/src/nss/lib/freebl/aeskeywrap.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * aeskeywrap.c - implement AES Key Wrap algorithm from RFC 3394  | 
3  |  |  *  | 
4  |  |  * This Source Code Form is subject to the terms of the Mozilla Public  | 
5  |  |  * License, v. 2.0. If a copy of the MPL was not distributed with this  | 
6  |  |  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */  | 
7  |  |  | 
8  |  | #ifdef FREEBL_NO_DEPEND  | 
9  |  | #include "stubs.h"  | 
10  |  | #endif  | 
11  |  |  | 
12  |  | #include <stddef.h>  | 
13  |  |  | 
14  |  | #include "prcpucfg.h"  | 
15  |  | #if defined(IS_LITTLE_ENDIAN) || defined(SHA_NO_LONG_LONG)  | 
16  |  | #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 0  | 
17  |  | #else  | 
18  |  | #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 1  | 
19  |  | #endif  | 
20  |  | #include "prtypes.h" /* for PRUintXX */  | 
21  |  | #include "secport.h" /* for PORT_XXX */  | 
22  |  | #include "secerr.h"  | 
23  |  | #include "blapi.h" /* for AES_ functions */  | 
24  |  | #include "rijndael.h"  | 
25  |  |  | 
26  |  | struct AESKeyWrapContextStr { | 
27  |  |     AESContext aescx;  | 
28  |  |     unsigned char iv[AES_KEY_WRAP_IV_BYTES];  | 
29  |  |     void *mem; /* Pointer to beginning of allocated memory. */  | 
30  |  | };  | 
31  |  |  | 
32  |  | /******************************************/  | 
33  |  | /*  | 
34  |  | ** AES key wrap algorithm, RFC 3394  | 
35  |  | */  | 
36  |  |  | 
37  |  | AESKeyWrapContext *  | 
38  |  | AESKeyWrap_AllocateContext(void)  | 
39  | 0  | { | 
40  |  |     /* aligned_alloc is C11 so we have to do it the old way. */  | 
41  | 0  |     AESKeyWrapContext *ctx = PORT_ZAlloc(sizeof(AESKeyWrapContext) + 15);  | 
42  | 0  |     if (ctx == NULL) { | 
43  | 0  |         PORT_SetError(SEC_ERROR_NO_MEMORY);  | 
44  | 0  |         return NULL;  | 
45  | 0  |     }  | 
46  | 0  |     ctx->mem = ctx;  | 
47  | 0  |     return (AESKeyWrapContext *)(((uintptr_t)ctx + 15) & ~(uintptr_t)0x0F);  | 
48  | 0  | }  | 
49  |  |  | 
50  |  | SECStatus  | 
51  |  | AESKeyWrap_InitContext(AESKeyWrapContext *cx,  | 
52  |  |                        const unsigned char *key,  | 
53  |  |                        unsigned int keylen,  | 
54  |  |                        const unsigned char *iv,  | 
55  |  |                        int x1,  | 
56  |  |                        unsigned int encrypt,  | 
57  |  |                        unsigned int x2)  | 
58  | 0  | { | 
59  | 0  |     SECStatus rv = SECFailure;  | 
60  | 0  |     if (!cx) { | 
61  | 0  |         PORT_SetError(SEC_ERROR_INVALID_ARGS);  | 
62  | 0  |         return SECFailure;  | 
63  | 0  |     }  | 
64  | 0  |     if (iv) { | 
65  | 0  |         memcpy(cx->iv, iv, sizeof cx->iv);  | 
66  | 0  |     } else { | 
67  | 0  |         memset(cx->iv, 0xA6, sizeof cx->iv);  | 
68  | 0  |     }  | 
69  | 0  |     rv = AES_InitContext(&cx->aescx, key, keylen, NULL, NSS_AES, encrypt,  | 
70  | 0  |                          AES_BLOCK_SIZE);  | 
71  | 0  |     return rv;  | 
72  | 0  | }  | 
73  |  |  | 
74  |  | /*  | 
75  |  | ** Create a new AES context suitable for AES encryption/decryption.  | 
76  |  | **  "key" raw key data  | 
77  |  | **  "keylen" the number of bytes of key data (16, 24, or 32)  | 
78  |  | */  | 
79  |  | extern AESKeyWrapContext *  | 
80  |  | AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv,  | 
81  |  |                          int encrypt, unsigned int keylen)  | 
82  | 0  | { | 
83  | 0  |     SECStatus rv;  | 
84  | 0  |     AESKeyWrapContext *cx = AESKeyWrap_AllocateContext();  | 
85  | 0  |     if (!cx)  | 
86  | 0  |         return NULL; /* error is already set */  | 
87  | 0  |     rv = AESKeyWrap_InitContext(cx, key, keylen, iv, 0, encrypt, 0);  | 
88  | 0  |     if (rv != SECSuccess) { | 
89  | 0  |         PORT_Free(cx->mem);  | 
90  | 0  |         cx = NULL; /* error should already be set */  | 
91  | 0  |     }  | 
92  | 0  |     return cx;  | 
93  | 0  | }  | 
94  |  |  | 
95  |  | /*  | 
96  |  | ** Destroy a AES KeyWrap context.  | 
97  |  | **  "cx" the context  | 
98  |  | **  "freeit" if PR_TRUE then free the object as well as its sub-objects  | 
99  |  | */  | 
100  |  | extern void  | 
101  |  | AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit)  | 
102  | 0  | { | 
103  | 0  |     if (cx) { | 
104  | 0  |         AES_DestroyContext(&cx->aescx, PR_FALSE);  | 
105  |  |         /*  memset(cx, 0, sizeof *cx); */  | 
106  | 0  |         if (freeit) { | 
107  | 0  |             PORT_Free(cx->mem);  | 
108  | 0  |         }  | 
109  | 0  |     }  | 
110  | 0  | }  | 
111  |  |  | 
112  |  | #if !BIG_ENDIAN_WITH_64_BIT_REGISTERS  | 
113  |  |  | 
114  |  | /* The AES Key Wrap algorithm has 64-bit values that are ALWAYS big-endian  | 
115  |  | ** (Most significant byte first) in memory.  The only ALU operations done  | 
116  |  | ** on them are increment, decrement, and XOR.  So, on little-endian CPUs,  | 
117  |  | ** and on CPUs that lack 64-bit registers, these big-endian 64-bit operations  | 
118  |  | ** are simulated in the following code.  This is thought to be faster and  | 
119  |  | ** simpler than trying to convert the data to little-endian and back.  | 
120  |  | */  | 
121  |  |  | 
122  |  | /* A and T point to two 64-bit values stored most signficant byte first  | 
123  |  | ** (big endian).  This function increments the 64-bit value T, and then  | 
124  |  | ** XORs it with A, changing A.  | 
125  |  | */  | 
126  |  | static void  | 
127  |  | increment_and_xor(unsigned char *A, unsigned char *T)  | 
128  | 0  | { | 
129  | 0  |     if (!++T[7])  | 
130  | 0  |         if (!++T[6])  | 
131  | 0  |             if (!++T[5])  | 
132  | 0  |                 if (!++T[4])  | 
133  | 0  |                     if (!++T[3])  | 
134  | 0  |                         if (!++T[2])  | 
135  | 0  |                             if (!++T[1])  | 
136  | 0  |                                 ++T[0];  | 
137  |  | 
  | 
138  | 0  |     A[0] ^= T[0];  | 
139  | 0  |     A[1] ^= T[1];  | 
140  | 0  |     A[2] ^= T[2];  | 
141  | 0  |     A[3] ^= T[3];  | 
142  | 0  |     A[4] ^= T[4];  | 
143  | 0  |     A[5] ^= T[5];  | 
144  | 0  |     A[6] ^= T[6];  | 
145  | 0  |     A[7] ^= T[7];  | 
146  | 0  | }  | 
147  |  |  | 
148  |  | /* A and T point to two 64-bit values stored most signficant byte first  | 
149  |  | ** (big endian).  This function XORs T with A, giving a new A, then  | 
150  |  | ** decrements the 64-bit value T.  | 
151  |  | */  | 
152  |  | static void  | 
153  |  | xor_and_decrement(PRUint64 *A, PRUint64 *T)  | 
154  | 0  | { | 
155  | 0  |     unsigned char *TP = (unsigned char *)T;  | 
156  | 0  |     const PRUint64 mask = 0xFF;  | 
157  | 0  |     *A = ((*A & mask << 56) ^ (*T & mask << 56)) |  | 
158  | 0  |          ((*A & mask << 48) ^ (*T & mask << 48)) |  | 
159  | 0  |          ((*A & mask << 40) ^ (*T & mask << 40)) |  | 
160  | 0  |          ((*A & mask << 32) ^ (*T & mask << 32)) |  | 
161  | 0  |          ((*A & mask << 24) ^ (*T & mask << 23)) |  | 
162  | 0  |          ((*A & mask << 16) ^ (*T & mask << 16)) |  | 
163  | 0  |          ((*A & mask << 8) ^ (*T & mask << 8)) |  | 
164  | 0  |          ((*A & mask) ^ (*T & mask));  | 
165  |  | 
  | 
166  | 0  |     if (!TP[7]--)  | 
167  | 0  |         if (!TP[6]--)  | 
168  | 0  |             if (!TP[5]--)  | 
169  | 0  |                 if (!TP[4]--)  | 
170  | 0  |                     if (!TP[3]--)  | 
171  | 0  |                         if (!TP[2]--)  | 
172  | 0  |                             if (!TP[1]--)  | 
173  | 0  |                                 TP[0]--;  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | /* Given an unsigned long t (in host byte order), store this value as a  | 
177  |  | ** 64-bit big-endian value (MSB first) in *pt.  | 
178  |  | */  | 
179  |  | static void  | 
180  |  | set_t(unsigned char *pt, unsigned long t)  | 
181  | 0  | { | 
182  | 0  |     pt[7] = (unsigned char)t;  | 
183  | 0  |     t >>= 8;  | 
184  | 0  |     pt[6] = (unsigned char)t;  | 
185  | 0  |     t >>= 8;  | 
186  | 0  |     pt[5] = (unsigned char)t;  | 
187  | 0  |     t >>= 8;  | 
188  | 0  |     pt[4] = (unsigned char)t;  | 
189  | 0  |     t >>= 8;  | 
190  | 0  |     pt[3] = (unsigned char)t;  | 
191  | 0  |     t >>= 8;  | 
192  | 0  |     pt[2] = (unsigned char)t;  | 
193  | 0  |     t >>= 8;  | 
194  | 0  |     pt[1] = (unsigned char)t;  | 
195  | 0  |     t >>= 8;  | 
196  | 0  |     pt[0] = (unsigned char)t;  | 
197  | 0  | }  | 
198  |  |  | 
199  |  | #endif  | 
200  |  |  | 
201  |  | static void  | 
202  |  | encode_PRUint32_BE(unsigned char *data, PRUint32 val)  | 
203  | 0  | { | 
204  | 0  |     size_t i;  | 
205  | 0  |     for (i = 0; i < sizeof(PRUint32); i++) { | 
206  | 0  |         data[i] = PORT_GET_BYTE_BE(val, i, sizeof(PRUint32));  | 
207  | 0  |     }  | 
208  | 0  | }  | 
209  |  |  | 
210  |  | static PRUint32  | 
211  |  | decode_PRUint32_BE(unsigned char *data)  | 
212  | 0  | { | 
213  | 0  |     PRUint32 val = 0;  | 
214  | 0  |     size_t i;  | 
215  |  | 
  | 
216  | 0  |     for (i = 0; i < sizeof(PRUint32); i++) { | 
217  | 0  |         val = (val << PR_BITS_PER_BYTE) | data[i];  | 
218  | 0  |     }  | 
219  | 0  |     return val;  | 
220  | 0  | }  | 
221  |  |  | 
222  |  | /*  | 
223  |  | ** Perform AES key wrap W function.  | 
224  |  | **  "cx" the context  | 
225  |  | **  "iv" the iv is concatenated to the plain text for for executing the function  | 
226  |  | **  "output" the output buffer to store the encrypted data.  | 
227  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
228  |  | **     after some data is stored in output.  | 
229  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
230  |  | **     stored in "output"  | 
231  |  | **  "input" the input data  | 
232  |  | **  "inputLen" the amount of input data  | 
233  |  | */  | 
234  |  | extern SECStatus  | 
235  |  | AESKeyWrap_W(AESKeyWrapContext *cx, unsigned char *iv, unsigned char *output,  | 
236  |  |              unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
237  |  |              const unsigned char *input, unsigned int inputLen)  | 
238  | 0  | { | 
239  | 0  |     PRUint64 *R = NULL;  | 
240  | 0  |     unsigned int nBlocks;  | 
241  | 0  |     unsigned int i, j;  | 
242  | 0  |     unsigned int aesLen = AES_BLOCK_SIZE;  | 
243  | 0  |     unsigned int outLen = inputLen + AES_KEY_WRAP_BLOCK_SIZE;  | 
244  | 0  |     SECStatus s = SECFailure;  | 
245  |  |     /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */  | 
246  | 0  |     PRUint64 t;  | 
247  | 0  |     PRUint64 B[2];  | 
248  |  | 
  | 
249  | 0  | #define A B[0]  | 
250  |  |  | 
251  |  |     /* Check args */  | 
252  | 0  |     if (inputLen < 2 * AES_KEY_WRAP_BLOCK_SIZE ||  | 
253  | 0  |         0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | 
254  | 0  |         PORT_SetError(SEC_ERROR_INPUT_LEN);  | 
255  | 0  |         return s;  | 
256  | 0  |     }  | 
257  |  | #ifdef maybe  | 
258  |  |     if (!output && pOutputLen) { /* caller is asking for output size */ | 
259  |  |         *pOutputLen = outLen;  | 
260  |  |         return SECSuccess;  | 
261  |  |     }  | 
262  |  | #endif  | 
263  | 0  |     if (maxOutputLen < outLen) { | 
264  | 0  |         PORT_SetError(SEC_ERROR_OUTPUT_LEN);  | 
265  | 0  |         return s;  | 
266  | 0  |     }  | 
267  | 0  |     if (cx == NULL || output == NULL || input == NULL) { | 
268  | 0  |         PORT_SetError(SEC_ERROR_INVALID_ARGS);  | 
269  | 0  |         return s;  | 
270  | 0  |     }  | 
271  | 0  |     nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE;  | 
272  | 0  |     R = PORT_NewArray(PRUint64, nBlocks + 1);  | 
273  | 0  |     if (!R)  | 
274  | 0  |         return s; /* error is already set. */  | 
275  |  |     /*  | 
276  |  |     ** 1) Initialize variables.  | 
277  |  |     */  | 
278  | 0  |     memcpy(&A, iv, AES_KEY_WRAP_IV_BYTES);  | 
279  | 0  |     memcpy(&R[1], input, inputLen);  | 
280  |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS  | 
281  |  |     t = 0;  | 
282  |  | #else  | 
283  | 0  |     memset(&t, 0, sizeof t);  | 
284  | 0  | #endif  | 
285  |  |     /*  | 
286  |  |     ** 2) Calculate intermediate values.  | 
287  |  |     */  | 
288  | 0  |     for (j = 0; j < 6; ++j) { | 
289  | 0  |         for (i = 1; i <= nBlocks; ++i) { | 
290  | 0  |             B[1] = R[i];  | 
291  | 0  |             s = AES_Encrypt(&cx->aescx, (unsigned char *)B, &aesLen,  | 
292  | 0  |                             sizeof B, (unsigned char *)B, sizeof B);  | 
293  | 0  |             if (s != SECSuccess)  | 
294  | 0  |                 break;  | 
295  | 0  |             R[i] = B[1];  | 
296  |  | /* here, increment t and XOR A with t (in big endian order); */  | 
297  |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS  | 
298  |  |             A ^= ++t;  | 
299  |  | #else  | 
300  | 0  |             increment_and_xor((unsigned char *)&A, (unsigned char *)&t);  | 
301  | 0  | #endif  | 
302  | 0  |         }  | 
303  | 0  |     }  | 
304  |  |     /*  | 
305  |  |     ** 3) Output the results.  | 
306  |  |     */  | 
307  | 0  |     if (s == SECSuccess) { | 
308  | 0  |         R[0] = A;  | 
309  | 0  |         memcpy(output, &R[0], outLen);  | 
310  | 0  |         if (pOutputLen)  | 
311  | 0  |             *pOutputLen = outLen;  | 
312  | 0  |     } else if (pOutputLen) { | 
313  | 0  |         *pOutputLen = 0;  | 
314  | 0  |     }  | 
315  | 0  |     PORT_ZFree(R, outLen);  | 
316  | 0  |     return s;  | 
317  | 0  | }  | 
318  |  | #undef A  | 
319  |  |  | 
320  |  | /*  | 
321  |  | ** Perform AES key wrap W^-1 function.  | 
322  |  | **  "cx" the context  | 
323  |  | **  "iv" the input IV to verify against. If NULL, then skip verification.  | 
324  |  | **  "ivOut" the output buffer to store the IV (optional).  | 
325  |  | **  "output" the output buffer to store the decrypted data.  | 
326  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
327  |  | **     after some data is stored in output.  | 
328  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
329  |  | **     stored in "output"  | 
330  |  | **  "input" the input data  | 
331  |  | **  "inputLen" the amount of input data  | 
332  |  | */  | 
333  |  | extern SECStatus  | 
334  |  | AESKeyWrap_Winv(AESKeyWrapContext *cx, unsigned char *iv,  | 
335  |  |                 unsigned char *ivOut, unsigned char *output,  | 
336  |  |                 unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
337  |  |                 const unsigned char *input, unsigned int inputLen)  | 
338  | 0  | { | 
339  | 0  |     PRUint64 *R = NULL;  | 
340  | 0  |     unsigned int nBlocks;  | 
341  | 0  |     unsigned int i, j;  | 
342  | 0  |     unsigned int aesLen = AES_BLOCK_SIZE;  | 
343  | 0  |     unsigned int outLen;  | 
344  | 0  |     SECStatus s = SECFailure;  | 
345  |  |     /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */  | 
346  | 0  |     PRUint64 t;  | 
347  | 0  |     PRUint64 B[2];  | 
348  |  |  | 
349  |  |     /* Check args */  | 
350  | 0  |     if (inputLen < 3 * AES_KEY_WRAP_BLOCK_SIZE ||  | 
351  | 0  |         0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | 
352  | 0  |         PORT_SetError(SEC_ERROR_INPUT_LEN);  | 
353  | 0  |         return s;  | 
354  | 0  |     }  | 
355  | 0  |     outLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE;  | 
356  |  | #ifdef maybe  | 
357  |  |     if (!output && pOutputLen) { /* caller is asking for output size */ | 
358  |  |         *pOutputLen = outLen;  | 
359  |  |         return SECSuccess;  | 
360  |  |     }  | 
361  |  | #endif  | 
362  | 0  |     if (maxOutputLen < outLen) { | 
363  | 0  |         PORT_SetError(SEC_ERROR_OUTPUT_LEN);  | 
364  | 0  |         return s;  | 
365  | 0  |     }  | 
366  | 0  |     if (cx == NULL || output == NULL || input == NULL) { | 
367  | 0  |         PORT_SetError(SEC_ERROR_INVALID_ARGS);  | 
368  | 0  |         return s;  | 
369  | 0  |     }  | 
370  | 0  |     nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE;  | 
371  | 0  |     R = PORT_NewArray(PRUint64, nBlocks);  | 
372  | 0  |     if (!R)  | 
373  | 0  |         return s; /* error is already set. */  | 
374  | 0  |     nBlocks--;  | 
375  |  |     /*  | 
376  |  |     ** 1) Initialize variables.  | 
377  |  |     */  | 
378  | 0  |     memcpy(&R[0], input, inputLen);  | 
379  | 0  |     B[0] = R[0];  | 
380  |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS  | 
381  |  |     t = 6UL * nBlocks;  | 
382  |  | #else  | 
383  | 0  |     set_t((unsigned char *)&t, 6UL * nBlocks);  | 
384  | 0  | #endif  | 
385  |  |     /*  | 
386  |  |     ** 2) Calculate intermediate values.  | 
387  |  |     */  | 
388  | 0  |     for (j = 0; j < 6; ++j) { | 
389  | 0  |         for (i = nBlocks; i; --i) { | 
390  |  | /* here, XOR A with t (in big endian order) and decrement t; */  | 
391  |  | #if BIG_ENDIAN_WITH_64_BIT_REGISTERS  | 
392  |  |             B[0] ^= t--;  | 
393  |  | #else  | 
394  | 0  |             xor_and_decrement(&B[0], &t);  | 
395  | 0  | #endif  | 
396  | 0  |             B[1] = R[i];  | 
397  | 0  |             s = AES_Decrypt(&cx->aescx, (unsigned char *)B, &aesLen,  | 
398  | 0  |                             sizeof B, (unsigned char *)B, sizeof B);  | 
399  | 0  |             if (s != SECSuccess)  | 
400  | 0  |                 break;  | 
401  | 0  |             R[i] = B[1];  | 
402  | 0  |         }  | 
403  | 0  |     }  | 
404  |  |     /*  | 
405  |  |     ** 3) Output the results.  | 
406  |  |     */  | 
407  | 0  |     if (s == SECSuccess) { | 
408  | 0  |         int bad = (iv) && memcmp(&B[0], iv, AES_KEY_WRAP_IV_BYTES);  | 
409  | 0  |         if (!bad) { | 
410  | 0  |             memcpy(output, &R[1], outLen);  | 
411  | 0  |             if (pOutputLen)  | 
412  | 0  |                 *pOutputLen = outLen;  | 
413  | 0  |             if (ivOut) { | 
414  | 0  |                 memcpy(ivOut, &B[0], AES_KEY_WRAP_IV_BYTES);  | 
415  | 0  |             }  | 
416  | 0  |         } else { | 
417  | 0  |             s = SECFailure;  | 
418  | 0  |             PORT_SetError(SEC_ERROR_BAD_DATA);  | 
419  | 0  |             if (pOutputLen)  | 
420  | 0  |                 *pOutputLen = 0;  | 
421  | 0  |         }  | 
422  | 0  |     } else if (pOutputLen) { | 
423  | 0  |         *pOutputLen = 0;  | 
424  | 0  |     }  | 
425  | 0  |     PORT_ZFree(R, inputLen);  | 
426  | 0  |     return s;  | 
427  | 0  | }  | 
428  |  | #undef A  | 
429  |  |  | 
430  |  | /*  | 
431  |  | ** Perform AES key wrap.  | 
432  |  | **  "cx" the context  | 
433  |  | **  "output" the output buffer to store the encrypted data.  | 
434  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
435  |  | **     after some data is stored in output.  | 
436  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
437  |  | **     stored in "output"  | 
438  |  | **  "input" the input data  | 
439  |  | **  "inputLen" the amount of input data  | 
440  |  | */  | 
441  |  | extern SECStatus  | 
442  |  | AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output,  | 
443  |  |                    unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
444  |  |                    const unsigned char *input, unsigned int inputLen)  | 
445  | 0  | { | 
446  | 0  |     return AESKeyWrap_W(cx, cx->iv, output, pOutputLen, maxOutputLen,  | 
447  | 0  |                         input, inputLen);  | 
448  | 0  | }  | 
449  |  |  | 
450  |  | /*  | 
451  |  | ** Perform AES key unwrap.  | 
452  |  | **  "cx" the context  | 
453  |  | **  "output" the output buffer to store the decrypted data.  | 
454  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
455  |  | **     after some data is stored in output.  | 
456  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
457  |  | **     stored in "output"  | 
458  |  | **  "input" the input data  | 
459  |  | **  "inputLen" the amount of input data  | 
460  |  | */  | 
461  |  | extern SECStatus  | 
462  |  | AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output,  | 
463  |  |                    unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
464  |  |                    const unsigned char *input, unsigned int inputLen)  | 
465  | 0  | { | 
466  | 0  |     return AESKeyWrap_Winv(cx, cx->iv, NULL, output, pOutputLen, maxOutputLen,  | 
467  | 0  |                            input, inputLen);  | 
468  | 0  | }  | 
469  |  |  | 
470  | 0  | #define BLOCK_PAD_POWER2(x, bs) (((bs) - ((x) & ((bs)-1))) & ((bs)-1))  | 
471  | 0  | #define AES_KEY_WRAP_ICV2 0xa6, 0x59, 0x59, 0xa6  | 
472  |  | #define AES_KEY_WRAP_ICV2_INT32 0xa65959a6  | 
473  | 0  | #define AES_KEY_WRAP_ICV2_LEN 4  | 
474  |  |  | 
475  |  | /*  | 
476  |  | ** Perform AES key wrap with padding.  | 
477  |  | **  "cx" the context  | 
478  |  | **  "output" the output buffer to store the encrypted data.  | 
479  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
480  |  | **     after some data is stored in output.  | 
481  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
482  |  | **     stored in "output"  | 
483  |  | **  "input" the input data  | 
484  |  | **  "inputLen" the amount of input data  | 
485  |  | */  | 
486  |  | extern SECStatus  | 
487  |  | AESKeyWrap_EncryptKWP(AESKeyWrapContext *cx, unsigned char *output,  | 
488  |  |                       unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
489  |  |                       const unsigned char *input, unsigned int inputLen)  | 
490  | 0  | { | 
491  | 0  |     unsigned int padLen = BLOCK_PAD_POWER2(inputLen, AES_KEY_WRAP_BLOCK_SIZE);  | 
492  | 0  |     unsigned int paddedInputLen = inputLen + padLen;  | 
493  | 0  |     unsigned int outLen = paddedInputLen + AES_KEY_WRAP_BLOCK_SIZE;  | 
494  | 0  |     unsigned char iv[AES_BLOCK_SIZE] = { AES_KEY_WRAP_ICV2 }; | 
495  | 0  |     unsigned char *newBuf;  | 
496  | 0  |     SECStatus rv;  | 
497  |  | 
  | 
498  | 0  |     *pOutputLen = outLen;  | 
499  | 0  |     if (maxOutputLen < outLen) { | 
500  | 0  |         PORT_SetError(SEC_ERROR_OUTPUT_LEN);  | 
501  | 0  |         return SECFailure;  | 
502  | 0  |     }  | 
503  | 0  |     PORT_Assert((AES_KEY_WRAP_ICV2_LEN + sizeof(PRUint32)) == AES_KEY_WRAP_BLOCK_SIZE);  | 
504  | 0  |     encode_PRUint32_BE(iv + AES_KEY_WRAP_ICV2_LEN, inputLen);  | 
505  |  |  | 
506  |  |     /* If we can fit in an AES Block, just do and AES Encrypt,  | 
507  |  |      * iv is big enough to handle this on the stack, so no need to allocate  | 
508  |  |      */  | 
509  | 0  |     if (outLen == AES_BLOCK_SIZE) { | 
510  | 0  |         PORT_Assert(inputLen <= AES_KEY_WRAP_BLOCK_SIZE);  | 
511  | 0  |         PORT_Memset(iv + AES_KEY_WRAP_BLOCK_SIZE, 0, AES_KEY_WRAP_BLOCK_SIZE);  | 
512  | 0  |         PORT_Memcpy(iv + AES_KEY_WRAP_BLOCK_SIZE, input, inputLen);  | 
513  | 0  |         rv = AES_Encrypt(&cx->aescx, output, pOutputLen, maxOutputLen, iv,  | 
514  | 0  |                          outLen);  | 
515  | 0  |         PORT_SafeZero(iv, sizeof(iv));  | 
516  | 0  |         return rv;  | 
517  | 0  |     }  | 
518  |  |  | 
519  |  |     /* add padding to our input block */  | 
520  | 0  |     newBuf = PORT_ZAlloc(paddedInputLen);  | 
521  | 0  |     if (newBuf == NULL) { | 
522  | 0  |         return SECFailure;  | 
523  | 0  |     }  | 
524  | 0  |     PORT_Memcpy(newBuf, input, inputLen);  | 
525  |  | 
  | 
526  | 0  |     rv = AESKeyWrap_W(cx, iv, output, pOutputLen, maxOutputLen,  | 
527  | 0  |                       newBuf, paddedInputLen);  | 
528  | 0  |     PORT_ZFree(newBuf, paddedInputLen);  | 
529  |  |     /* a little overkill, we only need to clear out the length, but this  | 
530  |  |      * is easier to verify we got it all */  | 
531  | 0  |     PORT_SafeZero(iv, sizeof(iv));  | 
532  | 0  |     return rv;  | 
533  | 0  | }  | 
534  |  |  | 
535  |  | /*  | 
536  |  | ** Perform AES key unwrap with padding.  | 
537  |  | **  "cx" the context  | 
538  |  | **  "output" the output buffer to store the decrypted data.  | 
539  |  | **  "pOutputLen" how much data is stored in "output". Set by the routine  | 
540  |  | **     after some data is stored in output.  | 
541  |  | **  "maxOutputLen" the maximum amount of data that can ever be  | 
542  |  | **     stored in "output"  | 
543  |  | **  "input" the input data  | 
544  |  | **  "inputLen" the amount of input data  | 
545  |  | */  | 
546  |  | extern SECStatus  | 
547  |  | AESKeyWrap_DecryptKWP(AESKeyWrapContext *cx, unsigned char *output,  | 
548  |  |                       unsigned int *pOutputLen, unsigned int maxOutputLen,  | 
549  |  |                       const unsigned char *input, unsigned int inputLen)  | 
550  | 0  | { | 
551  | 0  |     unsigned int padLen;  | 
552  | 0  |     unsigned int padLen2;  | 
553  | 0  |     unsigned int outLen;  | 
554  | 0  |     unsigned int paddedLen;  | 
555  | 0  |     unsigned int good;  | 
556  | 0  |     unsigned char *newBuf = NULL;  | 
557  | 0  |     unsigned char *allocBuf = NULL;  | 
558  | 0  |     int i;  | 
559  | 0  |     unsigned char iv[AES_BLOCK_SIZE];  | 
560  | 0  |     PRUint32 magic;  | 
561  | 0  |     SECStatus rv = SECFailure;  | 
562  |  | 
  | 
563  | 0  |     paddedLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE;  | 
564  |  |     /* unwrap the padded result */  | 
565  | 0  |     if (inputLen == AES_BLOCK_SIZE) { | 
566  | 0  |         rv = AES_Decrypt(&cx->aescx, iv, &outLen, inputLen, input, inputLen);  | 
567  | 0  |         newBuf = &iv[AES_KEY_WRAP_BLOCK_SIZE];  | 
568  | 0  |         outLen -= AES_KEY_WRAP_BLOCK_SIZE;  | 
569  | 0  |     } else { | 
570  |  |         /* if the caller supplied enough space to hold the unpadded buffer,  | 
571  |  |          * we can unwrap directly into that unpadded buffer. Otherwise  | 
572  |  |          * we allocate a buffer that can hold the padding, and we'll copy  | 
573  |  |          * the result in a later step */  | 
574  | 0  |         newBuf = output;  | 
575  | 0  |         if (maxOutputLen < paddedLen) { | 
576  | 0  |             allocBuf = newBuf = PORT_Alloc(paddedLen);  | 
577  | 0  |             if (!allocBuf) { | 
578  | 0  |                 return SECFailure;  | 
579  | 0  |             }  | 
580  | 0  |         }  | 
581  |  |         /* We pass NULL for the first IV argument because we don't know  | 
582  |  |          * what the IV has since in includes the length, so we don't have  | 
583  |  |          * Winv verify it. We pass iv in the second argument to get the  | 
584  |  |          * iv, which we verify below before we return anything */  | 
585  | 0  |         rv = AESKeyWrap_Winv(cx, NULL, iv, newBuf, &outLen,  | 
586  | 0  |                              paddedLen, input, inputLen);  | 
587  | 0  |     }  | 
588  | 0  |     if (rv != SECSuccess) { | 
589  | 0  |         goto loser;  | 
590  | 0  |     }  | 
591  | 0  |     rv = SECFailure;  | 
592  | 0  |     if (outLen != paddedLen) { | 
593  | 0  |         PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);  | 
594  | 0  |         goto loser;  | 
595  | 0  |     }  | 
596  |  |  | 
597  |  |     /* we verify the result in a constant time manner */  | 
598  |  |     /* verify ICV magic */  | 
599  | 0  |     magic = decode_PRUint32_BE(iv);  | 
600  | 0  |     good = PORT_CT_EQ(magic, AES_KEY_WRAP_ICV2_INT32);  | 
601  |  |     /* fetch and verify plain text length */  | 
602  | 0  |     outLen = decode_PRUint32_BE(iv + AES_KEY_WRAP_ICV2_LEN);  | 
603  | 0  |     good &= PORT_CT_LE(outLen, paddedLen);  | 
604  |  |     /* now verify the padding */  | 
605  | 0  |     padLen = paddedLen - outLen;  | 
606  | 0  |     padLen2 = BLOCK_PAD_POWER2(outLen, AES_KEY_WRAP_BLOCK_SIZE);  | 
607  | 0  |     good &= PORT_CT_EQ(padLen, padLen2);  | 
608  | 0  |     for (i = 0; i < AES_KEY_WRAP_BLOCK_SIZE; i++) { | 
609  | 0  |         unsigned int doTest = PORT_CT_GT(padLen, i);  | 
610  | 0  |         unsigned int result = PORT_CT_ZERO(newBuf[paddedLen - i - 1]);  | 
611  | 0  |         good &= PORT_CT_SEL(doTest, result, PORT_CT_TRUE);  | 
612  | 0  |     }  | 
613  |  |  | 
614  |  |     /* now if anything was wrong, fail. At this point we will leak timing  | 
615  |  |      * information, but we also 'leak' the error code as well. */  | 
616  | 0  |     if (!good) { | 
617  | 0  |         PORT_SetError(SEC_ERROR_BAD_DATA);  | 
618  | 0  |         goto loser;  | 
619  | 0  |     }  | 
620  |  |  | 
621  |  |     /* now copy out the result */  | 
622  | 0  |     *pOutputLen = outLen;  | 
623  | 0  |     if (maxOutputLen < outLen) { | 
624  | 0  |         PORT_SetError(SEC_ERROR_OUTPUT_LEN);  | 
625  | 0  |         goto loser;  | 
626  | 0  |     }  | 
627  | 0  |     if (output != newBuf) { | 
628  | 0  |         PORT_Memcpy(output, newBuf, outLen);  | 
629  | 0  |     }  | 
630  | 0  |     rv = SECSuccess;  | 
631  | 0  | loser:  | 
632  |  |     /* if we failed, make sure we don't return any data to the user */  | 
633  | 0  |     if ((rv != SECSuccess) && (output == newBuf)) { | 
634  | 0  |         PORT_SafeZero(newBuf, paddedLen);  | 
635  | 0  |     }  | 
636  |  |     /* clear out CSP sensitive data from the heap and stack */  | 
637  | 0  |     if (allocBuf) { | 
638  | 0  |         PORT_ZFree(allocBuf, paddedLen);  | 
639  | 0  |     }  | 
640  | 0  |     PORT_SafeZero(iv, sizeof(iv));  | 
641  | 0  |     return rv;  | 
642  | 0  | }  |