/src/nss/lib/freebl/mpi/mpmontg.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* This Source Code Form is subject to the terms of the Mozilla Public  | 
2  |  |  * License, v. 2.0. If a copy of the MPL was not distributed with this  | 
3  |  |  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */  | 
4  |  |  | 
5  |  | /* This file implements moduluar exponentiation using Montgomery's  | 
6  |  |  * method for modular reduction.  This file implements the method  | 
7  |  |  * described as "Improvement 2" in the paper "A Cryptogrpahic Library for  | 
8  |  |  * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.  | 
9  |  |  * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"  | 
10  |  |  * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,  | 
11  |  |  * published by Springer Verlag.  | 
12  |  |  */  | 
13  |  |  | 
14  |  | #define MP_USING_CACHE_SAFE_MOD_EXP 1  | 
15  |  | #include <string.h>  | 
16  |  | #include "mpi-priv.h"  | 
17  |  | #include "mplogic.h"  | 
18  |  | #include "mpprime.h"  | 
19  |  | #ifdef MP_USING_MONT_MULF  | 
20  |  | #include "montmulf.h"  | 
21  |  | #endif  | 
22  |  | #include <stddef.h> /* ptrdiff_t */  | 
23  |  | #include <assert.h>  | 
24  |  |  | 
25  |  | #define STATIC  | 
26  |  |  | 
27  | 0  | #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */  | 
28  |  |  | 
29  |  | /*! computes T = REDC(T), 2^b == R  | 
30  |  |     \param T < RN  | 
31  |  | */  | 
32  |  | mp_err  | 
33  |  | s_mp_redc(mp_int *T, mp_mont_modulus *mmm)  | 
34  | 0  | { | 
35  | 0  |     mp_err res;  | 
36  | 0  |     mp_size i;  | 
37  |  | 
  | 
38  | 0  |     i = (MP_USED(&mmm->N) << 1) + 1;  | 
39  | 0  |     MP_CHECKOK(s_mp_pad(T, i));  | 
40  | 0  |     for (i = 0; i < MP_USED(&mmm->N); ++i) { | 
41  | 0  |         mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;  | 
42  |  |         /* T += N * m_i * (MP_RADIX ** i); */  | 
43  | 0  |         s_mp_mul_d_add_offset(&mmm->N, m_i, T, i);  | 
44  | 0  |     }  | 
45  | 0  |     s_mp_clamp(T);  | 
46  |  |  | 
47  |  |     /* T /= R */  | 
48  | 0  |     s_mp_rshd(T, MP_USED(&mmm->N));  | 
49  |  | 
  | 
50  | 0  |     if (s_mp_cmp(T, &mmm->N) >= 0) { | 
51  |  |         /* T = T - N */  | 
52  | 0  |         MP_CHECKOK(s_mp_sub(T, &mmm->N));  | 
53  | 0  | #ifdef DEBUG  | 
54  | 0  |         if (mp_cmp(T, &mmm->N) >= 0) { | 
55  | 0  |             res = MP_UNDEF;  | 
56  | 0  |             goto CLEANUP;  | 
57  | 0  |         }  | 
58  | 0  | #endif  | 
59  | 0  |     }  | 
60  | 0  |     res = MP_OKAY;  | 
61  | 0  | CLEANUP:  | 
62  | 0  |     return res;  | 
63  | 0  | }  | 
64  |  |  | 
65  |  | #if !defined(MP_MONT_USE_MP_MUL)  | 
66  |  |  | 
67  |  | /*! c <- REDC( a * b ) mod N  | 
68  |  |     \param a < N  i.e. "reduced"  | 
69  |  |     \param b < N  i.e. "reduced"  | 
70  |  |     \param mmm modulus N and n0' of N  | 
71  |  | */  | 
72  |  | mp_err  | 
73  |  | s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,  | 
74  |  |               mp_mont_modulus *mmm)  | 
75  | 0  | { | 
76  | 0  |     mp_digit *pb;  | 
77  | 0  |     mp_digit m_i;  | 
78  | 0  |     mp_err res;  | 
79  | 0  |     mp_size ib; /* "index b": index of current digit of B */  | 
80  | 0  |     mp_size useda, usedb;  | 
81  |  | 
  | 
82  | 0  |     ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);  | 
83  |  |  | 
84  | 0  |     if (MP_USED(a) < MP_USED(b)) { | 
85  | 0  |         const mp_int *xch = b; /* switch a and b, to do fewer outer loops */  | 
86  | 0  |         b = a;  | 
87  | 0  |         a = xch;  | 
88  | 0  |     }  | 
89  |  | 
  | 
90  | 0  |     MP_USED(c) = 1;  | 
91  | 0  |     MP_DIGIT(c, 0) = 0;  | 
92  | 0  |     ib = (MP_USED(&mmm->N) << 1) + 1;  | 
93  | 0  |     if ((res = s_mp_pad(c, ib)) != MP_OKAY)  | 
94  | 0  |         goto CLEANUP;  | 
95  |  |  | 
96  | 0  |     useda = MP_USED(a);  | 
97  | 0  |     pb = MP_DIGITS(b);  | 
98  | 0  |     s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));  | 
99  | 0  |     s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));  | 
100  | 0  |     m_i = MP_DIGIT(c, 0) * mmm->n0prime;  | 
101  | 0  |     s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);  | 
102  |  |  | 
103  |  |     /* Outer loop:  Digits of b */  | 
104  | 0  |     usedb = MP_USED(b);  | 
105  | 0  |     for (ib = 1; ib < usedb; ib++) { | 
106  | 0  |         mp_digit b_i = *pb++;  | 
107  |  |  | 
108  |  |         /* Inner product:  Digits of a */  | 
109  | 0  |         if (b_i)  | 
110  | 0  |             s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);  | 
111  | 0  |         m_i = MP_DIGIT(c, ib) * mmm->n0prime;  | 
112  | 0  |         s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);  | 
113  | 0  |     }  | 
114  | 0  |     if (usedb < MP_USED(&mmm->N)) { | 
115  | 0  |         for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib) { | 
116  | 0  |             m_i = MP_DIGIT(c, ib) * mmm->n0prime;  | 
117  | 0  |             s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);  | 
118  | 0  |         }  | 
119  | 0  |     }  | 
120  | 0  |     s_mp_clamp(c);  | 
121  | 0  |     s_mp_rshd(c, MP_USED(&mmm->N)); /* c /= R */  | 
122  | 0  |     if (s_mp_cmp(c, &mmm->N) >= 0) { | 
123  | 0  |         MP_CHECKOK(s_mp_sub(c, &mmm->N));  | 
124  | 0  |     }  | 
125  | 0  |     res = MP_OKAY;  | 
126  |  | 
  | 
127  | 0  | CLEANUP:  | 
128  | 0  |     return res;  | 
129  | 0  | }  | 
130  |  | #endif  | 
131  |  |  | 
132  |  | mp_err  | 
133  |  | mp_to_mont(const mp_int *x, const mp_int *N, mp_int *xMont)  | 
134  | 0  | { | 
135  | 0  |     mp_err res;  | 
136  |  |  | 
137  |  |     /* xMont = x * R mod N   where  N is modulus */  | 
138  | 0  |     if (x != xMont) { | 
139  | 0  |         MP_CHECKOK(mp_copy(x, xMont));  | 
140  | 0  |     }  | 
141  | 0  |     MP_CHECKOK(s_mp_lshd(xMont, MP_USED(N))); /* xMont = x << b */  | 
142  | 0  |     MP_CHECKOK(mp_div(xMont, N, 0, xMont));   /*         mod N */  | 
143  | 0  | CLEANUP:  | 
144  | 0  |     return res;  | 
145  | 0  | }  | 
146  |  |  | 
147  |  | mp_digit  | 
148  |  | mp_calculate_mont_n0i(const mp_int *N)  | 
149  | 0  | { | 
150  | 0  |     return 0 - s_mp_invmod_radix(MP_DIGIT(N, 0));  | 
151  | 0  | }  | 
152  |  |  | 
153  |  | #ifdef MP_USING_MONT_MULF  | 
154  |  |  | 
155  |  | /* the floating point multiply is already cache safe,  | 
156  |  |  * don't turn on cache safe unless we specifically  | 
157  |  |  * force it */  | 
158  |  | #ifndef MP_FORCE_CACHE_SAFE  | 
159  |  | #undef MP_USING_CACHE_SAFE_MOD_EXP  | 
160  |  | #endif  | 
161  |  |  | 
162  |  | unsigned int mp_using_mont_mulf = 1;  | 
163  |  |  | 
164  |  | /* computes montgomery square of the integer in mResult */  | 
165  |  | #define SQR                                              \  | 
166  |  |     conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \  | 
167  |  |     mont_mulf_noconv(mResult, dm1, d16Tmp,               \  | 
168  |  |                      dTmp, dn, MP_DIGITS(modulus), nLen, dn0)  | 
169  |  |  | 
170  |  | /* computes montgomery product of x and the integer in mResult */  | 
171  |  | #define MUL(x)                                   \  | 
172  |  |     conv_i32_to_d32(dm1, mResult, nLen);         \  | 
173  |  |     mont_mulf_noconv(mResult, dm1, oddPowers[x], \  | 
174  |  |                      dTmp, dn, MP_DIGITS(modulus), nLen, dn0)  | 
175  |  |  | 
176  |  | /* Do modular exponentiation using floating point multiply code. */  | 
177  |  | mp_err  | 
178  |  | mp_exptmod_f(const mp_int *montBase,  | 
179  |  |              const mp_int *exponent,  | 
180  |  |              const mp_int *modulus,  | 
181  |  |              mp_int *result,  | 
182  |  |              mp_mont_modulus *mmm,  | 
183  |  |              int nLen,  | 
184  |  |              mp_size bits_in_exponent,  | 
185  |  |              mp_size window_bits,  | 
186  |  |              mp_size odd_ints)  | 
187  |  | { | 
188  |  |     mp_digit *mResult;  | 
189  |  |     double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;  | 
190  |  |     double dn0;  | 
191  |  |     mp_size i;  | 
192  |  |     mp_err res;  | 
193  |  |     int expOff;  | 
194  |  |     int dSize = 0, oddPowSize, dTmpSize;  | 
195  |  |     mp_int accum1;  | 
196  |  |     double *oddPowers[MAX_ODD_INTS];  | 
197  |  |  | 
198  |  |     /* function for computing n0prime only works if n0 is odd */  | 
199  |  |  | 
200  |  |     MP_DIGITS(&accum1) = 0;  | 
201  |  |  | 
202  |  |     for (i = 0; i < MAX_ODD_INTS; ++i)  | 
203  |  |         oddPowers[i] = 0;  | 
204  |  |  | 
205  |  |     MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2));  | 
206  |  |  | 
207  |  |     mp_set(&accum1, 1);  | 
208  |  |     MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1));  | 
209  |  |     MP_CHECKOK(s_mp_pad(&accum1, nLen));  | 
210  |  |  | 
211  |  |     oddPowSize = 2 * nLen + 1;  | 
212  |  |     dTmpSize = 2 * oddPowSize;  | 
213  |  |     dSize = sizeof(double) * (nLen * 4 + 1 +  | 
214  |  |                               ((odd_ints + 1) * oddPowSize) + dTmpSize);  | 
215  |  |     dBuf = malloc(dSize);  | 
216  |  |     if (!dBuf) { | 
217  |  |         res = MP_MEM;  | 
218  |  |         goto CLEANUP;  | 
219  |  |     }  | 
220  |  |     dm1 = dBuf;           /* array of d32 */  | 
221  |  |     dn = dBuf + nLen;     /* array of d32 */  | 
222  |  |     dSqr = dn + nLen;     /* array of d32 */  | 
223  |  |     d16Tmp = dSqr + nLen; /* array of d16 */  | 
224  |  |     dTmp = d16Tmp + oddPowSize;  | 
225  |  |  | 
226  |  |     for (i = 0; i < odd_ints; ++i) { | 
227  |  |         oddPowers[i] = dTmp;  | 
228  |  |         dTmp += oddPowSize;  | 
229  |  |     }  | 
230  |  |     mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */  | 
231  |  |  | 
232  |  |     /* Make dn and dn0 */  | 
233  |  |     conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);  | 
234  |  |     dn0 = (double)(mmm->n0prime & 0xffff);  | 
235  |  |  | 
236  |  |     /* Make dSqr */  | 
237  |  |     conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);  | 
238  |  |     mont_mulf_noconv(mResult, dm1, oddPowers[0],  | 
239  |  |                      dTmp, dn, MP_DIGITS(modulus), nLen, dn0);  | 
240  |  |     conv_i32_to_d32(dSqr, mResult, nLen);  | 
241  |  |  | 
242  |  |     for (i = 1; i < odd_ints; ++i) { | 
243  |  |         mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],  | 
244  |  |                          dTmp, dn, MP_DIGITS(modulus), nLen, dn0);  | 
245  |  |         conv_i32_to_d16(oddPowers[i], mResult, nLen);  | 
246  |  |     }  | 
247  |  |  | 
248  |  |     s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */  | 
249  |  |  | 
250  |  |     for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { | 
251  |  |         mp_size smallExp;  | 
252  |  |         MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits));  | 
253  |  |         smallExp = (mp_size)res;  | 
254  |  |  | 
255  |  |         if (window_bits == 1) { | 
256  |  |             if (!smallExp) { | 
257  |  |                 SQR;  | 
258  |  |             } else if (smallExp & 1) { | 
259  |  |                 SQR;  | 
260  |  |                 MUL(0);  | 
261  |  |             } else { | 
262  |  |                 abort();  | 
263  |  |             }  | 
264  |  |         } else if (window_bits == 4) { | 
265  |  |             if (!smallExp) { | 
266  |  |                 SQR;  | 
267  |  |                 SQR;  | 
268  |  |                 SQR;  | 
269  |  |                 SQR;  | 
270  |  |             } else if (smallExp & 1) { | 
271  |  |                 SQR;  | 
272  |  |                 SQR;  | 
273  |  |                 SQR;  | 
274  |  |                 SQR;  | 
275  |  |                 MUL(smallExp / 2);  | 
276  |  |             } else if (smallExp & 2) { | 
277  |  |                 SQR;  | 
278  |  |                 SQR;  | 
279  |  |                 SQR;  | 
280  |  |                 MUL(smallExp / 4);  | 
281  |  |                 SQR;  | 
282  |  |             } else if (smallExp & 4) { | 
283  |  |                 SQR;  | 
284  |  |                 SQR;  | 
285  |  |                 MUL(smallExp / 8);  | 
286  |  |                 SQR;  | 
287  |  |                 SQR;  | 
288  |  |             } else if (smallExp & 8) { | 
289  |  |                 SQR;  | 
290  |  |                 MUL(smallExp / 16);  | 
291  |  |                 SQR;  | 
292  |  |                 SQR;  | 
293  |  |                 SQR;  | 
294  |  |             } else { | 
295  |  |                 abort();  | 
296  |  |             }  | 
297  |  |         } else if (window_bits == 5) { | 
298  |  |             if (!smallExp) { | 
299  |  |                 SQR;  | 
300  |  |                 SQR;  | 
301  |  |                 SQR;  | 
302  |  |                 SQR;  | 
303  |  |                 SQR;  | 
304  |  |             } else if (smallExp & 1) { | 
305  |  |                 SQR;  | 
306  |  |                 SQR;  | 
307  |  |                 SQR;  | 
308  |  |                 SQR;  | 
309  |  |                 SQR;  | 
310  |  |                 MUL(smallExp / 2);  | 
311  |  |             } else if (smallExp & 2) { | 
312  |  |                 SQR;  | 
313  |  |                 SQR;  | 
314  |  |                 SQR;  | 
315  |  |                 SQR;  | 
316  |  |                 MUL(smallExp / 4);  | 
317  |  |                 SQR;  | 
318  |  |             } else if (smallExp & 4) { | 
319  |  |                 SQR;  | 
320  |  |                 SQR;  | 
321  |  |                 SQR;  | 
322  |  |                 MUL(smallExp / 8);  | 
323  |  |                 SQR;  | 
324  |  |                 SQR;  | 
325  |  |             } else if (smallExp & 8) { | 
326  |  |                 SQR;  | 
327  |  |                 SQR;  | 
328  |  |                 MUL(smallExp / 16);  | 
329  |  |                 SQR;  | 
330  |  |                 SQR;  | 
331  |  |                 SQR;  | 
332  |  |             } else if (smallExp & 0x10) { | 
333  |  |                 SQR;  | 
334  |  |                 MUL(smallExp / 32);  | 
335  |  |                 SQR;  | 
336  |  |                 SQR;  | 
337  |  |                 SQR;  | 
338  |  |                 SQR;  | 
339  |  |             } else { | 
340  |  |                 abort();  | 
341  |  |             }  | 
342  |  |         } else if (window_bits == 6) { | 
343  |  |             if (!smallExp) { | 
344  |  |                 SQR;  | 
345  |  |                 SQR;  | 
346  |  |                 SQR;  | 
347  |  |                 SQR;  | 
348  |  |                 SQR;  | 
349  |  |                 SQR;  | 
350  |  |             } else if (smallExp & 1) { | 
351  |  |                 SQR;  | 
352  |  |                 SQR;  | 
353  |  |                 SQR;  | 
354  |  |                 SQR;  | 
355  |  |                 SQR;  | 
356  |  |                 SQR;  | 
357  |  |                 MUL(smallExp / 2);  | 
358  |  |             } else if (smallExp & 2) { | 
359  |  |                 SQR;  | 
360  |  |                 SQR;  | 
361  |  |                 SQR;  | 
362  |  |                 SQR;  | 
363  |  |                 SQR;  | 
364  |  |                 MUL(smallExp / 4);  | 
365  |  |                 SQR;  | 
366  |  |             } else if (smallExp & 4) { | 
367  |  |                 SQR;  | 
368  |  |                 SQR;  | 
369  |  |                 SQR;  | 
370  |  |                 SQR;  | 
371  |  |                 MUL(smallExp / 8);  | 
372  |  |                 SQR;  | 
373  |  |                 SQR;  | 
374  |  |             } else if (smallExp & 8) { | 
375  |  |                 SQR;  | 
376  |  |                 SQR;  | 
377  |  |                 SQR;  | 
378  |  |                 MUL(smallExp / 16);  | 
379  |  |                 SQR;  | 
380  |  |                 SQR;  | 
381  |  |                 SQR;  | 
382  |  |             } else if (smallExp & 0x10) { | 
383  |  |                 SQR;  | 
384  |  |                 SQR;  | 
385  |  |                 MUL(smallExp / 32);  | 
386  |  |                 SQR;  | 
387  |  |                 SQR;  | 
388  |  |                 SQR;  | 
389  |  |                 SQR;  | 
390  |  |             } else if (smallExp & 0x20) { | 
391  |  |                 SQR;  | 
392  |  |                 MUL(smallExp / 64);  | 
393  |  |                 SQR;  | 
394  |  |                 SQR;  | 
395  |  |                 SQR;  | 
396  |  |                 SQR;  | 
397  |  |                 SQR;  | 
398  |  |             } else { | 
399  |  |                 abort();  | 
400  |  |             }  | 
401  |  |         } else { | 
402  |  |             abort();  | 
403  |  |         }  | 
404  |  |     }  | 
405  |  |  | 
406  |  |     s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */  | 
407  |  |  | 
408  |  |     res = s_mp_redc(&accum1, mmm);  | 
409  |  |     mp_exch(&accum1, result);  | 
410  |  |  | 
411  |  | CLEANUP:  | 
412  |  |     mp_clear(&accum1);  | 
413  |  |     if (dBuf) { | 
414  |  |         if (dSize)  | 
415  |  |             memset(dBuf, 0, dSize);  | 
416  |  |         free(dBuf);  | 
417  |  |     }  | 
418  |  |  | 
419  |  |     return res;  | 
420  |  | }  | 
421  |  | #undef SQR  | 
422  |  | #undef MUL  | 
423  |  | #endif  | 
424  |  |  | 
425  |  | #define SQR(a, b)             \  | 
426  | 0  |     MP_CHECKOK(mp_sqr(a, b)); \  | 
427  | 0  |     MP_CHECKOK(s_mp_redc(b, mmm))  | 
428  |  |  | 
429  |  | #if defined(MP_MONT_USE_MP_MUL)  | 
430  |  | #define MUL(x, a, b)                           \  | 
431  |  |     MP_CHECKOK(mp_mul(a, oddPowers + (x), b)); \  | 
432  |  |     MP_CHECKOK(s_mp_redc(b, mmm))  | 
433  |  | #else  | 
434  |  | #define MUL(x, a, b) \  | 
435  | 0  |     MP_CHECKOK(s_mp_mul_mont(a, oddPowers + (x), b, mmm))  | 
436  |  | #endif  | 
437  |  |  | 
438  |  | #define SWAPPA  \  | 
439  | 0  |     ptmp = pa1; \  | 
440  | 0  |     pa1 = pa2;  \  | 
441  | 0  |     pa2 = ptmp  | 
442  |  |  | 
443  |  | /* Do modular exponentiation using integer multiply code. */  | 
444  |  | mp_err  | 
445  |  | mp_exptmod_i(const mp_int *montBase,  | 
446  |  |              const mp_int *exponent,  | 
447  |  |              const mp_int *modulus,  | 
448  |  |              mp_int *result,  | 
449  |  |              mp_mont_modulus *mmm,  | 
450  |  |              int nLen,  | 
451  |  |              mp_size bits_in_exponent,  | 
452  |  |              mp_size window_bits,  | 
453  |  |              mp_size odd_ints)  | 
454  | 0  | { | 
455  | 0  |     mp_int *pa1, *pa2, *ptmp;  | 
456  | 0  |     mp_size i;  | 
457  | 0  |     mp_err res;  | 
458  | 0  |     int expOff;  | 
459  | 0  |     mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];  | 
460  |  |  | 
461  |  |     /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */  | 
462  |  |     /* oddPowers[i] = base ** (2*i + 1); */  | 
463  |  | 
  | 
464  | 0  |     MP_DIGITS(&accum1) = 0;  | 
465  | 0  |     MP_DIGITS(&accum2) = 0;  | 
466  | 0  |     MP_DIGITS(&power2) = 0;  | 
467  | 0  |     for (i = 0; i < MAX_ODD_INTS; ++i) { | 
468  | 0  |         MP_DIGITS(oddPowers + i) = 0;  | 
469  | 0  |     }  | 
470  |  | 
  | 
471  | 0  |     MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2));  | 
472  | 0  |     MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2));  | 
473  |  |  | 
474  | 0  |     MP_CHECKOK(mp_init_copy(&oddPowers[0], montBase));  | 
475  |  |  | 
476  | 0  |     MP_CHECKOK(mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2));  | 
477  | 0  |     MP_CHECKOK(mp_sqr(montBase, &power2)); /* power2 = montBase ** 2 */  | 
478  | 0  |     MP_CHECKOK(s_mp_redc(&power2, mmm));  | 
479  |  |  | 
480  | 0  |     for (i = 1; i < odd_ints; ++i) { | 
481  | 0  |         MP_CHECKOK(mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2));  | 
482  | 0  |         MP_CHECKOK(mp_mul(oddPowers + (i - 1), &power2, oddPowers + i));  | 
483  | 0  |         MP_CHECKOK(s_mp_redc(oddPowers + i, mmm));  | 
484  | 0  |     }  | 
485  |  |  | 
486  |  |     /* set accumulator to montgomery residue of 1 */  | 
487  | 0  |     mp_set(&accum1, 1);  | 
488  | 0  |     MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1));  | 
489  | 0  |     pa1 = &accum1;  | 
490  | 0  |     pa2 = &accum2;  | 
491  |  | 
  | 
492  | 0  |     for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { | 
493  | 0  |         mp_size smallExp;  | 
494  | 0  |         MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits));  | 
495  | 0  |         smallExp = (mp_size)res;  | 
496  |  | 
  | 
497  | 0  |         if (window_bits == 1) { | 
498  | 0  |             if (!smallExp) { | 
499  | 0  |                 SQR(pa1, pa2);  | 
500  | 0  |                 SWAPPA;  | 
501  | 0  |             } else if (smallExp & 1) { | 
502  | 0  |                 SQR(pa1, pa2);  | 
503  | 0  |                 MUL(0, pa2, pa1);  | 
504  | 0  |             } else { | 
505  | 0  |                 abort();  | 
506  | 0  |             }  | 
507  | 0  |         } else if (window_bits == 4) { | 
508  | 0  |             if (!smallExp) { | 
509  | 0  |                 SQR(pa1, pa2);  | 
510  | 0  |                 SQR(pa2, pa1);  | 
511  | 0  |                 SQR(pa1, pa2);  | 
512  | 0  |                 SQR(pa2, pa1);  | 
513  | 0  |             } else if (smallExp & 1) { | 
514  | 0  |                 SQR(pa1, pa2);  | 
515  | 0  |                 SQR(pa2, pa1);  | 
516  | 0  |                 SQR(pa1, pa2);  | 
517  | 0  |                 SQR(pa2, pa1);  | 
518  | 0  |                 MUL(smallExp / 2, pa1, pa2);  | 
519  | 0  |                 SWAPPA;  | 
520  | 0  |             } else if (smallExp & 2) { | 
521  | 0  |                 SQR(pa1, pa2);  | 
522  | 0  |                 SQR(pa2, pa1);  | 
523  | 0  |                 SQR(pa1, pa2);  | 
524  | 0  |                 MUL(smallExp / 4, pa2, pa1);  | 
525  | 0  |                 SQR(pa1, pa2);  | 
526  | 0  |                 SWAPPA;  | 
527  | 0  |             } else if (smallExp & 4) { | 
528  | 0  |                 SQR(pa1, pa2);  | 
529  | 0  |                 SQR(pa2, pa1);  | 
530  | 0  |                 MUL(smallExp / 8, pa1, pa2);  | 
531  | 0  |                 SQR(pa2, pa1);  | 
532  | 0  |                 SQR(pa1, pa2);  | 
533  | 0  |                 SWAPPA;  | 
534  | 0  |             } else if (smallExp & 8) { | 
535  | 0  |                 SQR(pa1, pa2);  | 
536  | 0  |                 MUL(smallExp / 16, pa2, pa1);  | 
537  | 0  |                 SQR(pa1, pa2);  | 
538  | 0  |                 SQR(pa2, pa1);  | 
539  | 0  |                 SQR(pa1, pa2);  | 
540  | 0  |                 SWAPPA;  | 
541  | 0  |             } else { | 
542  | 0  |                 abort();  | 
543  | 0  |             }  | 
544  | 0  |         } else if (window_bits == 5) { | 
545  | 0  |             if (!smallExp) { | 
546  | 0  |                 SQR(pa1, pa2);  | 
547  | 0  |                 SQR(pa2, pa1);  | 
548  | 0  |                 SQR(pa1, pa2);  | 
549  | 0  |                 SQR(pa2, pa1);  | 
550  | 0  |                 SQR(pa1, pa2);  | 
551  | 0  |                 SWAPPA;  | 
552  | 0  |             } else if (smallExp & 1) { | 
553  | 0  |                 SQR(pa1, pa2);  | 
554  | 0  |                 SQR(pa2, pa1);  | 
555  | 0  |                 SQR(pa1, pa2);  | 
556  | 0  |                 SQR(pa2, pa1);  | 
557  | 0  |                 SQR(pa1, pa2);  | 
558  | 0  |                 MUL(smallExp / 2, pa2, pa1);  | 
559  | 0  |             } else if (smallExp & 2) { | 
560  | 0  |                 SQR(pa1, pa2);  | 
561  | 0  |                 SQR(pa2, pa1);  | 
562  | 0  |                 SQR(pa1, pa2);  | 
563  | 0  |                 SQR(pa2, pa1);  | 
564  | 0  |                 MUL(smallExp / 4, pa1, pa2);  | 
565  | 0  |                 SQR(pa2, pa1);  | 
566  | 0  |             } else if (smallExp & 4) { | 
567  | 0  |                 SQR(pa1, pa2);  | 
568  | 0  |                 SQR(pa2, pa1);  | 
569  | 0  |                 SQR(pa1, pa2);  | 
570  | 0  |                 MUL(smallExp / 8, pa2, pa1);  | 
571  | 0  |                 SQR(pa1, pa2);  | 
572  | 0  |                 SQR(pa2, pa1);  | 
573  | 0  |             } else if (smallExp & 8) { | 
574  | 0  |                 SQR(pa1, pa2);  | 
575  | 0  |                 SQR(pa2, pa1);  | 
576  | 0  |                 MUL(smallExp / 16, pa1, pa2);  | 
577  | 0  |                 SQR(pa2, pa1);  | 
578  | 0  |                 SQR(pa1, pa2);  | 
579  | 0  |                 SQR(pa2, pa1);  | 
580  | 0  |             } else if (smallExp & 0x10) { | 
581  | 0  |                 SQR(pa1, pa2);  | 
582  | 0  |                 MUL(smallExp / 32, pa2, pa1);  | 
583  | 0  |                 SQR(pa1, pa2);  | 
584  | 0  |                 SQR(pa2, pa1);  | 
585  | 0  |                 SQR(pa1, pa2);  | 
586  | 0  |                 SQR(pa2, pa1);  | 
587  | 0  |             } else { | 
588  | 0  |                 abort();  | 
589  | 0  |             }  | 
590  | 0  |         } else if (window_bits == 6) { | 
591  | 0  |             if (!smallExp) { | 
592  | 0  |                 SQR(pa1, pa2);  | 
593  | 0  |                 SQR(pa2, pa1);  | 
594  | 0  |                 SQR(pa1, pa2);  | 
595  | 0  |                 SQR(pa2, pa1);  | 
596  | 0  |                 SQR(pa1, pa2);  | 
597  | 0  |                 SQR(pa2, pa1);  | 
598  | 0  |             } else if (smallExp & 1) { | 
599  | 0  |                 SQR(pa1, pa2);  | 
600  | 0  |                 SQR(pa2, pa1);  | 
601  | 0  |                 SQR(pa1, pa2);  | 
602  | 0  |                 SQR(pa2, pa1);  | 
603  | 0  |                 SQR(pa1, pa2);  | 
604  | 0  |                 SQR(pa2, pa1);  | 
605  | 0  |                 MUL(smallExp / 2, pa1, pa2);  | 
606  | 0  |                 SWAPPA;  | 
607  | 0  |             } else if (smallExp & 2) { | 
608  | 0  |                 SQR(pa1, pa2);  | 
609  | 0  |                 SQR(pa2, pa1);  | 
610  | 0  |                 SQR(pa1, pa2);  | 
611  | 0  |                 SQR(pa2, pa1);  | 
612  | 0  |                 SQR(pa1, pa2);  | 
613  | 0  |                 MUL(smallExp / 4, pa2, pa1);  | 
614  | 0  |                 SQR(pa1, pa2);  | 
615  | 0  |                 SWAPPA;  | 
616  | 0  |             } else if (smallExp & 4) { | 
617  | 0  |                 SQR(pa1, pa2);  | 
618  | 0  |                 SQR(pa2, pa1);  | 
619  | 0  |                 SQR(pa1, pa2);  | 
620  | 0  |                 SQR(pa2, pa1);  | 
621  | 0  |                 MUL(smallExp / 8, pa1, pa2);  | 
622  | 0  |                 SQR(pa2, pa1);  | 
623  | 0  |                 SQR(pa1, pa2);  | 
624  | 0  |                 SWAPPA;  | 
625  | 0  |             } else if (smallExp & 8) { | 
626  | 0  |                 SQR(pa1, pa2);  | 
627  | 0  |                 SQR(pa2, pa1);  | 
628  | 0  |                 SQR(pa1, pa2);  | 
629  | 0  |                 MUL(smallExp / 16, pa2, pa1);  | 
630  | 0  |                 SQR(pa1, pa2);  | 
631  | 0  |                 SQR(pa2, pa1);  | 
632  | 0  |                 SQR(pa1, pa2);  | 
633  | 0  |                 SWAPPA;  | 
634  | 0  |             } else if (smallExp & 0x10) { | 
635  | 0  |                 SQR(pa1, pa2);  | 
636  | 0  |                 SQR(pa2, pa1);  | 
637  | 0  |                 MUL(smallExp / 32, pa1, pa2);  | 
638  | 0  |                 SQR(pa2, pa1);  | 
639  | 0  |                 SQR(pa1, pa2);  | 
640  | 0  |                 SQR(pa2, pa1);  | 
641  | 0  |                 SQR(pa1, pa2);  | 
642  | 0  |                 SWAPPA;  | 
643  | 0  |             } else if (smallExp & 0x20) { | 
644  | 0  |                 SQR(pa1, pa2);  | 
645  | 0  |                 MUL(smallExp / 64, pa2, pa1);  | 
646  | 0  |                 SQR(pa1, pa2);  | 
647  | 0  |                 SQR(pa2, pa1);  | 
648  | 0  |                 SQR(pa1, pa2);  | 
649  | 0  |                 SQR(pa2, pa1);  | 
650  | 0  |                 SQR(pa1, pa2);  | 
651  | 0  |                 SWAPPA;  | 
652  | 0  |             } else { | 
653  | 0  |                 abort();  | 
654  | 0  |             }  | 
655  | 0  |         } else { | 
656  | 0  |             abort();  | 
657  | 0  |         }  | 
658  | 0  |     }  | 
659  |  |  | 
660  | 0  |     res = s_mp_redc(pa1, mmm);  | 
661  | 0  |     mp_exch(pa1, result);  | 
662  |  | 
  | 
663  | 0  | CLEANUP:  | 
664  | 0  |     mp_clear(&accum1);  | 
665  | 0  |     mp_clear(&accum2);  | 
666  | 0  |     mp_clear(&power2);  | 
667  | 0  |     for (i = 0; i < odd_ints; ++i) { | 
668  | 0  |         mp_clear(oddPowers + i);  | 
669  | 0  |     }  | 
670  | 0  |     return res;  | 
671  | 0  | }  | 
672  |  | #undef SQR  | 
673  |  | #undef MUL  | 
674  |  |  | 
675  |  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
676  |  | unsigned int mp_using_cache_safe_exp = 1;  | 
677  |  | #endif  | 
678  |  |  | 
679  |  | mp_err  | 
680  |  | mp_set_safe_modexp(int value)  | 
681  | 0  | { | 
682  | 0  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
683  | 0  |     mp_using_cache_safe_exp = value;  | 
684  | 0  |     return MP_OKAY;  | 
685  |  | #else  | 
686  |  |     if (value == 0) { | 
687  |  |         return MP_OKAY;  | 
688  |  |     }  | 
689  |  |     return MP_BADARG;  | 
690  |  | #endif  | 
691  | 0  | }  | 
692  |  |  | 
693  |  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
694  | 0  | #define WEAVE_WORD_SIZE 4  | 
695  |  |  | 
696  |  | /*  | 
697  |  |  * mpi_to_weave takes an array of bignums, a matrix in which each bignum  | 
698  |  |  * occupies all the columns of a row, and transposes it into a matrix in  | 
699  |  |  * which each bignum occupies a column of every row.  The first row of the  | 
700  |  |  * input matrix becomes the first column of the output matrix.  The n'th  | 
701  |  |  * row of input becomes the n'th column of output.  The input data is said  | 
702  |  |  * to be "interleaved" or "woven" into the output matrix.  | 
703  |  |  *  | 
704  |  |  * The array of bignums is left in this woven form.  Each time a single  | 
705  |  |  * bignum value is needed, it is recreated by fetching the n'th column,  | 
706  |  |  * forming a single row which is the new bignum.  | 
707  |  |  *  | 
708  |  |  * The purpose of this interleaving is make it impossible to determine which  | 
709  |  |  * of the bignums is being used in any one operation by examining the pattern  | 
710  |  |  * of cache misses.  | 
711  |  |  *  | 
712  |  |  * The weaving function does not transpose the entire input matrix in one call.  | 
713  |  |  * It transposes 4 rows of mp_ints into their respective columns of output.  | 
714  |  |  *  | 
715  |  |  * This implementation treats each mp_int bignum as an array of mp_digits,  | 
716  |  |  * It stores those bytes as a column of mp_digits in the output matrix.  It  | 
717  |  |  * doesn't care if the machine uses big-endian or little-endian byte ordering  | 
718  |  |  * within mp_digits.  | 
719  |  |  *  | 
720  |  |  * "bignums" is an array of mp_ints.  | 
721  |  |  * It points to four rows, four mp_ints, a subset of a larger array of mp_ints.  | 
722  |  |  *  | 
723  |  |  * "weaved" is the weaved output matrix.  | 
724  |  |  * The first byte of bignums[0] is stored in weaved[0].  | 
725  |  |  *  | 
726  |  |  * "nBignums" is the total number of bignums in the array of which "bignums"  | 
727  |  |  * is a part.  | 
728  |  |  *  | 
729  |  |  * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.  | 
730  |  |  * mp_ints that use less than nDigits digits are logically padded with zeros  | 
731  |  |  * while being stored in the weaved array.  | 
732  |  |  */  | 
733  |  | mp_err  | 
734  |  | mpi_to_weave(const mp_int *bignums,  | 
735  |  |              mp_digit *weaved,  | 
736  |  |              mp_size nDigits,  /* in each mp_int of input */  | 
737  |  |              mp_size nBignums) /* in the entire source array */  | 
738  | 0  | { | 
739  | 0  |     mp_size i;  | 
740  | 0  |     mp_digit *endDest = weaved + (nDigits * nBignums);  | 
741  |  | 
  | 
742  | 0  |     for (i = 0; i < WEAVE_WORD_SIZE; i++) { | 
743  | 0  |         mp_size used = MP_USED(&bignums[i]);  | 
744  | 0  |         mp_digit *pSrc = MP_DIGITS(&bignums[i]);  | 
745  | 0  |         mp_digit *endSrc = pSrc + used;  | 
746  | 0  |         mp_digit *pDest = weaved + i;  | 
747  |  | 
  | 
748  | 0  |         ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);  | 
749  | 0  |         ARGCHK(used <= nDigits, MP_BADARG);  | 
750  |  |  | 
751  | 0  |         for (; pSrc < endSrc; pSrc++) { | 
752  | 0  |             *pDest = *pSrc;  | 
753  | 0  |             pDest += nBignums;  | 
754  | 0  |         }  | 
755  | 0  |         while (pDest < endDest) { | 
756  | 0  |             *pDest = 0;  | 
757  | 0  |             pDest += nBignums;  | 
758  | 0  |         }  | 
759  | 0  |     }  | 
760  |  |  | 
761  | 0  |     return MP_OKAY;  | 
762  | 0  | }  | 
763  |  |  | 
764  |  | /*  | 
765  |  |  * These functions return 0xffffffff if the output is true, and 0 otherwise.  | 
766  |  |  */  | 
767  | 0  | #define CONST_TIME_MSB(x) (0L - ((x) >> (8 * sizeof(x) - 1)))  | 
768  | 0  | #define CONST_TIME_EQ_Z(x) CONST_TIME_MSB(~(x) & ((x)-1))  | 
769  | 0  | #define CONST_TIME_EQ(a, b) CONST_TIME_EQ_Z((a) ^ (b))  | 
770  |  |  | 
771  |  | /* Reverse the operation above for one mp_int.  | 
772  |  |  * Reconstruct one mp_int from its column in the weaved array.  | 
773  |  |  * Every read accesses every element of the weaved array, in order to  | 
774  |  |  * avoid timing attacks based on patterns of memory accesses.  | 
775  |  |  */  | 
776  |  | mp_err  | 
777  |  | weave_to_mpi(mp_int *a,              /* out, result */  | 
778  |  |              const mp_digit *weaved, /* in, byte matrix */  | 
779  |  |              mp_size index,          /* which column to read */  | 
780  |  |              mp_size nDigits,        /* number of mp_digits in each bignum */  | 
781  |  |              mp_size nBignums)       /* width of the matrix */  | 
782  | 0  | { | 
783  |  |     /* these are indices, but need to be the same size as mp_digit  | 
784  |  |      * because of the CONST_TIME operations */  | 
785  | 0  |     mp_digit i, j;  | 
786  | 0  |     mp_digit d;  | 
787  | 0  |     mp_digit *pDest = MP_DIGITS(a);  | 
788  |  | 
  | 
789  | 0  |     MP_SIGN(a) = MP_ZPOS;  | 
790  | 0  |     MP_USED(a) = nDigits;  | 
791  |  | 
  | 
792  | 0  |     assert(weaved != NULL);  | 
793  |  |  | 
794  |  |     /* Fetch the proper column in constant time, indexing over the whole array */  | 
795  | 0  |     for (i = 0; i < nDigits; ++i) { | 
796  | 0  |         d = 0;  | 
797  | 0  |         for (j = 0; j < nBignums; ++j) { | 
798  | 0  |             d |= weaved[i * nBignums + j] & CONST_TIME_EQ(j, index);  | 
799  | 0  |         }  | 
800  | 0  |         pDest[i] = d;  | 
801  | 0  |     }  | 
802  |  | 
  | 
803  | 0  |     s_mp_clamp(a);  | 
804  | 0  |     return MP_OKAY;  | 
805  | 0  | }  | 
806  |  |  | 
807  |  | #define SQR(a, b)             \  | 
808  | 0  |     MP_CHECKOK(mp_sqr(a, b)); \  | 
809  | 0  |     MP_CHECKOK(s_mp_redc(b, mmm))  | 
810  |  |  | 
811  |  | #if defined(MP_MONT_USE_MP_MUL)  | 
812  |  | #define MUL_NOWEAVE(x, a, b)     \  | 
813  |  |     MP_CHECKOK(mp_mul(a, x, b)); \  | 
814  |  |     MP_CHECKOK(s_mp_redc(b, mmm))  | 
815  |  | #else  | 
816  |  | #define MUL_NOWEAVE(x, a, b) \  | 
817  | 0  |     MP_CHECKOK(s_mp_mul_mont(a, x, b, mmm))  | 
818  |  | #endif  | 
819  |  |  | 
820  |  | #define MUL(x, a, b)                                               \  | 
821  | 0  |     MP_CHECKOK(weave_to_mpi(&tmp, powers, (x), nLen, num_powers)); \  | 
822  | 0  |     MUL_NOWEAVE(&tmp, a, b)  | 
823  |  |  | 
824  |  | #define SWAPPA  \  | 
825  | 0  |     ptmp = pa1; \  | 
826  | 0  |     pa1 = pa2;  \  | 
827  | 0  |     pa2 = ptmp  | 
828  | 0  | #define MP_ALIGN(x, y) ((((ptrdiff_t)(x)) + ((y)-1)) & (((ptrdiff_t)0) - (y)))  | 
829  |  |  | 
830  |  | /* Do modular exponentiation using integer multiply code. */  | 
831  |  | mp_err  | 
832  |  | mp_exptmod_safe_i(const mp_int *montBase,  | 
833  |  |                   const mp_int *exponent,  | 
834  |  |                   const mp_int *modulus,  | 
835  |  |                   mp_int *result,  | 
836  |  |                   mp_mont_modulus *mmm,  | 
837  |  |                   int nLen,  | 
838  |  |                   mp_size bits_in_exponent,  | 
839  |  |                   mp_size window_bits,  | 
840  |  |                   mp_size num_powers)  | 
841  | 0  | { | 
842  | 0  |     mp_int *pa1, *pa2, *ptmp;  | 
843  | 0  |     mp_size i;  | 
844  | 0  |     mp_size first_window;  | 
845  | 0  |     mp_err res;  | 
846  | 0  |     int expOff;  | 
847  | 0  |     mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];  | 
848  | 0  |     mp_int tmp;  | 
849  | 0  |     mp_digit *powersArray = NULL;  | 
850  | 0  |     mp_digit *powers = NULL;  | 
851  |  | 
  | 
852  | 0  |     MP_DIGITS(&accum1) = 0;  | 
853  | 0  |     MP_DIGITS(&accum2) = 0;  | 
854  | 0  |     MP_DIGITS(&accum[0]) = 0;  | 
855  | 0  |     MP_DIGITS(&accum[1]) = 0;  | 
856  | 0  |     MP_DIGITS(&accum[2]) = 0;  | 
857  | 0  |     MP_DIGITS(&accum[3]) = 0;  | 
858  | 0  |     MP_DIGITS(&tmp) = 0;  | 
859  |  |  | 
860  |  |     /* grab the first window value. This allows us to preload accumulator1  | 
861  |  |      * and save a conversion, some squares and a multiple*/  | 
862  | 0  |     MP_CHECKOK(mpl_get_bits(exponent,  | 
863  | 0  |                             bits_in_exponent - window_bits, window_bits));  | 
864  | 0  |     first_window = (mp_size)res;  | 
865  |  | 
  | 
866  | 0  |     MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2));  | 
867  | 0  |     MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2));  | 
868  |  |  | 
869  |  |     /* build the first WEAVE_WORD powers inline */  | 
870  |  |     /* if WEAVE_WORD_SIZE is not 4, this code will have to change */  | 
871  | 0  |     if (num_powers > 2) { | 
872  | 0  |         MP_CHECKOK(mp_init_size(&accum[0], 3 * nLen + 2));  | 
873  | 0  |         MP_CHECKOK(mp_init_size(&accum[1], 3 * nLen + 2));  | 
874  | 0  |         MP_CHECKOK(mp_init_size(&accum[2], 3 * nLen + 2));  | 
875  | 0  |         MP_CHECKOK(mp_init_size(&accum[3], 3 * nLen + 2));  | 
876  | 0  |         mp_set(&accum[0], 1);  | 
877  | 0  |         MP_CHECKOK(mp_to_mont(&accum[0], &(mmm->N), &accum[0]));  | 
878  | 0  |         MP_CHECKOK(mp_copy(montBase, &accum[1]));  | 
879  | 0  |         SQR(montBase, &accum[2]);  | 
880  | 0  |         MUL_NOWEAVE(montBase, &accum[2], &accum[3]);  | 
881  | 0  |         powersArray = (mp_digit *)malloc(num_powers * (nLen * sizeof(mp_digit) + 1));  | 
882  | 0  |         if (!powersArray) { | 
883  | 0  |             res = MP_MEM;  | 
884  | 0  |             goto CLEANUP;  | 
885  | 0  |         }  | 
886  |  |         /* powers[i] = base ** (i); */  | 
887  | 0  |         powers = (mp_digit *)MP_ALIGN(powersArray, num_powers);  | 
888  | 0  |         MP_CHECKOK(mpi_to_weave(accum, powers, nLen, num_powers));  | 
889  | 0  |         if (first_window < 4) { | 
890  | 0  |             MP_CHECKOK(mp_copy(&accum[first_window], &accum1));  | 
891  | 0  |             first_window = num_powers;  | 
892  | 0  |         }  | 
893  | 0  |     } else { | 
894  | 0  |         if (first_window == 0) { | 
895  | 0  |             mp_set(&accum1, 1);  | 
896  | 0  |             MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1));  | 
897  | 0  |         } else { | 
898  |  |             /* assert first_window == 1? */  | 
899  | 0  |             MP_CHECKOK(mp_copy(montBase, &accum1));  | 
900  | 0  |         }  | 
901  | 0  |     }  | 
902  |  |  | 
903  |  |     /*  | 
904  |  |      * calculate all the powers in the powers array.  | 
905  |  |      * this adds 2**(k-1)-2 square operations over just calculating the  | 
906  |  |      * odd powers where k is the window size in the two other mp_modexpt  | 
907  |  |      * implementations in this file. We will get some of that  | 
908  |  |      * back by not needing the first 'k' squares and one multiply for the  | 
909  |  |      * first window.  | 
910  |  |      * Given the value of 4 for WEAVE_WORD_SIZE, this loop will only execute if  | 
911  |  |      * num_powers > 2, in which case powers will have been allocated.  | 
912  |  |      */  | 
913  | 0  |     for (i = WEAVE_WORD_SIZE; i < num_powers; i++) { | 
914  | 0  |         int acc_index = i & (WEAVE_WORD_SIZE - 1); /* i % WEAVE_WORD_SIZE */  | 
915  | 0  |         if (i & 1) { | 
916  | 0  |             MUL_NOWEAVE(montBase, &accum[acc_index - 1], &accum[acc_index]);  | 
917  |  |             /* we've filled the array do our 'per array' processing */  | 
918  | 0  |             if (acc_index == (WEAVE_WORD_SIZE - 1)) { | 
919  | 0  |                 MP_CHECKOK(mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE - 1),  | 
920  | 0  |                                         nLen, num_powers));  | 
921  |  |  | 
922  | 0  |                 if (first_window <= i) { | 
923  | 0  |                     MP_CHECKOK(mp_copy(&accum[first_window & (WEAVE_WORD_SIZE - 1)],  | 
924  | 0  |                                        &accum1));  | 
925  | 0  |                     first_window = num_powers;  | 
926  | 0  |                 }  | 
927  | 0  |             }  | 
928  | 0  |         } else { | 
929  |  |             /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source  | 
930  |  |              * and target are the same so we need to copy.. After that, the  | 
931  |  |              * value is overwritten, so we need to fetch it from the stored  | 
932  |  |              * weave array */  | 
933  | 0  |             if (i > 2 * WEAVE_WORD_SIZE) { | 
934  | 0  |                 MP_CHECKOK(weave_to_mpi(&accum2, powers, i / 2, nLen, num_powers));  | 
935  | 0  |                 SQR(&accum2, &accum[acc_index]);  | 
936  | 0  |             } else { | 
937  | 0  |                 int half_power_index = (i / 2) & (WEAVE_WORD_SIZE - 1);  | 
938  | 0  |                 if (half_power_index == acc_index) { | 
939  |  |                     /* copy is cheaper than weave_to_mpi */  | 
940  | 0  |                     MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));  | 
941  | 0  |                     SQR(&accum2, &accum[acc_index]);  | 
942  | 0  |                 } else { | 
943  | 0  |                     SQR(&accum[half_power_index], &accum[acc_index]);  | 
944  | 0  |                 }  | 
945  | 0  |             }  | 
946  | 0  |         }  | 
947  | 0  |     }  | 
948  |  | /* if the accum1 isn't set, Then there is something wrong with our logic  | 
949  |  |  * above and is an internal programming error.  | 
950  |  |  */  | 
951  | 0  | #if MP_ARGCHK == 2  | 
952  | 0  |     assert(MP_USED(&accum1) != 0);  | 
953  | 0  | #endif  | 
954  |  |  | 
955  |  |     /* set accumulator to montgomery residue of 1 */  | 
956  | 0  |     pa1 = &accum1;  | 
957  | 0  |     pa2 = &accum2;  | 
958  |  |  | 
959  |  |     /* tmp is not used if window_bits == 1. */  | 
960  | 0  |     if (window_bits != 1) { | 
961  | 0  |         MP_CHECKOK(mp_init_size(&tmp, 3 * nLen + 2));  | 
962  | 0  |     }  | 
963  |  |  | 
964  | 0  |     for (expOff = bits_in_exponent - window_bits * 2; expOff >= 0; expOff -= window_bits) { | 
965  | 0  |         mp_size smallExp;  | 
966  | 0  |         MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits));  | 
967  | 0  |         smallExp = (mp_size)res;  | 
968  |  |  | 
969  |  |         /* handle unroll the loops */  | 
970  | 0  |         switch (window_bits) { | 
971  | 0  |             case 1:  | 
972  | 0  |                 if (!smallExp) { | 
973  | 0  |                     SQR(pa1, pa2);  | 
974  | 0  |                     SWAPPA;  | 
975  | 0  |                 } else if (smallExp & 1) { | 
976  | 0  |                     SQR(pa1, pa2);  | 
977  | 0  |                     MUL_NOWEAVE(montBase, pa2, pa1);  | 
978  | 0  |                 } else { | 
979  | 0  |                     abort();  | 
980  | 0  |                 }  | 
981  | 0  |                 break;  | 
982  | 0  |             case 6:  | 
983  | 0  |                 SQR(pa1, pa2);  | 
984  | 0  |                 SQR(pa2, pa1);  | 
985  |  |             /* fall through */  | 
986  | 0  |             case 4:  | 
987  | 0  |                 SQR(pa1, pa2);  | 
988  | 0  |                 SQR(pa2, pa1);  | 
989  | 0  |                 SQR(pa1, pa2);  | 
990  | 0  |                 SQR(pa2, pa1);  | 
991  | 0  |                 MUL(smallExp, pa1, pa2);  | 
992  | 0  |                 SWAPPA;  | 
993  | 0  |                 break;  | 
994  | 0  |             case 5:  | 
995  | 0  |                 SQR(pa1, pa2);  | 
996  | 0  |                 SQR(pa2, pa1);  | 
997  | 0  |                 SQR(pa1, pa2);  | 
998  | 0  |                 SQR(pa2, pa1);  | 
999  | 0  |                 SQR(pa1, pa2);  | 
1000  | 0  |                 MUL(smallExp, pa2, pa1);  | 
1001  | 0  |                 break;  | 
1002  | 0  |             default:  | 
1003  | 0  |                 abort(); /* could do a loop? */  | 
1004  | 0  |         }  | 
1005  | 0  |     }  | 
1006  |  |  | 
1007  | 0  |     res = s_mp_redc(pa1, mmm);  | 
1008  | 0  |     mp_exch(pa1, result);  | 
1009  |  | 
  | 
1010  | 0  | CLEANUP:  | 
1011  | 0  |     mp_clear(&accum1);  | 
1012  | 0  |     mp_clear(&accum2);  | 
1013  | 0  |     mp_clear(&accum[0]);  | 
1014  | 0  |     mp_clear(&accum[1]);  | 
1015  | 0  |     mp_clear(&accum[2]);  | 
1016  | 0  |     mp_clear(&accum[3]);  | 
1017  | 0  |     mp_clear(&tmp);  | 
1018  |  |     /* zero required by FIPS here, can't use PORT_ZFree  | 
1019  |  |      * because mpi doesn't link with util */  | 
1020  | 0  |     if (powers) { | 
1021  | 0  |         PORT_Memset(powers, 0, num_powers * sizeof(mp_digit));  | 
1022  | 0  |     }  | 
1023  | 0  |     free(powersArray);  | 
1024  | 0  |     return res;  | 
1025  | 0  | }  | 
1026  |  | #undef SQR  | 
1027  |  | #undef MUL  | 
1028  |  | #endif  | 
1029  |  |  | 
1030  |  | mp_err  | 
1031  |  | mp_exptmod(const mp_int *inBase, const mp_int *exponent,  | 
1032  |  |            const mp_int *modulus, mp_int *result)  | 
1033  | 0  | { | 
1034  | 0  |     const mp_int *base;  | 
1035  | 0  |     mp_size bits_in_exponent, i, window_bits, odd_ints;  | 
1036  | 0  |     mp_err res;  | 
1037  | 0  |     int nLen;  | 
1038  | 0  |     mp_int montBase, goodBase;  | 
1039  | 0  |     mp_mont_modulus mmm;  | 
1040  | 0  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
1041  | 0  |     static unsigned int max_window_bits;  | 
1042  | 0  | #endif  | 
1043  |  |  | 
1044  |  |     /* function for computing n0prime only works if n0 is odd */  | 
1045  | 0  |     if (!mp_isodd(modulus))  | 
1046  | 0  |         return s_mp_exptmod(inBase, exponent, modulus, result);  | 
1047  |  |  | 
1048  | 0  |     if (mp_cmp_z(inBase) == MP_LT)  | 
1049  | 0  |         return MP_RANGE;  | 
1050  | 0  |     MP_DIGITS(&montBase) = 0;  | 
1051  | 0  |     MP_DIGITS(&goodBase) = 0;  | 
1052  |  | 
  | 
1053  | 0  |     if (mp_cmp(inBase, modulus) < 0) { | 
1054  | 0  |         base = inBase;  | 
1055  | 0  |     } else { | 
1056  | 0  |         MP_CHECKOK(mp_init(&goodBase));  | 
1057  | 0  |         base = &goodBase;  | 
1058  | 0  |         MP_CHECKOK(mp_mod(inBase, modulus, &goodBase));  | 
1059  | 0  |     }  | 
1060  |  |  | 
1061  | 0  |     nLen = MP_USED(modulus);  | 
1062  | 0  |     MP_CHECKOK(mp_init_size(&montBase, 2 * nLen + 2));  | 
1063  |  |  | 
1064  | 0  |     mmm.N = *modulus; /* a copy of the mp_int struct */  | 
1065  |  |  | 
1066  |  |     /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX  | 
1067  |  |     **        where n0 = least significant mp_digit of N, the modulus.  | 
1068  |  |     */  | 
1069  | 0  |     mmm.n0prime = mp_calculate_mont_n0i(modulus);  | 
1070  |  | 
  | 
1071  | 0  |     MP_CHECKOK(mp_to_mont(base, modulus, &montBase));  | 
1072  |  |  | 
1073  | 0  |     bits_in_exponent = mpl_significant_bits(exponent);  | 
1074  | 0  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
1075  | 0  |     if (mp_using_cache_safe_exp) { | 
1076  | 0  |         if (bits_in_exponent > 780)  | 
1077  | 0  |             window_bits = 6;  | 
1078  | 0  |         else if (bits_in_exponent > 256)  | 
1079  | 0  |             window_bits = 5;  | 
1080  | 0  |         else if (bits_in_exponent > 20)  | 
1081  | 0  |             window_bits = 4;  | 
1082  |  |         /* RSA public key exponents are typically under 20 bits (common values  | 
1083  |  |          * are: 3, 17, 65537) and a 4-bit window is inefficient  | 
1084  |  |          */  | 
1085  | 0  |         else  | 
1086  | 0  |             window_bits = 1;  | 
1087  | 0  |     } else  | 
1088  | 0  | #endif  | 
1089  | 0  |         if (bits_in_exponent > 480)  | 
1090  | 0  |         window_bits = 6;  | 
1091  | 0  |     else if (bits_in_exponent > 160)  | 
1092  | 0  |         window_bits = 5;  | 
1093  | 0  |     else if (bits_in_exponent > 20)  | 
1094  | 0  |         window_bits = 4;  | 
1095  |  |     /* RSA public key exponents are typically under 20 bits (common values  | 
1096  |  |      * are: 3, 17, 65537) and a 4-bit window is inefficient  | 
1097  |  |      */  | 
1098  | 0  |     else  | 
1099  | 0  |         window_bits = 1;  | 
1100  |  | 
  | 
1101  | 0  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
1102  |  |     /*  | 
1103  |  |      * clamp the window size based on  | 
1104  |  |      * the cache line size.  | 
1105  |  |      */  | 
1106  | 0  |     if (!max_window_bits) { | 
1107  | 0  |         unsigned long cache_size = s_mpi_getProcessorLineSize();  | 
1108  |  |         /* processor has no cache, use 'fast' code always */  | 
1109  | 0  |         if (cache_size == 0) { | 
1110  | 0  |             mp_using_cache_safe_exp = 0;  | 
1111  | 0  |         }  | 
1112  | 0  |         if ((cache_size == 0) || (cache_size >= 64)) { | 
1113  | 0  |             max_window_bits = 6;  | 
1114  | 0  |         } else if (cache_size >= 32) { | 
1115  | 0  |             max_window_bits = 5;  | 
1116  | 0  |         } else if (cache_size >= 16) { | 
1117  | 0  |             max_window_bits = 4;  | 
1118  | 0  |         } else  | 
1119  | 0  |             max_window_bits = 1; /* should this be an assert? */  | 
1120  | 0  |     }  | 
1121  |  |  | 
1122  |  |     /* clamp the window size down before we caclulate bits_in_exponent */  | 
1123  | 0  |     if (mp_using_cache_safe_exp) { | 
1124  | 0  |         if (window_bits > max_window_bits) { | 
1125  | 0  |             window_bits = max_window_bits;  | 
1126  | 0  |         }  | 
1127  | 0  |     }  | 
1128  | 0  | #endif  | 
1129  |  | 
  | 
1130  | 0  |     odd_ints = 1 << (window_bits - 1);  | 
1131  | 0  |     i = bits_in_exponent % window_bits;  | 
1132  | 0  |     if (i != 0) { | 
1133  | 0  |         bits_in_exponent += window_bits - i;  | 
1134  | 0  |     }  | 
1135  |  | 
  | 
1136  |  | #ifdef MP_USING_MONT_MULF  | 
1137  |  |     if (mp_using_mont_mulf) { | 
1138  |  |         MP_CHECKOK(s_mp_pad(&montBase, nLen));  | 
1139  |  |         res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,  | 
1140  |  |                            bits_in_exponent, window_bits, odd_ints);  | 
1141  |  |     } else  | 
1142  |  | #endif  | 
1143  | 0  | #ifdef MP_USING_CACHE_SAFE_MOD_EXP  | 
1144  | 0  |         if (mp_using_cache_safe_exp) { | 
1145  | 0  |         res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,  | 
1146  | 0  |                                 bits_in_exponent, window_bits, 1 << window_bits);  | 
1147  | 0  |     } else  | 
1148  | 0  | #endif  | 
1149  | 0  |         res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,  | 
1150  | 0  |                            bits_in_exponent, window_bits, odd_ints);  | 
1151  |  | 
  | 
1152  | 0  | CLEANUP:  | 
1153  | 0  |     mp_clear(&montBase);  | 
1154  | 0  |     mp_clear(&goodBase);  | 
1155  |  |     /* Don't mp_clear mmm.N because it is merely a copy of modulus.  | 
1156  |  |     ** Just zap it.  | 
1157  |  |     */  | 
1158  | 0  |     memset(&mmm, 0, sizeof mmm);  | 
1159  | 0  |     return res;  | 
1160  | 0  | }  |