/src/nss/lib/freebl/gcm.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | /* Thanks to Thomas Pornin for the ideas how to implement the constat time |
5 | | * binary multiplication. */ |
6 | | |
7 | | #ifdef FREEBL_NO_DEPEND |
8 | | #include "stubs.h" |
9 | | #endif |
10 | | #include "blapii.h" |
11 | | #include "blapit.h" |
12 | | #include "blapi.h" |
13 | | #include "gcm.h" |
14 | | #include "ctr.h" |
15 | | #include "secerr.h" |
16 | | #include "prtypes.h" |
17 | | #include "pkcs11t.h" |
18 | | |
19 | | #include <limits.h> |
20 | | |
21 | | /* old gcc doesn't support some poly64x2_t intrinsic */ |
22 | | #if defined(__aarch64__) && defined(IS_LITTLE_ENDIAN) && \ |
23 | | (defined(__clang__) || defined(__GNUC__) && __GNUC__ > 6) |
24 | | #define USE_ARM_GCM |
25 | | #elif defined(__arm__) && defined(IS_LITTLE_ENDIAN) && \ |
26 | | !defined(NSS_DISABLE_ARM32_NEON) |
27 | | /* We don't test on big endian platform, so disable this on big endian. */ |
28 | | #define USE_ARM_GCM |
29 | | #endif |
30 | | |
31 | | #if defined(__ARM_NEON) || defined(__ARM_NEON__) |
32 | | #include <arm_neon.h> |
33 | | #endif |
34 | | |
35 | | /* Forward declarations */ |
36 | | SECStatus gcm_HashInit_hw(gcmHashContext *ghash); |
37 | | SECStatus gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf); |
38 | | SECStatus gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf, |
39 | | unsigned int count); |
40 | | SECStatus gcm_HashZeroX_hw(gcmHashContext *ghash); |
41 | | SECStatus gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf, |
42 | | unsigned int count); |
43 | | SECStatus gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf, |
44 | | unsigned int count); |
45 | | |
46 | | /* Stub definitions for the above *_hw functions, which shouldn't be |
47 | | * used unless NSS_X86_OR_X64 is defined */ |
48 | | #if !defined(NSS_X86_OR_X64) && !defined(USE_ARM_GCM) && !defined(USE_PPC_CRYPTO) |
49 | | SECStatus |
50 | | gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf) |
51 | | { |
52 | | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
53 | | return SECFailure; |
54 | | } |
55 | | |
56 | | SECStatus |
57 | | gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf, |
58 | | unsigned int count) |
59 | | { |
60 | | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
61 | | return SECFailure; |
62 | | } |
63 | | |
64 | | SECStatus |
65 | | gcm_HashInit_hw(gcmHashContext *ghash) |
66 | | { |
67 | | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
68 | | return SECFailure; |
69 | | } |
70 | | |
71 | | SECStatus |
72 | | gcm_HashZeroX_hw(gcmHashContext *ghash) |
73 | | { |
74 | | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
75 | | return SECFailure; |
76 | | } |
77 | | #endif /* !NSS_X86_OR_X64 && !USE_ARM_GCM && !USE_PPC_CRYPTO */ |
78 | | |
79 | | uint64_t |
80 | | get64(const unsigned char *bytes) |
81 | 0 | { |
82 | 0 | return ((uint64_t)bytes[0]) << 56 | |
83 | 0 | ((uint64_t)bytes[1]) << 48 | |
84 | 0 | ((uint64_t)bytes[2]) << 40 | |
85 | 0 | ((uint64_t)bytes[3]) << 32 | |
86 | 0 | ((uint64_t)bytes[4]) << 24 | |
87 | 0 | ((uint64_t)bytes[5]) << 16 | |
88 | 0 | ((uint64_t)bytes[6]) << 8 | |
89 | 0 | ((uint64_t)bytes[7]); |
90 | 0 | } |
91 | | |
92 | | /* Initialize a gcmHashContext */ |
93 | | SECStatus |
94 | | gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, PRBool sw) |
95 | 0 | { |
96 | 0 | SECStatus rv = SECSuccess; |
97 | |
|
98 | 0 | ghash->cLen = 0; |
99 | 0 | ghash->bufLen = 0; |
100 | 0 | PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf)); |
101 | |
|
102 | 0 | ghash->h_low = get64(H + 8); |
103 | 0 | ghash->h_high = get64(H); |
104 | | #ifdef USE_ARM_GCM |
105 | | #if defined(__aarch64__) |
106 | | if (arm_pmull_support() && !sw) { |
107 | | #else |
108 | | if (arm_neon_support() && !sw) { |
109 | | #endif |
110 | | #elif defined(USE_PPC_CRYPTO) |
111 | | if (ppc_crypto_support() && !sw) { |
112 | | #else |
113 | 0 | if (clmul_support() && !sw) { |
114 | 0 | #endif |
115 | 0 | rv = gcm_HashInit_hw(ghash); |
116 | 0 | } else { |
117 | | /* We fall back to the software implementation if we can't use / don't |
118 | | * want to use pclmul. */ |
119 | 0 | #ifdef HAVE_INT128_SUPPORT |
120 | 0 | ghash->ghash_mul = gcm_HashMult_sftw; |
121 | | #else |
122 | | ghash->ghash_mul = gcm_HashMult_sftw32; |
123 | | #endif |
124 | 0 | ghash->x_high = ghash->x_low = 0; |
125 | 0 | ghash->hw = PR_FALSE; |
126 | 0 | } |
127 | 0 | return rv; |
128 | 0 | } |
129 | | |
130 | | #ifdef HAVE_INT128_SUPPORT |
131 | | /* Binary multiplication x * y = r_high << 64 | r_low. */ |
132 | | void |
133 | | bmul(uint64_t x, uint64_t y, uint64_t *r_high, uint64_t *r_low) |
134 | 0 | { |
135 | 0 | uint128_t x1, x2, x3, x4, x5; |
136 | 0 | uint128_t y1, y2, y3, y4, y5; |
137 | 0 | uint128_t r, z; |
138 | |
|
139 | 0 | uint128_t m1 = (uint128_t)0x2108421084210842 << 64 | 0x1084210842108421; |
140 | 0 | uint128_t m2 = (uint128_t)0x4210842108421084 << 64 | 0x2108421084210842; |
141 | 0 | uint128_t m3 = (uint128_t)0x8421084210842108 << 64 | 0x4210842108421084; |
142 | 0 | uint128_t m4 = (uint128_t)0x0842108421084210 << 64 | 0x8421084210842108; |
143 | 0 | uint128_t m5 = (uint128_t)0x1084210842108421 << 64 | 0x0842108421084210; |
144 | |
|
145 | 0 | x1 = x & m1; |
146 | 0 | y1 = y & m1; |
147 | 0 | x2 = x & m2; |
148 | 0 | y2 = y & m2; |
149 | 0 | x3 = x & m3; |
150 | 0 | y3 = y & m3; |
151 | 0 | x4 = x & m4; |
152 | 0 | y4 = y & m4; |
153 | 0 | x5 = x & m5; |
154 | 0 | y5 = y & m5; |
155 | |
|
156 | 0 | z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2); |
157 | 0 | r = z & m1; |
158 | 0 | z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3); |
159 | 0 | r |= z & m2; |
160 | 0 | z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4); |
161 | 0 | r |= z & m3; |
162 | 0 | z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5); |
163 | 0 | r |= z & m4; |
164 | 0 | z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1); |
165 | 0 | r |= z & m5; |
166 | |
|
167 | 0 | *r_high = (uint64_t)(r >> 64); |
168 | 0 | *r_low = (uint64_t)r; |
169 | 0 | } |
170 | | |
171 | | SECStatus |
172 | | gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf, |
173 | | unsigned int count) |
174 | 0 | { |
175 | 0 | uint64_t ci_low, ci_high; |
176 | 0 | size_t i; |
177 | 0 | uint64_t z2_low, z2_high, z0_low, z0_high, z1a_low, z1a_high; |
178 | 0 | uint128_t z_high = 0, z_low = 0; |
179 | |
|
180 | 0 | ci_low = ghash->x_low; |
181 | 0 | ci_high = ghash->x_high; |
182 | 0 | for (i = 0; i < count; i++, buf += 16) { |
183 | 0 | ci_low ^= get64(buf + 8); |
184 | 0 | ci_high ^= get64(buf); |
185 | | |
186 | | /* Do binary mult ghash->X = C * ghash->H (Karatsuba). */ |
187 | 0 | bmul(ci_high, ghash->h_high, &z2_high, &z2_low); |
188 | 0 | bmul(ci_low, ghash->h_low, &z0_high, &z0_low); |
189 | 0 | bmul(ci_high ^ ci_low, ghash->h_high ^ ghash->h_low, &z1a_high, &z1a_low); |
190 | 0 | z1a_high ^= z2_high ^ z0_high; |
191 | 0 | z1a_low ^= z2_low ^ z0_low; |
192 | 0 | z_high = ((uint128_t)z2_high << 64) | (z2_low ^ z1a_high); |
193 | 0 | z_low = (((uint128_t)z0_high << 64) | z0_low) ^ (((uint128_t)z1a_low) << 64); |
194 | | |
195 | | /* Shift one (multiply by x) as gcm spec is stupid. */ |
196 | 0 | z_high = (z_high << 1) | (z_low >> 127); |
197 | 0 | z_low <<= 1; |
198 | | |
199 | | /* Reduce */ |
200 | 0 | z_low ^= (z_low << 127) ^ (z_low << 126) ^ (z_low << 121); |
201 | 0 | z_high ^= z_low ^ (z_low >> 1) ^ (z_low >> 2) ^ (z_low >> 7); |
202 | 0 | ci_low = (uint64_t)z_high; |
203 | 0 | ci_high = (uint64_t)(z_high >> 64); |
204 | 0 | } |
205 | 0 | ghash->x_low = ci_low; |
206 | 0 | ghash->x_high = ci_high; |
207 | 0 | return SECSuccess; |
208 | 0 | } |
209 | | #else |
210 | | /* Binary multiplication x * y = r_high << 32 | r_low. */ |
211 | | void |
212 | | bmul32(uint32_t x, uint32_t y, uint32_t *r_high, uint32_t *r_low) |
213 | | { |
214 | | uint32_t x0, x1, x2, x3; |
215 | | uint32_t y0, y1, y2, y3; |
216 | | uint32_t m1 = (uint32_t)0x11111111; |
217 | | uint32_t m2 = (uint32_t)0x22222222; |
218 | | uint32_t m4 = (uint32_t)0x44444444; |
219 | | uint32_t m8 = (uint32_t)0x88888888; |
220 | | uint64_t z0, z1, z2, z3; |
221 | | uint64_t z; |
222 | | |
223 | | x0 = x & m1; |
224 | | x1 = x & m2; |
225 | | x2 = x & m4; |
226 | | x3 = x & m8; |
227 | | y0 = y & m1; |
228 | | y1 = y & m2; |
229 | | y2 = y & m4; |
230 | | y3 = y & m8; |
231 | | z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^ |
232 | | ((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1); |
233 | | z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^ |
234 | | ((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2); |
235 | | z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^ |
236 | | ((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3); |
237 | | z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^ |
238 | | ((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0); |
239 | | z0 &= ((uint64_t)m1 << 32) | m1; |
240 | | z1 &= ((uint64_t)m2 << 32) | m2; |
241 | | z2 &= ((uint64_t)m4 << 32) | m4; |
242 | | z3 &= ((uint64_t)m8 << 32) | m8; |
243 | | z = z0 | z1 | z2 | z3; |
244 | | *r_high = (uint32_t)(z >> 32); |
245 | | *r_low = (uint32_t)z; |
246 | | } |
247 | | |
248 | | SECStatus |
249 | | gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf, |
250 | | unsigned int count) |
251 | | { |
252 | | size_t i; |
253 | | uint64_t ci_low, ci_high; |
254 | | uint64_t z_high_h, z_high_l, z_low_h, z_low_l; |
255 | | uint32_t ci_high_h, ci_high_l, ci_low_h, ci_low_l; |
256 | | uint32_t b_a_h, b_a_l, a_a_h, a_a_l, b_b_h, b_b_l; |
257 | | uint32_t a_b_h, a_b_l, b_c_h, b_c_l, a_c_h, a_c_l, c_c_h, c_c_l; |
258 | | uint32_t ci_highXlow_h, ci_highXlow_l, c_a_h, c_a_l, c_b_h, c_b_l; |
259 | | |
260 | | uint32_t h_high_h = (uint32_t)(ghash->h_high >> 32); |
261 | | uint32_t h_high_l = (uint32_t)ghash->h_high; |
262 | | uint32_t h_low_h = (uint32_t)(ghash->h_low >> 32); |
263 | | uint32_t h_low_l = (uint32_t)ghash->h_low; |
264 | | uint32_t h_highXlow_h = h_high_h ^ h_low_h; |
265 | | uint32_t h_highXlow_l = h_high_l ^ h_low_l; |
266 | | uint32_t h_highX_xored = h_highXlow_h ^ h_highXlow_l; |
267 | | |
268 | | for (i = 0; i < count; i++, buf += 16) { |
269 | | ci_low = ghash->x_low ^ get64(buf + 8); |
270 | | ci_high = ghash->x_high ^ get64(buf); |
271 | | ci_low_h = (uint32_t)(ci_low >> 32); |
272 | | ci_low_l = (uint32_t)ci_low; |
273 | | ci_high_h = (uint32_t)(ci_high >> 32); |
274 | | ci_high_l = (uint32_t)ci_high; |
275 | | ci_highXlow_h = ci_high_h ^ ci_low_h; |
276 | | ci_highXlow_l = ci_high_l ^ ci_low_l; |
277 | | |
278 | | /* Do binary mult ghash->X = C * ghash->H (recursive Karatsuba). */ |
279 | | bmul32(ci_high_h, h_high_h, &a_a_h, &a_a_l); |
280 | | bmul32(ci_high_l, h_high_l, &a_b_h, &a_b_l); |
281 | | bmul32(ci_high_h ^ ci_high_l, h_high_h ^ h_high_l, &a_c_h, &a_c_l); |
282 | | a_c_h ^= a_a_h ^ a_b_h; |
283 | | a_c_l ^= a_a_l ^ a_b_l; |
284 | | a_a_l ^= a_c_h; |
285 | | a_b_h ^= a_c_l; |
286 | | /* ci_high * h_high = a_a_h:a_a_l:a_b_h:a_b_l */ |
287 | | |
288 | | bmul32(ci_low_h, h_low_h, &b_a_h, &b_a_l); |
289 | | bmul32(ci_low_l, h_low_l, &b_b_h, &b_b_l); |
290 | | bmul32(ci_low_h ^ ci_low_l, h_low_h ^ h_low_l, &b_c_h, &b_c_l); |
291 | | b_c_h ^= b_a_h ^ b_b_h; |
292 | | b_c_l ^= b_a_l ^ b_b_l; |
293 | | b_a_l ^= b_c_h; |
294 | | b_b_h ^= b_c_l; |
295 | | /* ci_low * h_low = b_a_h:b_a_l:b_b_h:b_b_l */ |
296 | | |
297 | | bmul32(ci_highXlow_h, h_highXlow_h, &c_a_h, &c_a_l); |
298 | | bmul32(ci_highXlow_l, h_highXlow_l, &c_b_h, &c_b_l); |
299 | | bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highX_xored, &c_c_h, &c_c_l); |
300 | | c_c_h ^= c_a_h ^ c_b_h; |
301 | | c_c_l ^= c_a_l ^ c_b_l; |
302 | | c_a_l ^= c_c_h; |
303 | | c_b_h ^= c_c_l; |
304 | | /* (ci_high ^ ci_low) * (h_high ^ h_low) = c_a_h:c_a_l:c_b_h:c_b_l */ |
305 | | |
306 | | c_a_h ^= b_a_h ^ a_a_h; |
307 | | c_a_l ^= b_a_l ^ a_a_l; |
308 | | c_b_h ^= b_b_h ^ a_b_h; |
309 | | c_b_l ^= b_b_l ^ a_b_l; |
310 | | z_high_h = ((uint64_t)a_a_h << 32) | a_a_l; |
311 | | z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^ |
312 | | (((uint64_t)c_a_h << 32) | c_a_l); |
313 | | z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^ |
314 | | (((uint64_t)c_b_h << 32) | c_b_l); |
315 | | z_low_l = ((uint64_t)b_b_h << 32) | b_b_l; |
316 | | |
317 | | /* Shift one (multiply by x) as gcm spec is stupid. */ |
318 | | z_high_h = z_high_h << 1 | z_high_l >> 63; |
319 | | z_high_l = z_high_l << 1 | z_low_h >> 63; |
320 | | z_low_h = z_low_h << 1 | z_low_l >> 63; |
321 | | z_low_l <<= 1; |
322 | | |
323 | | /* Reduce */ |
324 | | z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57); |
325 | | z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7); |
326 | | z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^ |
327 | | (z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57); |
328 | | ghash->x_high = z_high_h; |
329 | | ghash->x_low = z_high_l; |
330 | | } |
331 | | return SECSuccess; |
332 | | } |
333 | | #endif /* HAVE_INT128_SUPPORT */ |
334 | | |
335 | | static SECStatus |
336 | | gcm_zeroX(gcmHashContext *ghash) |
337 | 0 | { |
338 | 0 | SECStatus rv = SECSuccess; |
339 | |
|
340 | 0 | if (ghash->hw) { |
341 | 0 | rv = gcm_HashZeroX_hw(ghash); |
342 | 0 | } |
343 | |
|
344 | 0 | ghash->x_high = ghash->x_low = 0; |
345 | 0 | return rv; |
346 | 0 | } |
347 | | |
348 | | /* |
349 | | * implement GCM GHASH using the freebl GHASH function. The gcm_HashMult |
350 | | * function always takes AES_BLOCK_SIZE lengths of data. gcmHash_Update will |
351 | | * format the data properly. |
352 | | */ |
353 | | SECStatus |
354 | | gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf, |
355 | | unsigned int len) |
356 | 0 | { |
357 | 0 | unsigned int blocks; |
358 | 0 | SECStatus rv; |
359 | |
|
360 | 0 | ghash->cLen += (len * PR_BITS_PER_BYTE); |
361 | | |
362 | | /* first deal with the current buffer of data. Try to fill it out so |
363 | | * we can hash it */ |
364 | 0 | if (ghash->bufLen) { |
365 | 0 | unsigned int needed = PR_MIN(len, AES_BLOCK_SIZE - ghash->bufLen); |
366 | 0 | if (needed != 0) { |
367 | 0 | PORT_Memcpy(ghash->buffer + ghash->bufLen, buf, needed); |
368 | 0 | } |
369 | 0 | buf += needed; |
370 | 0 | len -= needed; |
371 | 0 | ghash->bufLen += needed; |
372 | 0 | if (len == 0) { |
373 | | /* didn't add enough to hash the data, nothing more do do */ |
374 | 0 | return SECSuccess; |
375 | 0 | } |
376 | 0 | PORT_Assert(ghash->bufLen == AES_BLOCK_SIZE); |
377 | | /* hash the buffer and clear it */ |
378 | 0 | rv = ghash->ghash_mul(ghash, ghash->buffer, 1); |
379 | 0 | PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE); |
380 | 0 | ghash->bufLen = 0; |
381 | 0 | if (rv != SECSuccess) { |
382 | 0 | return SECFailure; |
383 | 0 | } |
384 | 0 | } |
385 | | /* now hash any full blocks remaining in the data stream */ |
386 | 0 | blocks = len / AES_BLOCK_SIZE; |
387 | 0 | if (blocks) { |
388 | 0 | rv = ghash->ghash_mul(ghash, buf, blocks); |
389 | 0 | if (rv != SECSuccess) { |
390 | 0 | return SECFailure; |
391 | 0 | } |
392 | 0 | buf += blocks * AES_BLOCK_SIZE; |
393 | 0 | len -= blocks * AES_BLOCK_SIZE; |
394 | 0 | } |
395 | | |
396 | | /* save any remainder in the buffer to be hashed with the next call */ |
397 | 0 | if (len != 0) { |
398 | 0 | PORT_Memcpy(ghash->buffer, buf, len); |
399 | 0 | ghash->bufLen = len; |
400 | 0 | } |
401 | 0 | return SECSuccess; |
402 | 0 | } |
403 | | |
404 | | /* |
405 | | * write out any partial blocks zero padded through the GHASH engine, |
406 | | * save the lengths for the final completion of the hash |
407 | | */ |
408 | | static SECStatus |
409 | | gcmHash_Sync(gcmHashContext *ghash) |
410 | 0 | { |
411 | 0 | int i; |
412 | 0 | SECStatus rv; |
413 | | |
414 | | /* copy the previous counter to the upper block */ |
415 | 0 | PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN], |
416 | 0 | GCM_HASH_LEN_LEN); |
417 | | /* copy the current counter in the lower block */ |
418 | 0 | for (i = 0; i < GCM_HASH_LEN_LEN; i++) { |
419 | 0 | ghash->counterBuf[GCM_HASH_LEN_LEN + i] = |
420 | 0 | (ghash->cLen >> ((GCM_HASH_LEN_LEN - 1 - i) * PR_BITS_PER_BYTE)) & 0xff; |
421 | 0 | } |
422 | 0 | ghash->cLen = 0; |
423 | | |
424 | | /* now zero fill the buffer and hash the last block */ |
425 | 0 | if (ghash->bufLen) { |
426 | 0 | PORT_Memset(ghash->buffer + ghash->bufLen, 0, AES_BLOCK_SIZE - ghash->bufLen); |
427 | 0 | rv = ghash->ghash_mul(ghash, ghash->buffer, 1); |
428 | 0 | PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE); |
429 | 0 | ghash->bufLen = 0; |
430 | 0 | if (rv != SECSuccess) { |
431 | 0 | return SECFailure; |
432 | 0 | } |
433 | 0 | } |
434 | 0 | return SECSuccess; |
435 | 0 | } |
436 | | |
437 | | #define WRITE64(x, bytes) \ |
438 | 0 | (bytes)[0] = (x) >> 56; \ |
439 | 0 | (bytes)[1] = (x) >> 48; \ |
440 | 0 | (bytes)[2] = (x) >> 40; \ |
441 | 0 | (bytes)[3] = (x) >> 32; \ |
442 | 0 | (bytes)[4] = (x) >> 24; \ |
443 | 0 | (bytes)[5] = (x) >> 16; \ |
444 | 0 | (bytes)[6] = (x) >> 8; \ |
445 | 0 | (bytes)[7] = (x); |
446 | | |
447 | | /* |
448 | | * This does the final sync, hashes the lengths, then returns |
449 | | * "T", the hashed output. |
450 | | */ |
451 | | SECStatus |
452 | | gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf, |
453 | | unsigned int *outlen, unsigned int maxout) |
454 | 0 | { |
455 | 0 | unsigned char T[MAX_BLOCK_SIZE]; |
456 | 0 | SECStatus rv; |
457 | |
|
458 | 0 | rv = gcmHash_Sync(ghash); |
459 | 0 | if (rv != SECSuccess) { |
460 | 0 | goto cleanup; |
461 | 0 | } |
462 | | |
463 | 0 | rv = ghash->ghash_mul(ghash, ghash->counterBuf, |
464 | 0 | (GCM_HASH_LEN_LEN * 2) / AES_BLOCK_SIZE); |
465 | 0 | if (rv != SECSuccess) { |
466 | 0 | goto cleanup; |
467 | 0 | } |
468 | | |
469 | 0 | if (ghash->hw) { |
470 | 0 | rv = gcm_HashWrite_hw(ghash, T); |
471 | 0 | if (rv != SECSuccess) { |
472 | 0 | goto cleanup; |
473 | 0 | } |
474 | 0 | } else { |
475 | 0 | WRITE64(ghash->x_low, T + 8); |
476 | 0 | WRITE64(ghash->x_high, T); |
477 | 0 | } |
478 | | |
479 | 0 | if (maxout > AES_BLOCK_SIZE) { |
480 | 0 | maxout = AES_BLOCK_SIZE; |
481 | 0 | } |
482 | 0 | PORT_Memcpy(outbuf, T, maxout); |
483 | 0 | *outlen = maxout; |
484 | 0 | rv = SECSuccess; |
485 | |
|
486 | 0 | cleanup: |
487 | 0 | PORT_SafeZero(T, sizeof(T)); |
488 | 0 | return rv; |
489 | 0 | } |
490 | | |
491 | | SECStatus |
492 | | gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD, |
493 | | unsigned int AADLen) |
494 | 0 | { |
495 | 0 | SECStatus rv; |
496 | | |
497 | | // Limit AADLen in accordance with SP800-38D |
498 | 0 | if (sizeof(AADLen) >= 8) { |
499 | 0 | unsigned long long AADLen_ull = AADLen; |
500 | 0 | if (AADLen_ull > (1ULL << 61) - 1) { |
501 | 0 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
502 | 0 | return SECFailure; |
503 | 0 | } |
504 | 0 | } |
505 | | |
506 | 0 | ghash->cLen = 0; |
507 | 0 | PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN * 2); |
508 | 0 | ghash->bufLen = 0; |
509 | 0 | rv = gcm_zeroX(ghash); |
510 | 0 | if (rv != SECSuccess) { |
511 | 0 | return rv; |
512 | 0 | } |
513 | | |
514 | | /* now kick things off by hashing the Additional Authenticated Data */ |
515 | 0 | if (AADLen != 0) { |
516 | 0 | rv = gcmHash_Update(ghash, AAD, AADLen); |
517 | 0 | if (rv != SECSuccess) { |
518 | 0 | return SECFailure; |
519 | 0 | } |
520 | 0 | rv = gcmHash_Sync(ghash); |
521 | 0 | if (rv != SECSuccess) { |
522 | 0 | return SECFailure; |
523 | 0 | } |
524 | 0 | } |
525 | 0 | return SECSuccess; |
526 | 0 | } |
527 | | |
528 | | /************************************************************************** |
529 | | * Now implement the GCM using gcmHash and CTR * |
530 | | **************************************************************************/ |
531 | | |
532 | | /* state to handle the full GCM operation (hash and counter) */ |
533 | | struct GCMContextStr { |
534 | | gcmHashContext *ghash_context; |
535 | | CTRContext ctr_context; |
536 | | freeblCipherFunc cipher; |
537 | | void *cipher_context; |
538 | | unsigned long tagBits; |
539 | | unsigned char tagKey[MAX_BLOCK_SIZE]; |
540 | | PRBool ctr_context_init; |
541 | | gcmIVContext gcm_iv; |
542 | | }; |
543 | | |
544 | | SECStatus gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, |
545 | | unsigned int ivLen, unsigned int tagBits, |
546 | | const unsigned char *aad, unsigned int aadLen); |
547 | | |
548 | | GCMContext * |
549 | | GCM_CreateContext(void *context, freeblCipherFunc cipher, |
550 | | const unsigned char *params) |
551 | 0 | { |
552 | 0 | GCMContext *gcm = NULL; |
553 | 0 | gcmHashContext *ghash = NULL; |
554 | 0 | unsigned char H[MAX_BLOCK_SIZE]; |
555 | 0 | unsigned int tmp; |
556 | 0 | const CK_NSS_GCM_PARAMS *gcmParams = (const CK_NSS_GCM_PARAMS *)params; |
557 | 0 | SECStatus rv; |
558 | | #ifdef DISABLE_HW_GCM |
559 | | const PRBool sw = PR_TRUE; |
560 | | #else |
561 | 0 | const PRBool sw = PR_FALSE; |
562 | 0 | #endif |
563 | |
|
564 | 0 | gcm = PORT_ZNew(GCMContext); |
565 | 0 | if (gcm == NULL) { |
566 | 0 | return NULL; |
567 | 0 | } |
568 | 0 | gcm->cipher = cipher; |
569 | 0 | gcm->cipher_context = context; |
570 | 0 | ghash = PORT_ZNewAligned(gcmHashContext, 16, mem); |
571 | | |
572 | | /* first plug in the ghash context */ |
573 | 0 | gcm->ghash_context = ghash; |
574 | 0 | PORT_Memset(H, 0, AES_BLOCK_SIZE); |
575 | 0 | rv = (*cipher)(context, H, &tmp, AES_BLOCK_SIZE, H, AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
576 | 0 | if (rv != SECSuccess) { |
577 | 0 | goto loser; |
578 | 0 | } |
579 | 0 | rv = gcmHash_InitContext(ghash, H, sw); |
580 | 0 | if (rv != SECSuccess) { |
581 | 0 | goto loser; |
582 | 0 | } |
583 | | |
584 | 0 | gcm_InitIVContext(&gcm->gcm_iv); |
585 | 0 | gcm->ctr_context_init = PR_FALSE; |
586 | | |
587 | | /* if gcmPara/ms is NULL, then we are creating an PKCS #11 MESSAGE |
588 | | * style context, in which we initialize the key once, then do separate |
589 | | * iv/aad's for each message. In that case we only initialize the key |
590 | | * and ghash. We initialize the counter in each separate message */ |
591 | 0 | if (gcmParams == NULL) { |
592 | | /* OK we are finished with init, if we are doing MESSAGE interface, |
593 | | * return from here */ |
594 | 0 | return gcm; |
595 | 0 | } |
596 | | |
597 | 0 | rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, |
598 | 0 | gcmParams->ulTagBits, gcmParams->pAAD, |
599 | 0 | gcmParams->ulAADLen); |
600 | 0 | if (rv != SECSuccess) { |
601 | 0 | goto loser; |
602 | 0 | } |
603 | 0 | PORT_SafeZero(H, AES_BLOCK_SIZE); |
604 | 0 | gcm->ctr_context_init = PR_TRUE; |
605 | 0 | return gcm; |
606 | | |
607 | 0 | loser: |
608 | 0 | PORT_SafeZero(H, AES_BLOCK_SIZE); |
609 | 0 | if (ghash && ghash->mem) { |
610 | 0 | void *mem = ghash->mem; |
611 | 0 | PORT_SafeZero(ghash, sizeof(gcmHashContext)); |
612 | 0 | PORT_Free(mem); |
613 | 0 | } |
614 | 0 | if (gcm) { |
615 | 0 | PORT_ZFree(gcm, sizeof(GCMContext)); |
616 | 0 | } |
617 | 0 | return NULL; |
618 | 0 | } |
619 | | |
620 | | static inline unsigned int |
621 | | load32_be(const unsigned char *p) |
622 | 0 | { |
623 | 0 | return ((unsigned int)p[0]) << 24 | p[1] << 16 | p[2] << 8 | p[3]; |
624 | 0 | } |
625 | | |
626 | | static inline void |
627 | | store32_be(unsigned char *p, const unsigned int c) |
628 | 0 | { |
629 | 0 | p[0] = (unsigned char)(c >> 24); |
630 | 0 | p[1] = (unsigned char)(c >> 16); |
631 | 0 | p[2] = (unsigned char)(c >> 8); |
632 | 0 | p[3] = (unsigned char)c; |
633 | 0 | } |
634 | | |
635 | | static inline void |
636 | | gcm_ctr_xor(unsigned char *target, const unsigned char *x, |
637 | | const unsigned char *y, unsigned int count) |
638 | 0 | { |
639 | 0 | for (unsigned int i = 0; i < count; i++) { |
640 | 0 | target[i] = x[i] ^ y[i]; |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | | static inline void |
645 | | gcm_ctr_xor_block(unsigned char *target, const unsigned char *x, |
646 | | const unsigned char *y) |
647 | 0 | { |
648 | | #if defined(__ARM_NEON) || defined(__ARM_NEON__) |
649 | | vst1q_u8(target, veorq_u8(vld1q_u8(x), vld1q_u8(y))); |
650 | | #else |
651 | 0 | gcm_ctr_xor(target, x, y, AES_BLOCK_SIZE); |
652 | 0 | #endif |
653 | 0 | } |
654 | | |
655 | | static SECStatus |
656 | | gcm_CTR_Update(CTRContext *ctr, unsigned char *outbuf, |
657 | | unsigned int *outlen, unsigned int maxout, |
658 | | const unsigned char *inbuf, unsigned int inlen) |
659 | 0 | { |
660 | 0 | PORT_Assert(ctr->counterBits == 32); |
661 | 0 | PORT_Assert(0 < ctr->bufPtr && ctr->bufPtr <= AES_BLOCK_SIZE); |
662 | | |
663 | | // The AES-GCM message length limit is 2^32 - 2 blocks. |
664 | 0 | const unsigned int blockLimit = 0xFFFFFFFEUL; |
665 | |
|
666 | 0 | unsigned char *const pCounter = ctr->counter + AES_BLOCK_SIZE - 4; |
667 | 0 | unsigned int counter = load32_be(pCounter); |
668 | | |
669 | | // Calculate the number of times that the counter has already been incremented. |
670 | 0 | unsigned char *const pCounterFirst = ctr->counterFirst + AES_BLOCK_SIZE - 4; |
671 | 0 | unsigned int ticks = (counter - load32_be(pCounterFirst)) & 0xFFFFFFFFUL; |
672 | | |
673 | | // Get the number of bytes of keystream that are available in the internal buffer. |
674 | 0 | const unsigned int bufBytes = AES_BLOCK_SIZE - ctr->bufPtr; |
675 | | |
676 | | // Calculate the number of times that we will increment the counter while |
677 | | // encrypting inbuf. We can encrypt bufBytes bytes of the input without |
678 | | // incrementing the counter. |
679 | 0 | unsigned int newTicks; |
680 | 0 | if (inlen < bufBytes) { |
681 | 0 | newTicks = 0; |
682 | 0 | } else if ((inlen - bufBytes) % AES_BLOCK_SIZE) { |
683 | 0 | newTicks = ((inlen - bufBytes) / AES_BLOCK_SIZE) + 1; |
684 | 0 | } else { |
685 | 0 | newTicks = ((inlen - bufBytes) / AES_BLOCK_SIZE); |
686 | 0 | } |
687 | | |
688 | | // Ensure that the counter will not exceed the limit. |
689 | 0 | if (ticks > blockLimit - newTicks) { |
690 | 0 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
691 | 0 | return SECFailure; |
692 | 0 | } |
693 | | |
694 | 0 | *outlen = inlen; |
695 | 0 | if (maxout < inlen) { |
696 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
697 | 0 | return SECFailure; |
698 | 0 | } |
699 | | |
700 | 0 | if (bufBytes) { |
701 | 0 | unsigned int needed = PR_MIN(bufBytes, inlen); |
702 | 0 | gcm_ctr_xor(outbuf, inbuf, ctr->buffer + ctr->bufPtr, needed); |
703 | 0 | ctr->bufPtr += needed; |
704 | 0 | outbuf += needed; |
705 | 0 | inbuf += needed; |
706 | 0 | inlen -= needed; |
707 | 0 | PORT_Assert(inlen == 0 || ctr->bufPtr == AES_BLOCK_SIZE); |
708 | 0 | } |
709 | 0 | while (inlen >= AES_BLOCK_SIZE) { |
710 | 0 | unsigned int tmp; |
711 | 0 | SECStatus rv = (*ctr->cipher)(ctr->context, ctr->buffer, &tmp, AES_BLOCK_SIZE, |
712 | 0 | ctr->counter, AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
713 | 0 | PORT_Assert(rv == SECSuccess); |
714 | 0 | (void)rv; |
715 | 0 | store32_be(pCounter, ++counter); |
716 | 0 | gcm_ctr_xor_block(outbuf, inbuf, ctr->buffer); |
717 | 0 | outbuf += AES_BLOCK_SIZE; |
718 | 0 | inbuf += AES_BLOCK_SIZE; |
719 | 0 | inlen -= AES_BLOCK_SIZE; |
720 | 0 | } |
721 | 0 | if (inlen) { |
722 | 0 | unsigned int tmp; |
723 | 0 | SECStatus rv = (*ctr->cipher)(ctr->context, ctr->buffer, &tmp, AES_BLOCK_SIZE, |
724 | 0 | ctr->counter, AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
725 | 0 | PORT_Assert(rv == SECSuccess); |
726 | 0 | (void)rv; |
727 | 0 | store32_be(pCounter, ++counter); |
728 | 0 | gcm_ctr_xor(outbuf, inbuf, ctr->buffer, inlen); |
729 | 0 | ctr->bufPtr = inlen; |
730 | 0 | } |
731 | 0 | return SECSuccess; |
732 | 0 | } |
733 | | |
734 | | SECStatus |
735 | | gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, unsigned int ivLen, |
736 | | unsigned int tagBits, const unsigned char *aad, |
737 | | unsigned int aadLen) |
738 | 0 | { |
739 | 0 | gcmHashContext *ghash = gcm->ghash_context; |
740 | 0 | unsigned int tmp; |
741 | 0 | PRBool freeCtr = PR_FALSE; |
742 | 0 | CK_AES_CTR_PARAMS ctrParams; |
743 | 0 | SECStatus rv; |
744 | | |
745 | | /* Verify our parameters here */ |
746 | 0 | if (ivLen == 0) { |
747 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
748 | 0 | goto loser; |
749 | 0 | } |
750 | | |
751 | 0 | if (tagBits != 128 && tagBits != 120 && |
752 | 0 | tagBits != 112 && tagBits != 104 && |
753 | 0 | tagBits != 96 && tagBits != 64 && |
754 | 0 | tagBits != 32) { |
755 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
756 | 0 | goto loser; |
757 | 0 | } |
758 | | |
759 | | /* fill in the Counter context */ |
760 | 0 | ctrParams.ulCounterBits = 32; |
761 | 0 | PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb)); |
762 | 0 | if (ivLen == 12) { |
763 | 0 | PORT_Memcpy(ctrParams.cb, iv, ivLen); |
764 | 0 | ctrParams.cb[AES_BLOCK_SIZE - 1] = 1; |
765 | 0 | } else { |
766 | 0 | rv = gcmHash_Reset(ghash, NULL, 0); |
767 | 0 | if (rv != SECSuccess) { |
768 | 0 | goto loser; |
769 | 0 | } |
770 | 0 | rv = gcmHash_Update(ghash, iv, ivLen); |
771 | 0 | if (rv != SECSuccess) { |
772 | 0 | goto loser; |
773 | 0 | } |
774 | 0 | rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, AES_BLOCK_SIZE); |
775 | 0 | if (rv != SECSuccess) { |
776 | 0 | goto loser; |
777 | 0 | } |
778 | 0 | } |
779 | 0 | rv = CTR_InitContext(&gcm->ctr_context, gcm->cipher_context, gcm->cipher, |
780 | 0 | (unsigned char *)&ctrParams); |
781 | 0 | if (rv != SECSuccess) { |
782 | 0 | goto loser; |
783 | 0 | } |
784 | 0 | freeCtr = PR_TRUE; |
785 | | |
786 | | /* fill in the gcm structure */ |
787 | 0 | gcm->tagBits = tagBits; /* save for final step */ |
788 | | /* calculate the final tag key. NOTE: gcm->tagKey is zero to start with. |
789 | | * if this assumption changes, we would need to explicitly clear it here */ |
790 | 0 | PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey)); |
791 | 0 | rv = gcm_CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, AES_BLOCK_SIZE, |
792 | 0 | gcm->tagKey, AES_BLOCK_SIZE); |
793 | 0 | if (rv != SECSuccess) { |
794 | 0 | goto loser; |
795 | 0 | } |
796 | | |
797 | | /* finally mix in the AAD data */ |
798 | 0 | rv = gcmHash_Reset(ghash, aad, aadLen); |
799 | 0 | if (rv != SECSuccess) { |
800 | 0 | goto loser; |
801 | 0 | } |
802 | | |
803 | 0 | PORT_SafeZero(&ctrParams, sizeof ctrParams); |
804 | 0 | return SECSuccess; |
805 | | |
806 | 0 | loser: |
807 | 0 | PORT_SafeZero(&ctrParams, sizeof ctrParams); |
808 | 0 | if (freeCtr) { |
809 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
810 | 0 | } |
811 | 0 | return SECFailure; |
812 | 0 | } |
813 | | |
814 | | void |
815 | | GCM_DestroyContext(GCMContext *gcm, PRBool freeit) |
816 | 0 | { |
817 | 0 | void *mem = gcm->ghash_context->mem; |
818 | | /* ctr_context is statically allocated and will be freed when we free |
819 | | * gcm. call their destroy functions to free up any locally |
820 | | * allocated data (like mp_int's) */ |
821 | 0 | if (gcm->ctr_context_init) { |
822 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
823 | 0 | } |
824 | 0 | PORT_Memset(gcm->ghash_context, 0, sizeof(gcmHashContext)); |
825 | 0 | PORT_Free(mem); |
826 | 0 | PORT_Memset(&gcm->tagBits, 0, sizeof(gcm->tagBits)); |
827 | 0 | PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey)); |
828 | 0 | if (freeit) { |
829 | 0 | PORT_Free(gcm); |
830 | 0 | } |
831 | 0 | } |
832 | | |
833 | | static SECStatus |
834 | | gcm_GetTag(GCMContext *gcm, unsigned char *outbuf, |
835 | | unsigned int *outlen, unsigned int maxout) |
836 | 0 | { |
837 | 0 | unsigned int tagBytes; |
838 | 0 | unsigned int extra; |
839 | 0 | unsigned int i; |
840 | 0 | SECStatus rv; |
841 | |
|
842 | 0 | tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; |
843 | 0 | extra = tagBytes * PR_BITS_PER_BYTE - gcm->tagBits; |
844 | |
|
845 | 0 | if (outbuf == NULL) { |
846 | 0 | *outlen = tagBytes; |
847 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
848 | 0 | return SECFailure; |
849 | 0 | } |
850 | | |
851 | 0 | if (maxout < tagBytes) { |
852 | 0 | *outlen = tagBytes; |
853 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
854 | 0 | return SECFailure; |
855 | 0 | } |
856 | 0 | maxout = tagBytes; |
857 | 0 | rv = gcmHash_Final(gcm->ghash_context, outbuf, outlen, maxout); |
858 | 0 | if (rv != SECSuccess) { |
859 | 0 | return SECFailure; |
860 | 0 | } |
861 | | |
862 | 0 | for (i = 0; i < *outlen; i++) { |
863 | 0 | outbuf[i] ^= gcm->tagKey[i]; |
864 | 0 | } |
865 | | /* mask off any extra bits we got */ |
866 | 0 | if (extra) { |
867 | 0 | outbuf[tagBytes - 1] &= ~((1 << extra) - 1); |
868 | 0 | } |
869 | 0 | return SECSuccess; |
870 | 0 | } |
871 | | |
872 | | /* |
873 | | * See The Galois/Counter Mode of Operation, McGrew and Viega. |
874 | | * GCM is basically counter mode with a specific initialization and |
875 | | * built in macing operation. |
876 | | */ |
877 | | SECStatus |
878 | | GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf, |
879 | | unsigned int *outlen, unsigned int maxout, |
880 | | const unsigned char *inbuf, unsigned int inlen, |
881 | | unsigned int blocksize) |
882 | 0 | { |
883 | 0 | SECStatus rv; |
884 | 0 | unsigned int tagBytes; |
885 | 0 | unsigned int len; |
886 | |
|
887 | 0 | PORT_Assert(blocksize == AES_BLOCK_SIZE); |
888 | 0 | if (blocksize != AES_BLOCK_SIZE) { |
889 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
890 | 0 | return SECFailure; |
891 | 0 | } |
892 | | |
893 | 0 | if (!gcm->ctr_context_init) { |
894 | 0 | PORT_SetError(SEC_ERROR_NOT_INITIALIZED); |
895 | 0 | return SECFailure; |
896 | 0 | } |
897 | | |
898 | 0 | tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; |
899 | 0 | if (UINT_MAX - inlen < tagBytes) { |
900 | 0 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
901 | 0 | return SECFailure; |
902 | 0 | } |
903 | 0 | if (maxout < inlen + tagBytes) { |
904 | 0 | *outlen = inlen + tagBytes; |
905 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
906 | 0 | return SECFailure; |
907 | 0 | } |
908 | | |
909 | 0 | rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, |
910 | 0 | inbuf, inlen); |
911 | 0 | if (rv != SECSuccess) { |
912 | 0 | return SECFailure; |
913 | 0 | } |
914 | 0 | rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen); |
915 | 0 | if (rv != SECSuccess) { |
916 | 0 | PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ |
917 | 0 | *outlen = 0; |
918 | 0 | return SECFailure; |
919 | 0 | } |
920 | 0 | rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen); |
921 | 0 | if (rv != SECSuccess) { |
922 | 0 | PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ |
923 | 0 | *outlen = 0; |
924 | 0 | return SECFailure; |
925 | 0 | }; |
926 | 0 | *outlen += len; |
927 | 0 | return SECSuccess; |
928 | 0 | } |
929 | | |
930 | | /* |
931 | | * See The Galois/Counter Mode of Operation, McGrew and Viega. |
932 | | * GCM is basically counter mode with a specific initialization and |
933 | | * built in macing operation. NOTE: the only difference between Encrypt |
934 | | * and Decrypt is when we calculate the mac. That is because the mac must |
935 | | * always be calculated on the cipher text, not the plain text, so for |
936 | | * encrypt, we do the CTR update first and for decrypt we do the mac first. |
937 | | */ |
938 | | SECStatus |
939 | | GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf, |
940 | | unsigned int *outlen, unsigned int maxout, |
941 | | const unsigned char *inbuf, unsigned int inlen, |
942 | | unsigned int blocksize) |
943 | 0 | { |
944 | 0 | SECStatus rv; |
945 | 0 | unsigned int tagBytes; |
946 | 0 | unsigned char tag[MAX_BLOCK_SIZE]; |
947 | 0 | const unsigned char *intag; |
948 | 0 | unsigned int len; |
949 | |
|
950 | 0 | PORT_Assert(blocksize == AES_BLOCK_SIZE); |
951 | 0 | if (blocksize != AES_BLOCK_SIZE) { |
952 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
953 | 0 | return SECFailure; |
954 | 0 | } |
955 | | |
956 | 0 | if (!gcm->ctr_context_init) { |
957 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
958 | 0 | return SECFailure; |
959 | 0 | } |
960 | | |
961 | 0 | tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; |
962 | | |
963 | | /* get the authentication block */ |
964 | 0 | if (inlen < tagBytes) { |
965 | 0 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
966 | 0 | return SECFailure; |
967 | 0 | } |
968 | | |
969 | 0 | inlen -= tagBytes; |
970 | 0 | intag = inbuf + inlen; |
971 | | |
972 | | /* verify the block */ |
973 | 0 | rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen); |
974 | 0 | if (rv != SECSuccess) { |
975 | 0 | return SECFailure; |
976 | 0 | } |
977 | 0 | rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE); |
978 | 0 | if (rv != SECSuccess) { |
979 | 0 | return SECFailure; |
980 | 0 | } |
981 | | /* Don't decrypt if we can't authenticate the encrypted data! |
982 | | * This assumes that if tagBits is not a multiple of 8, intag will |
983 | | * preserve the masked off missing bits. */ |
984 | 0 | if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) { |
985 | | /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */ |
986 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
987 | 0 | PORT_SafeZero(tag, sizeof(tag)); |
988 | 0 | return SECFailure; |
989 | 0 | } |
990 | 0 | PORT_SafeZero(tag, sizeof(tag)); |
991 | | /* finish the decryption */ |
992 | 0 | return gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, |
993 | 0 | inbuf, inlen); |
994 | 0 | } |
995 | | |
996 | | void |
997 | | gcm_InitIVContext(gcmIVContext *gcmIv) |
998 | 0 | { |
999 | 0 | gcmIv->counter = 0; |
1000 | 0 | gcmIv->max_count = 0; |
1001 | 0 | gcmIv->ivGen = CKG_GENERATE; |
1002 | 0 | gcmIv->ivLen = 0; |
1003 | 0 | gcmIv->fixedBits = 0; |
1004 | 0 | } |
1005 | | |
1006 | | /* |
1007 | | * generate the IV on the fly and return it to the application. |
1008 | | * This function keeps a counter, which may be used in the IV |
1009 | | * generation, or may be used in simply to make sure we don't |
1010 | | * generate to many IV's from this same key. |
1011 | | * PKCS #11 defines 4 generating values: |
1012 | | * 1) CKG_NO_GENERATE: just use the passed in IV as it. |
1013 | | * 2) CKG_GENERATE: the application doesn't care what generation |
1014 | | * scheme is use (we default to counter in this code). |
1015 | | * 3) CKG_GENERATE_COUNTER: The IV is the value of a counter. |
1016 | | * 4) CKG_GENERATE_RANDOM: The IV is randomly generated. |
1017 | | * We add a fifth rule: |
1018 | | * 5) CKG_GENERATE_COUNTER_XOR: The Counter value is xor'ed with |
1019 | | * the IV. |
1020 | | * The value fixedBits specifies the number of bits that will be passed |
1021 | | * on from the original IV. The counter or the random data is is loaded |
1022 | | * in the remainder of the IV not covered by fixedBits, overwriting any |
1023 | | * data there. In the xor case the counter is xor'ed with the data in the |
1024 | | * IV. In all cases only bits outside of fixedBits is modified. |
1025 | | * The number of IV's we can generate is restricted by the size of the |
1026 | | * variable part of the IV and the generation algorithm used. Because of |
1027 | | * this, we require subsequent calls on this context to use the same |
1028 | | * generator, IV len, and fixed bits as the first call. |
1029 | | */ |
1030 | | SECStatus |
1031 | | gcm_GenerateIV(gcmIVContext *gcmIv, unsigned char *iv, unsigned int ivLen, |
1032 | | unsigned int fixedBits, CK_GENERATOR_FUNCTION ivGen) |
1033 | 0 | { |
1034 | 0 | unsigned int i; |
1035 | 0 | unsigned int flexBits; |
1036 | 0 | unsigned int ivOffset; |
1037 | 0 | unsigned int ivNewCount; |
1038 | 0 | unsigned char ivMask; |
1039 | 0 | unsigned char ivSave; |
1040 | 0 | SECStatus rv; |
1041 | |
|
1042 | 0 | if (gcmIv->counter != 0) { |
1043 | | /* If we've already generated a message, make sure all subsequent |
1044 | | * messages are using the same generator */ |
1045 | 0 | if ((gcmIv->ivGen != ivGen) || (gcmIv->fixedBits != fixedBits) || |
1046 | 0 | (gcmIv->ivLen != ivLen)) { |
1047 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1048 | 0 | return SECFailure; |
1049 | 0 | } |
1050 | 0 | } else { |
1051 | | /* remember these values */ |
1052 | 0 | gcmIv->ivGen = ivGen; |
1053 | 0 | gcmIv->fixedBits = fixedBits; |
1054 | 0 | gcmIv->ivLen = ivLen; |
1055 | | /* now calculate how may bits of IV we have to supply */ |
1056 | 0 | flexBits = ivLen * PR_BITS_PER_BYTE; /* bytes->bits */ |
1057 | | /* first make sure we aren't going to overflow */ |
1058 | 0 | if (flexBits < fixedBits) { |
1059 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1060 | 0 | return SECFailure; |
1061 | 0 | } |
1062 | 0 | flexBits -= fixedBits; |
1063 | | /* if we are generating a random number reduce the acceptable bits to |
1064 | | * avoid birthday attacks */ |
1065 | 0 | if (ivGen == CKG_GENERATE_RANDOM) { |
1066 | 0 | if (flexBits <= GCMIV_RANDOM_BIRTHDAY_BITS) { |
1067 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1068 | 0 | return SECFailure; |
1069 | 0 | } |
1070 | | /* see freebl/blapit.h for how we calculate |
1071 | | * GCMIV_RANDOM_BIRTHDAY_BITS */ |
1072 | 0 | flexBits -= GCMIV_RANDOM_BIRTHDAY_BITS; |
1073 | 0 | flexBits = flexBits >> 1; |
1074 | 0 | } |
1075 | 0 | if (flexBits == 0) { |
1076 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1077 | 0 | return SECFailure; |
1078 | 0 | } |
1079 | | /* Turn those bits into the number of IV's we can safely return */ |
1080 | 0 | if (flexBits >= sizeof(gcmIv->max_count) * PR_BITS_PER_BYTE) { |
1081 | 0 | gcmIv->max_count = PR_UINT64(0xffffffffffffffff); |
1082 | 0 | } else { |
1083 | 0 | gcmIv->max_count = PR_UINT64(1) << flexBits; |
1084 | 0 | } |
1085 | 0 | } |
1086 | | |
1087 | | /* no generate, accept the IV from the source */ |
1088 | 0 | if (ivGen == CKG_NO_GENERATE) { |
1089 | 0 | gcmIv->counter = 1; |
1090 | 0 | return SECSuccess; |
1091 | 0 | } |
1092 | | |
1093 | | /* make sure we haven't exceeded the number of IVs we can return |
1094 | | * for this key, generator, and IV size */ |
1095 | 0 | if (gcmIv->counter >= gcmIv->max_count) { |
1096 | | /* use a unique error from just bad user input */ |
1097 | 0 | PORT_SetError(SEC_ERROR_EXTRA_INPUT); |
1098 | 0 | return SECFailure; |
1099 | 0 | } |
1100 | | |
1101 | | /* build to mask to handle the first byte of the IV */ |
1102 | 0 | ivOffset = fixedBits / PR_BITS_PER_BYTE; |
1103 | 0 | ivMask = 0xff >> ((8 - (fixedBits & 7)) & 7); |
1104 | 0 | ivNewCount = ivLen - ivOffset; |
1105 | | |
1106 | | /* finally generate the IV */ |
1107 | 0 | switch (ivGen) { |
1108 | 0 | case CKG_GENERATE: /* default to counter */ |
1109 | 0 | case CKG_GENERATE_COUNTER: |
1110 | 0 | iv[ivOffset] = (iv[ivOffset] & ~ivMask) | |
1111 | 0 | (PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask); |
1112 | 0 | for (i = 1; i < ivNewCount; i++) { |
1113 | 0 | iv[ivOffset + i] = PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount); |
1114 | 0 | } |
1115 | 0 | break; |
1116 | | /* for TLS 1.3 */ |
1117 | 0 | case CKG_GENERATE_COUNTER_XOR: |
1118 | 0 | iv[ivOffset] ^= |
1119 | 0 | (PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask); |
1120 | 0 | for (i = 1; i < ivNewCount; i++) { |
1121 | 0 | iv[ivOffset + i] ^= PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount); |
1122 | 0 | } |
1123 | 0 | break; |
1124 | 0 | case CKG_GENERATE_RANDOM: |
1125 | 0 | ivSave = iv[ivOffset] & ~ivMask; |
1126 | 0 | rv = RNG_GenerateGlobalRandomBytes(iv + ivOffset, ivNewCount); |
1127 | 0 | iv[ivOffset] = ivSave | (iv[ivOffset] & ivMask); |
1128 | 0 | if (rv != SECSuccess) { |
1129 | 0 | return rv; |
1130 | 0 | } |
1131 | 0 | break; |
1132 | 0 | } |
1133 | 0 | gcmIv->counter++; |
1134 | 0 | return SECSuccess; |
1135 | 0 | } |
1136 | | |
1137 | | SECStatus |
1138 | | GCM_EncryptAEAD(GCMContext *gcm, unsigned char *outbuf, |
1139 | | unsigned int *outlen, unsigned int maxout, |
1140 | | const unsigned char *inbuf, unsigned int inlen, |
1141 | | void *params, unsigned int paramLen, |
1142 | | const unsigned char *aad, unsigned int aadLen, |
1143 | | unsigned int blocksize) |
1144 | 0 | { |
1145 | 0 | SECStatus rv; |
1146 | 0 | unsigned int tagBytes; |
1147 | 0 | unsigned int len; |
1148 | 0 | const CK_GCM_MESSAGE_PARAMS *gcmParams = |
1149 | 0 | (const CK_GCM_MESSAGE_PARAMS *)params; |
1150 | |
|
1151 | 0 | PORT_Assert(blocksize == AES_BLOCK_SIZE); |
1152 | 0 | if (blocksize != AES_BLOCK_SIZE) { |
1153 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1154 | 0 | return SECFailure; |
1155 | 0 | } |
1156 | | |
1157 | | /* paramLen comes all the way from the application layer, make sure |
1158 | | * it's correct */ |
1159 | 0 | if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) { |
1160 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1161 | 0 | return SECFailure; |
1162 | 0 | } |
1163 | | /* if we were initialized with the C_EncryptInit, we shouldn't be in this |
1164 | | * function */ |
1165 | 0 | if (gcm->ctr_context_init) { |
1166 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1167 | 0 | return SECFailure; |
1168 | 0 | } |
1169 | | |
1170 | 0 | if (maxout < inlen) { |
1171 | 0 | *outlen = inlen; |
1172 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
1173 | 0 | return SECFailure; |
1174 | 0 | } |
1175 | | |
1176 | 0 | rv = gcm_GenerateIV(&gcm->gcm_iv, gcmParams->pIv, gcmParams->ulIvLen, |
1177 | 0 | gcmParams->ulIvFixedBits, gcmParams->ivGenerator); |
1178 | 0 | if (rv != SECSuccess) { |
1179 | 0 | return SECFailure; |
1180 | 0 | } |
1181 | | |
1182 | 0 | rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, |
1183 | 0 | gcmParams->ulTagBits, aad, aadLen); |
1184 | 0 | if (rv != SECSuccess) { |
1185 | 0 | return SECFailure; |
1186 | 0 | } |
1187 | | |
1188 | 0 | tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; |
1189 | |
|
1190 | 0 | rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, |
1191 | 0 | inbuf, inlen); |
1192 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
1193 | 0 | if (rv != SECSuccess) { |
1194 | 0 | return SECFailure; |
1195 | 0 | } |
1196 | 0 | rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen); |
1197 | 0 | if (rv != SECSuccess) { |
1198 | 0 | PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ |
1199 | 0 | *outlen = 0; |
1200 | 0 | return SECFailure; |
1201 | 0 | } |
1202 | 0 | rv = gcm_GetTag(gcm, gcmParams->pTag, &len, tagBytes); |
1203 | 0 | if (rv != SECSuccess) { |
1204 | 0 | PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ |
1205 | 0 | *outlen = 0; |
1206 | 0 | return SECFailure; |
1207 | 0 | }; |
1208 | 0 | return SECSuccess; |
1209 | 0 | } |
1210 | | |
1211 | | SECStatus |
1212 | | GCM_DecryptAEAD(GCMContext *gcm, unsigned char *outbuf, |
1213 | | unsigned int *outlen, unsigned int maxout, |
1214 | | const unsigned char *inbuf, unsigned int inlen, |
1215 | | void *params, unsigned int paramLen, |
1216 | | const unsigned char *aad, unsigned int aadLen, |
1217 | | unsigned int blocksize) |
1218 | 0 | { |
1219 | 0 | SECStatus rv; |
1220 | 0 | unsigned int tagBytes; |
1221 | 0 | unsigned char tag[MAX_BLOCK_SIZE]; |
1222 | 0 | const unsigned char *intag; |
1223 | 0 | unsigned int len; |
1224 | 0 | const CK_GCM_MESSAGE_PARAMS *gcmParams = |
1225 | 0 | (const CK_GCM_MESSAGE_PARAMS *)params; |
1226 | |
|
1227 | 0 | PORT_Assert(blocksize == AES_BLOCK_SIZE); |
1228 | 0 | if (blocksize != AES_BLOCK_SIZE) { |
1229 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1230 | 0 | return SECFailure; |
1231 | 0 | } |
1232 | | |
1233 | | /* paramLen comes all the way from the application layer, make sure |
1234 | | * it's correct */ |
1235 | 0 | if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) { |
1236 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
1237 | 0 | return SECFailure; |
1238 | 0 | } |
1239 | | /* if we were initialized with the C_DecryptInit, we shouldn't be in this |
1240 | | * function */ |
1241 | 0 | if (gcm->ctr_context_init) { |
1242 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
1243 | 0 | return SECFailure; |
1244 | 0 | } |
1245 | | |
1246 | 0 | if (maxout < inlen) { |
1247 | 0 | *outlen = inlen; |
1248 | 0 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
1249 | 0 | return SECFailure; |
1250 | 0 | } |
1251 | | |
1252 | 0 | rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, |
1253 | 0 | gcmParams->ulTagBits, aad, aadLen); |
1254 | 0 | if (rv != SECSuccess) { |
1255 | 0 | return SECFailure; |
1256 | 0 | } |
1257 | | |
1258 | 0 | tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; |
1259 | 0 | intag = gcmParams->pTag; |
1260 | 0 | PORT_Assert(tagBytes != 0); |
1261 | | |
1262 | | /* verify the block */ |
1263 | 0 | rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen); |
1264 | 0 | if (rv != SECSuccess) { |
1265 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
1266 | 0 | return SECFailure; |
1267 | 0 | } |
1268 | 0 | rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE); |
1269 | 0 | if (rv != SECSuccess) { |
1270 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
1271 | 0 | return SECFailure; |
1272 | 0 | } |
1273 | | /* Don't decrypt if we can't authenticate the encrypted data! |
1274 | | * This assumes that if tagBits is may not be a multiple of 8, intag will |
1275 | | * preserve the masked off missing bits. */ |
1276 | 0 | if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) { |
1277 | | /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */ |
1278 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
1279 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
1280 | 0 | PORT_SafeZero(tag, sizeof(tag)); |
1281 | 0 | return SECFailure; |
1282 | 0 | } |
1283 | 0 | PORT_SafeZero(tag, sizeof(tag)); |
1284 | | /* finish the decryption */ |
1285 | 0 | rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, |
1286 | 0 | inbuf, inlen); |
1287 | 0 | CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); |
1288 | 0 | return rv; |
1289 | 0 | } |