SHA224_HMAC: |
436 | 0 | case CKM_SHA256_HMAC: |
437 | 0 | case CKM_SHA384_HMAC: |
438 | 0 | case CKM_SHA512_HMAC: |
439 | 0 | case CKM_SHA3_224_HMAC: |
440 | 0 | case CKM_SHA3_256_HMAC: |
441 | 0 | case CKM_SHA3_384_HMAC: |
442 | 0 | case CKM_SHA3_512_HMAC: |
443 | | /* HMAC doesn't indicate failure in the return code. Additionally, |
444 | | * unlike CMAC, it doesn't support partial results. This means that we |
445 | | * need to allocate a buffer if max_result_len < ctx->mac_size. */ |
446 | 0 | if (max_result_len >= ctx->mac_size) { |
447 | | /* Split this into two calls to avoid an unnecessary stack |
448 | | * allocation and memcpy when possible. */ |
449 | 0 | HMAC_Finish(ctx->mac.hmac, result, &actual_result_len, max_result_len); |
450 | 0 | } else { |
451 | 0 | uint8_t tmp_buffer[SFTK_MAX_MAC_LENGTH]; |
452 | | |
453 | | /* Assumption: buffer is large enough to hold this HMAC's |
454 | | * output. */ |
455 | 0 | PR_ASSERT(SFTK_MAX_MAC_LENGTH >= ctx->mac_size); |
456 | |
|
457 | 0 | HMAC_Finish(ctx->mac.hmac, tmp_buffer, &actual_result_len, SFTK_MAX_MAC_LENGTH); |
458 | |
|
459 | 0 | if (actual_result_len > max_result_len) { |
460 | | /* This should always be true since: |
461 | | * |
462 | | * (SFTK_MAX_MAC_LENGTH >= ctx->mac_size = |
463 | | * actual_result_len) > max_result_len, |
464 | | * |
465 | | * but guard this truncation just in case. */ |
466 | 0 | actual_result_len = max_result_len; |
467 | 0 | } |
468 | |
|
469 | 0 | PORT_Memcpy(result, tmp_buffer, actual_result_len); |
470 | 0 | } |
471 | 0 | break; |
472 | 0 | case CKM_AES_CMAC: |
473 | | /* CMAC indicates failure in the return code, however this is |
474 | | * unlikely to occur. */ |
475 | 0 | if (CMAC_Finish(ctx->mac.cmac, result, &actual_result_len, max_result_len) != SECSuccess) { |
476 | 0 | return CKR_FUNCTION_FAILED; |
477 | 0 | } |
478 | 0 | break; |
479 | 0 | default: |
480 | | /* This shouldn't happen -- asserting indicates partial support |
481 | | * for a new MAC type. */ |
482 | 0 | PR_ASSERT(PR_FALSE); |
483 | 0 | return CKR_FUNCTION_FAILED; |
484 | 0 | } |
485 | | |
486 | 0 | if (result_len) { |
487 | | /* When result length is passed, inform the caller of its value. */ |
488 | 0 | *result_len = actual_result_len; |
489 | 0 | } else if (max_result_len == ctx->mac_size) { |
490 | | /* Validate that the amount requested was what was actually given; the |
491 | | * caller assumes that what they passed was the output size of the |
492 | | * underlying MAC and that they got all the bytes the asked for. */ |
493 | 0 | PR_ASSERT(actual_result_len == max_result_len); |
494 | 0 | } |
495 | |
|
496 | 0 | return CKR_OK; |
497 | 0 | } |
498 | | |
499 | | void |
500 | | sftk_MAC_DestroyContext(sftk_MACCtx *ctx, PRBool free_it) |
501 | 0 | { |
502 | 0 | if (ctx == NULL) { |
503 | 0 | return; |
504 | 0 | } |
505 | | |
506 | 0 | if (ctx->mac.raw != NULL && ctx->destroy_func != NULL) { |
507 | 0 | ctx->destroy_func(ctx->mac.raw, PR_TRUE); |
508 | 0 | } |
509 | | |
510 | | /* Clean up the struct so we don't double free accidentally. */ |
511 | 0 | PORT_Memset(ctx, 0, sizeof(sftk_MACCtx)); |
512 | |
|
513 | 0 | if (free_it == PR_TRUE) { |
514 | 0 | PORT_Free(ctx); |
515 | 0 | } |
516 | 0 | } |