Coverage Report

Created: 2025-07-11 07:05

/src/nss/lib/freebl/sha_fast.c
Line
Count
Source (jump to first uncovered line)
1
/* This Source Code Form is subject to the terms of the Mozilla Public
2
 * License, v. 2.0. If a copy of the MPL was not distributed with this
3
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5
#ifdef FREEBL_NO_DEPEND
6
#include "stubs.h"
7
#endif
8
9
#include <memory.h>
10
#include "blapi.h"
11
#include "sha_fast.h"
12
#include "prerror.h"
13
#include "secerr.h"
14
15
#ifdef TRACING_SSL
16
#include "ssl.h"
17
#include "ssltrace.h"
18
#endif
19
20
static void shaCompress(volatile SHA_HW_t *X, const PRUint32 *datain);
21
22
0
#define W u.w
23
0
#define B u.b
24
25
0
#define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
26
0
#define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z))
27
0
#define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y))))
28
0
#define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z))
29
30
0
#define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^ XW(n), 1)
31
32
void SHA1_Compress_Native(SHA1Context *ctx);
33
void SHA1_Update_Native(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len);
34
35
static void SHA1_Compress_Generic(SHA1Context *ctx);
36
static void SHA1_Update_Generic(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len);
37
38
#ifndef USE_HW_SHA1
39
void
40
SHA1_Compress_Native(SHA1Context *ctx)
41
0
{
42
0
    PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
43
0
    PORT_Assert(0);
44
0
}
45
46
void
47
SHA1_Update_Native(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
48
0
{
49
0
    PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
50
0
    PORT_Assert(0);
51
0
}
52
#endif
53
54
/*
55
 *  SHA: initialize context
56
 */
57
void
58
SHA1_Begin(SHA1Context *ctx)
59
0
{
60
0
    ctx->size = 0;
61
    /*
62
     *  Initialize H with constants from FIPS180-1.
63
     */
64
0
    ctx->H[0] = 0x67452301L;
65
0
    ctx->H[1] = 0xefcdab89L;
66
0
    ctx->H[2] = 0x98badcfeL;
67
0
    ctx->H[3] = 0x10325476L;
68
0
    ctx->H[4] = 0xc3d2e1f0L;
69
70
#if defined(USE_HW_SHA1) && defined(IS_LITTLE_ENDIAN)
71
    /* arm's implementation is tested on little endian only */
72
    if (arm_sha1_support()) {
73
        ctx->compress = SHA1_Compress_Native;
74
        ctx->update = SHA1_Update_Native;
75
    } else
76
#endif
77
0
    {
78
0
        ctx->compress = SHA1_Compress_Generic;
79
0
        ctx->update = SHA1_Update_Generic;
80
0
    }
81
0
}
82
83
/* Explanation of H array and index values:
84
 * The context's H array is actually the concatenation of two arrays
85
 * defined by SHA1, the H array of state variables (5 elements),
86
 * and the W array of intermediate values, of which there are 16 elements.
87
 * The W array starts at H[5], that is W[0] is H[5].
88
 * Although these values are defined as 32-bit values, we use 64-bit
89
 * variables to hold them because the AMD64 stores 64 bit values in
90
 * memory MUCH faster than it stores any smaller values.
91
 *
92
 * Rather than passing the context structure to shaCompress, we pass
93
 * this combined array of H and W values.  We do not pass the address
94
 * of the first element of this array, but rather pass the address of an
95
 * element in the middle of the array, element X.  Presently X[0] is H[11].
96
 * So we pass the address of H[11] as the address of array X to shaCompress.
97
 * Then shaCompress accesses the members of the array using positive AND
98
 * negative indexes.
99
 *
100
 * Pictorially: (each element is 8 bytes)
101
 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
102
 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
103
 *
104
 * The byte offset from X[0] to any member of H and W is always
105
 * representable in a signed 8-bit value, which will be encoded
106
 * as a single byte offset in the X86-64 instruction set.
107
 * If we didn't pass the address of H[11], and instead passed the
108
 * address of H[0], the offsets to elements H[16] and above would be
109
 * greater than 127, not representable in a signed 8-bit value, and the
110
 * x86-64 instruction set would encode every such offset as a 32-bit
111
 * signed number in each instruction that accessed element H[16] or
112
 * higher.  This results in much bigger and slower code.
113
 */
114
#if !defined(SHA_PUT_W_IN_STACK)
115
0
#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
116
0
#define W2X 6  /* X[0] is W[6],  and W[0] is X[-6]  */
117
#else
118
#define H2X 0
119
#endif
120
121
/*
122
 *  SHA: Add data to context.
123
 */
124
void
125
SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
126
0
{
127
0
    ctx->update(ctx, dataIn, len);
128
0
}
129
130
static void
131
SHA1_Update_Generic(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
132
0
{
133
0
    register unsigned int lenB;
134
0
    register unsigned int togo;
135
136
0
    if (!len)
137
0
        return;
138
139
    /* accumulate the byte count. */
140
0
    lenB = (unsigned int)(ctx->size) & 63U;
141
142
0
    ctx->size += len;
143
144
    /*
145
     *  Read the data into W and process blocks as they get full
146
     */
147
0
    if (lenB > 0) {
148
0
        togo = 64U - lenB;
149
0
        if (len < togo)
150
0
            togo = len;
151
0
        memcpy(ctx->B + lenB, dataIn, togo);
152
0
        len -= togo;
153
0
        dataIn += togo;
154
0
        lenB = (lenB + togo) & 63U;
155
0
        if (!lenB) {
156
0
            shaCompress(&ctx->H[H2X], ctx->W);
157
0
        }
158
0
    }
159
#if !defined(HAVE_UNALIGNED_ACCESS)
160
    if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
161
        while (len >= 64U) {
162
            memcpy(ctx->B, dataIn, 64);
163
            len -= 64U;
164
            shaCompress(&ctx->H[H2X], ctx->W);
165
            dataIn += 64U;
166
        }
167
    } else
168
#endif
169
0
    {
170
0
        while (len >= 64U) {
171
0
            len -= 64U;
172
0
            shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
173
0
            dataIn += 64U;
174
0
        }
175
0
    }
176
0
    if (len) {
177
0
        memcpy(ctx->B, dataIn, len);
178
0
    }
179
0
}
180
181
/*
182
 *  SHA: Generate hash value from context
183
 */
184
void NO_SANITIZE_ALIGNMENT
185
SHA1_End(SHA1Context *ctx, unsigned char *hashout,
186
         unsigned int *pDigestLen, unsigned int maxDigestLen)
187
0
{
188
0
    register PRUint64 size;
189
0
    register PRUint32 lenB;
190
191
0
    static const unsigned char bulk_pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192
0
                                                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193
0
                                                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194
0
#define tmp lenB
195
196
0
    PORT_Assert(maxDigestLen >= SHA1_LENGTH);
197
198
    /*
199
     *  Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
200
     */
201
0
    size = ctx->size;
202
203
0
    lenB = (PRUint32)size & 63;
204
0
    SHA1_Update(ctx, bulk_pad, (((55 + 64) - lenB) & 63) + 1);
205
0
    PORT_Assert(((PRUint32)ctx->size & 63) == 56);
206
    /* Convert size from bytes to bits. */
207
0
    size <<= 3;
208
0
    ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
209
0
    ctx->W[15] = SHA_HTONL((PRUint32)size);
210
0
    ctx->compress(ctx);
211
212
    /*
213
     *  Output hash
214
     */
215
0
    SHA_STORE_RESULT;
216
0
    if (pDigestLen) {
217
0
        *pDigestLen = SHA1_LENGTH;
218
0
    }
219
0
#undef tmp
220
0
}
221
222
void
223
SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
224
            unsigned int *pDigestLen, unsigned int maxDigestLen)
225
0
{
226
#if defined(SHA_NEED_TMP_VARIABLE)
227
    register PRUint32 tmp;
228
#endif
229
0
    PORT_Assert(maxDigestLen >= SHA1_LENGTH);
230
231
0
    SHA_STORE_RESULT;
232
0
    if (pDigestLen)
233
0
        *pDigestLen = SHA1_LENGTH;
234
0
}
235
236
#undef B
237
/*
238
 *  SHA: Compression function, unrolled.
239
 *
240
 * Some operations in shaCompress are done as 5 groups of 16 operations.
241
 * Others are done as 4 groups of 20 operations.
242
 * The code below shows that structure.
243
 *
244
 * The functions that compute the new values of the 5 state variables
245
 * A-E are done in 4 groups of 20 operations (or you may also think
246
 * of them as being done in 16 groups of 5 operations).  They are
247
 * done by the SHA_RNDx macros below, in the right column.
248
 *
249
 * The functions that set the 16 values of the W array are done in
250
 * 5 groups of 16 operations.  The first group is done by the
251
 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
252
 * in the left column.
253
 *
254
 * gcc's optimizer observes that each member of the W array is assigned
255
 * a value 5 times in this code.  It reduces the number of store
256
 * operations done to the W array in the context (that is, in the X array)
257
 * by creating a W array on the stack, and storing the W values there for
258
 * the first 4 groups of operations on W, and storing the values in the
259
 * context's W array only in the fifth group.  This is undesirable.
260
 * It is MUCH bigger code than simply using the context's W array, because
261
 * all the offsets to the W array in the stack are 32-bit signed offsets,
262
 * and it is no faster than storing the values in the context's W array.
263
 *
264
 * The original code for sha_fast.c prevented this creation of a separate
265
 * W array in the stack by creating a W array of 80 members, each of
266
 * whose elements is assigned only once. It also separated the computations
267
 * of the W array values and the computations of the values for the 5
268
 * state variables into two separate passes, W's, then A-E's so that the
269
 * second pass could be done all in registers (except for accessing the W
270
 * array) on machines with fewer registers.  The method is suboptimal
271
 * for machines with enough registers to do it all in one pass, and it
272
 * necessitates using many instructions with 32-bit offsets.
273
 *
274
 * This code eliminates the separate W array on the stack by a completely
275
 * different means: by declaring the X array volatile.  This prevents
276
 * the optimizer from trying to reduce the use of the X array by the
277
 * creation of a MORE expensive W array on the stack. The result is
278
 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
279
 *
280
 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
281
 * results in code that is 3 times faster than the previous NSS sha_fast
282
 * code on AMD64.
283
 */
284
static void NO_SANITIZE_ALIGNMENT
285
shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
286
0
{
287
0
    register SHA_HW_t A, B, C, D, E;
288
289
#if defined(SHA_NEED_TMP_VARIABLE)
290
    register PRUint32 tmp;
291
#endif
292
293
0
#if !defined(SHA_PUT_W_IN_STACK)
294
0
#define XH(n) X[n - H2X]
295
0
#define XW(n) X[n - W2X]
296
#else
297
    SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
298
        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
299
#define XW(n) w_##n
300
#define XH(n) X[n]
301
#endif
302
303
0
#define K0 0x5a827999L
304
0
#define K1 0x6ed9eba1L
305
0
#define K2 0x8f1bbcdcL
306
0
#define K3 0xca62c1d6L
307
308
0
#define SHA_RND1(a, b, c, d, e, n)                         \
309
0
    a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; \
310
0
    c = SHA_ROTL(c, 30)
311
0
#define SHA_RND2(a, b, c, d, e, n)                         \
312
0
    a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; \
313
0
    c = SHA_ROTL(c, 30)
314
0
#define SHA_RND3(a, b, c, d, e, n)                         \
315
0
    a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; \
316
0
    c = SHA_ROTL(c, 30)
317
0
#define SHA_RND4(a, b, c, d, e, n)                         \
318
0
    a = SHA_ROTL(b, 5) + SHA_F4(c, d, e) + a + XW(n) + K3; \
319
0
    c = SHA_ROTL(c, 30)
320
321
0
#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
322
323
0
    A = XH(0);
324
0
    B = XH(1);
325
0
    C = XH(2);
326
0
    D = XH(3);
327
0
    E = XH(4);
328
329
0
    LOAD(0);
330
0
    SHA_RND1(E, A, B, C, D, 0);
331
0
    LOAD(1);
332
0
    SHA_RND1(D, E, A, B, C, 1);
333
0
    LOAD(2);
334
0
    SHA_RND1(C, D, E, A, B, 2);
335
0
    LOAD(3);
336
0
    SHA_RND1(B, C, D, E, A, 3);
337
0
    LOAD(4);
338
0
    SHA_RND1(A, B, C, D, E, 4);
339
0
    LOAD(5);
340
0
    SHA_RND1(E, A, B, C, D, 5);
341
0
    LOAD(6);
342
0
    SHA_RND1(D, E, A, B, C, 6);
343
0
    LOAD(7);
344
0
    SHA_RND1(C, D, E, A, B, 7);
345
0
    LOAD(8);
346
0
    SHA_RND1(B, C, D, E, A, 8);
347
0
    LOAD(9);
348
0
    SHA_RND1(A, B, C, D, E, 9);
349
0
    LOAD(10);
350
0
    SHA_RND1(E, A, B, C, D, 10);
351
0
    LOAD(11);
352
0
    SHA_RND1(D, E, A, B, C, 11);
353
0
    LOAD(12);
354
0
    SHA_RND1(C, D, E, A, B, 12);
355
0
    LOAD(13);
356
0
    SHA_RND1(B, C, D, E, A, 13);
357
0
    LOAD(14);
358
0
    SHA_RND1(A, B, C, D, E, 14);
359
0
    LOAD(15);
360
0
    SHA_RND1(E, A, B, C, D, 15);
361
362
0
    SHA_MIX(0, 13, 8, 2);
363
0
    SHA_RND1(D, E, A, B, C, 0);
364
0
    SHA_MIX(1, 14, 9, 3);
365
0
    SHA_RND1(C, D, E, A, B, 1);
366
0
    SHA_MIX(2, 15, 10, 4);
367
0
    SHA_RND1(B, C, D, E, A, 2);
368
0
    SHA_MIX(3, 0, 11, 5);
369
0
    SHA_RND1(A, B, C, D, E, 3);
370
371
0
    SHA_MIX(4, 1, 12, 6);
372
0
    SHA_RND2(E, A, B, C, D, 4);
373
0
    SHA_MIX(5, 2, 13, 7);
374
0
    SHA_RND2(D, E, A, B, C, 5);
375
0
    SHA_MIX(6, 3, 14, 8);
376
0
    SHA_RND2(C, D, E, A, B, 6);
377
0
    SHA_MIX(7, 4, 15, 9);
378
0
    SHA_RND2(B, C, D, E, A, 7);
379
0
    SHA_MIX(8, 5, 0, 10);
380
0
    SHA_RND2(A, B, C, D, E, 8);
381
0
    SHA_MIX(9, 6, 1, 11);
382
0
    SHA_RND2(E, A, B, C, D, 9);
383
0
    SHA_MIX(10, 7, 2, 12);
384
0
    SHA_RND2(D, E, A, B, C, 10);
385
0
    SHA_MIX(11, 8, 3, 13);
386
0
    SHA_RND2(C, D, E, A, B, 11);
387
0
    SHA_MIX(12, 9, 4, 14);
388
0
    SHA_RND2(B, C, D, E, A, 12);
389
0
    SHA_MIX(13, 10, 5, 15);
390
0
    SHA_RND2(A, B, C, D, E, 13);
391
0
    SHA_MIX(14, 11, 6, 0);
392
0
    SHA_RND2(E, A, B, C, D, 14);
393
0
    SHA_MIX(15, 12, 7, 1);
394
0
    SHA_RND2(D, E, A, B, C, 15);
395
396
0
    SHA_MIX(0, 13, 8, 2);
397
0
    SHA_RND2(C, D, E, A, B, 0);
398
0
    SHA_MIX(1, 14, 9, 3);
399
0
    SHA_RND2(B, C, D, E, A, 1);
400
0
    SHA_MIX(2, 15, 10, 4);
401
0
    SHA_RND2(A, B, C, D, E, 2);
402
0
    SHA_MIX(3, 0, 11, 5);
403
0
    SHA_RND2(E, A, B, C, D, 3);
404
0
    SHA_MIX(4, 1, 12, 6);
405
0
    SHA_RND2(D, E, A, B, C, 4);
406
0
    SHA_MIX(5, 2, 13, 7);
407
0
    SHA_RND2(C, D, E, A, B, 5);
408
0
    SHA_MIX(6, 3, 14, 8);
409
0
    SHA_RND2(B, C, D, E, A, 6);
410
0
    SHA_MIX(7, 4, 15, 9);
411
0
    SHA_RND2(A, B, C, D, E, 7);
412
413
0
    SHA_MIX(8, 5, 0, 10);
414
0
    SHA_RND3(E, A, B, C, D, 8);
415
0
    SHA_MIX(9, 6, 1, 11);
416
0
    SHA_RND3(D, E, A, B, C, 9);
417
0
    SHA_MIX(10, 7, 2, 12);
418
0
    SHA_RND3(C, D, E, A, B, 10);
419
0
    SHA_MIX(11, 8, 3, 13);
420
0
    SHA_RND3(B, C, D, E, A, 11);
421
0
    SHA_MIX(12, 9, 4, 14);
422
0
    SHA_RND3(A, B, C, D, E, 12);
423
0
    SHA_MIX(13, 10, 5, 15);
424
0
    SHA_RND3(E, A, B, C, D, 13);
425
0
    SHA_MIX(14, 11, 6, 0);
426
0
    SHA_RND3(D, E, A, B, C, 14);
427
0
    SHA_MIX(15, 12, 7, 1);
428
0
    SHA_RND3(C, D, E, A, B, 15);
429
430
0
    SHA_MIX(0, 13, 8, 2);
431
0
    SHA_RND3(B, C, D, E, A, 0);
432
0
    SHA_MIX(1, 14, 9, 3);
433
0
    SHA_RND3(A, B, C, D, E, 1);
434
0
    SHA_MIX(2, 15, 10, 4);
435
0
    SHA_RND3(E, A, B, C, D, 2);
436
0
    SHA_MIX(3, 0, 11, 5);
437
0
    SHA_RND3(D, E, A, B, C, 3);
438
0
    SHA_MIX(4, 1, 12, 6);
439
0
    SHA_RND3(C, D, E, A, B, 4);
440
0
    SHA_MIX(5, 2, 13, 7);
441
0
    SHA_RND3(B, C, D, E, A, 5);
442
0
    SHA_MIX(6, 3, 14, 8);
443
0
    SHA_RND3(A, B, C, D, E, 6);
444
0
    SHA_MIX(7, 4, 15, 9);
445
0
    SHA_RND3(E, A, B, C, D, 7);
446
0
    SHA_MIX(8, 5, 0, 10);
447
0
    SHA_RND3(D, E, A, B, C, 8);
448
0
    SHA_MIX(9, 6, 1, 11);
449
0
    SHA_RND3(C, D, E, A, B, 9);
450
0
    SHA_MIX(10, 7, 2, 12);
451
0
    SHA_RND3(B, C, D, E, A, 10);
452
0
    SHA_MIX(11, 8, 3, 13);
453
0
    SHA_RND3(A, B, C, D, E, 11);
454
455
0
    SHA_MIX(12, 9, 4, 14);
456
0
    SHA_RND4(E, A, B, C, D, 12);
457
0
    SHA_MIX(13, 10, 5, 15);
458
0
    SHA_RND4(D, E, A, B, C, 13);
459
0
    SHA_MIX(14, 11, 6, 0);
460
0
    SHA_RND4(C, D, E, A, B, 14);
461
0
    SHA_MIX(15, 12, 7, 1);
462
0
    SHA_RND4(B, C, D, E, A, 15);
463
464
0
    SHA_MIX(0, 13, 8, 2);
465
0
    SHA_RND4(A, B, C, D, E, 0);
466
0
    SHA_MIX(1, 14, 9, 3);
467
0
    SHA_RND4(E, A, B, C, D, 1);
468
0
    SHA_MIX(2, 15, 10, 4);
469
0
    SHA_RND4(D, E, A, B, C, 2);
470
0
    SHA_MIX(3, 0, 11, 5);
471
0
    SHA_RND4(C, D, E, A, B, 3);
472
0
    SHA_MIX(4, 1, 12, 6);
473
0
    SHA_RND4(B, C, D, E, A, 4);
474
0
    SHA_MIX(5, 2, 13, 7);
475
0
    SHA_RND4(A, B, C, D, E, 5);
476
0
    SHA_MIX(6, 3, 14, 8);
477
0
    SHA_RND4(E, A, B, C, D, 6);
478
0
    SHA_MIX(7, 4, 15, 9);
479
0
    SHA_RND4(D, E, A, B, C, 7);
480
0
    SHA_MIX(8, 5, 0, 10);
481
0
    SHA_RND4(C, D, E, A, B, 8);
482
0
    SHA_MIX(9, 6, 1, 11);
483
0
    SHA_RND4(B, C, D, E, A, 9);
484
0
    SHA_MIX(10, 7, 2, 12);
485
0
    SHA_RND4(A, B, C, D, E, 10);
486
0
    SHA_MIX(11, 8, 3, 13);
487
0
    SHA_RND4(E, A, B, C, D, 11);
488
0
    SHA_MIX(12, 9, 4, 14);
489
0
    SHA_RND4(D, E, A, B, C, 12);
490
0
    SHA_MIX(13, 10, 5, 15);
491
0
    SHA_RND4(C, D, E, A, B, 13);
492
0
    SHA_MIX(14, 11, 6, 0);
493
0
    SHA_RND4(B, C, D, E, A, 14);
494
0
    SHA_MIX(15, 12, 7, 1);
495
0
    SHA_RND4(A, B, C, D, E, 15);
496
497
0
    XH(0) += A;
498
0
    XH(1) += B;
499
0
    XH(2) += C;
500
0
    XH(3) += D;
501
0
    XH(4) += E;
502
0
}
503
504
static void
505
SHA1_Compress_Generic(SHA1Context *ctx)
506
0
{
507
0
    shaCompress(&ctx->H[H2X], ctx->u.w);
508
0
}
509
510
/*************************************************************************
511
** Code below this line added to make SHA code support BLAPI interface
512
*/
513
514
SHA1Context *
515
SHA1_NewContext(void)
516
0
{
517
0
    SHA1Context *cx;
518
519
    /* no need to ZNew, SHA1_Begin will init the context */
520
0
    cx = PORT_New(SHA1Context);
521
0
    return cx;
522
0
}
523
524
/* Zero and free the context */
525
void
526
SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
527
0
{
528
0
    memset(cx, 0, sizeof *cx);
529
0
    if (freeit) {
530
0
        PORT_Free(cx);
531
0
    }
532
0
}
533
534
SECStatus
535
SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
536
0
{
537
0
    SHA1Context ctx;
538
0
    unsigned int outLen;
539
540
0
    SHA1_Begin(&ctx);
541
0
    ctx.update(&ctx, src, src_length);
542
0
    SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
543
0
    memset(&ctx, 0, sizeof ctx);
544
0
    return SECSuccess;
545
0
}
546
547
/* Hash a null-terminated character string. */
548
SECStatus
549
SHA1_Hash(unsigned char *dest, const char *src)
550
0
{
551
0
    return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen(src));
552
0
}
553
554
/*
555
 * need to support save/restore state in pkcs11. Stores all the info necessary
556
 * for a structure into just a stream of bytes.
557
 */
558
unsigned int
559
SHA1_FlattenSize(SHA1Context *cx)
560
0
{
561
0
    return sizeof(SHA1Context);
562
0
}
563
564
SECStatus
565
SHA1_Flatten(SHA1Context *cx, unsigned char *space)
566
0
{
567
0
    PORT_Memcpy(space, cx, sizeof(SHA1Context));
568
0
    return SECSuccess;
569
0
}
570
571
SHA1Context *
572
SHA1_Resurrect(unsigned char *space, void *arg)
573
0
{
574
0
    SHA1Context *cx = SHA1_NewContext();
575
0
    if (cx == NULL)
576
0
        return NULL;
577
578
0
    PORT_Memcpy(cx, space, sizeof(SHA1Context));
579
0
    return cx;
580
0
}
581
582
void
583
SHA1_Clone(SHA1Context *dest, SHA1Context *src)
584
0
{
585
0
    memcpy(dest, src, sizeof *dest);
586
0
}
587
588
void
589
SHA1_TraceState(SHA1Context *ctx)
590
0
{
591
0
    PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
592
0
}