/src/nspr/pr/src/misc/prdtoa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | | |
6 | | /* |
7 | | * This file is based on the third-party code dtoa.c. We minimize our |
8 | | * modifications to third-party code to make it easy to merge new versions. |
9 | | * The author of dtoa.c was not willing to add the parentheses suggested by |
10 | | * GCC, so we suppress these warnings. |
11 | | */ |
12 | | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) |
13 | | # pragma GCC diagnostic ignored "-Wparentheses" |
14 | | #endif |
15 | | |
16 | | #include "primpl.h" |
17 | | #include "prbit.h" |
18 | | |
19 | | #define MULTIPLE_THREADS |
20 | 0 | #define ACQUIRE_DTOA_LOCK(n) PR_Lock(dtoa_lock[n]) |
21 | 0 | #define FREE_DTOA_LOCK(n) PR_Unlock(dtoa_lock[n]) |
22 | | |
23 | | static PRLock* dtoa_lock[2]; |
24 | | |
25 | 0 | void _PR_InitDtoa(void) { |
26 | 0 | dtoa_lock[0] = PR_NewLock(); |
27 | 0 | dtoa_lock[1] = PR_NewLock(); |
28 | 0 | } |
29 | | |
30 | 0 | void _PR_CleanupDtoa(void) { |
31 | 0 | PR_DestroyLock(dtoa_lock[0]); |
32 | 0 | dtoa_lock[0] = NULL; |
33 | 0 | PR_DestroyLock(dtoa_lock[1]); |
34 | 0 | dtoa_lock[1] = NULL; |
35 | | |
36 | | /* FIXME: deal with freelist and p5s. */ |
37 | 0 | } |
38 | | |
39 | | #if !defined(__ARM_EABI__) && (defined(__arm) || defined(__arm__) || \ |
40 | | defined(__arm26__) || defined(__arm32__)) |
41 | | # define IEEE_ARM |
42 | | #elif defined(IS_LITTLE_ENDIAN) |
43 | | # define IEEE_8087 |
44 | | #else |
45 | | # define IEEE_MC68k |
46 | | #endif |
47 | | |
48 | 0 | #define Long PRInt32 |
49 | 0 | #define ULong PRUint32 |
50 | | #define NO_LONG_LONG |
51 | | |
52 | | #define No_Hex_NaN |
53 | | |
54 | | /**************************************************************** |
55 | | * |
56 | | * The author of this software is David M. Gay. |
57 | | * |
58 | | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
59 | | * |
60 | | * Permission to use, copy, modify, and distribute this software for any |
61 | | * purpose without fee is hereby granted, provided that this entire notice |
62 | | * is included in all copies of any software which is or includes a copy |
63 | | * or modification of this software and in all copies of the supporting |
64 | | * documentation for such software. |
65 | | * |
66 | | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
67 | | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
68 | | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
69 | | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
70 | | * |
71 | | ***************************************************************/ |
72 | | |
73 | | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
74 | | * with " at " changed at "@" and " dot " changed to "."). */ |
75 | | |
76 | | /* On a machine with IEEE extended-precision registers, it is |
77 | | * necessary to specify double-precision (53-bit) rounding precision |
78 | | * before invoking strtod or dtoa. If the machine uses (the equivalent |
79 | | * of) Intel 80x87 arithmetic, the call |
80 | | * _control87(PC_53, MCW_PC); |
81 | | * does this with many compilers. Whether this or another call is |
82 | | * appropriate depends on the compiler; for this to work, it may be |
83 | | * necessary to #include "float.h" or another system-dependent header |
84 | | * file. |
85 | | */ |
86 | | |
87 | | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
88 | | * |
89 | | * This strtod returns a nearest machine number to the input decimal |
90 | | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
91 | | * broken by the IEEE round-even rule. Otherwise ties are broken by |
92 | | * biased rounding (add half and chop). |
93 | | * |
94 | | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
95 | | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
96 | | * |
97 | | * Modifications: |
98 | | * |
99 | | * 1. We only require IEEE, IBM, or VAX double-precision |
100 | | * arithmetic (not IEEE double-extended). |
101 | | * 2. We get by with floating-point arithmetic in a case that |
102 | | * Clinger missed -- when we're computing d * 10^n |
103 | | * for a small integer d and the integer n is not too |
104 | | * much larger than 22 (the maximum integer k for which |
105 | | * we can represent 10^k exactly), we may be able to |
106 | | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
107 | | * 3. Rather than a bit-at-a-time adjustment of the binary |
108 | | * result in the hard case, we use floating-point |
109 | | * arithmetic to determine the adjustment to within |
110 | | * one bit; only in really hard cases do we need to |
111 | | * compute a second residual. |
112 | | * 4. Because of 3., we don't need a large table of powers of 10 |
113 | | * for ten-to-e (just some small tables, e.g. of 10^k |
114 | | * for 0 <= k <= 22). |
115 | | */ |
116 | | |
117 | | /* |
118 | | * #define IEEE_8087 for IEEE-arithmetic machines where the least |
119 | | * significant byte has the lowest address. |
120 | | * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
121 | | * significant byte has the lowest address. |
122 | | * #define IEEE_ARM for IEEE-arithmetic machines where the two words |
123 | | * in a double are stored in big endian order but the two shorts |
124 | | * in a word are still stored in little endian order. |
125 | | * #define Long int on machines with 32-bit ints and 64-bit longs. |
126 | | * #define IBM for IBM mainframe-style floating-point arithmetic. |
127 | | * #define VAX for VAX-style floating-point arithmetic (D_floating). |
128 | | * #define No_leftright to omit left-right logic in fast floating-point |
129 | | * computation of dtoa. |
130 | | * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
131 | | * and strtod and dtoa should round accordingly. |
132 | | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
133 | | * and Honor_FLT_ROUNDS is not #defined. |
134 | | * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
135 | | * that use extended-precision instructions to compute rounded |
136 | | * products and quotients) with IBM. |
137 | | * #define ROUND_BIASED for IEEE-format with biased rounding. |
138 | | * #define Inaccurate_Divide for IEEE-format with correctly rounded |
139 | | * products but inaccurate quotients, e.g., for Intel i860. |
140 | | * #define NO_LONG_LONG on machines that do not have a "long long" |
141 | | * integer type (of >= 64 bits). On such machines, you can |
142 | | * #define Just_16 to store 16 bits per 32-bit Long when doing |
143 | | * high-precision integer arithmetic. Whether this speeds things |
144 | | * up or slows things down depends on the machine and the number |
145 | | * being converted. If long long is available and the name is |
146 | | * something other than "long long", #define Llong to be the name, |
147 | | * and if "unsigned Llong" does not work as an unsigned version of |
148 | | * Llong, #define #ULLong to be the corresponding unsigned type. |
149 | | * #define KR_headers for old-style C function headers. |
150 | | * #define Bad_float_h if your system lacks a float.h or if it does not |
151 | | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
152 | | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
153 | | * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
154 | | * if memory is available and otherwise does something you deem |
155 | | * appropriate. If MALLOC is undefined, malloc will be invoked |
156 | | * directly -- and assumed always to succeed. Similarly, if you |
157 | | * want something other than the system's free() to be called to |
158 | | * recycle memory acquired from MALLOC, #define FREE to be the |
159 | | * name of the alternate routine. (FREE or free is only called in |
160 | | * pathological cases, e.g., in a dtoa call after a dtoa return in |
161 | | * mode 3 with thousands of digits requested.) |
162 | | * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
163 | | * memory allocations from a private pool of memory when possible. |
164 | | * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
165 | | * unless #defined to be a different length. This default length |
166 | | * suffices to get rid of MALLOC calls except for unusual cases, |
167 | | * such as decimal-to-binary conversion of a very long string of |
168 | | * digits. The longest string dtoa can return is about 751 bytes |
169 | | * long. For conversions by strtod of strings of 800 digits and |
170 | | * all dtoa conversions in single-threaded executions with 8-byte |
171 | | * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte |
172 | | * pointers, PRIVATE_MEM >= 7112 appears adequate. |
173 | | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
174 | | * Infinity and NaN (case insensitively). On some systems (e.g., |
175 | | * some HP systems), it may be necessary to #define NAN_WORD0 |
176 | | * appropriately -- to the most significant word of a quiet NaN. |
177 | | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
178 | | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
179 | | * strtod also accepts (case insensitively) strings of the form |
180 | | * NaN(x), where x is a string of hexadecimal digits and spaces; |
181 | | * if there is only one string of hexadecimal digits, it is taken |
182 | | * for the 52 fraction bits of the resulting NaN; if there are two |
183 | | * or more strings of hex digits, the first is for the high 20 bits, |
184 | | * the second and subsequent for the low 32 bits, with intervening |
185 | | * white space ignored; but if this results in none of the 52 |
186 | | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
187 | | * and NAN_WORD1 are used instead. |
188 | | * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
189 | | * multiple threads. In this case, you must provide (or suitably |
190 | | * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
191 | | * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
192 | | * in pow5mult, ensures lazy evaluation of only one copy of high |
193 | | * powers of 5; omitting this lock would introduce a small |
194 | | * probability of wasting memory, but would otherwise be harmless.) |
195 | | * You must also invoke freedtoa(s) to free the value s returned by |
196 | | * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
197 | | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
198 | | * avoids underflows on inputs whose result does not underflow. |
199 | | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
200 | | * floating-point numbers and flushes underflows to zero rather |
201 | | * than implementing gradual underflow, then you must also #define |
202 | | * Sudden_Underflow. |
203 | | * #define USE_LOCALE to use the current locale's decimal_point value. |
204 | | * #define SET_INEXACT if IEEE arithmetic is being used and extra |
205 | | * computation should be done to set the inexact flag when the |
206 | | * result is inexact and avoid setting inexact when the result |
207 | | * is exact. In this case, dtoa.c must be compiled in |
208 | | * an environment, perhaps provided by #include "dtoa.c" in a |
209 | | * suitable wrapper, that defines two functions, |
210 | | * int get_inexact(void); |
211 | | * void clear_inexact(void); |
212 | | * such that get_inexact() returns a nonzero value if the |
213 | | * inexact bit is already set, and clear_inexact() sets the |
214 | | * inexact bit to 0. When SET_INEXACT is #defined, strtod |
215 | | * also does extra computations to set the underflow and overflow |
216 | | * flags when appropriate (i.e., when the result is tiny and |
217 | | * inexact or when it is a numeric value rounded to +-infinity). |
218 | | * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
219 | | * the result overflows to +-Infinity or underflows to 0. |
220 | | */ |
221 | | |
222 | | #ifndef Long |
223 | | # define Long long |
224 | | #endif |
225 | | #ifndef ULong |
226 | | typedef unsigned Long ULong; |
227 | | #endif |
228 | | |
229 | | #ifdef DEBUG |
230 | | # include "stdio.h" |
231 | | # define Bug(x) \ |
232 | 0 | { \ |
233 | 0 | fprintf(stderr, "%s\n", x); \ |
234 | 0 | exit(1); \ |
235 | 0 | } |
236 | | #endif |
237 | | |
238 | | #include "stdlib.h" |
239 | | #include "string.h" |
240 | | |
241 | | #ifdef USE_LOCALE |
242 | | # include "locale.h" |
243 | | #endif |
244 | | |
245 | | #ifdef MALLOC |
246 | | # ifdef KR_headers |
247 | | extern char* MALLOC(); |
248 | | # else |
249 | | extern void* MALLOC(size_t); |
250 | | # endif |
251 | | #else |
252 | 0 | # define MALLOC malloc |
253 | | #endif |
254 | | |
255 | | #ifndef Omit_Private_Memory |
256 | | # ifndef PRIVATE_MEM |
257 | 0 | # define PRIVATE_MEM 2304 |
258 | | # endif |
259 | 0 | # define PRIVATE_mem ((PRIVATE_MEM + sizeof(double) - 1) / sizeof(double)) |
260 | | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
261 | | #endif |
262 | | |
263 | | #undef IEEE_Arith |
264 | | #undef Avoid_Underflow |
265 | | #ifdef IEEE_MC68k |
266 | | # define IEEE_Arith |
267 | | #endif |
268 | | #ifdef IEEE_8087 |
269 | | # define IEEE_Arith |
270 | | #endif |
271 | | #ifdef IEEE_ARM |
272 | | # define IEEE_Arith |
273 | | #endif |
274 | | |
275 | | #include "errno.h" |
276 | | |
277 | | #ifdef Bad_float_h |
278 | | |
279 | | # ifdef IEEE_Arith |
280 | | # define DBL_DIG 15 |
281 | | # define DBL_MAX_10_EXP 308 |
282 | | # define DBL_MAX_EXP 1024 |
283 | | # define FLT_RADIX 2 |
284 | | # endif /*IEEE_Arith*/ |
285 | | |
286 | | # ifdef IBM |
287 | | # define DBL_DIG 16 |
288 | | # define DBL_MAX_10_EXP 75 |
289 | | # define DBL_MAX_EXP 63 |
290 | | # define FLT_RADIX 16 |
291 | | # define DBL_MAX 7.2370055773322621e+75 |
292 | | # endif |
293 | | |
294 | | # ifdef VAX |
295 | | # define DBL_DIG 16 |
296 | | # define DBL_MAX_10_EXP 38 |
297 | | # define DBL_MAX_EXP 127 |
298 | | # define FLT_RADIX 2 |
299 | | # define DBL_MAX 1.7014118346046923e+38 |
300 | | # endif |
301 | | |
302 | | # ifndef LONG_MAX |
303 | | # define LONG_MAX 2147483647 |
304 | | # endif |
305 | | |
306 | | #else /* ifndef Bad_float_h */ |
307 | | # include "float.h" |
308 | | #endif /* Bad_float_h */ |
309 | | |
310 | | #ifndef __MATH_H__ |
311 | | # include "math.h" |
312 | | #endif |
313 | | |
314 | | #ifdef __cplusplus |
315 | | extern "C" { |
316 | | #endif |
317 | | |
318 | | #ifndef CONST |
319 | | # ifdef KR_headers |
320 | | # define CONST /* blank */ |
321 | | # else |
322 | 0 | # define CONST const |
323 | | # endif |
324 | | #endif |
325 | | |
326 | | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + \ |
327 | | defined(VAX) + defined(IBM) != \ |
328 | | 1 |
329 | | Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined. |
330 | | #endif |
331 | | |
332 | | typedef union { |
333 | | double d; |
334 | | ULong L[2]; |
335 | | } U; |
336 | | |
337 | 0 | #define dval(x) (x).d |
338 | | #ifdef IEEE_8087 |
339 | 0 | # define word0(x) (x).L[1] |
340 | 0 | # define word1(x) (x).L[0] |
341 | | #else |
342 | | # define word0(x) (x).L[0] |
343 | | # define word1(x) (x).L[1] |
344 | | #endif |
345 | | |
346 | | /* The following definition of Storeinc is appropriate for MIPS processors. |
347 | | * An alternative that might be better on some machines is |
348 | | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
349 | | */ |
350 | | #if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX) |
351 | | # define Storeinc(a, b, c) \ |
352 | 0 | (((unsigned short*)a)[1] = (unsigned short)b, \ |
353 | 0 | ((unsigned short*)a)[0] = (unsigned short)c, a++) |
354 | | #else |
355 | | # define Storeinc(a, b, c) \ |
356 | | (((unsigned short*)a)[0] = (unsigned short)b, \ |
357 | | ((unsigned short*)a)[1] = (unsigned short)c, a++) |
358 | | #endif |
359 | | |
360 | | /* #define P DBL_MANT_DIG */ |
361 | | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
362 | | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
363 | | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
364 | | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
365 | | |
366 | | #ifdef IEEE_Arith |
367 | 0 | # define Exp_shift 20 |
368 | 0 | # define Exp_shift1 20 |
369 | 0 | # define Exp_msk1 0x100000 |
370 | | # define Exp_msk11 0x100000 |
371 | 0 | # define Exp_mask 0x7ff00000 |
372 | 0 | # define P 53 |
373 | 0 | # define Bias 1023 |
374 | 0 | # define Emin (-1022) |
375 | 0 | # define Exp_1 0x3ff00000 |
376 | 0 | # define Exp_11 0x3ff00000 |
377 | 0 | # define Ebits 11 |
378 | 0 | # define Frac_mask 0xfffff |
379 | 0 | # define Frac_mask1 0xfffff |
380 | 0 | # define Ten_pmax 22 |
381 | 0 | # define Bletch 0x10 |
382 | 0 | # define Bndry_mask 0xfffff |
383 | 0 | # define Bndry_mask1 0xfffff |
384 | 0 | # define LSB 1 |
385 | 0 | # define Sign_bit 0x80000000 |
386 | 0 | # define Log2P 1 |
387 | | # define Tiny0 0 |
388 | 0 | # define Tiny1 1 |
389 | 0 | # define Quick_max 14 |
390 | 0 | # define Int_max 14 |
391 | | # ifndef NO_IEEE_Scale |
392 | | # define Avoid_Underflow |
393 | | # ifdef Flush_Denorm /* debugging option */ |
394 | | # undef Sudden_Underflow |
395 | | # endif |
396 | | # endif |
397 | | |
398 | | # ifndef Flt_Rounds |
399 | | # ifdef FLT_ROUNDS |
400 | 0 | # define Flt_Rounds FLT_ROUNDS |
401 | | # else |
402 | | # define Flt_Rounds 1 |
403 | | # endif |
404 | | # endif /*Flt_Rounds*/ |
405 | | |
406 | | # ifdef Honor_FLT_ROUNDS |
407 | | # define Rounding rounding |
408 | | # undef Check_FLT_ROUNDS |
409 | | # define Check_FLT_ROUNDS |
410 | | # else |
411 | | # define Rounding Flt_Rounds |
412 | | # endif |
413 | | |
414 | | #else /* ifndef IEEE_Arith */ |
415 | | # undef Check_FLT_ROUNDS |
416 | | # undef Honor_FLT_ROUNDS |
417 | | # undef SET_INEXACT |
418 | | # undef Sudden_Underflow |
419 | | # define Sudden_Underflow |
420 | | # ifdef IBM |
421 | | # undef Flt_Rounds |
422 | | # define Flt_Rounds 0 |
423 | | # define Exp_shift 24 |
424 | | # define Exp_shift1 24 |
425 | | # define Exp_msk1 0x1000000 |
426 | | # define Exp_msk11 0x1000000 |
427 | | # define Exp_mask 0x7f000000 |
428 | | # define P 14 |
429 | | # define Bias 65 |
430 | | # define Exp_1 0x41000000 |
431 | | # define Exp_11 0x41000000 |
432 | | # define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
433 | | # define Frac_mask 0xffffff |
434 | | # define Frac_mask1 0xffffff |
435 | | # define Bletch 4 |
436 | | # define Ten_pmax 22 |
437 | | # define Bndry_mask 0xefffff |
438 | | # define Bndry_mask1 0xffffff |
439 | | # define LSB 1 |
440 | | # define Sign_bit 0x80000000 |
441 | | # define Log2P 4 |
442 | | # define Tiny0 0x100000 |
443 | | # define Tiny1 0 |
444 | | # define Quick_max 14 |
445 | | # define Int_max 15 |
446 | | # else /* VAX */ |
447 | | # undef Flt_Rounds |
448 | | # define Flt_Rounds 1 |
449 | | # define Exp_shift 23 |
450 | | # define Exp_shift1 7 |
451 | | # define Exp_msk1 0x80 |
452 | | # define Exp_msk11 0x800000 |
453 | | # define Exp_mask 0x7f80 |
454 | | # define P 56 |
455 | | # define Bias 129 |
456 | | # define Exp_1 0x40800000 |
457 | | # define Exp_11 0x4080 |
458 | | # define Ebits 8 |
459 | | # define Frac_mask 0x7fffff |
460 | | # define Frac_mask1 0xffff007f |
461 | | # define Ten_pmax 24 |
462 | | # define Bletch 2 |
463 | | # define Bndry_mask 0xffff007f |
464 | | # define Bndry_mask1 0xffff007f |
465 | | # define LSB 0x10000 |
466 | | # define Sign_bit 0x8000 |
467 | | # define Log2P 1 |
468 | | # define Tiny0 0x80 |
469 | | # define Tiny1 0 |
470 | | # define Quick_max 15 |
471 | | # define Int_max 15 |
472 | | # endif /* IBM, VAX */ |
473 | | #endif /* IEEE_Arith */ |
474 | | |
475 | | #ifndef IEEE_Arith |
476 | | # define ROUND_BIASED |
477 | | #endif |
478 | | |
479 | | #ifdef RND_PRODQUOT |
480 | | # define rounded_product(a, b) a = rnd_prod(a, b) |
481 | | # define rounded_quotient(a, b) a = rnd_quot(a, b) |
482 | | # ifdef KR_headers |
483 | | extern double rnd_prod(), rnd_quot(); |
484 | | # else |
485 | | extern double rnd_prod(double, double), rnd_quot(double, double); |
486 | | # endif |
487 | | #else |
488 | 0 | # define rounded_product(a, b) a *= b |
489 | 0 | # define rounded_quotient(a, b) a /= b |
490 | | #endif |
491 | | |
492 | 0 | #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) |
493 | 0 | #define Big1 0xffffffff |
494 | | |
495 | | #ifndef Pack_32 |
496 | | # define Pack_32 |
497 | | #endif |
498 | | |
499 | | #ifdef KR_headers |
500 | | # define FFFFFFFF ((((unsigned long)0xffff) << 16) | (unsigned long)0xffff) |
501 | | #else |
502 | | # define FFFFFFFF 0xffffffffUL |
503 | | #endif |
504 | | |
505 | | #ifdef NO_LONG_LONG |
506 | | # undef ULLong |
507 | | # ifdef Just_16 |
508 | | # undef Pack_32 |
509 | | /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
510 | | * This makes some inner loops simpler and sometimes saves work |
511 | | * during multiplications, but it often seems to make things slightly |
512 | | * slower. Hence the default is now to store 32 bits per Long. |
513 | | */ |
514 | | # endif |
515 | | #else /* long long available */ |
516 | | # ifndef Llong |
517 | | # define Llong long long |
518 | | # endif |
519 | | # ifndef ULLong |
520 | | # define ULLong unsigned Llong |
521 | | # endif |
522 | | #endif /* NO_LONG_LONG */ |
523 | | |
524 | | #ifndef MULTIPLE_THREADS |
525 | | # define ACQUIRE_DTOA_LOCK(n) /*nothing*/ |
526 | | # define FREE_DTOA_LOCK(n) /*nothing*/ |
527 | | #endif |
528 | | |
529 | 0 | #define Kmax 7 |
530 | | |
531 | | struct Bigint { |
532 | | struct Bigint* next; |
533 | | int k, maxwds, sign, wds; |
534 | | ULong x[1]; |
535 | | }; |
536 | | |
537 | | typedef struct Bigint Bigint; |
538 | | |
539 | | static Bigint* freelist[Kmax + 1]; |
540 | | |
541 | | static Bigint* Balloc |
542 | | #ifdef KR_headers |
543 | | (k) int k; |
544 | | #else |
545 | | (int k) |
546 | | #endif |
547 | 0 | { |
548 | 0 | int x; |
549 | 0 | Bigint* rv; |
550 | 0 | #ifndef Omit_Private_Memory |
551 | 0 | unsigned int len; |
552 | 0 | #endif |
553 | |
|
554 | 0 | ACQUIRE_DTOA_LOCK(0); |
555 | | /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ |
556 | | /* but this case seems very unlikely. */ |
557 | 0 | if (k <= Kmax && (rv = freelist[k])) { |
558 | 0 | freelist[k] = rv->next; |
559 | 0 | } else { |
560 | 0 | x = 1 << k; |
561 | | #ifdef Omit_Private_Memory |
562 | | rv = (Bigint*)MALLOC(sizeof(Bigint) + (x - 1) * sizeof(ULong)); |
563 | | #else |
564 | 0 | len = (sizeof(Bigint) + (x - 1) * sizeof(ULong) + sizeof(double) - 1) / |
565 | 0 | sizeof(double); |
566 | 0 | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { |
567 | 0 | rv = (Bigint*)pmem_next; |
568 | 0 | pmem_next += len; |
569 | 0 | } else { |
570 | 0 | rv = (Bigint*)MALLOC(len * sizeof(double)); |
571 | 0 | } |
572 | 0 | #endif |
573 | 0 | rv->k = k; |
574 | 0 | rv->maxwds = x; |
575 | 0 | } |
576 | 0 | FREE_DTOA_LOCK(0); |
577 | 0 | rv->sign = rv->wds = 0; |
578 | 0 | return rv; |
579 | 0 | } |
580 | | |
581 | | static void Bfree |
582 | | #ifdef KR_headers |
583 | | (v) Bigint* v; |
584 | | #else |
585 | | (Bigint* v) |
586 | | #endif |
587 | 0 | { |
588 | 0 | if (v) { |
589 | 0 | if (v->k > Kmax) |
590 | | #ifdef FREE |
591 | | FREE((void*)v); |
592 | | #else |
593 | 0 | free((void*)v); |
594 | 0 | #endif |
595 | 0 | else { |
596 | 0 | ACQUIRE_DTOA_LOCK(0); |
597 | 0 | v->next = freelist[v->k]; |
598 | 0 | freelist[v->k] = v; |
599 | 0 | FREE_DTOA_LOCK(0); |
600 | 0 | } |
601 | 0 | } |
602 | 0 | } |
603 | | |
604 | | #define Bcopy(x, y) \ |
605 | 0 | memcpy((char*)&x->sign, (char*)&y->sign, \ |
606 | 0 | y->wds * sizeof(Long) + 2 * sizeof(int)) |
607 | | |
608 | | static Bigint* multadd |
609 | | #ifdef KR_headers |
610 | | (b, m, a) Bigint* b; |
611 | | int m, a; |
612 | | #else |
613 | | (Bigint* b, int m, int a) /* multiply by m and add a */ |
614 | | #endif |
615 | 0 | { |
616 | 0 | int i, wds; |
617 | | #ifdef ULLong |
618 | | ULong* x; |
619 | | ULLong carry, y; |
620 | | #else |
621 | 0 | ULong carry, *x, y; |
622 | 0 | # ifdef Pack_32 |
623 | 0 | ULong xi, z; |
624 | 0 | # endif |
625 | 0 | #endif |
626 | 0 | Bigint* b1; |
627 | |
|
628 | 0 | wds = b->wds; |
629 | 0 | x = b->x; |
630 | 0 | i = 0; |
631 | 0 | carry = a; |
632 | 0 | do { |
633 | | #ifdef ULLong |
634 | | y = *x * (ULLong)m + carry; |
635 | | carry = y >> 32; |
636 | | *x++ = y & FFFFFFFF; |
637 | | #else |
638 | 0 | # ifdef Pack_32 |
639 | 0 | xi = *x; |
640 | 0 | y = (xi & 0xffff) * m + carry; |
641 | 0 | z = (xi >> 16) * m + (y >> 16); |
642 | 0 | carry = z >> 16; |
643 | 0 | *x++ = (z << 16) + (y & 0xffff); |
644 | | # else |
645 | | y = *x * m + carry; |
646 | | carry = y >> 16; |
647 | | *x++ = y & 0xffff; |
648 | | # endif |
649 | 0 | #endif |
650 | 0 | } while (++i < wds); |
651 | 0 | if (carry) { |
652 | 0 | if (wds >= b->maxwds) { |
653 | 0 | b1 = Balloc(b->k + 1); |
654 | 0 | Bcopy(b1, b); |
655 | 0 | Bfree(b); |
656 | 0 | b = b1; |
657 | 0 | } |
658 | 0 | b->x[wds++] = carry; |
659 | 0 | b->wds = wds; |
660 | 0 | } |
661 | 0 | return b; |
662 | 0 | } |
663 | | |
664 | | static Bigint* s2b |
665 | | #ifdef KR_headers |
666 | | (s, nd0, nd, y9) CONST char* s; |
667 | | int nd0, nd; |
668 | | ULong y9; |
669 | | #else |
670 | | (CONST char* s, int nd0, int nd, ULong y9) |
671 | | #endif |
672 | 0 | { |
673 | 0 | Bigint* b; |
674 | 0 | int i, k; |
675 | 0 | Long x, y; |
676 | |
|
677 | 0 | x = (nd + 8) / 9; |
678 | 0 | for (k = 0, y = 1; x > y; y <<= 1, k++); |
679 | 0 | #ifdef Pack_32 |
680 | 0 | b = Balloc(k); |
681 | 0 | b->x[0] = y9; |
682 | 0 | b->wds = 1; |
683 | | #else |
684 | | b = Balloc(k + 1); |
685 | | b->x[0] = y9 & 0xffff; |
686 | | b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; |
687 | | #endif |
688 | |
|
689 | 0 | i = 9; |
690 | 0 | if (9 < nd0) { |
691 | 0 | s += 9; |
692 | 0 | do { |
693 | 0 | b = multadd(b, 10, *s++ - '0'); |
694 | 0 | } while (++i < nd0); |
695 | 0 | s++; |
696 | 0 | } else { |
697 | 0 | s += 10; |
698 | 0 | } |
699 | 0 | for (; i < nd; i++) { |
700 | 0 | b = multadd(b, 10, *s++ - '0'); |
701 | 0 | } |
702 | 0 | return b; |
703 | 0 | } |
704 | | |
705 | | static int hi0bits |
706 | | #ifdef KR_headers |
707 | | (x) register ULong x; |
708 | | #else |
709 | | (register ULong x) |
710 | | #endif |
711 | 0 | { |
712 | 0 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
713 | 0 | return ((!x) ? 32 : pr_bitscan_clz32(x)); |
714 | | #else |
715 | | register int k = 0; |
716 | | |
717 | | if (!(x & 0xffff0000)) { |
718 | | k = 16; |
719 | | x <<= 16; |
720 | | } |
721 | | if (!(x & 0xff000000)) { |
722 | | k += 8; |
723 | | x <<= 8; |
724 | | } |
725 | | if (!(x & 0xf0000000)) { |
726 | | k += 4; |
727 | | x <<= 4; |
728 | | } |
729 | | if (!(x & 0xc0000000)) { |
730 | | k += 2; |
731 | | x <<= 2; |
732 | | } |
733 | | if (!(x & 0x80000000)) { |
734 | | k++; |
735 | | if (!(x & 0x40000000)) { |
736 | | return 32; |
737 | | } |
738 | | } |
739 | | return k; |
740 | | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
741 | 0 | } |
742 | | |
743 | | static int lo0bits |
744 | | #ifdef KR_headers |
745 | | (y) ULong* y; |
746 | | #else |
747 | | (ULong* y) |
748 | | #endif |
749 | 0 | { |
750 | 0 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
751 | 0 | int k; |
752 | 0 | ULong x = *y; |
753 | |
|
754 | 0 | if (x > 1) { |
755 | 0 | *y = (x >> (k = pr_bitscan_ctz32(x))); |
756 | 0 | } else { |
757 | 0 | k = ((x ^ 1) << 5); |
758 | 0 | } |
759 | | #else |
760 | | register int k; |
761 | | register ULong x = *y; |
762 | | |
763 | | if (x & 7) { |
764 | | if (x & 1) { |
765 | | return 0; |
766 | | } |
767 | | if (x & 2) { |
768 | | *y = x >> 1; |
769 | | return 1; |
770 | | } |
771 | | *y = x >> 2; |
772 | | return 2; |
773 | | } |
774 | | k = 0; |
775 | | if (!(x & 0xffff)) { |
776 | | k = 16; |
777 | | x >>= 16; |
778 | | } |
779 | | if (!(x & 0xff)) { |
780 | | k += 8; |
781 | | x >>= 8; |
782 | | } |
783 | | if (!(x & 0xf)) { |
784 | | k += 4; |
785 | | x >>= 4; |
786 | | } |
787 | | if (!(x & 0x3)) { |
788 | | k += 2; |
789 | | x >>= 2; |
790 | | } |
791 | | if (!(x & 1)) { |
792 | | k++; |
793 | | x >>= 1; |
794 | | if (!x) { |
795 | | return 32; |
796 | | } |
797 | | } |
798 | | *y = x; |
799 | | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
800 | 0 | return k; |
801 | 0 | } |
802 | | |
803 | | static Bigint* i2b |
804 | | #ifdef KR_headers |
805 | | (i) int i; |
806 | | #else |
807 | | (int i) |
808 | | #endif |
809 | 0 | { |
810 | 0 | Bigint* b; |
811 | |
|
812 | 0 | b = Balloc(1); |
813 | 0 | b->x[0] = i; |
814 | 0 | b->wds = 1; |
815 | 0 | return b; |
816 | 0 | } |
817 | | |
818 | | static Bigint *mult |
819 | | #ifdef KR_headers |
820 | | (a, b) Bigint *a, |
821 | | *b; |
822 | | #else |
823 | | (Bigint* a, Bigint* b) |
824 | | #endif |
825 | 0 | { |
826 | 0 | Bigint* c; |
827 | 0 | int k, wa, wb, wc; |
828 | 0 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
829 | 0 | ULong y; |
830 | | #ifdef ULLong |
831 | | ULLong carry, z; |
832 | | #else |
833 | 0 | ULong carry, z; |
834 | 0 | # ifdef Pack_32 |
835 | 0 | ULong z2; |
836 | 0 | # endif |
837 | 0 | #endif |
838 | |
|
839 | 0 | if (a->wds < b->wds) { |
840 | 0 | c = a; |
841 | 0 | a = b; |
842 | 0 | b = c; |
843 | 0 | } |
844 | 0 | k = a->k; |
845 | 0 | wa = a->wds; |
846 | 0 | wb = b->wds; |
847 | 0 | wc = wa + wb; |
848 | 0 | if (wc > a->maxwds) { |
849 | 0 | k++; |
850 | 0 | } |
851 | 0 | c = Balloc(k); |
852 | 0 | for (x = c->x, xa = x + wc; x < xa; x++) { |
853 | 0 | *x = 0; |
854 | 0 | } |
855 | 0 | xa = a->x; |
856 | 0 | xae = xa + wa; |
857 | 0 | xb = b->x; |
858 | 0 | xbe = xb + wb; |
859 | 0 | xc0 = c->x; |
860 | | #ifdef ULLong |
861 | | for (; xb < xbe; xc0++) { |
862 | | if (y = *xb++) { |
863 | | x = xa; |
864 | | xc = xc0; |
865 | | carry = 0; |
866 | | do { |
867 | | z = *x++ * (ULLong)y + *xc + carry; |
868 | | carry = z >> 32; |
869 | | *xc++ = z & FFFFFFFF; |
870 | | } while (x < xae); |
871 | | *xc = carry; |
872 | | } |
873 | | } |
874 | | #else |
875 | 0 | # ifdef Pack_32 |
876 | 0 | for (; xb < xbe; xb++, xc0++) { |
877 | 0 | if (y = *xb & 0xffff) { |
878 | 0 | x = xa; |
879 | 0 | xc = xc0; |
880 | 0 | carry = 0; |
881 | 0 | do { |
882 | 0 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
883 | 0 | carry = z >> 16; |
884 | 0 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
885 | 0 | carry = z2 >> 16; |
886 | 0 | Storeinc(xc, z2, z); |
887 | 0 | } while (x < xae); |
888 | 0 | *xc = carry; |
889 | 0 | } |
890 | 0 | if (y = *xb >> 16) { |
891 | 0 | x = xa; |
892 | 0 | xc = xc0; |
893 | 0 | carry = 0; |
894 | 0 | z2 = *xc; |
895 | 0 | do { |
896 | 0 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
897 | 0 | carry = z >> 16; |
898 | 0 | Storeinc(xc, z, z2); |
899 | 0 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
900 | 0 | carry = z2 >> 16; |
901 | 0 | } while (x < xae); |
902 | 0 | *xc = z2; |
903 | 0 | } |
904 | 0 | } |
905 | | # else |
906 | | for (; xb < xbe; xc0++) { |
907 | | if (y = *xb++) { |
908 | | x = xa; |
909 | | xc = xc0; |
910 | | carry = 0; |
911 | | do { |
912 | | z = *x++ * y + *xc + carry; |
913 | | carry = z >> 16; |
914 | | *xc++ = z & 0xffff; |
915 | | } while (x < xae); |
916 | | *xc = carry; |
917 | | } |
918 | | } |
919 | | # endif |
920 | 0 | #endif |
921 | 0 | for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc); |
922 | 0 | c->wds = wc; |
923 | 0 | return c; |
924 | 0 | } |
925 | | |
926 | | static Bigint* p5s; |
927 | | |
928 | | static Bigint* pow5mult |
929 | | #ifdef KR_headers |
930 | | (b, k) Bigint* b; |
931 | | int k; |
932 | | #else |
933 | | (Bigint* b, int k) |
934 | | #endif |
935 | 0 | { |
936 | 0 | Bigint *b1, *p5, *p51; |
937 | 0 | int i; |
938 | 0 | static int p05[3] = {5, 25, 125}; |
939 | |
|
940 | 0 | if (i = k & 3) { |
941 | 0 | b = multadd(b, p05[i - 1], 0); |
942 | 0 | } |
943 | |
|
944 | 0 | if (!(k >>= 2)) { |
945 | 0 | return b; |
946 | 0 | } |
947 | 0 | if (!(p5 = p5s)) { |
948 | | /* first time */ |
949 | 0 | #ifdef MULTIPLE_THREADS |
950 | 0 | ACQUIRE_DTOA_LOCK(1); |
951 | 0 | if (!(p5 = p5s)) { |
952 | 0 | p5 = p5s = i2b(625); |
953 | 0 | p5->next = 0; |
954 | 0 | } |
955 | 0 | FREE_DTOA_LOCK(1); |
956 | | #else |
957 | | p5 = p5s = i2b(625); |
958 | | p5->next = 0; |
959 | | #endif |
960 | 0 | } |
961 | 0 | for (;;) { |
962 | 0 | if (k & 1) { |
963 | 0 | b1 = mult(b, p5); |
964 | 0 | Bfree(b); |
965 | 0 | b = b1; |
966 | 0 | } |
967 | 0 | if (!(k >>= 1)) { |
968 | 0 | break; |
969 | 0 | } |
970 | 0 | if (!(p51 = p5->next)) { |
971 | 0 | #ifdef MULTIPLE_THREADS |
972 | 0 | ACQUIRE_DTOA_LOCK(1); |
973 | 0 | if (!(p51 = p5->next)) { |
974 | 0 | p51 = p5->next = mult(p5, p5); |
975 | 0 | p51->next = 0; |
976 | 0 | } |
977 | 0 | FREE_DTOA_LOCK(1); |
978 | | #else |
979 | | p51 = p5->next = mult(p5, p5); |
980 | | p51->next = 0; |
981 | | #endif |
982 | 0 | } |
983 | 0 | p5 = p51; |
984 | 0 | } |
985 | 0 | return b; |
986 | 0 | } |
987 | | |
988 | | static Bigint* lshift |
989 | | #ifdef KR_headers |
990 | | (b, k) Bigint* b; |
991 | | int k; |
992 | | #else |
993 | | (Bigint* b, int k) |
994 | | #endif |
995 | 0 | { |
996 | 0 | int i, k1, n, n1; |
997 | 0 | Bigint* b1; |
998 | 0 | ULong *x, *x1, *xe, z; |
999 | |
|
1000 | 0 | #ifdef Pack_32 |
1001 | 0 | n = k >> 5; |
1002 | | #else |
1003 | | n = k >> 4; |
1004 | | #endif |
1005 | 0 | k1 = b->k; |
1006 | 0 | n1 = n + b->wds + 1; |
1007 | 0 | for (i = b->maxwds; n1 > i; i <<= 1) { |
1008 | 0 | k1++; |
1009 | 0 | } |
1010 | 0 | b1 = Balloc(k1); |
1011 | 0 | x1 = b1->x; |
1012 | 0 | for (i = 0; i < n; i++) { |
1013 | 0 | *x1++ = 0; |
1014 | 0 | } |
1015 | 0 | x = b->x; |
1016 | 0 | xe = x + b->wds; |
1017 | 0 | #ifdef Pack_32 |
1018 | 0 | if (k &= 0x1f) { |
1019 | 0 | k1 = 32 - k; |
1020 | 0 | z = 0; |
1021 | 0 | do { |
1022 | 0 | *x1++ = *x << k | z; |
1023 | 0 | z = *x++ >> k1; |
1024 | 0 | } while (x < xe); |
1025 | 0 | if (*x1 = z) { |
1026 | 0 | ++n1; |
1027 | 0 | } |
1028 | 0 | } |
1029 | | #else |
1030 | | if (k &= 0xf) { |
1031 | | k1 = 16 - k; |
1032 | | z = 0; |
1033 | | do { |
1034 | | *x1++ = *x << k & 0xffff | z; |
1035 | | z = *x++ >> k1; |
1036 | | } while (x < xe); |
1037 | | if (*x1 = z) { |
1038 | | ++n1; |
1039 | | } |
1040 | | } |
1041 | | #endif |
1042 | 0 | else |
1043 | 0 | do { |
1044 | 0 | *x1++ = *x++; |
1045 | 0 | } while (x < xe); |
1046 | 0 | b1->wds = n1 - 1; |
1047 | 0 | Bfree(b); |
1048 | 0 | return b1; |
1049 | 0 | } |
1050 | | |
1051 | | static int cmp |
1052 | | #ifdef KR_headers |
1053 | | (a, b) Bigint *a, |
1054 | | *b; |
1055 | | #else |
1056 | | (Bigint* a, Bigint* b) |
1057 | | #endif |
1058 | 0 | { |
1059 | 0 | ULong *xa, *xa0, *xb, *xb0; |
1060 | 0 | int i, j; |
1061 | |
|
1062 | 0 | i = a->wds; |
1063 | 0 | j = b->wds; |
1064 | 0 | #ifdef DEBUG |
1065 | 0 | if (i > 1 && !a->x[i - 1]) { |
1066 | 0 | Bug("cmp called with a->x[a->wds-1] == 0"); |
1067 | 0 | } |
1068 | 0 | if (j > 1 && !b->x[j - 1]) { |
1069 | 0 | Bug("cmp called with b->x[b->wds-1] == 0"); |
1070 | 0 | } |
1071 | 0 | #endif |
1072 | 0 | if (i -= j) { |
1073 | 0 | return i; |
1074 | 0 | } |
1075 | 0 | xa0 = a->x; |
1076 | 0 | xa = xa0 + j; |
1077 | 0 | xb0 = b->x; |
1078 | 0 | xb = xb0 + j; |
1079 | 0 | for (;;) { |
1080 | 0 | if (*--xa != *--xb) { |
1081 | 0 | return *xa < *xb ? -1 : 1; |
1082 | 0 | } |
1083 | 0 | if (xa <= xa0) { |
1084 | 0 | break; |
1085 | 0 | } |
1086 | 0 | } |
1087 | 0 | return 0; |
1088 | 0 | } |
1089 | | |
1090 | | static Bigint *diff |
1091 | | #ifdef KR_headers |
1092 | | (a, b) Bigint *a, |
1093 | | *b; |
1094 | | #else |
1095 | | (Bigint* a, Bigint* b) |
1096 | | #endif |
1097 | 0 | { |
1098 | 0 | Bigint* c; |
1099 | 0 | int i, wa, wb; |
1100 | 0 | ULong *xa, *xae, *xb, *xbe, *xc; |
1101 | | #ifdef ULLong |
1102 | | ULLong borrow, y; |
1103 | | #else |
1104 | 0 | ULong borrow, y; |
1105 | 0 | # ifdef Pack_32 |
1106 | 0 | ULong z; |
1107 | 0 | # endif |
1108 | 0 | #endif |
1109 | |
|
1110 | 0 | i = cmp(a, b); |
1111 | 0 | if (!i) { |
1112 | 0 | c = Balloc(0); |
1113 | 0 | c->wds = 1; |
1114 | 0 | c->x[0] = 0; |
1115 | 0 | return c; |
1116 | 0 | } |
1117 | 0 | if (i < 0) { |
1118 | 0 | c = a; |
1119 | 0 | a = b; |
1120 | 0 | b = c; |
1121 | 0 | i = 1; |
1122 | 0 | } else { |
1123 | 0 | i = 0; |
1124 | 0 | } |
1125 | 0 | c = Balloc(a->k); |
1126 | 0 | c->sign = i; |
1127 | 0 | wa = a->wds; |
1128 | 0 | xa = a->x; |
1129 | 0 | xae = xa + wa; |
1130 | 0 | wb = b->wds; |
1131 | 0 | xb = b->x; |
1132 | 0 | xbe = xb + wb; |
1133 | 0 | xc = c->x; |
1134 | 0 | borrow = 0; |
1135 | | #ifdef ULLong |
1136 | | do { |
1137 | | y = (ULLong)*xa++ - *xb++ - borrow; |
1138 | | borrow = y >> 32 & (ULong)1; |
1139 | | *xc++ = y & FFFFFFFF; |
1140 | | } while (xb < xbe); |
1141 | | while (xa < xae) { |
1142 | | y = *xa++ - borrow; |
1143 | | borrow = y >> 32 & (ULong)1; |
1144 | | *xc++ = y & FFFFFFFF; |
1145 | | } |
1146 | | #else |
1147 | 0 | # ifdef Pack_32 |
1148 | 0 | do { |
1149 | 0 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
1150 | 0 | borrow = (y & 0x10000) >> 16; |
1151 | 0 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
1152 | 0 | borrow = (z & 0x10000) >> 16; |
1153 | 0 | Storeinc(xc, z, y); |
1154 | 0 | } while (xb < xbe); |
1155 | 0 | while (xa < xae) { |
1156 | 0 | y = (*xa & 0xffff) - borrow; |
1157 | 0 | borrow = (y & 0x10000) >> 16; |
1158 | 0 | z = (*xa++ >> 16) - borrow; |
1159 | 0 | borrow = (z & 0x10000) >> 16; |
1160 | 0 | Storeinc(xc, z, y); |
1161 | 0 | } |
1162 | | # else |
1163 | | do { |
1164 | | y = *xa++ - *xb++ - borrow; |
1165 | | borrow = (y & 0x10000) >> 16; |
1166 | | *xc++ = y & 0xffff; |
1167 | | } while (xb < xbe); |
1168 | | while (xa < xae) { |
1169 | | y = *xa++ - borrow; |
1170 | | borrow = (y & 0x10000) >> 16; |
1171 | | *xc++ = y & 0xffff; |
1172 | | } |
1173 | | # endif |
1174 | 0 | #endif |
1175 | 0 | while (!*--xc) { |
1176 | 0 | wa--; |
1177 | 0 | } |
1178 | 0 | c->wds = wa; |
1179 | 0 | return c; |
1180 | 0 | } |
1181 | | |
1182 | | static double ulp |
1183 | | #ifdef KR_headers |
1184 | | (dx) double dx; |
1185 | | #else |
1186 | | (double dx) |
1187 | | #endif |
1188 | 0 | { |
1189 | 0 | register Long L; |
1190 | 0 | U x, a; |
1191 | |
|
1192 | 0 | dval(x) = dx; |
1193 | 0 | L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; |
1194 | | #ifndef Avoid_Underflow |
1195 | | # ifndef Sudden_Underflow |
1196 | | if (L > 0) { |
1197 | | # endif |
1198 | | #endif |
1199 | | #ifdef IBM |
1200 | | L |= Exp_msk1 >> 4; |
1201 | | #endif |
1202 | 0 | word0(a) = L; |
1203 | 0 | word1(a) = 0; |
1204 | | #ifndef Avoid_Underflow |
1205 | | # ifndef Sudden_Underflow |
1206 | | } else { |
1207 | | L = -L >> Exp_shift; |
1208 | | if (L < Exp_shift) { |
1209 | | word0(a) = 0x80000 >> L; |
1210 | | word1(a) = 0; |
1211 | | } else { |
1212 | | word0(a) = 0; |
1213 | | L -= Exp_shift; |
1214 | | word1(a) = L >= 31 ? 1 : 1 << 31 - L; |
1215 | | } |
1216 | | } |
1217 | | # endif |
1218 | | #endif |
1219 | 0 | return dval(a); |
1220 | 0 | } |
1221 | | |
1222 | | static double b2d |
1223 | | #ifdef KR_headers |
1224 | | (a, e) Bigint* a; |
1225 | | int* e; |
1226 | | #else |
1227 | | (Bigint* a, int* e) |
1228 | | #endif |
1229 | 0 | { |
1230 | 0 | ULong *xa, *xa0, w, y, z; |
1231 | 0 | int k; |
1232 | 0 | U d; |
1233 | | #ifdef VAX |
1234 | | ULong d0, d1; |
1235 | | #else |
1236 | 0 | # define d0 word0(d) |
1237 | 0 | # define d1 word1(d) |
1238 | 0 | #endif |
1239 | |
|
1240 | 0 | xa0 = a->x; |
1241 | 0 | xa = xa0 + a->wds; |
1242 | 0 | y = *--xa; |
1243 | 0 | #ifdef DEBUG |
1244 | 0 | if (!y) { |
1245 | 0 | Bug("zero y in b2d"); |
1246 | 0 | } |
1247 | 0 | #endif |
1248 | 0 | k = hi0bits(y); |
1249 | 0 | *e = 32 - k; |
1250 | 0 | #ifdef Pack_32 |
1251 | 0 | if (k < Ebits) { |
1252 | 0 | d0 = Exp_1 | y >> Ebits - k; |
1253 | 0 | w = xa > xa0 ? *--xa : 0; |
1254 | 0 | d1 = y << (32 - Ebits) + k | w >> Ebits - k; |
1255 | 0 | goto ret_d; |
1256 | 0 | } |
1257 | 0 | z = xa > xa0 ? *--xa : 0; |
1258 | 0 | if (k -= Ebits) { |
1259 | 0 | d0 = Exp_1 | y << k | z >> 32 - k; |
1260 | 0 | y = xa > xa0 ? *--xa : 0; |
1261 | 0 | d1 = z << k | y >> 32 - k; |
1262 | 0 | } else { |
1263 | 0 | d0 = Exp_1 | y; |
1264 | 0 | d1 = z; |
1265 | 0 | } |
1266 | | #else |
1267 | | if (k < Ebits + 16) { |
1268 | | z = xa > xa0 ? *--xa : 0; |
1269 | | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
1270 | | w = xa > xa0 ? *--xa : 0; |
1271 | | y = xa > xa0 ? *--xa : 0; |
1272 | | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
1273 | | goto ret_d; |
1274 | | } |
1275 | | z = xa > xa0 ? *--xa : 0; |
1276 | | w = xa > xa0 ? *--xa : 0; |
1277 | | k -= Ebits + 16; |
1278 | | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
1279 | | y = xa > xa0 ? *--xa : 0; |
1280 | | d1 = w << k + 16 | y << k; |
1281 | | #endif |
1282 | 0 | ret_d: |
1283 | | #ifdef VAX |
1284 | | word0(d) = d0 >> 16 | d0 << 16; |
1285 | | word1(d) = d1 >> 16 | d1 << 16; |
1286 | | #else |
1287 | 0 | # undef d0 |
1288 | 0 | # undef d1 |
1289 | 0 | #endif |
1290 | 0 | return dval(d); |
1291 | 0 | } |
1292 | | |
1293 | | static Bigint* d2b |
1294 | | #ifdef KR_headers |
1295 | | (dd, e, bits) double dd; |
1296 | | int *e, *bits; |
1297 | | #else |
1298 | | (double dd, int* e, int* bits) |
1299 | | #endif |
1300 | 0 | { |
1301 | 0 | U d; |
1302 | 0 | Bigint* b; |
1303 | 0 | int de, k; |
1304 | 0 | ULong *x, y, z; |
1305 | 0 | #ifndef Sudden_Underflow |
1306 | 0 | int i; |
1307 | 0 | #endif |
1308 | | #ifdef VAX |
1309 | | ULong d0, d1; |
1310 | | #endif |
1311 | |
|
1312 | 0 | dval(d) = dd; |
1313 | | #ifdef VAX |
1314 | | d0 = word0(d) >> 16 | word0(d) << 16; |
1315 | | d1 = word1(d) >> 16 | word1(d) << 16; |
1316 | | #else |
1317 | 0 | # define d0 word0(d) |
1318 | 0 | # define d1 word1(d) |
1319 | 0 | #endif |
1320 | |
|
1321 | 0 | #ifdef Pack_32 |
1322 | 0 | b = Balloc(1); |
1323 | | #else |
1324 | | b = Balloc(2); |
1325 | | #endif |
1326 | 0 | x = b->x; |
1327 | |
|
1328 | 0 | z = d0 & Frac_mask; |
1329 | 0 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
1330 | | #ifdef Sudden_Underflow |
1331 | | de = (int)(d0 >> Exp_shift); |
1332 | | # ifndef IBM |
1333 | | z |= Exp_msk11; |
1334 | | # endif |
1335 | | #else |
1336 | 0 | if (de = (int)(d0 >> Exp_shift)) { |
1337 | 0 | z |= Exp_msk1; |
1338 | 0 | } |
1339 | 0 | #endif |
1340 | 0 | #ifdef Pack_32 |
1341 | 0 | if (y = d1) { |
1342 | 0 | if (k = lo0bits(&y)) { |
1343 | 0 | x[0] = y | z << 32 - k; |
1344 | 0 | z >>= k; |
1345 | 0 | } else { |
1346 | 0 | x[0] = y; |
1347 | 0 | } |
1348 | 0 | # ifndef Sudden_Underflow |
1349 | 0 | i = |
1350 | 0 | # endif |
1351 | 0 | b->wds = (x[1] = z) ? 2 : 1; |
1352 | 0 | } else { |
1353 | 0 | k = lo0bits(&z); |
1354 | 0 | x[0] = z; |
1355 | 0 | # ifndef Sudden_Underflow |
1356 | 0 | i = |
1357 | 0 | # endif |
1358 | 0 | b->wds = 1; |
1359 | 0 | k += 32; |
1360 | 0 | } |
1361 | | #else |
1362 | | if (y = d1) { |
1363 | | if (k = lo0bits(&y)) |
1364 | | if (k >= 16) { |
1365 | | x[0] = y | z << 32 - k & 0xffff; |
1366 | | x[1] = z >> k - 16 & 0xffff; |
1367 | | x[2] = z >> k; |
1368 | | i = 2; |
1369 | | } else { |
1370 | | x[0] = y & 0xffff; |
1371 | | x[1] = y >> 16 | z << 16 - k & 0xffff; |
1372 | | x[2] = z >> k & 0xffff; |
1373 | | x[3] = z >> k + 16; |
1374 | | i = 3; |
1375 | | } |
1376 | | else { |
1377 | | x[0] = y & 0xffff; |
1378 | | x[1] = y >> 16; |
1379 | | x[2] = z & 0xffff; |
1380 | | x[3] = z >> 16; |
1381 | | i = 3; |
1382 | | } |
1383 | | } else { |
1384 | | # ifdef DEBUG |
1385 | | if (!z) { |
1386 | | Bug("Zero passed to d2b"); |
1387 | | } |
1388 | | # endif |
1389 | | k = lo0bits(&z); |
1390 | | if (k >= 16) { |
1391 | | x[0] = z; |
1392 | | i = 0; |
1393 | | } else { |
1394 | | x[0] = z & 0xffff; |
1395 | | x[1] = z >> 16; |
1396 | | i = 1; |
1397 | | } |
1398 | | k += 32; |
1399 | | } |
1400 | | while (!x[i]) { |
1401 | | --i; |
1402 | | } |
1403 | | b->wds = i + 1; |
1404 | | #endif |
1405 | 0 | #ifndef Sudden_Underflow |
1406 | 0 | if (de) { |
1407 | 0 | #endif |
1408 | | #ifdef IBM |
1409 | | *e = (de - Bias - (P - 1) << 2) + k; |
1410 | | *bits = 4 * P + 8 - k - hi0bits(word0(d) & Frac_mask); |
1411 | | #else |
1412 | 0 | *e = de - Bias - (P - 1) + k; |
1413 | 0 | *bits = P - k; |
1414 | 0 | #endif |
1415 | 0 | #ifndef Sudden_Underflow |
1416 | 0 | } else { |
1417 | 0 | *e = de - Bias - (P - 1) + 1 + k; |
1418 | 0 | # ifdef Pack_32 |
1419 | 0 | *bits = 32 * i - hi0bits(x[i - 1]); |
1420 | | # else |
1421 | | *bits = (i + 2) * 16 - hi0bits(x[i]); |
1422 | | # endif |
1423 | 0 | } |
1424 | 0 | #endif |
1425 | 0 | return b; |
1426 | 0 | } |
1427 | | #undef d0 |
1428 | | #undef d1 |
1429 | | |
1430 | | static double ratio |
1431 | | #ifdef KR_headers |
1432 | | (a, b) Bigint *a, |
1433 | | *b; |
1434 | | #else |
1435 | | (Bigint* a, Bigint* b) |
1436 | | #endif |
1437 | 0 | { |
1438 | 0 | U da, db; |
1439 | 0 | int k, ka, kb; |
1440 | |
|
1441 | 0 | dval(da) = b2d(a, &ka); |
1442 | 0 | dval(db) = b2d(b, &kb); |
1443 | 0 | #ifdef Pack_32 |
1444 | 0 | k = ka - kb + 32 * (a->wds - b->wds); |
1445 | | #else |
1446 | | k = ka - kb + 16 * (a->wds - b->wds); |
1447 | | #endif |
1448 | | #ifdef IBM |
1449 | | if (k > 0) { |
1450 | | word0(da) += (k >> 2) * Exp_msk1; |
1451 | | if (k &= 3) { |
1452 | | dval(da) *= 1 << k; |
1453 | | } |
1454 | | } else { |
1455 | | k = -k; |
1456 | | word0(db) += (k >> 2) * Exp_msk1; |
1457 | | if (k &= 3) { |
1458 | | dval(db) *= 1 << k; |
1459 | | } |
1460 | | } |
1461 | | #else |
1462 | 0 | if (k > 0) { |
1463 | 0 | word0(da) += k * Exp_msk1; |
1464 | 0 | } else { |
1465 | 0 | k = -k; |
1466 | 0 | word0(db) += k * Exp_msk1; |
1467 | 0 | } |
1468 | 0 | #endif |
1469 | 0 | return dval(da) / dval(db); |
1470 | 0 | } |
1471 | | |
1472 | | static CONST double tens[] = {1e0, |
1473 | | 1e1, |
1474 | | 1e2, |
1475 | | 1e3, |
1476 | | 1e4, |
1477 | | 1e5, |
1478 | | 1e6, |
1479 | | 1e7, |
1480 | | 1e8, |
1481 | | 1e9, |
1482 | | 1e10, |
1483 | | 1e11, |
1484 | | 1e12, |
1485 | | 1e13, |
1486 | | 1e14, |
1487 | | 1e15, |
1488 | | 1e16, |
1489 | | 1e17, |
1490 | | 1e18, |
1491 | | 1e19, |
1492 | | 1e20, |
1493 | | 1e21, |
1494 | | 1e22 |
1495 | | #ifdef VAX |
1496 | | , |
1497 | | 1e23, |
1498 | | 1e24 |
1499 | | #endif |
1500 | | }; |
1501 | | |
1502 | | static CONST double |
1503 | | #ifdef IEEE_Arith |
1504 | | bigtens[] = {1e16, 1e32, 1e64, 1e128, 1e256}; |
1505 | | static CONST double tinytens[] = {1e-16, 1e-32, 1e-64, 1e-128, |
1506 | | # ifdef Avoid_Underflow |
1507 | | 9007199254740992. * 9007199254740992.e-256 |
1508 | | /* = 2^106 * 1e-53 */ |
1509 | | # else |
1510 | | 1e-256 |
1511 | | # endif |
1512 | | }; |
1513 | | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1514 | | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1515 | 0 | # define Scale_Bit 0x10 |
1516 | 0 | # define n_bigtens 5 |
1517 | | #else |
1518 | | # ifdef IBM |
1519 | | bigtens[] = {1e16, 1e32, 1e64}; |
1520 | | static CONST double tinytens[] = {1e-16, 1e-32, 1e-64}; |
1521 | | # define n_bigtens 3 |
1522 | | # else |
1523 | | bigtens[] = {1e16, 1e32}; |
1524 | | static CONST double tinytens[] = {1e-16, 1e-32}; |
1525 | | # define n_bigtens 2 |
1526 | | # endif |
1527 | | #endif |
1528 | | |
1529 | | #ifndef IEEE_Arith |
1530 | | # undef INFNAN_CHECK |
1531 | | #endif |
1532 | | |
1533 | | #ifdef INFNAN_CHECK |
1534 | | |
1535 | | # ifndef NAN_WORD0 |
1536 | | # define NAN_WORD0 0x7ff80000 |
1537 | | # endif |
1538 | | |
1539 | | # ifndef NAN_WORD1 |
1540 | | # define NAN_WORD1 0 |
1541 | | # endif |
1542 | | |
1543 | | static int match |
1544 | | # ifdef KR_headers |
1545 | | (sp, t) char **sp, |
1546 | | *t; |
1547 | | # else |
1548 | | (CONST char** sp, char* t) |
1549 | | # endif |
1550 | | { |
1551 | | int c, d; |
1552 | | CONST char* s = *sp; |
1553 | | |
1554 | | while (d = *t++) { |
1555 | | if ((c = *++s) >= 'A' && c <= 'Z') { |
1556 | | c += 'a' - 'A'; |
1557 | | } |
1558 | | if (c != d) { |
1559 | | return 0; |
1560 | | } |
1561 | | } |
1562 | | *sp = s + 1; |
1563 | | return 1; |
1564 | | } |
1565 | | |
1566 | | # ifndef No_Hex_NaN |
1567 | | static void hexnan |
1568 | | # ifdef KR_headers |
1569 | | (rvp, sp) double* rvp; |
1570 | | CONST char** sp; |
1571 | | # else |
1572 | | (double* rvp, CONST char** sp) |
1573 | | # endif |
1574 | | { |
1575 | | ULong c, x[2]; |
1576 | | CONST char* s; |
1577 | | int havedig, udx0, xshift; |
1578 | | |
1579 | | x[0] = x[1] = 0; |
1580 | | havedig = xshift = 0; |
1581 | | udx0 = 1; |
1582 | | s = *sp; |
1583 | | while (c = *(CONST unsigned char*)++s) { |
1584 | | if (c >= '0' && c <= '9') { |
1585 | | c -= '0'; |
1586 | | } else if (c >= 'a' && c <= 'f') { |
1587 | | c += 10 - 'a'; |
1588 | | } else if (c >= 'A' && c <= 'F') { |
1589 | | c += 10 - 'A'; |
1590 | | } else if (c <= ' ') { |
1591 | | if (udx0 && havedig) { |
1592 | | udx0 = 0; |
1593 | | xshift = 1; |
1594 | | } |
1595 | | continue; |
1596 | | } else if (/*(*/ c == ')' && havedig) { |
1597 | | *sp = s + 1; |
1598 | | break; |
1599 | | } else { |
1600 | | return; /* invalid form: don't change *sp */ |
1601 | | } |
1602 | | havedig = 1; |
1603 | | if (xshift) { |
1604 | | xshift = 0; |
1605 | | x[0] = x[1]; |
1606 | | x[1] = 0; |
1607 | | } |
1608 | | if (udx0) { |
1609 | | x[0] = (x[0] << 4) | (x[1] >> 28); |
1610 | | } |
1611 | | x[1] = (x[1] << 4) | c; |
1612 | | } |
1613 | | if ((x[0] &= 0xfffff) || x[1]) { |
1614 | | word0(*rvp) = Exp_mask | x[0]; |
1615 | | word1(*rvp) = x[1]; |
1616 | | } |
1617 | | } |
1618 | | # endif /*No_Hex_NaN*/ |
1619 | | #endif /* INFNAN_CHECK */ |
1620 | | |
1621 | | PR_IMPLEMENT(double) |
1622 | | PR_strtod |
1623 | | #ifdef KR_headers |
1624 | | (s00, se) CONST char* s00; |
1625 | | char** se; |
1626 | | #else |
1627 | | (CONST char* s00, char** se) |
1628 | | #endif |
1629 | 0 | { |
1630 | 0 | #ifdef Avoid_Underflow |
1631 | 0 | int scale; |
1632 | 0 | #endif |
1633 | 0 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e, e1, esign, i, j, k, nd, |
1634 | 0 | nd0, nf, nz, nz0, sign; |
1635 | 0 | CONST char *s, *s0, *s1; |
1636 | 0 | double aadj, aadj1, adj; |
1637 | 0 | U aadj2, rv, rv0; |
1638 | 0 | Long L; |
1639 | 0 | ULong y, z; |
1640 | 0 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
1641 | | #ifdef SET_INEXACT |
1642 | | int inexact, oldinexact; |
1643 | | #endif |
1644 | | #ifdef Honor_FLT_ROUNDS |
1645 | | int rounding; |
1646 | | #endif |
1647 | | #ifdef USE_LOCALE |
1648 | | CONST char* s2; |
1649 | | #endif |
1650 | |
|
1651 | 0 | if (!_pr_initialized) { |
1652 | 0 | _PR_ImplicitInitialization(); |
1653 | 0 | } |
1654 | |
|
1655 | 0 | sign = nz0 = nz = 0; |
1656 | 0 | dval(rv) = 0.; |
1657 | 0 | for (s = s00;; s++) switch (*s) { |
1658 | 0 | case '-': |
1659 | 0 | sign = 1; |
1660 | | /* no break */ |
1661 | 0 | case '+': |
1662 | 0 | if (*++s) { |
1663 | 0 | goto break2; |
1664 | 0 | } |
1665 | | /* no break */ |
1666 | 0 | case 0: |
1667 | 0 | goto ret0; |
1668 | 0 | case '\t': |
1669 | 0 | case '\n': |
1670 | 0 | case '\v': |
1671 | 0 | case '\f': |
1672 | 0 | case '\r': |
1673 | 0 | case ' ': |
1674 | 0 | continue; |
1675 | 0 | default: |
1676 | 0 | goto break2; |
1677 | 0 | } |
1678 | 0 | break2: |
1679 | 0 | if (*s == '0') { |
1680 | 0 | nz0 = 1; |
1681 | 0 | while (*++s == '0'); |
1682 | 0 | if (!*s) { |
1683 | 0 | goto ret; |
1684 | 0 | } |
1685 | 0 | } |
1686 | 0 | s0 = s; |
1687 | 0 | y = z = 0; |
1688 | 0 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
1689 | 0 | if (nd < 9) { |
1690 | 0 | y = 10 * y + c - '0'; |
1691 | 0 | } else if (nd < 16) { |
1692 | 0 | z = 10 * z + c - '0'; |
1693 | 0 | } |
1694 | 0 | nd0 = nd; |
1695 | | #ifdef USE_LOCALE |
1696 | | s1 = localeconv()->decimal_point; |
1697 | | if (c == *s1) { |
1698 | | c = '.'; |
1699 | | if (*++s1) { |
1700 | | s2 = s; |
1701 | | for (;;) { |
1702 | | if (*++s2 != *s1) { |
1703 | | c = 0; |
1704 | | break; |
1705 | | } |
1706 | | if (!*++s1) { |
1707 | | s = s2; |
1708 | | break; |
1709 | | } |
1710 | | } |
1711 | | } |
1712 | | } |
1713 | | #endif |
1714 | 0 | if (c == '.') { |
1715 | 0 | c = *++s; |
1716 | 0 | if (!nd) { |
1717 | 0 | for (; c == '0'; c = *++s) { |
1718 | 0 | nz++; |
1719 | 0 | } |
1720 | 0 | if (c > '0' && c <= '9') { |
1721 | 0 | s0 = s; |
1722 | 0 | nf += nz; |
1723 | 0 | nz = 0; |
1724 | 0 | goto have_dig; |
1725 | 0 | } |
1726 | 0 | goto dig_done; |
1727 | 0 | } |
1728 | 0 | for (; c >= '0' && c <= '9'; c = *++s) { |
1729 | 0 | have_dig: |
1730 | 0 | nz++; |
1731 | 0 | if (c -= '0') { |
1732 | 0 | nf += nz; |
1733 | 0 | for (i = 1; i < nz; i++) |
1734 | 0 | if (nd++ < 9) { |
1735 | 0 | y *= 10; |
1736 | 0 | } else if (nd <= DBL_DIG + 1) { |
1737 | 0 | z *= 10; |
1738 | 0 | } |
1739 | 0 | if (nd++ < 9) { |
1740 | 0 | y = 10 * y + c; |
1741 | 0 | } else if (nd <= DBL_DIG + 1) { |
1742 | 0 | z = 10 * z + c; |
1743 | 0 | } |
1744 | 0 | nz = 0; |
1745 | 0 | } |
1746 | 0 | } |
1747 | 0 | } |
1748 | 0 | dig_done: |
1749 | 0 | if (nd > 64 * 1024) { |
1750 | 0 | goto ret0; |
1751 | 0 | } |
1752 | 0 | e = 0; |
1753 | 0 | if (c == 'e' || c == 'E') { |
1754 | 0 | if (!nd && !nz && !nz0) { |
1755 | 0 | goto ret0; |
1756 | 0 | } |
1757 | 0 | s00 = s; |
1758 | 0 | esign = 0; |
1759 | 0 | switch (c = *++s) { |
1760 | 0 | case '-': |
1761 | 0 | esign = 1; |
1762 | 0 | case '+': |
1763 | 0 | c = *++s; |
1764 | 0 | } |
1765 | 0 | if (c >= '0' && c <= '9') { |
1766 | 0 | while (c == '0') { |
1767 | 0 | c = *++s; |
1768 | 0 | } |
1769 | 0 | if (c > '0' && c <= '9') { |
1770 | 0 | L = c - '0'; |
1771 | 0 | s1 = s; |
1772 | 0 | while ((c = *++s) >= '0' && c <= '9') { |
1773 | 0 | L = 10 * L + c - '0'; |
1774 | 0 | } |
1775 | 0 | if (s - s1 > 8 || L > 19999) |
1776 | | /* Avoid confusion from exponents |
1777 | | * so large that e might overflow. |
1778 | | */ |
1779 | 0 | { |
1780 | 0 | e = 19999; /* safe for 16 bit ints */ |
1781 | 0 | } else { |
1782 | 0 | e = (int)L; |
1783 | 0 | } |
1784 | 0 | if (esign) { |
1785 | 0 | e = -e; |
1786 | 0 | } |
1787 | 0 | } else { |
1788 | 0 | e = 0; |
1789 | 0 | } |
1790 | 0 | } else { |
1791 | 0 | s = s00; |
1792 | 0 | } |
1793 | 0 | } |
1794 | 0 | if (!nd) { |
1795 | 0 | if (!nz && !nz0) { |
1796 | | #ifdef INFNAN_CHECK |
1797 | | /* Check for Nan and Infinity */ |
1798 | | switch (c) { |
1799 | | case 'i': |
1800 | | case 'I': |
1801 | | if (match(&s, "nf")) { |
1802 | | --s; |
1803 | | if (!match(&s, "inity")) { |
1804 | | ++s; |
1805 | | } |
1806 | | word0(rv) = 0x7ff00000; |
1807 | | word1(rv) = 0; |
1808 | | goto ret; |
1809 | | } |
1810 | | break; |
1811 | | case 'n': |
1812 | | case 'N': |
1813 | | if (match(&s, "an")) { |
1814 | | word0(rv) = NAN_WORD0; |
1815 | | word1(rv) = NAN_WORD1; |
1816 | | # ifndef No_Hex_NaN |
1817 | | if (*s == '(') { /*)*/ |
1818 | | hexnan(&rv, &s); |
1819 | | } |
1820 | | # endif |
1821 | | goto ret; |
1822 | | } |
1823 | | } |
1824 | | #endif /* INFNAN_CHECK */ |
1825 | 0 | ret0: |
1826 | 0 | s = s00; |
1827 | 0 | sign = 0; |
1828 | 0 | } |
1829 | 0 | goto ret; |
1830 | 0 | } |
1831 | 0 | e1 = e -= nf; |
1832 | | |
1833 | | /* Now we have nd0 digits, starting at s0, followed by a |
1834 | | * decimal point, followed by nd-nd0 digits. The number we're |
1835 | | * after is the integer represented by those digits times |
1836 | | * 10**e */ |
1837 | |
|
1838 | 0 | if (!nd0) { |
1839 | 0 | nd0 = nd; |
1840 | 0 | } |
1841 | 0 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
1842 | 0 | dval(rv) = y; |
1843 | 0 | if (k > 9) { |
1844 | | #ifdef SET_INEXACT |
1845 | | if (k > DBL_DIG) { |
1846 | | oldinexact = get_inexact(); |
1847 | | } |
1848 | | #endif |
1849 | 0 | dval(rv) = tens[k - 9] * dval(rv) + z; |
1850 | 0 | } |
1851 | 0 | bd0 = 0; |
1852 | 0 | if (nd <= DBL_DIG |
1853 | 0 | #ifndef RND_PRODQUOT |
1854 | 0 | # ifndef Honor_FLT_ROUNDS |
1855 | 0 | && Flt_Rounds == 1 |
1856 | 0 | # endif |
1857 | 0 | #endif |
1858 | 0 | ) { |
1859 | 0 | if (!e) { |
1860 | 0 | goto ret; |
1861 | 0 | } |
1862 | 0 | if (e > 0) { |
1863 | 0 | if (e <= Ten_pmax) { |
1864 | | #ifdef VAX |
1865 | | goto vax_ovfl_check; |
1866 | | #else |
1867 | | # ifdef Honor_FLT_ROUNDS |
1868 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1869 | | if (sign) { |
1870 | | rv = -rv; |
1871 | | sign = 0; |
1872 | | } |
1873 | | # endif |
1874 | 0 | /* rv = */ rounded_product(dval(rv), tens[e]); |
1875 | 0 | goto ret; |
1876 | 0 | #endif |
1877 | 0 | } |
1878 | 0 | i = DBL_DIG - nd; |
1879 | 0 | if (e <= Ten_pmax + i) { |
1880 | | /* A fancier test would sometimes let us do |
1881 | | * this for larger i values. |
1882 | | */ |
1883 | | #ifdef Honor_FLT_ROUNDS |
1884 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1885 | | if (sign) { |
1886 | | rv = -rv; |
1887 | | sign = 0; |
1888 | | } |
1889 | | #endif |
1890 | 0 | e -= i; |
1891 | 0 | dval(rv) *= tens[i]; |
1892 | | #ifdef VAX |
1893 | | /* VAX exponent range is so narrow we must |
1894 | | * worry about overflow here... |
1895 | | */ |
1896 | | vax_ovfl_check: |
1897 | | word0(rv) -= P * Exp_msk1; |
1898 | | /* rv = */ rounded_product(dval(rv), tens[e]); |
1899 | | if ((word0(rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { |
1900 | | goto ovfl; |
1901 | | } |
1902 | | word0(rv) += P * Exp_msk1; |
1903 | | #else |
1904 | 0 | /* rv = */ rounded_product(dval(rv), tens[e]); |
1905 | 0 | #endif |
1906 | 0 | goto ret; |
1907 | 0 | } |
1908 | 0 | } |
1909 | 0 | #ifndef Inaccurate_Divide |
1910 | 0 | else if (e >= -Ten_pmax) { |
1911 | | # ifdef Honor_FLT_ROUNDS |
1912 | | /* round correctly FLT_ROUNDS = 2 or 3 */ |
1913 | | if (sign) { |
1914 | | rv = -rv; |
1915 | | sign = 0; |
1916 | | } |
1917 | | # endif |
1918 | 0 | /* rv = */ rounded_quotient(dval(rv), tens[-e]); |
1919 | 0 | goto ret; |
1920 | 0 | } |
1921 | 0 | #endif |
1922 | 0 | } |
1923 | 0 | e1 += nd - k; |
1924 | |
|
1925 | 0 | #ifdef IEEE_Arith |
1926 | | # ifdef SET_INEXACT |
1927 | | inexact = 1; |
1928 | | if (k <= DBL_DIG) { |
1929 | | oldinexact = get_inexact(); |
1930 | | } |
1931 | | # endif |
1932 | 0 | # ifdef Avoid_Underflow |
1933 | 0 | scale = 0; |
1934 | 0 | # endif |
1935 | | # ifdef Honor_FLT_ROUNDS |
1936 | | if ((rounding = Flt_Rounds) >= 2) { |
1937 | | if (sign) { |
1938 | | rounding = rounding == 2 ? 0 : 2; |
1939 | | } else if (rounding != 2) { |
1940 | | rounding = 0; |
1941 | | } |
1942 | | } |
1943 | | # endif |
1944 | 0 | #endif /*IEEE_Arith*/ |
1945 | | |
1946 | | /* Get starting approximation = rv * 10**e1 */ |
1947 | |
|
1948 | 0 | if (e1 > 0) { |
1949 | 0 | if (i = e1 & 15) { |
1950 | 0 | dval(rv) *= tens[i]; |
1951 | 0 | } |
1952 | 0 | if (e1 &= ~15) { |
1953 | 0 | if (e1 > DBL_MAX_10_EXP) { |
1954 | 0 | ovfl: |
1955 | 0 | #ifndef NO_ERRNO |
1956 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
1957 | 0 | #endif |
1958 | | /* Can't trust HUGE_VAL */ |
1959 | 0 | #ifdef IEEE_Arith |
1960 | | # ifdef Honor_FLT_ROUNDS |
1961 | | switch (rounding) { |
1962 | | case 0: /* toward 0 */ |
1963 | | case 3: /* toward -infinity */ |
1964 | | word0(rv) = Big0; |
1965 | | word1(rv) = Big1; |
1966 | | break; |
1967 | | default: |
1968 | | word0(rv) = Exp_mask; |
1969 | | word1(rv) = 0; |
1970 | | } |
1971 | | # else /*Honor_FLT_ROUNDS*/ |
1972 | 0 | word0(rv) = Exp_mask; |
1973 | 0 | word1(rv) = 0; |
1974 | 0 | # endif /*Honor_FLT_ROUNDS*/ |
1975 | | # ifdef SET_INEXACT |
1976 | | /* set overflow bit */ |
1977 | | dval(rv0) = 1e300; |
1978 | | dval(rv0) *= dval(rv0); |
1979 | | # endif |
1980 | | #else /*IEEE_Arith*/ |
1981 | | word0(rv) = Big0; |
1982 | | word1(rv) = Big1; |
1983 | | #endif /*IEEE_Arith*/ |
1984 | 0 | if (bd0) { |
1985 | 0 | goto retfree; |
1986 | 0 | } |
1987 | 0 | goto ret; |
1988 | 0 | } |
1989 | 0 | e1 >>= 4; |
1990 | 0 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
1991 | 0 | if (e1 & 1) { |
1992 | 0 | dval(rv) *= bigtens[j]; |
1993 | 0 | } |
1994 | | /* The last multiplication could overflow. */ |
1995 | 0 | word0(rv) -= P * Exp_msk1; |
1996 | 0 | dval(rv) *= bigtens[j]; |
1997 | 0 | if ((z = word0(rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { |
1998 | 0 | goto ovfl; |
1999 | 0 | } |
2000 | 0 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { |
2001 | | /* set to largest number */ |
2002 | | /* (Can't trust DBL_MAX) */ |
2003 | 0 | word0(rv) = Big0; |
2004 | 0 | word1(rv) = Big1; |
2005 | 0 | } else { |
2006 | 0 | word0(rv) += P * Exp_msk1; |
2007 | 0 | } |
2008 | 0 | } |
2009 | 0 | } else if (e1 < 0) { |
2010 | 0 | e1 = -e1; |
2011 | 0 | if (i = e1 & 15) { |
2012 | 0 | dval(rv) /= tens[i]; |
2013 | 0 | } |
2014 | 0 | if (e1 >>= 4) { |
2015 | 0 | if (e1 >= 1 << n_bigtens) { |
2016 | 0 | goto undfl; |
2017 | 0 | } |
2018 | 0 | #ifdef Avoid_Underflow |
2019 | 0 | if (e1 & Scale_Bit) { |
2020 | 0 | scale = 2 * P; |
2021 | 0 | } |
2022 | 0 | for (j = 0; e1 > 0; j++, e1 >>= 1) |
2023 | 0 | if (e1 & 1) { |
2024 | 0 | dval(rv) *= tinytens[j]; |
2025 | 0 | } |
2026 | 0 | if (scale && |
2027 | 0 | (j = 2 * P + 1 - ((word0(rv) & Exp_mask) >> Exp_shift)) > 0) { |
2028 | | /* scaled rv is denormal; zap j low bits */ |
2029 | 0 | if (j >= 32) { |
2030 | 0 | word1(rv) = 0; |
2031 | 0 | if (j >= 53) { |
2032 | 0 | word0(rv) = (P + 2) * Exp_msk1; |
2033 | 0 | } else { |
2034 | 0 | word0(rv) &= 0xffffffff << j - 32; |
2035 | 0 | } |
2036 | 0 | } else { |
2037 | 0 | word1(rv) &= 0xffffffff << j; |
2038 | 0 | } |
2039 | 0 | } |
2040 | | #else |
2041 | | for (j = 0; e1 > 1; j++, e1 >>= 1) |
2042 | | if (e1 & 1) { |
2043 | | dval(rv) *= tinytens[j]; |
2044 | | } |
2045 | | /* The last multiplication could underflow. */ |
2046 | | dval(rv0) = dval(rv); |
2047 | | dval(rv) *= tinytens[j]; |
2048 | | if (!dval(rv)) { |
2049 | | dval(rv) = 2. * dval(rv0); |
2050 | | dval(rv) *= tinytens[j]; |
2051 | | #endif |
2052 | 0 | if (!dval(rv)) { |
2053 | 0 | undfl: |
2054 | 0 | dval(rv) = 0.; |
2055 | 0 | #ifndef NO_ERRNO |
2056 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
2057 | 0 | #endif |
2058 | 0 | if (bd0) { |
2059 | 0 | goto retfree; |
2060 | 0 | } |
2061 | 0 | goto ret; |
2062 | 0 | } |
2063 | | #ifndef Avoid_Underflow |
2064 | | word0(rv) = Tiny0; |
2065 | | word1(rv) = Tiny1; |
2066 | | /* The refinement below will clean |
2067 | | * this approximation up. |
2068 | | */ |
2069 | | } |
2070 | | #endif |
2071 | 0 | } |
2072 | 0 | } |
2073 | | |
2074 | | /* Now the hard part -- adjusting rv to the correct value.*/ |
2075 | | |
2076 | | /* Put digits into bd: true value = bd * 10^e */ |
2077 | | |
2078 | 0 | bd0 = s2b(s0, nd0, nd, y); |
2079 | |
|
2080 | 0 | for (;;) { |
2081 | 0 | bd = Balloc(bd0->k); |
2082 | 0 | Bcopy(bd, bd0); |
2083 | 0 | bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */ |
2084 | 0 | bs = i2b(1); |
2085 | |
|
2086 | 0 | if (e >= 0) { |
2087 | 0 | bb2 = bb5 = 0; |
2088 | 0 | bd2 = bd5 = e; |
2089 | 0 | } else { |
2090 | 0 | bb2 = bb5 = -e; |
2091 | 0 | bd2 = bd5 = 0; |
2092 | 0 | } |
2093 | 0 | if (bbe >= 0) { |
2094 | 0 | bb2 += bbe; |
2095 | 0 | } else { |
2096 | 0 | bd2 -= bbe; |
2097 | 0 | } |
2098 | 0 | bs2 = bb2; |
2099 | | #ifdef Honor_FLT_ROUNDS |
2100 | | if (rounding != 1) { |
2101 | | bs2++; |
2102 | | } |
2103 | | #endif |
2104 | 0 | #ifdef Avoid_Underflow |
2105 | 0 | j = bbe - scale; |
2106 | 0 | i = j + bbbits - 1; /* logb(rv) */ |
2107 | 0 | if (i < Emin) { /* denormal */ |
2108 | 0 | j += P - Emin; |
2109 | 0 | } else { |
2110 | 0 | j = P + 1 - bbbits; |
2111 | 0 | } |
2112 | | #else /*Avoid_Underflow*/ |
2113 | | # ifdef Sudden_Underflow |
2114 | | # ifdef IBM |
2115 | | j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3); |
2116 | | # else |
2117 | | j = P + 1 - bbbits; |
2118 | | # endif |
2119 | | # else /*Sudden_Underflow*/ |
2120 | | j = bbe; |
2121 | | i = j + bbbits - 1; /* logb(rv) */ |
2122 | | if (i < Emin) { /* denormal */ |
2123 | | j += P - Emin; |
2124 | | } else { |
2125 | | j = P + 1 - bbbits; |
2126 | | } |
2127 | | # endif /*Sudden_Underflow*/ |
2128 | | #endif /*Avoid_Underflow*/ |
2129 | 0 | bb2 += j; |
2130 | 0 | bd2 += j; |
2131 | 0 | #ifdef Avoid_Underflow |
2132 | 0 | bd2 += scale; |
2133 | 0 | #endif |
2134 | 0 | i = bb2 < bd2 ? bb2 : bd2; |
2135 | 0 | if (i > bs2) { |
2136 | 0 | i = bs2; |
2137 | 0 | } |
2138 | 0 | if (i > 0) { |
2139 | 0 | bb2 -= i; |
2140 | 0 | bd2 -= i; |
2141 | 0 | bs2 -= i; |
2142 | 0 | } |
2143 | 0 | if (bb5 > 0) { |
2144 | 0 | bs = pow5mult(bs, bb5); |
2145 | 0 | bb1 = mult(bs, bb); |
2146 | 0 | Bfree(bb); |
2147 | 0 | bb = bb1; |
2148 | 0 | } |
2149 | 0 | if (bb2 > 0) { |
2150 | 0 | bb = lshift(bb, bb2); |
2151 | 0 | } |
2152 | 0 | if (bd5 > 0) { |
2153 | 0 | bd = pow5mult(bd, bd5); |
2154 | 0 | } |
2155 | 0 | if (bd2 > 0) { |
2156 | 0 | bd = lshift(bd, bd2); |
2157 | 0 | } |
2158 | 0 | if (bs2 > 0) { |
2159 | 0 | bs = lshift(bs, bs2); |
2160 | 0 | } |
2161 | 0 | delta = diff(bb, bd); |
2162 | 0 | dsign = delta->sign; |
2163 | 0 | delta->sign = 0; |
2164 | 0 | i = cmp(delta, bs); |
2165 | | #ifdef Honor_FLT_ROUNDS |
2166 | | if (rounding != 1) { |
2167 | | if (i < 0) { |
2168 | | /* Error is less than an ulp */ |
2169 | | if (!delta->x[0] && delta->wds <= 1) { |
2170 | | /* exact */ |
2171 | | # ifdef SET_INEXACT |
2172 | | inexact = 0; |
2173 | | # endif |
2174 | | break; |
2175 | | } |
2176 | | if (rounding) { |
2177 | | if (dsign) { |
2178 | | adj = 1.; |
2179 | | goto apply_adj; |
2180 | | } |
2181 | | } else if (!dsign) { |
2182 | | adj = -1.; |
2183 | | if (!word1(rv) && !(word0(rv) & Frac_mask)) { |
2184 | | y = word0(rv) & Exp_mask; |
2185 | | # ifdef Avoid_Underflow |
2186 | | if (!scale || y > 2 * P * Exp_msk1) |
2187 | | # else |
2188 | | if (y) |
2189 | | # endif |
2190 | | { |
2191 | | delta = lshift(delta, Log2P); |
2192 | | if (cmp(delta, bs) <= 0) { |
2193 | | adj = -0.5; |
2194 | | } |
2195 | | } |
2196 | | } |
2197 | | apply_adj: |
2198 | | # ifdef Avoid_Underflow |
2199 | | if (scale && (y = word0(rv) & Exp_mask) <= 2 * P * Exp_msk1) { |
2200 | | word0(adj) += (2 * P + 1) * Exp_msk1 - y; |
2201 | | } |
2202 | | # else |
2203 | | # ifdef Sudden_Underflow |
2204 | | if ((word0(rv) & Exp_mask) <= P * Exp_msk1) { |
2205 | | word0(rv) += P * Exp_msk1; |
2206 | | dval(rv) += adj * ulp(dval(rv)); |
2207 | | word0(rv) -= P * Exp_msk1; |
2208 | | } else |
2209 | | # endif /*Sudden_Underflow*/ |
2210 | | # endif /*Avoid_Underflow*/ |
2211 | | dval(rv) += adj * ulp(dval(rv)); |
2212 | | } |
2213 | | break; |
2214 | | } |
2215 | | adj = ratio(delta, bs); |
2216 | | if (adj < 1.) { |
2217 | | adj = 1.; |
2218 | | } |
2219 | | if (adj <= 0x7ffffffe) { |
2220 | | /* adj = rounding ? ceil(adj) : floor(adj); */ |
2221 | | y = adj; |
2222 | | if (y != adj) { |
2223 | | if (!((rounding >> 1) ^ dsign)) { |
2224 | | y++; |
2225 | | } |
2226 | | adj = y; |
2227 | | } |
2228 | | } |
2229 | | # ifdef Avoid_Underflow |
2230 | | if (scale && (y = word0(rv) & Exp_mask) <= 2 * P * Exp_msk1) { |
2231 | | word0(adj) += (2 * P + 1) * Exp_msk1 - y; |
2232 | | } |
2233 | | # else |
2234 | | # ifdef Sudden_Underflow |
2235 | | if ((word0(rv) & Exp_mask) <= P * Exp_msk1) { |
2236 | | word0(rv) += P * Exp_msk1; |
2237 | | adj *= ulp(dval(rv)); |
2238 | | if (dsign) { |
2239 | | dval(rv) += adj; |
2240 | | } else { |
2241 | | dval(rv) -= adj; |
2242 | | } |
2243 | | word0(rv) -= P * Exp_msk1; |
2244 | | goto cont; |
2245 | | } |
2246 | | # endif /*Sudden_Underflow*/ |
2247 | | # endif /*Avoid_Underflow*/ |
2248 | | adj *= ulp(dval(rv)); |
2249 | | if (dsign) { |
2250 | | dval(rv) += adj; |
2251 | | } else { |
2252 | | dval(rv) -= adj; |
2253 | | } |
2254 | | goto cont; |
2255 | | } |
2256 | | #endif /*Honor_FLT_ROUNDS*/ |
2257 | |
|
2258 | 0 | if (i < 0) { |
2259 | | /* Error is less than half an ulp -- check for |
2260 | | * special case of mantissa a power of two. |
2261 | | */ |
2262 | 0 | if (dsign || word1(rv) || word0(rv) & Bndry_mask |
2263 | 0 | #ifdef IEEE_Arith |
2264 | 0 | # ifdef Avoid_Underflow |
2265 | 0 | || (word0(rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 |
2266 | | # else |
2267 | | || (word0(rv) & Exp_mask) <= Exp_msk1 |
2268 | | # endif |
2269 | 0 | #endif |
2270 | 0 | ) { |
2271 | | #ifdef SET_INEXACT |
2272 | | if (!delta->x[0] && delta->wds <= 1) { |
2273 | | inexact = 0; |
2274 | | } |
2275 | | #endif |
2276 | 0 | break; |
2277 | 0 | } |
2278 | 0 | if (!delta->x[0] && delta->wds <= 1) { |
2279 | | /* exact result */ |
2280 | | #ifdef SET_INEXACT |
2281 | | inexact = 0; |
2282 | | #endif |
2283 | 0 | break; |
2284 | 0 | } |
2285 | 0 | delta = lshift(delta, Log2P); |
2286 | 0 | if (cmp(delta, bs) > 0) { |
2287 | 0 | goto drop_down; |
2288 | 0 | } |
2289 | 0 | break; |
2290 | 0 | } |
2291 | 0 | if (i == 0) { |
2292 | | /* exactly half-way between */ |
2293 | 0 | if (dsign) { |
2294 | 0 | if ((word0(rv) & Bndry_mask1) == Bndry_mask1 && |
2295 | 0 | word1(rv) == |
2296 | 0 | ( |
2297 | 0 | #ifdef Avoid_Underflow |
2298 | 0 | (scale && (y = word0(rv) & Exp_mask) <= 2 * P * Exp_msk1) |
2299 | 0 | ? (0xffffffff & |
2300 | 0 | (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) |
2301 | 0 | : |
2302 | 0 | #endif |
2303 | 0 | 0xffffffff)) { |
2304 | | /*boundary case -- increment exponent*/ |
2305 | 0 | word0(rv) = (word0(rv) & Exp_mask) + Exp_msk1 |
2306 | | #ifdef IBM |
2307 | | | Exp_msk1 >> 4 |
2308 | | #endif |
2309 | 0 | ; |
2310 | 0 | word1(rv) = 0; |
2311 | 0 | #ifdef Avoid_Underflow |
2312 | 0 | dsign = 0; |
2313 | 0 | #endif |
2314 | 0 | break; |
2315 | 0 | } |
2316 | 0 | } else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { |
2317 | 0 | drop_down: |
2318 | | /* boundary case -- decrement exponent */ |
2319 | | #ifdef Sudden_Underflow /*{{*/ |
2320 | | L = word0(rv) & Exp_mask; |
2321 | | # ifdef IBM |
2322 | | if (L < Exp_msk1) |
2323 | | # else |
2324 | | # ifdef Avoid_Underflow |
2325 | | if (L <= (scale ? (2 * P + 1) * Exp_msk1 : Exp_msk1)) |
2326 | | # else |
2327 | | if (L <= Exp_msk1) |
2328 | | # endif /*Avoid_Underflow*/ |
2329 | | # endif /*IBM*/ |
2330 | | goto undfl; |
2331 | | L -= Exp_msk1; |
2332 | | #else /*Sudden_Underflow}{*/ |
2333 | 0 | # ifdef Avoid_Underflow |
2334 | 0 | if (scale) { |
2335 | 0 | L = word0(rv) & Exp_mask; |
2336 | 0 | if (L <= (2 * P + 1) * Exp_msk1) { |
2337 | 0 | if (L > (P + 2) * Exp_msk1) |
2338 | | /* round even ==> */ |
2339 | | /* accept rv */ |
2340 | 0 | { |
2341 | 0 | break; |
2342 | 0 | } |
2343 | | /* rv = smallest denormal */ |
2344 | 0 | goto undfl; |
2345 | 0 | } |
2346 | 0 | } |
2347 | 0 | # endif /*Avoid_Underflow*/ |
2348 | 0 | L = (word0(rv) & Exp_mask) - Exp_msk1; |
2349 | 0 | #endif /*Sudden_Underflow}}*/ |
2350 | 0 | word0(rv) = L | Bndry_mask1; |
2351 | 0 | word1(rv) = 0xffffffff; |
2352 | | #ifdef IBM |
2353 | | goto cont; |
2354 | | #else |
2355 | 0 | break; |
2356 | 0 | #endif |
2357 | 0 | } |
2358 | 0 | #ifndef ROUND_BIASED |
2359 | 0 | if (!(word1(rv) & LSB)) { |
2360 | 0 | break; |
2361 | 0 | } |
2362 | 0 | #endif |
2363 | 0 | if (dsign) { |
2364 | 0 | dval(rv) += ulp(dval(rv)); |
2365 | 0 | } |
2366 | 0 | #ifndef ROUND_BIASED |
2367 | 0 | else { |
2368 | 0 | dval(rv) -= ulp(dval(rv)); |
2369 | 0 | # ifndef Sudden_Underflow |
2370 | 0 | if (!dval(rv)) { |
2371 | 0 | goto undfl; |
2372 | 0 | } |
2373 | 0 | # endif |
2374 | 0 | } |
2375 | 0 | # ifdef Avoid_Underflow |
2376 | 0 | dsign = 1 - dsign; |
2377 | 0 | # endif |
2378 | 0 | #endif |
2379 | 0 | break; |
2380 | 0 | } |
2381 | 0 | if ((aadj = ratio(delta, bs)) <= 2.) { |
2382 | 0 | if (dsign) { |
2383 | 0 | aadj = aadj1 = 1.; |
2384 | 0 | } else if (word1(rv) || word0(rv) & Bndry_mask) { |
2385 | 0 | #ifndef Sudden_Underflow |
2386 | 0 | if (word1(rv) == Tiny1 && !word0(rv)) { |
2387 | 0 | goto undfl; |
2388 | 0 | } |
2389 | 0 | #endif |
2390 | 0 | aadj = 1.; |
2391 | 0 | aadj1 = -1.; |
2392 | 0 | } else { |
2393 | | /* special case -- power of FLT_RADIX to be */ |
2394 | | /* rounded down... */ |
2395 | |
|
2396 | 0 | if (aadj < 2. / FLT_RADIX) { |
2397 | 0 | aadj = 1. / FLT_RADIX; |
2398 | 0 | } else { |
2399 | 0 | aadj *= 0.5; |
2400 | 0 | } |
2401 | 0 | aadj1 = -aadj; |
2402 | 0 | } |
2403 | 0 | } else { |
2404 | 0 | aadj *= 0.5; |
2405 | 0 | aadj1 = dsign ? aadj : -aadj; |
2406 | | #ifdef Check_FLT_ROUNDS |
2407 | | switch (Rounding) { |
2408 | | case 2: /* towards +infinity */ |
2409 | | aadj1 -= 0.5; |
2410 | | break; |
2411 | | case 0: /* towards 0 */ |
2412 | | case 3: /* towards -infinity */ |
2413 | | aadj1 += 0.5; |
2414 | | } |
2415 | | #else |
2416 | 0 | if (Flt_Rounds == 0) { |
2417 | 0 | aadj1 += 0.5; |
2418 | 0 | } |
2419 | 0 | #endif /*Check_FLT_ROUNDS*/ |
2420 | 0 | } |
2421 | 0 | y = word0(rv) & Exp_mask; |
2422 | | |
2423 | | /* Check for overflow */ |
2424 | |
|
2425 | 0 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { |
2426 | 0 | dval(rv0) = dval(rv); |
2427 | 0 | word0(rv) -= P * Exp_msk1; |
2428 | 0 | adj = aadj1 * ulp(dval(rv)); |
2429 | 0 | dval(rv) += adj; |
2430 | 0 | if ((word0(rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { |
2431 | 0 | if (word0(rv0) == Big0 && word1(rv0) == Big1) { |
2432 | 0 | goto ovfl; |
2433 | 0 | } |
2434 | 0 | word0(rv) = Big0; |
2435 | 0 | word1(rv) = Big1; |
2436 | 0 | goto cont; |
2437 | 0 | } else { |
2438 | 0 | word0(rv) += P * Exp_msk1; |
2439 | 0 | } |
2440 | 0 | } else { |
2441 | 0 | #ifdef Avoid_Underflow |
2442 | 0 | if (scale && y <= 2 * P * Exp_msk1) { |
2443 | 0 | if (aadj <= 0x7fffffff) { |
2444 | 0 | if ((z = aadj) <= 0) { |
2445 | 0 | z = 1; |
2446 | 0 | } |
2447 | 0 | aadj = z; |
2448 | 0 | aadj1 = dsign ? aadj : -aadj; |
2449 | 0 | } |
2450 | 0 | dval(aadj2) = aadj1; |
2451 | 0 | word0(aadj2) += (2 * P + 1) * Exp_msk1 - y; |
2452 | 0 | aadj1 = dval(aadj2); |
2453 | 0 | } |
2454 | 0 | adj = aadj1 * ulp(dval(rv)); |
2455 | 0 | dval(rv) += adj; |
2456 | | #else |
2457 | | # ifdef Sudden_Underflow |
2458 | | if ((word0(rv) & Exp_mask) <= P * Exp_msk1) { |
2459 | | dval(rv0) = dval(rv); |
2460 | | word0(rv) += P * Exp_msk1; |
2461 | | adj = aadj1 * ulp(dval(rv)); |
2462 | | dval(rv) += adj; |
2463 | | # ifdef IBM |
2464 | | if ((word0(rv) & Exp_mask) < P * Exp_msk1) |
2465 | | # else |
2466 | | if ((word0(rv) & Exp_mask) <= P * Exp_msk1) |
2467 | | # endif |
2468 | | { |
2469 | | if (word0(rv0) == Tiny0 && word1(rv0) == Tiny1) { |
2470 | | goto undfl; |
2471 | | } |
2472 | | word0(rv) = Tiny0; |
2473 | | word1(rv) = Tiny1; |
2474 | | goto cont; |
2475 | | } else { |
2476 | | word0(rv) -= P * Exp_msk1; |
2477 | | } |
2478 | | } else { |
2479 | | adj = aadj1 * ulp(dval(rv)); |
2480 | | dval(rv) += adj; |
2481 | | } |
2482 | | # else /*Sudden_Underflow*/ |
2483 | | /* Compute adj so that the IEEE rounding rules will |
2484 | | * correctly round rv + adj in some half-way cases. |
2485 | | * If rv * ulp(rv) is denormalized (i.e., |
2486 | | * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid |
2487 | | * trouble from bits lost to denormalization; |
2488 | | * example: 1.2e-307 . |
2489 | | */ |
2490 | | if (y <= (P - 1) * Exp_msk1 && aadj > 1.) { |
2491 | | aadj1 = (double)(int)(aadj + 0.5); |
2492 | | if (!dsign) { |
2493 | | aadj1 = -aadj1; |
2494 | | } |
2495 | | } |
2496 | | adj = aadj1 * ulp(dval(rv)); |
2497 | | dval(rv) += adj; |
2498 | | # endif /*Sudden_Underflow*/ |
2499 | | #endif /*Avoid_Underflow*/ |
2500 | 0 | } |
2501 | 0 | z = word0(rv) & Exp_mask; |
2502 | 0 | #ifndef SET_INEXACT |
2503 | 0 | # ifdef Avoid_Underflow |
2504 | 0 | if (!scale) |
2505 | 0 | # endif |
2506 | 0 | if (y == z) { |
2507 | | /* Can we stop now? */ |
2508 | 0 | L = (Long)aadj; |
2509 | 0 | aadj -= L; |
2510 | | /* The tolerances below are conservative. */ |
2511 | 0 | if (dsign || word1(rv) || word0(rv) & Bndry_mask) { |
2512 | 0 | if (aadj < .4999999 || aadj > .5000001) { |
2513 | 0 | break; |
2514 | 0 | } |
2515 | 0 | } else if (aadj < .4999999 / FLT_RADIX) { |
2516 | 0 | break; |
2517 | 0 | } |
2518 | 0 | } |
2519 | 0 | #endif |
2520 | 0 | cont: |
2521 | 0 | Bfree(bb); |
2522 | 0 | Bfree(bd); |
2523 | 0 | Bfree(bs); |
2524 | 0 | Bfree(delta); |
2525 | 0 | } |
2526 | | #ifdef SET_INEXACT |
2527 | | if (inexact) { |
2528 | | if (!oldinexact) { |
2529 | | word0(rv0) = Exp_1 + (70 << Exp_shift); |
2530 | | word1(rv0) = 0; |
2531 | | dval(rv0) += 1.; |
2532 | | } |
2533 | | } else if (!oldinexact) { |
2534 | | clear_inexact(); |
2535 | | } |
2536 | | #endif |
2537 | 0 | #ifdef Avoid_Underflow |
2538 | 0 | if (scale) { |
2539 | 0 | word0(rv0) = Exp_1 - 2 * P * Exp_msk1; |
2540 | 0 | word1(rv0) = 0; |
2541 | 0 | dval(rv) *= dval(rv0); |
2542 | 0 | # ifndef NO_ERRNO |
2543 | | /* try to avoid the bug of testing an 8087 register value */ |
2544 | 0 | if (word0(rv) == 0 && word1(rv) == 0) { |
2545 | 0 | PR_SetError(PR_RANGE_ERROR, 0); |
2546 | 0 | } |
2547 | 0 | # endif |
2548 | 0 | } |
2549 | 0 | #endif /* Avoid_Underflow */ |
2550 | | #ifdef SET_INEXACT |
2551 | | if (inexact && !(word0(rv) & Exp_mask)) { |
2552 | | /* set underflow bit */ |
2553 | | dval(rv0) = 1e-300; |
2554 | | dval(rv0) *= dval(rv0); |
2555 | | } |
2556 | | #endif |
2557 | 0 | retfree: Bfree(bb); |
2558 | 0 | Bfree(bd); |
2559 | 0 | Bfree(bs); |
2560 | 0 | Bfree(bd0); |
2561 | 0 | Bfree(delta); |
2562 | 0 | ret: if (se) { *se = (char*)s; } |
2563 | 0 | return sign ? -dval(rv) : dval(rv); |
2564 | 0 | } |
2565 | | |
2566 | | static int quorem |
2567 | | #ifdef KR_headers |
2568 | | (b, S) |
2569 | | Bigint *b, *S; |
2570 | | #else |
2571 | | (Bigint * b, Bigint * S) |
2572 | | #endif |
2573 | 0 | { |
2574 | 0 | int n; |
2575 | 0 | ULong *bx, *bxe, q, *sx, *sxe; |
2576 | | #ifdef ULLong |
2577 | | ULLong borrow, carry, y, ys; |
2578 | | #else |
2579 | 0 | ULong borrow, carry, y, ys; |
2580 | 0 | # ifdef Pack_32 |
2581 | 0 | ULong si, z, zs; |
2582 | 0 | # endif |
2583 | 0 | #endif |
2584 | |
|
2585 | 0 | n = S->wds; |
2586 | 0 | #ifdef DEBUG |
2587 | 0 | /*debug*/ if (b->wds > n) |
2588 | 0 | /*debug*/ { |
2589 | 0 | Bug("oversize b in quorem"); |
2590 | 0 | } |
2591 | 0 | #endif |
2592 | 0 | if (b->wds < n) { |
2593 | 0 | return 0; |
2594 | 0 | } |
2595 | 0 | sx = S->x; |
2596 | 0 | sxe = sx + --n; |
2597 | 0 | bx = b->x; |
2598 | 0 | bxe = bx + n; |
2599 | 0 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
2600 | 0 | #ifdef DEBUG |
2601 | 0 | /*debug*/ if (q > 9) |
2602 | 0 | /*debug*/ { |
2603 | 0 | Bug("oversized quotient in quorem"); |
2604 | 0 | } |
2605 | 0 | #endif |
2606 | 0 | if (q) { |
2607 | 0 | borrow = 0; |
2608 | 0 | carry = 0; |
2609 | 0 | do { |
2610 | | #ifdef ULLong |
2611 | | ys = *sx++ * (ULLong)q + carry; |
2612 | | carry = ys >> 32; |
2613 | | y = *bx - (ys & FFFFFFFF) - borrow; |
2614 | | borrow = y >> 32 & (ULong)1; |
2615 | | *bx++ = y & FFFFFFFF; |
2616 | | #else |
2617 | 0 | # ifdef Pack_32 |
2618 | 0 | si = *sx++; |
2619 | 0 | ys = (si & 0xffff) * q + carry; |
2620 | 0 | zs = (si >> 16) * q + (ys >> 16); |
2621 | 0 | carry = zs >> 16; |
2622 | 0 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2623 | 0 | borrow = (y & 0x10000) >> 16; |
2624 | 0 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2625 | 0 | borrow = (z & 0x10000) >> 16; |
2626 | 0 | Storeinc(bx, z, y); |
2627 | | # else |
2628 | | ys = *sx++ * q + carry; |
2629 | | carry = ys >> 16; |
2630 | | y = *bx - (ys & 0xffff) - borrow; |
2631 | | borrow = (y & 0x10000) >> 16; |
2632 | | *bx++ = y & 0xffff; |
2633 | | # endif |
2634 | 0 | #endif |
2635 | 0 | } while (sx <= sxe); |
2636 | 0 | if (!*bxe) { |
2637 | 0 | bx = b->x; |
2638 | 0 | while (--bxe > bx && !*bxe) { |
2639 | 0 | --n; |
2640 | 0 | } |
2641 | 0 | b->wds = n; |
2642 | 0 | } |
2643 | 0 | } |
2644 | 0 | if (cmp(b, S) >= 0) { |
2645 | 0 | q++; |
2646 | 0 | borrow = 0; |
2647 | 0 | carry = 0; |
2648 | 0 | bx = b->x; |
2649 | 0 | sx = S->x; |
2650 | 0 | do { |
2651 | | #ifdef ULLong |
2652 | | ys = *sx++ + carry; |
2653 | | carry = ys >> 32; |
2654 | | y = *bx - (ys & FFFFFFFF) - borrow; |
2655 | | borrow = y >> 32 & (ULong)1; |
2656 | | *bx++ = y & FFFFFFFF; |
2657 | | #else |
2658 | 0 | # ifdef Pack_32 |
2659 | 0 | si = *sx++; |
2660 | 0 | ys = (si & 0xffff) + carry; |
2661 | 0 | zs = (si >> 16) + (ys >> 16); |
2662 | 0 | carry = zs >> 16; |
2663 | 0 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
2664 | 0 | borrow = (y & 0x10000) >> 16; |
2665 | 0 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
2666 | 0 | borrow = (z & 0x10000) >> 16; |
2667 | 0 | Storeinc(bx, z, y); |
2668 | | # else |
2669 | | ys = *sx++ + carry; |
2670 | | carry = ys >> 16; |
2671 | | y = *bx - (ys & 0xffff) - borrow; |
2672 | | borrow = (y & 0x10000) >> 16; |
2673 | | *bx++ = y & 0xffff; |
2674 | | # endif |
2675 | 0 | #endif |
2676 | 0 | } while (sx <= sxe); |
2677 | 0 | bx = b->x; |
2678 | 0 | bxe = bx + n; |
2679 | 0 | if (!*bxe) { |
2680 | 0 | while (--bxe > bx && !*bxe) { |
2681 | 0 | --n; |
2682 | 0 | } |
2683 | 0 | b->wds = n; |
2684 | 0 | } |
2685 | 0 | } |
2686 | 0 | return q; |
2687 | 0 | } |
2688 | | |
2689 | | #ifndef MULTIPLE_THREADS |
2690 | | static char* dtoa_result; |
2691 | | #endif |
2692 | | |
2693 | | static char* |
2694 | | #ifdef KR_headers |
2695 | | rv_alloc(i) |
2696 | | int i; |
2697 | | #else |
2698 | | rv_alloc(int i) |
2699 | | #endif |
2700 | 0 | { |
2701 | 0 | int j, k, *r; |
2702 | |
|
2703 | 0 | j = sizeof(ULong); |
2704 | 0 | for (k = 0; sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; j <<= 1) { |
2705 | 0 | k++; |
2706 | 0 | } |
2707 | 0 | r = (int*)Balloc(k); |
2708 | 0 | *r = k; |
2709 | 0 | return |
2710 | | #ifndef MULTIPLE_THREADS |
2711 | | dtoa_result = |
2712 | | #endif |
2713 | 0 | (char*)(r + 1); |
2714 | 0 | } |
2715 | | |
2716 | | static char* |
2717 | | #ifdef KR_headers |
2718 | | nrv_alloc(s, rve, n) |
2719 | | char *s, **rve; |
2720 | | int n; |
2721 | | #else |
2722 | | nrv_alloc(char* s, char** rve, int n) |
2723 | | #endif |
2724 | 0 | { |
2725 | 0 | char *rv, *t; |
2726 | |
|
2727 | 0 | t = rv = rv_alloc(n); |
2728 | 0 | while (*t = *s++) { |
2729 | 0 | t++; |
2730 | 0 | } |
2731 | 0 | if (rve) { |
2732 | 0 | *rve = t; |
2733 | 0 | } |
2734 | 0 | return rv; |
2735 | 0 | } |
2736 | | |
2737 | | /* freedtoa(s) must be used to free values s returned by dtoa |
2738 | | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
2739 | | * but for consistency with earlier versions of dtoa, it is optional |
2740 | | * when MULTIPLE_THREADS is not defined. |
2741 | | */ |
2742 | | |
2743 | | static void |
2744 | | #ifdef KR_headers |
2745 | | freedtoa(s) char* s; |
2746 | | #else |
2747 | | freedtoa(char* s) |
2748 | | #endif |
2749 | 0 | { |
2750 | 0 | Bigint* b = (Bigint*)((int*)s - 1); |
2751 | 0 | b->maxwds = 1 << (b->k = *(int*)b); |
2752 | 0 | Bfree(b); |
2753 | | #ifndef MULTIPLE_THREADS |
2754 | | if (s == dtoa_result) { |
2755 | | dtoa_result = 0; |
2756 | | } |
2757 | | #endif |
2758 | 0 | } |
2759 | | |
2760 | | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
2761 | | * |
2762 | | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
2763 | | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
2764 | | * |
2765 | | * Modifications: |
2766 | | * 1. Rather than iterating, we use a simple numeric overestimate |
2767 | | * to determine k = floor(log10(d)). We scale relevant |
2768 | | * quantities using O(log2(k)) rather than O(k) multiplications. |
2769 | | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
2770 | | * try to generate digits strictly left to right. Instead, we |
2771 | | * compute with fewer bits and propagate the carry if necessary |
2772 | | * when rounding the final digit up. This is often faster. |
2773 | | * 3. Under the assumption that input will be rounded nearest, |
2774 | | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
2775 | | * That is, we allow equality in stopping tests when the |
2776 | | * round-nearest rule will give the same floating-point value |
2777 | | * as would satisfaction of the stopping test with strict |
2778 | | * inequality. |
2779 | | * 4. We remove common factors of powers of 2 from relevant |
2780 | | * quantities. |
2781 | | * 5. When converting floating-point integers less than 1e16, |
2782 | | * we use floating-point arithmetic rather than resorting |
2783 | | * to multiple-precision integers. |
2784 | | * 6. When asked to produce fewer than 15 digits, we first try |
2785 | | * to get by with floating-point arithmetic; we resort to |
2786 | | * multiple-precision integer arithmetic only if we cannot |
2787 | | * guarantee that the floating-point calculation has given |
2788 | | * the correctly rounded result. For k requested digits and |
2789 | | * "uniformly" distributed input, the probability is |
2790 | | * something like 10^(k-15) that we must resort to the Long |
2791 | | * calculation. |
2792 | | */ |
2793 | | |
2794 | | static char* dtoa |
2795 | | #ifdef KR_headers |
2796 | | (dd, mode, ndigits, decpt, sign, rve) |
2797 | | double dd; |
2798 | | int mode, ndigits, *decpt, *sign; |
2799 | | char** rve; |
2800 | | #else |
2801 | | (double dd, int mode, int ndigits, int* decpt, int* sign, char** rve) |
2802 | | #endif |
2803 | 0 | { |
2804 | | /* Arguments ndigits, decpt, sign are similar to those |
2805 | | of ecvt and fcvt; trailing zeros are suppressed from |
2806 | | the returned string. If not null, *rve is set to point |
2807 | | to the end of the return value. If d is +-Infinity or NaN, |
2808 | | then *decpt is set to 9999. |
2809 | | |
2810 | | mode: |
2811 | | 0 ==> shortest string that yields d when read in |
2812 | | and rounded to nearest. |
2813 | | 1 ==> like 0, but with Steele & White stopping rule; |
2814 | | e.g. with IEEE P754 arithmetic , mode 0 gives |
2815 | | 1e23 whereas mode 1 gives 9.999999999999999e22. |
2816 | | 2 ==> max(1,ndigits) significant digits. This gives a |
2817 | | return value similar to that of ecvt, except |
2818 | | that trailing zeros are suppressed. |
2819 | | 3 ==> through ndigits past the decimal point. This |
2820 | | gives a return value similar to that from fcvt, |
2821 | | except that trailing zeros are suppressed, and |
2822 | | ndigits can be negative. |
2823 | | 4,5 ==> similar to 2 and 3, respectively, but (in |
2824 | | round-nearest mode) with the tests of mode 0 to |
2825 | | possibly return a shorter string that rounds to d. |
2826 | | With IEEE arithmetic and compilation with |
2827 | | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
2828 | | as modes 2 and 3 when FLT_ROUNDS != 1. |
2829 | | 6-9 ==> Debugging modes similar to mode - 4: don't try |
2830 | | fast floating-point estimate (if applicable). |
2831 | | |
2832 | | Values of mode other than 0-9 are treated as mode 0. |
2833 | | |
2834 | | Sufficient space is allocated to the return value |
2835 | | to hold the suppressed trailing zeros. |
2836 | | */ |
2837 | |
|
2838 | 0 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, |
2839 | 0 | k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; |
2840 | 0 | Long L; |
2841 | 0 | #ifndef Sudden_Underflow |
2842 | 0 | int denorm; |
2843 | 0 | ULong x; |
2844 | 0 | #endif |
2845 | 0 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
2846 | 0 | U d, d2, eps; |
2847 | 0 | double ds; |
2848 | 0 | char *s, *s0; |
2849 | | #ifdef Honor_FLT_ROUNDS |
2850 | | int rounding; |
2851 | | #endif |
2852 | | #ifdef SET_INEXACT |
2853 | | int inexact, oldinexact; |
2854 | | #endif |
2855 | |
|
2856 | | #ifndef MULTIPLE_THREADS |
2857 | | if (dtoa_result) { |
2858 | | freedtoa(dtoa_result); |
2859 | | dtoa_result = 0; |
2860 | | } |
2861 | | #endif |
2862 | |
|
2863 | 0 | dval(d) = dd; |
2864 | 0 | if (word0(d) & Sign_bit) { |
2865 | | /* set sign for everything, including 0's and NaNs */ |
2866 | 0 | *sign = 1; |
2867 | 0 | word0(d) &= ~Sign_bit; /* clear sign bit */ |
2868 | 0 | } else { |
2869 | 0 | *sign = 0; |
2870 | 0 | } |
2871 | |
|
2872 | 0 | #if defined(IEEE_Arith) + defined(VAX) |
2873 | 0 | # ifdef IEEE_Arith |
2874 | 0 | if ((word0(d) & Exp_mask) == Exp_mask) |
2875 | | # else |
2876 | | if (word0(d) == 0x8000) |
2877 | | # endif |
2878 | 0 | { |
2879 | | /* Infinity or NaN */ |
2880 | 0 | *decpt = 9999; |
2881 | 0 | # ifdef IEEE_Arith |
2882 | 0 | if (!word1(d) && !(word0(d) & 0xfffff)) { |
2883 | 0 | return nrv_alloc("Infinity", rve, 8); |
2884 | 0 | } |
2885 | 0 | # endif |
2886 | 0 | return nrv_alloc("NaN", rve, 3); |
2887 | 0 | } |
2888 | 0 | #endif |
2889 | | #ifdef IBM |
2890 | | dval(d) += 0; /* normalize */ |
2891 | | #endif |
2892 | 0 | if (!dval(d)) { |
2893 | 0 | *decpt = 1; |
2894 | 0 | return nrv_alloc("0", rve, 1); |
2895 | 0 | } |
2896 | | |
2897 | | #ifdef SET_INEXACT |
2898 | | try_quick = oldinexact = get_inexact(); |
2899 | | inexact = 1; |
2900 | | #endif |
2901 | | #ifdef Honor_FLT_ROUNDS |
2902 | | if ((rounding = Flt_Rounds) >= 2) { |
2903 | | if (*sign) { |
2904 | | rounding = rounding == 2 ? 0 : 2; |
2905 | | } else if (rounding != 2) { |
2906 | | rounding = 0; |
2907 | | } |
2908 | | } |
2909 | | #endif |
2910 | | |
2911 | 0 | b = d2b(dval(d), &be, &bbits); |
2912 | | #ifdef Sudden_Underflow |
2913 | | i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); |
2914 | | #else |
2915 | 0 | if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))) { |
2916 | 0 | #endif |
2917 | 0 | dval(d2) = dval(d); |
2918 | 0 | word0(d2) &= Frac_mask1; |
2919 | 0 | word0(d2) |= Exp_11; |
2920 | | #ifdef IBM |
2921 | | if (j = 11 - hi0bits(word0(d2) & Frac_mask)) { |
2922 | | dval(d2) /= 1 << j; |
2923 | | } |
2924 | | #endif |
2925 | | |
2926 | | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
2927 | | * log10(x) = log(x) / log(10) |
2928 | | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
2929 | | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
2930 | | * |
2931 | | * This suggests computing an approximation k to log10(d) by |
2932 | | * |
2933 | | * k = (i - Bias)*0.301029995663981 |
2934 | | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
2935 | | * |
2936 | | * We want k to be too large rather than too small. |
2937 | | * The error in the first-order Taylor series approximation |
2938 | | * is in our favor, so we just round up the constant enough |
2939 | | * to compensate for any error in the multiplication of |
2940 | | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
2941 | | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
2942 | | * adding 1e-13 to the constant term more than suffices. |
2943 | | * Hence we adjust the constant term to 0.1760912590558. |
2944 | | * (We could get a more accurate k by invoking log10, |
2945 | | * but this is probably not worthwhile.) |
2946 | | */ |
2947 | |
|
2948 | 0 | i -= Bias; |
2949 | | #ifdef IBM |
2950 | | i <<= 2; |
2951 | | i += j; |
2952 | | #endif |
2953 | 0 | #ifndef Sudden_Underflow |
2954 | 0 | denorm = 0; |
2955 | 0 | } |
2956 | 0 | else { |
2957 | | /* d is denormalized */ |
2958 | |
|
2959 | 0 | i = bbits + be + (Bias + (P - 1) - 1); |
2960 | 0 | x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 : word1(d) << 32 - i; |
2961 | 0 | dval(d2) = x; |
2962 | 0 | word0(d2) -= 31 * Exp_msk1; /* adjust exponent */ |
2963 | 0 | i -= (Bias + (P - 1) - 1) + 1; |
2964 | 0 | denorm = 1; |
2965 | 0 | } |
2966 | 0 | #endif |
2967 | 0 | ds = (dval(d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + |
2968 | 0 | i * 0.301029995663981; |
2969 | 0 | k = (int)ds; |
2970 | 0 | if (ds < 0. && ds != k) { |
2971 | 0 | k--; /* want k = floor(ds) */ |
2972 | 0 | } |
2973 | 0 | k_check = 1; |
2974 | 0 | if (k >= 0 && k <= Ten_pmax) { |
2975 | 0 | if (dval(d) < tens[k]) { |
2976 | 0 | k--; |
2977 | 0 | } |
2978 | 0 | k_check = 0; |
2979 | 0 | } |
2980 | 0 | j = bbits - i - 1; |
2981 | 0 | if (j >= 0) { |
2982 | 0 | b2 = 0; |
2983 | 0 | s2 = j; |
2984 | 0 | } else { |
2985 | 0 | b2 = -j; |
2986 | 0 | s2 = 0; |
2987 | 0 | } |
2988 | 0 | if (k >= 0) { |
2989 | 0 | b5 = 0; |
2990 | 0 | s5 = k; |
2991 | 0 | s2 += k; |
2992 | 0 | } else { |
2993 | 0 | b2 -= k; |
2994 | 0 | b5 = -k; |
2995 | 0 | s5 = 0; |
2996 | 0 | } |
2997 | 0 | if (mode < 0 || mode > 9) { |
2998 | 0 | mode = 0; |
2999 | 0 | } |
3000 | |
|
3001 | 0 | #ifndef SET_INEXACT |
3002 | | # ifdef Check_FLT_ROUNDS |
3003 | | try_quick = Rounding == 1; |
3004 | | # else |
3005 | 0 | try_quick = 1; |
3006 | 0 | # endif |
3007 | 0 | #endif /*SET_INEXACT*/ |
3008 | |
|
3009 | 0 | if (mode > 5) { |
3010 | 0 | mode -= 4; |
3011 | 0 | try_quick = 0; |
3012 | 0 | } |
3013 | 0 | leftright = 1; |
3014 | 0 | switch (mode) { |
3015 | 0 | case 0: |
3016 | 0 | case 1: |
3017 | 0 | ilim = ilim1 = -1; |
3018 | 0 | i = 18; |
3019 | 0 | ndigits = 0; |
3020 | 0 | break; |
3021 | 0 | case 2: |
3022 | 0 | leftright = 0; |
3023 | | /* no break */ |
3024 | 0 | case 4: |
3025 | 0 | if (ndigits <= 0) { |
3026 | 0 | ndigits = 1; |
3027 | 0 | } |
3028 | 0 | ilim = ilim1 = i = ndigits; |
3029 | 0 | break; |
3030 | 0 | case 3: |
3031 | 0 | leftright = 0; |
3032 | | /* no break */ |
3033 | 0 | case 5: |
3034 | 0 | i = ndigits + k + 1; |
3035 | 0 | ilim = i; |
3036 | 0 | ilim1 = i - 1; |
3037 | 0 | if (i <= 0) { |
3038 | 0 | i = 1; |
3039 | 0 | } |
3040 | 0 | } |
3041 | 0 | s = s0 = rv_alloc(i); |
3042 | |
|
3043 | | #ifdef Honor_FLT_ROUNDS |
3044 | | if (mode > 1 && rounding != 1) { |
3045 | | leftright = 0; |
3046 | | } |
3047 | | #endif |
3048 | |
|
3049 | 0 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
3050 | | /* Try to get by with floating-point arithmetic. */ |
3051 | |
|
3052 | 0 | i = 0; |
3053 | 0 | dval(d2) = dval(d); |
3054 | 0 | k0 = k; |
3055 | 0 | ilim0 = ilim; |
3056 | 0 | ieps = 2; /* conservative */ |
3057 | 0 | if (k > 0) { |
3058 | 0 | ds = tens[k & 0xf]; |
3059 | 0 | j = k >> 4; |
3060 | 0 | if (j & Bletch) { |
3061 | | /* prevent overflows */ |
3062 | 0 | j &= Bletch - 1; |
3063 | 0 | dval(d) /= bigtens[n_bigtens - 1]; |
3064 | 0 | ieps++; |
3065 | 0 | } |
3066 | 0 | for (; j; j >>= 1, i++) |
3067 | 0 | if (j & 1) { |
3068 | 0 | ieps++; |
3069 | 0 | ds *= bigtens[i]; |
3070 | 0 | } |
3071 | 0 | dval(d) /= ds; |
3072 | 0 | } else if (j1 = -k) { |
3073 | 0 | dval(d) *= tens[j1 & 0xf]; |
3074 | 0 | for (j = j1 >> 4; j; j >>= 1, i++) |
3075 | 0 | if (j & 1) { |
3076 | 0 | ieps++; |
3077 | 0 | dval(d) *= bigtens[i]; |
3078 | 0 | } |
3079 | 0 | } |
3080 | 0 | if (k_check && dval(d) < 1. && ilim > 0) { |
3081 | 0 | if (ilim1 <= 0) { |
3082 | 0 | goto fast_failed; |
3083 | 0 | } |
3084 | 0 | ilim = ilim1; |
3085 | 0 | k--; |
3086 | 0 | dval(d) *= 10.; |
3087 | 0 | ieps++; |
3088 | 0 | } |
3089 | 0 | dval(eps) = ieps * dval(d) + 7.; |
3090 | 0 | word0(eps) -= (P - 1) * Exp_msk1; |
3091 | 0 | if (ilim == 0) { |
3092 | 0 | S = mhi = 0; |
3093 | 0 | dval(d) -= 5.; |
3094 | 0 | if (dval(d) > dval(eps)) { |
3095 | 0 | goto one_digit; |
3096 | 0 | } |
3097 | 0 | if (dval(d) < -dval(eps)) { |
3098 | 0 | goto no_digits; |
3099 | 0 | } |
3100 | 0 | goto fast_failed; |
3101 | 0 | } |
3102 | 0 | #ifndef No_leftright |
3103 | 0 | if (leftright) { |
3104 | | /* Use Steele & White method of only |
3105 | | * generating digits needed. |
3106 | | */ |
3107 | 0 | dval(eps) = 0.5 / tens[ilim - 1] - dval(eps); |
3108 | 0 | for (i = 0;;) { |
3109 | 0 | L = dval(d); |
3110 | 0 | dval(d) -= L; |
3111 | 0 | *s++ = '0' + (int)L; |
3112 | 0 | if (dval(d) < dval(eps)) { |
3113 | 0 | goto ret1; |
3114 | 0 | } |
3115 | 0 | if (1. - dval(d) < dval(eps)) { |
3116 | 0 | goto bump_up; |
3117 | 0 | } |
3118 | 0 | if (++i >= ilim) { |
3119 | 0 | break; |
3120 | 0 | } |
3121 | 0 | dval(eps) *= 10.; |
3122 | 0 | dval(d) *= 10.; |
3123 | 0 | } |
3124 | 0 | } else { |
3125 | 0 | #endif |
3126 | | /* Generate ilim digits, then fix them up. */ |
3127 | 0 | dval(eps) *= tens[ilim - 1]; |
3128 | 0 | for (i = 1;; i++, dval(d) *= 10.) { |
3129 | 0 | L = (Long)(dval(d)); |
3130 | 0 | if (!(dval(d) -= L)) { |
3131 | 0 | ilim = i; |
3132 | 0 | } |
3133 | 0 | *s++ = '0' + (int)L; |
3134 | 0 | if (i == ilim) { |
3135 | 0 | if (dval(d) > 0.5 + dval(eps)) { |
3136 | 0 | goto bump_up; |
3137 | 0 | } else if (dval(d) < 0.5 - dval(eps)) { |
3138 | 0 | while (*--s == '0'); |
3139 | 0 | s++; |
3140 | 0 | goto ret1; |
3141 | 0 | } |
3142 | 0 | break; |
3143 | 0 | } |
3144 | 0 | } |
3145 | 0 | #ifndef No_leftright |
3146 | 0 | } |
3147 | 0 | #endif |
3148 | 0 | fast_failed: |
3149 | 0 | s = s0; |
3150 | 0 | dval(d) = dval(d2); |
3151 | 0 | k = k0; |
3152 | 0 | ilim = ilim0; |
3153 | 0 | } |
3154 | | |
3155 | | /* Do we have a "small" integer? */ |
3156 | | |
3157 | 0 | if (be >= 0 && k <= Int_max) { |
3158 | | /* Yes. */ |
3159 | 0 | ds = tens[k]; |
3160 | 0 | if (ndigits < 0 && ilim <= 0) { |
3161 | 0 | S = mhi = 0; |
3162 | 0 | if (ilim < 0 || dval(d) <= 5 * ds) { |
3163 | 0 | goto no_digits; |
3164 | 0 | } |
3165 | 0 | goto one_digit; |
3166 | 0 | } |
3167 | 0 | for (i = 1; i <= k + 1; i++, dval(d) *= 10.) { |
3168 | 0 | L = (Long)(dval(d) / ds); |
3169 | 0 | dval(d) -= L * ds; |
3170 | | #ifdef Check_FLT_ROUNDS |
3171 | | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
3172 | | if (dval(d) < 0) { |
3173 | | L--; |
3174 | | dval(d) += ds; |
3175 | | } |
3176 | | #endif |
3177 | 0 | *s++ = '0' + (int)L; |
3178 | 0 | if (!dval(d)) { |
3179 | | #ifdef SET_INEXACT |
3180 | | inexact = 0; |
3181 | | #endif |
3182 | 0 | break; |
3183 | 0 | } |
3184 | 0 | if (i == ilim) { |
3185 | | #ifdef Honor_FLT_ROUNDS |
3186 | | if (mode > 1) switch (rounding) { |
3187 | | case 0: |
3188 | | goto ret1; |
3189 | | case 2: |
3190 | | goto bump_up; |
3191 | | } |
3192 | | #endif |
3193 | 0 | dval(d) += dval(d); |
3194 | 0 | if (dval(d) > ds || dval(d) == ds && L & 1) { |
3195 | 0 | bump_up: |
3196 | 0 | while (*--s == '9') |
3197 | 0 | if (s == s0) { |
3198 | 0 | k++; |
3199 | 0 | *s = '0'; |
3200 | 0 | break; |
3201 | 0 | } |
3202 | 0 | ++*s++; |
3203 | 0 | } |
3204 | 0 | break; |
3205 | 0 | } |
3206 | 0 | } |
3207 | 0 | goto ret1; |
3208 | 0 | } |
3209 | | |
3210 | 0 | m2 = b2; |
3211 | 0 | m5 = b5; |
3212 | 0 | mhi = mlo = 0; |
3213 | 0 | if (leftright) { |
3214 | 0 | i = |
3215 | 0 | #ifndef Sudden_Underflow |
3216 | 0 | denorm ? be + (Bias + (P - 1) - 1 + 1) : |
3217 | 0 | #endif |
3218 | | #ifdef IBM |
3219 | | 1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3); |
3220 | | #else |
3221 | 0 | 1 + P - bbits; |
3222 | 0 | #endif |
3223 | 0 | b2 += i; |
3224 | 0 | s2 += i; |
3225 | 0 | mhi = i2b(1); |
3226 | 0 | } |
3227 | 0 | if (m2 > 0 && s2 > 0) { |
3228 | 0 | i = m2 < s2 ? m2 : s2; |
3229 | 0 | b2 -= i; |
3230 | 0 | m2 -= i; |
3231 | 0 | s2 -= i; |
3232 | 0 | } |
3233 | 0 | if (b5 > 0) { |
3234 | 0 | if (leftright) { |
3235 | 0 | if (m5 > 0) { |
3236 | 0 | mhi = pow5mult(mhi, m5); |
3237 | 0 | b1 = mult(mhi, b); |
3238 | 0 | Bfree(b); |
3239 | 0 | b = b1; |
3240 | 0 | } |
3241 | 0 | if (j = b5 - m5) { |
3242 | 0 | b = pow5mult(b, j); |
3243 | 0 | } |
3244 | 0 | } else { |
3245 | 0 | b = pow5mult(b, b5); |
3246 | 0 | } |
3247 | 0 | } |
3248 | 0 | S = i2b(1); |
3249 | 0 | if (s5 > 0) { |
3250 | 0 | S = pow5mult(S, s5); |
3251 | 0 | } |
3252 | | |
3253 | | /* Check for special case that d is a normalized power of 2. */ |
3254 | |
|
3255 | 0 | spec_case = 0; |
3256 | 0 | if ((mode < 2 || leftright) |
3257 | | #ifdef Honor_FLT_ROUNDS |
3258 | | && rounding == 1 |
3259 | | #endif |
3260 | 0 | ) { |
3261 | 0 | if (!word1(d) && !(word0(d) & Bndry_mask) |
3262 | 0 | #ifndef Sudden_Underflow |
3263 | 0 | && word0(d) & (Exp_mask & ~Exp_msk1) |
3264 | 0 | #endif |
3265 | 0 | ) { |
3266 | | /* The special case */ |
3267 | 0 | b2 += Log2P; |
3268 | 0 | s2 += Log2P; |
3269 | 0 | spec_case = 1; |
3270 | 0 | } |
3271 | 0 | } |
3272 | | |
3273 | | /* Arrange for convenient computation of quotients: |
3274 | | * shift left if necessary so divisor has 4 leading 0 bits. |
3275 | | * |
3276 | | * Perhaps we should just compute leading 28 bits of S once |
3277 | | * and for all and pass them and a shift to quorem, so it |
3278 | | * can do shifts and ors to compute the numerator for q. |
3279 | | */ |
3280 | 0 | #ifdef Pack_32 |
3281 | 0 | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0x1f) { |
3282 | 0 | i = 32 - i; |
3283 | 0 | } |
3284 | | #else |
3285 | | if (i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0xf) { |
3286 | | i = 16 - i; |
3287 | | } |
3288 | | #endif |
3289 | 0 | if (i > 4) { |
3290 | 0 | i -= 4; |
3291 | 0 | b2 += i; |
3292 | 0 | m2 += i; |
3293 | 0 | s2 += i; |
3294 | 0 | } else if (i < 4) { |
3295 | 0 | i += 28; |
3296 | 0 | b2 += i; |
3297 | 0 | m2 += i; |
3298 | 0 | s2 += i; |
3299 | 0 | } |
3300 | 0 | if (b2 > 0) { |
3301 | 0 | b = lshift(b, b2); |
3302 | 0 | } |
3303 | 0 | if (s2 > 0) { |
3304 | 0 | S = lshift(S, s2); |
3305 | 0 | } |
3306 | 0 | if (k_check) { |
3307 | 0 | if (cmp(b, S) < 0) { |
3308 | 0 | k--; |
3309 | 0 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
3310 | 0 | if (leftright) { |
3311 | 0 | mhi = multadd(mhi, 10, 0); |
3312 | 0 | } |
3313 | 0 | ilim = ilim1; |
3314 | 0 | } |
3315 | 0 | } |
3316 | 0 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
3317 | 0 | if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) { |
3318 | | /* no digits, fcvt style */ |
3319 | 0 | no_digits: |
3320 | 0 | k = -1 - ndigits; |
3321 | 0 | goto ret; |
3322 | 0 | } |
3323 | 0 | one_digit: |
3324 | 0 | *s++ = '1'; |
3325 | 0 | k++; |
3326 | 0 | goto ret; |
3327 | 0 | } |
3328 | 0 | if (leftright) { |
3329 | 0 | if (m2 > 0) { |
3330 | 0 | mhi = lshift(mhi, m2); |
3331 | 0 | } |
3332 | | |
3333 | | /* Compute mlo -- check for special case |
3334 | | * that d is a normalized power of 2. |
3335 | | */ |
3336 | |
|
3337 | 0 | mlo = mhi; |
3338 | 0 | if (spec_case) { |
3339 | 0 | mhi = Balloc(mhi->k); |
3340 | 0 | Bcopy(mhi, mlo); |
3341 | 0 | mhi = lshift(mhi, Log2P); |
3342 | 0 | } |
3343 | |
|
3344 | 0 | for (i = 1;; i++) { |
3345 | 0 | dig = quorem(b, S) + '0'; |
3346 | | /* Do we yet have the shortest decimal string |
3347 | | * that will round to d? |
3348 | | */ |
3349 | 0 | j = cmp(b, mlo); |
3350 | 0 | delta = diff(S, mhi); |
3351 | 0 | j1 = delta->sign ? 1 : cmp(b, delta); |
3352 | 0 | Bfree(delta); |
3353 | 0 | #ifndef ROUND_BIASED |
3354 | 0 | if (j1 == 0 && mode != 1 && !(word1(d) & 1) |
3355 | | # ifdef Honor_FLT_ROUNDS |
3356 | | && rounding >= 1 |
3357 | | # endif |
3358 | 0 | ) { |
3359 | 0 | if (dig == '9') { |
3360 | 0 | goto round_9_up; |
3361 | 0 | } |
3362 | 0 | if (j > 0) { |
3363 | 0 | dig++; |
3364 | 0 | } |
3365 | | # ifdef SET_INEXACT |
3366 | | else if (!b->x[0] && b->wds <= 1) { |
3367 | | inexact = 0; |
3368 | | } |
3369 | | # endif |
3370 | 0 | *s++ = dig; |
3371 | 0 | goto ret; |
3372 | 0 | } |
3373 | 0 | #endif |
3374 | 0 | if (j < 0 || j == 0 && mode != 1 |
3375 | 0 | #ifndef ROUND_BIASED |
3376 | 0 | && !(word1(d) & 1) |
3377 | 0 | #endif |
3378 | 0 | ) { |
3379 | 0 | if (!b->x[0] && b->wds <= 1) { |
3380 | | #ifdef SET_INEXACT |
3381 | | inexact = 0; |
3382 | | #endif |
3383 | 0 | goto accept_dig; |
3384 | 0 | } |
3385 | | #ifdef Honor_FLT_ROUNDS |
3386 | | if (mode > 1) switch (rounding) { |
3387 | | case 0: |
3388 | | goto accept_dig; |
3389 | | case 2: |
3390 | | goto keep_dig; |
3391 | | } |
3392 | | #endif /*Honor_FLT_ROUNDS*/ |
3393 | 0 | if (j1 > 0) { |
3394 | 0 | b = lshift(b, 1); |
3395 | 0 | j1 = cmp(b, S); |
3396 | 0 | if ((j1 > 0 || j1 == 0 && dig & 1) && dig++ == '9') { |
3397 | 0 | goto round_9_up; |
3398 | 0 | } |
3399 | 0 | } |
3400 | 0 | accept_dig: |
3401 | 0 | *s++ = dig; |
3402 | 0 | goto ret; |
3403 | 0 | } |
3404 | 0 | if (j1 > 0) { |
3405 | | #ifdef Honor_FLT_ROUNDS |
3406 | | if (!rounding) { |
3407 | | goto accept_dig; |
3408 | | } |
3409 | | #endif |
3410 | 0 | if (dig == '9') { /* possible if i == 1 */ |
3411 | 0 | round_9_up: |
3412 | 0 | *s++ = '9'; |
3413 | 0 | goto roundoff; |
3414 | 0 | } |
3415 | 0 | *s++ = dig + 1; |
3416 | 0 | goto ret; |
3417 | 0 | } |
3418 | | #ifdef Honor_FLT_ROUNDS |
3419 | | keep_dig: |
3420 | | #endif |
3421 | 0 | *s++ = dig; |
3422 | 0 | if (i == ilim) { |
3423 | 0 | break; |
3424 | 0 | } |
3425 | 0 | b = multadd(b, 10, 0); |
3426 | 0 | if (mlo == mhi) { |
3427 | 0 | mlo = mhi = multadd(mhi, 10, 0); |
3428 | 0 | } else { |
3429 | 0 | mlo = multadd(mlo, 10, 0); |
3430 | 0 | mhi = multadd(mhi, 10, 0); |
3431 | 0 | } |
3432 | 0 | } |
3433 | 0 | } else |
3434 | 0 | for (i = 1;; i++) { |
3435 | 0 | *s++ = dig = quorem(b, S) + '0'; |
3436 | 0 | if (!b->x[0] && b->wds <= 1) { |
3437 | | #ifdef SET_INEXACT |
3438 | | inexact = 0; |
3439 | | #endif |
3440 | 0 | goto ret; |
3441 | 0 | } |
3442 | 0 | if (i >= ilim) { |
3443 | 0 | break; |
3444 | 0 | } |
3445 | 0 | b = multadd(b, 10, 0); |
3446 | 0 | } |
3447 | | |
3448 | | /* Round off last digit */ |
3449 | | |
3450 | | #ifdef Honor_FLT_ROUNDS |
3451 | | switch (rounding) { |
3452 | | case 0: |
3453 | | goto trimzeros; |
3454 | | case 2: |
3455 | | goto roundoff; |
3456 | | } |
3457 | | #endif |
3458 | 0 | b = lshift(b, 1); |
3459 | 0 | j = cmp(b, S); |
3460 | 0 | if (j > 0 || j == 0 && dig & 1) { |
3461 | 0 | roundoff: |
3462 | 0 | while (*--s == '9') |
3463 | 0 | if (s == s0) { |
3464 | 0 | k++; |
3465 | 0 | *s++ = '1'; |
3466 | 0 | goto ret; |
3467 | 0 | } |
3468 | 0 | ++*s++; |
3469 | 0 | } else { |
3470 | | #ifdef Honor_FLT_ROUNDS |
3471 | | trimzeros: |
3472 | | #endif |
3473 | 0 | while (*--s == '0'); |
3474 | 0 | s++; |
3475 | 0 | } |
3476 | 0 | ret: Bfree(S); |
3477 | 0 | if (mhi) { |
3478 | 0 | if (mlo && mlo != mhi) { |
3479 | 0 | Bfree(mlo); |
3480 | 0 | } |
3481 | 0 | Bfree(mhi); |
3482 | 0 | } |
3483 | 0 | ret1: |
3484 | | #ifdef SET_INEXACT |
3485 | | if (inexact) { |
3486 | | if (!oldinexact) { |
3487 | | word0(d) = Exp_1 + (70 << Exp_shift); |
3488 | | word1(d) = 0; |
3489 | | dval(d) += 1.; |
3490 | | } |
3491 | | } |
3492 | | else if (!oldinexact) { |
3493 | | clear_inexact(); |
3494 | | } |
3495 | | #endif |
3496 | 0 | Bfree(b); |
3497 | 0 | *s = 0; |
3498 | 0 | *decpt = k + 1; |
3499 | 0 | if (rve) { |
3500 | 0 | *rve = s; |
3501 | 0 | } |
3502 | 0 | return s0; |
3503 | 0 | } |
3504 | | #ifdef __cplusplus |
3505 | | } |
3506 | | #endif |
3507 | | |
3508 | | PR_IMPLEMENT(PRStatus) |
3509 | | PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits, PRIntn* decpt, PRIntn* sign, |
3510 | 0 | char** rve, char* buf, PRSize bufsize) { |
3511 | 0 | char* result; |
3512 | 0 | PRSize resultlen; |
3513 | 0 | PRStatus rv = PR_FAILURE; |
3514 | |
|
3515 | 0 | if (!_pr_initialized) { |
3516 | 0 | _PR_ImplicitInitialization(); |
3517 | 0 | } |
3518 | |
|
3519 | 0 | if (mode < 0 || mode > 3) { |
3520 | 0 | PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0); |
3521 | 0 | return rv; |
3522 | 0 | } |
3523 | 0 | result = dtoa(d, mode, ndigits, decpt, sign, rve); |
3524 | 0 | if (!result) { |
3525 | 0 | PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0); |
3526 | 0 | return rv; |
3527 | 0 | } |
3528 | 0 | resultlen = strlen(result) + 1; |
3529 | 0 | if (bufsize < resultlen) { |
3530 | 0 | PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); |
3531 | 0 | } else { |
3532 | 0 | memcpy(buf, result, resultlen); |
3533 | 0 | if (rve) { |
3534 | 0 | *rve = buf + (*rve - result); |
3535 | 0 | } |
3536 | 0 | rv = PR_SUCCESS; |
3537 | 0 | } |
3538 | 0 | freedtoa(result); |
3539 | 0 | return rv; |
3540 | 0 | } |
3541 | | |
3542 | | /* |
3543 | | ** conversion routines for floating point |
3544 | | ** prcsn - number of digits of precision to generate floating |
3545 | | ** point value. |
3546 | | ** This should be reparameterized so that you can send in a |
3547 | | ** prcn for the positive and negative ranges. For now, |
3548 | | ** conform to the ECMA JavaScript spec which says numbers |
3549 | | ** less than 1e-6 are in scientific notation. |
3550 | | ** Also, the ECMA spec says that there should always be a |
3551 | | ** '+' or '-' after the 'e' in scientific notation |
3552 | | */ |
3553 | | PR_IMPLEMENT(void) |
3554 | 0 | PR_cnvtf(char* buf, int bufsz, int prcsn, double dfval) { |
3555 | 0 | PRIntn decpt, sign, numdigits; |
3556 | 0 | char *num, *nump; |
3557 | 0 | char* bufp = buf; |
3558 | 0 | char* endnum; |
3559 | 0 | U fval; |
3560 | |
|
3561 | 0 | dval(fval) = dfval; |
3562 | | /* If anything fails, we store an empty string in 'buf' */ |
3563 | 0 | num = (char*)PR_MALLOC(bufsz); |
3564 | 0 | if (num == NULL) { |
3565 | 0 | buf[0] = '\0'; |
3566 | 0 | return; |
3567 | 0 | } |
3568 | | /* XXX Why use mode 1? */ |
3569 | 0 | if (PR_dtoa(dval(fval), 1, prcsn, &decpt, &sign, &endnum, num, bufsz) == |
3570 | 0 | PR_FAILURE) { |
3571 | 0 | buf[0] = '\0'; |
3572 | 0 | goto done; |
3573 | 0 | } |
3574 | 0 | numdigits = endnum - num; |
3575 | 0 | nump = num; |
3576 | |
|
3577 | 0 | if (sign && !(word0(fval) == Sign_bit && word1(fval) == 0) && |
3578 | 0 | !((word0(fval) & Exp_mask) == Exp_mask && |
3579 | 0 | (word1(fval) || (word0(fval) & 0xfffff)))) { |
3580 | 0 | *bufp++ = '-'; |
3581 | 0 | } |
3582 | |
|
3583 | 0 | if (decpt == 9999) { |
3584 | 0 | while ((*bufp++ = *nump++) != 0) { |
3585 | 0 | } /* nothing to execute */ |
3586 | 0 | goto done; |
3587 | 0 | } |
3588 | | |
3589 | 0 | if (decpt > (prcsn + 1) || decpt < -(prcsn - 1) || decpt < -5) { |
3590 | 0 | *bufp++ = *nump++; |
3591 | 0 | if (numdigits != 1) { |
3592 | 0 | *bufp++ = '.'; |
3593 | 0 | } |
3594 | |
|
3595 | 0 | while (*nump != '\0') { |
3596 | 0 | *bufp++ = *nump++; |
3597 | 0 | } |
3598 | 0 | *bufp++ = 'e'; |
3599 | 0 | PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt - 1); |
3600 | 0 | } else if (decpt >= 0) { |
3601 | 0 | if (decpt == 0) { |
3602 | 0 | *bufp++ = '0'; |
3603 | 0 | } else { |
3604 | 0 | while (decpt--) { |
3605 | 0 | if (*nump != '\0') { |
3606 | 0 | *bufp++ = *nump++; |
3607 | 0 | } else { |
3608 | 0 | *bufp++ = '0'; |
3609 | 0 | } |
3610 | 0 | } |
3611 | 0 | } |
3612 | 0 | if (*nump != '\0') { |
3613 | 0 | *bufp++ = '.'; |
3614 | 0 | while (*nump != '\0') { |
3615 | 0 | *bufp++ = *nump++; |
3616 | 0 | } |
3617 | 0 | } |
3618 | 0 | *bufp++ = '\0'; |
3619 | 0 | } else if (decpt < 0) { |
3620 | 0 | *bufp++ = '0'; |
3621 | 0 | *bufp++ = '.'; |
3622 | 0 | while (decpt++) { |
3623 | 0 | *bufp++ = '0'; |
3624 | 0 | } |
3625 | |
|
3626 | 0 | while (*nump != '\0') { |
3627 | 0 | *bufp++ = *nump++; |
3628 | 0 | } |
3629 | 0 | *bufp++ = '\0'; |
3630 | 0 | } |
3631 | 0 | done: |
3632 | 0 | PR_DELETE(num); |
3633 | 0 | } |