Coverage Report

Created: 2024-02-25 06:31

/src/nss/lib/freebl/ecl/ecp_aff.c
Line
Count
Source (jump to first uncovered line)
1
/* This Source Code Form is subject to the terms of the Mozilla Public
2
 * License, v. 2.0. If a copy of the MPL was not distributed with this
3
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5
#include "ecp.h"
6
#include "mplogic.h"
7
#include <stdlib.h>
8
9
/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
10
mp_err
11
ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
12
33.6k
{
13
14
33.6k
    if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
15
14.2k
        return MP_YES;
16
19.4k
    } else {
17
19.4k
        return MP_NO;
18
19.4k
    }
19
33.6k
}
20
21
/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
22
mp_err
23
ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
24
0
{
25
0
    mp_zero(px);
26
0
    mp_zero(py);
27
0
    return MP_OKAY;
28
0
}
29
30
/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
31
 * Q, and R can all be identical. Uses affine coordinates. Assumes input
32
 * is already field-encoded using field_enc, and returns output that is
33
 * still field-encoded. */
34
mp_err
35
ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
36
                  const mp_int *qy, mp_int *rx, mp_int *ry,
37
                  const ECGroup *group)
38
0
{
39
0
    mp_err res = MP_OKAY;
40
0
    mp_int lambda, temp, tempx, tempy;
41
42
0
    MP_DIGITS(&lambda) = 0;
43
0
    MP_DIGITS(&temp) = 0;
44
0
    MP_DIGITS(&tempx) = 0;
45
0
    MP_DIGITS(&tempy) = 0;
46
0
    MP_CHECKOK(mp_init(&lambda));
47
0
    MP_CHECKOK(mp_init(&temp));
48
0
    MP_CHECKOK(mp_init(&tempx));
49
0
    MP_CHECKOK(mp_init(&tempy));
50
    /* if P = inf, then R = Q */
51
0
    if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
52
0
        MP_CHECKOK(mp_copy(qx, rx));
53
0
        MP_CHECKOK(mp_copy(qy, ry));
54
0
        res = MP_OKAY;
55
0
        goto CLEANUP;
56
0
    }
57
    /* if Q = inf, then R = P */
58
0
    if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
59
0
        MP_CHECKOK(mp_copy(px, rx));
60
0
        MP_CHECKOK(mp_copy(py, ry));
61
0
        res = MP_OKAY;
62
0
        goto CLEANUP;
63
0
    }
64
    /* if px != qx, then lambda = (py-qy) / (px-qx) */
65
0
    if (mp_cmp(px, qx) != 0) {
66
0
        MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
67
0
        MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
68
0
        MP_CHECKOK(group->meth->field_div(&tempy, &tempx, &lambda, group->meth));
69
0
    } else {
70
        /* if py != qy or qy = 0, then R = inf */
71
0
        if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
72
0
            mp_zero(rx);
73
0
            mp_zero(ry);
74
0
            res = MP_OKAY;
75
0
            goto CLEANUP;
76
0
        }
77
        /* lambda = (3qx^2+a) / (2qy) */
78
0
        MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
79
0
        MP_CHECKOK(mp_set_int(&temp, 3));
80
0
        if (group->meth->field_enc) {
81
0
            MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
82
0
        }
83
0
        MP_CHECKOK(group->meth->field_mul(&tempx, &temp, &tempx, group->meth));
84
0
        MP_CHECKOK(group->meth->field_add(&tempx, &group->curvea, &tempx, group->meth));
85
0
        MP_CHECKOK(mp_set_int(&temp, 2));
86
0
        if (group->meth->field_enc) {
87
0
            MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
88
0
        }
89
0
        MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
90
0
        MP_CHECKOK(group->meth->field_div(&tempx, &tempy, &lambda, group->meth));
91
0
    }
92
    /* rx = lambda^2 - px - qx */
93
0
    MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
94
0
    MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
95
0
    MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
96
    /* ry = (x1-x2) * lambda - y1 */
97
0
    MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
98
0
    MP_CHECKOK(group->meth->field_mul(&tempy, &lambda, &tempy, group->meth));
99
0
    MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
100
0
    MP_CHECKOK(mp_copy(&tempx, rx));
101
0
    MP_CHECKOK(mp_copy(&tempy, ry));
102
103
0
CLEANUP:
104
0
    mp_clear(&lambda);
105
0
    mp_clear(&temp);
106
0
    mp_clear(&tempx);
107
0
    mp_clear(&tempy);
108
0
    return res;
109
0
}
110
111
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
112
 * identical. Uses affine coordinates. Assumes input is already
113
 * field-encoded using field_enc, and returns output that is still
114
 * field-encoded. */
115
mp_err
116
ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
117
                  const mp_int *qy, mp_int *rx, mp_int *ry,
118
                  const ECGroup *group)
119
0
{
120
0
    mp_err res = MP_OKAY;
121
0
    mp_int nqy;
122
123
0
    MP_DIGITS(&nqy) = 0;
124
0
    MP_CHECKOK(mp_init(&nqy));
125
    /* nqy = -qy */
126
0
    MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
127
0
    res = group->point_add(px, py, qx, &nqy, rx, ry, group);
128
0
CLEANUP:
129
0
    mp_clear(&nqy);
130
0
    return res;
131
0
}
132
133
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
134
 * affine coordinates. Assumes input is already field-encoded using
135
 * field_enc, and returns output that is still field-encoded. */
136
mp_err
137
ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
138
                  mp_int *ry, const ECGroup *group)
139
0
{
140
0
    return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
141
0
}
142
143
/* by default, this routine is unused and thus doesn't need to be compiled */
144
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
145
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
146
 * R can be identical. Uses affine coordinates. Assumes input is already
147
 * field-encoded using field_enc, and returns output that is still
148
 * field-encoded. */
149
mp_err
150
ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
151
                  mp_int *rx, mp_int *ry, const ECGroup *group)
152
{
153
    mp_err res = MP_OKAY;
154
    mp_int k, k3, qx, qy, sx, sy;
155
    int b1, b3, i, l;
156
157
    MP_DIGITS(&k) = 0;
158
    MP_DIGITS(&k3) = 0;
159
    MP_DIGITS(&qx) = 0;
160
    MP_DIGITS(&qy) = 0;
161
    MP_DIGITS(&sx) = 0;
162
    MP_DIGITS(&sy) = 0;
163
    MP_CHECKOK(mp_init(&k));
164
    MP_CHECKOK(mp_init(&k3));
165
    MP_CHECKOK(mp_init(&qx));
166
    MP_CHECKOK(mp_init(&qy));
167
    MP_CHECKOK(mp_init(&sx));
168
    MP_CHECKOK(mp_init(&sy));
169
170
    /* if n = 0 then r = inf */
171
    if (mp_cmp_z(n) == 0) {
172
        mp_zero(rx);
173
        mp_zero(ry);
174
        res = MP_OKAY;
175
        goto CLEANUP;
176
    }
177
    /* Q = P, k = n */
178
    MP_CHECKOK(mp_copy(px, &qx));
179
    MP_CHECKOK(mp_copy(py, &qy));
180
    MP_CHECKOK(mp_copy(n, &k));
181
    /* if n < 0 then Q = -Q, k = -k */
182
    if (mp_cmp_z(n) < 0) {
183
        MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
184
        MP_CHECKOK(mp_neg(&k, &k));
185
    }
186
#ifdef ECL_DEBUG /* basic double and add method */
187
    l = mpl_significant_bits(&k) - 1;
188
    MP_CHECKOK(mp_copy(&qx, &sx));
189
    MP_CHECKOK(mp_copy(&qy, &sy));
190
    for (i = l - 1; i >= 0; i--) {
191
        /* S = 2S */
192
        MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
193
        /* if k_i = 1, then S = S + Q */
194
        if (mpl_get_bit(&k, i) != 0) {
195
            MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
196
        }
197
    }
198
#else /* double and add/subtract method from \
199
       * standard */
200
    /* k3 = 3 * k */
201
    MP_CHECKOK(mp_set_int(&k3, 3));
202
    MP_CHECKOK(mp_mul(&k, &k3, &k3));
203
    /* S = Q */
204
    MP_CHECKOK(mp_copy(&qx, &sx));
205
    MP_CHECKOK(mp_copy(&qy, &sy));
206
    /* l = index of high order bit in binary representation of 3*k */
207
    l = mpl_significant_bits(&k3) - 1;
208
    /* for i = l-1 downto 1 */
209
    for (i = l - 1; i >= 1; i--) {
210
        /* S = 2S */
211
        MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
212
        b3 = MP_GET_BIT(&k3, i);
213
        b1 = MP_GET_BIT(&k, i);
214
        /* if k3_i = 1 and k_i = 0, then S = S + Q */
215
        if ((b3 == 1) && (b1 == 0)) {
216
            MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
217
            /* if k3_i = 0 and k_i = 1, then S = S - Q */
218
        } else if ((b3 == 0) && (b1 == 1)) {
219
            MP_CHECKOK(group->point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
220
        }
221
    }
222
#endif
223
    /* output S */
224
    MP_CHECKOK(mp_copy(&sx, rx));
225
    MP_CHECKOK(mp_copy(&sy, ry));
226
227
CLEANUP:
228
    mp_clear(&k);
229
    mp_clear(&k3);
230
    mp_clear(&qx);
231
    mp_clear(&qy);
232
    mp_clear(&sx);
233
    mp_clear(&sy);
234
    return res;
235
}
236
#endif
237
238
/* Validates a point on a GFp curve. */
239
mp_err
240
ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
241
19.4k
{
242
19.4k
    mp_err res = MP_NO;
243
19.4k
    mp_int accl, accr, tmp, pxt, pyt;
244
245
19.4k
    MP_DIGITS(&accl) = 0;
246
19.4k
    MP_DIGITS(&accr) = 0;
247
19.4k
    MP_DIGITS(&tmp) = 0;
248
19.4k
    MP_DIGITS(&pxt) = 0;
249
19.4k
    MP_DIGITS(&pyt) = 0;
250
19.4k
    MP_CHECKOK(mp_init(&accl));
251
19.4k
    MP_CHECKOK(mp_init(&accr));
252
19.4k
    MP_CHECKOK(mp_init(&tmp));
253
19.4k
    MP_CHECKOK(mp_init(&pxt));
254
19.4k
    MP_CHECKOK(mp_init(&pyt));
255
256
    /* 1: Verify that publicValue is not the point at infinity */
257
19.4k
    if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
258
6
        res = MP_NO;
259
6
        goto CLEANUP;
260
6
    }
261
    /* 2: Verify that the coordinates of publicValue are elements
262
     *    of the field.
263
     */
264
19.4k
    if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
265
19.4k
        (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
266
6
        res = MP_NO;
267
6
        goto CLEANUP;
268
6
    }
269
    /* 3: Verify that publicValue is on the curve. */
270
19.4k
    if (group->meth->field_enc) {
271
0
        group->meth->field_enc(px, &pxt, group->meth);
272
0
        group->meth->field_enc(py, &pyt, group->meth);
273
19.4k
    } else {
274
19.4k
        MP_CHECKOK(mp_copy(px, &pxt));
275
19.4k
        MP_CHECKOK(mp_copy(py, &pyt));
276
19.4k
    }
277
    /* left-hand side: y^2  */
278
19.4k
    MP_CHECKOK(group->meth->field_sqr(&pyt, &accl, group->meth));
279
    /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */
280
19.4k
    MP_CHECKOK(group->meth->field_sqr(&pxt, &tmp, group->meth));
281
19.4k
    MP_CHECKOK(group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth));
282
19.4k
    MP_CHECKOK(group->meth->field_mul(&tmp, &pxt, &accr, group->meth));
283
19.4k
    MP_CHECKOK(group->meth->field_add(&accr, &group->curveb, &accr, group->meth));
284
    /* check LHS - RHS == 0 */
285
19.4k
    MP_CHECKOK(group->meth->field_sub(&accl, &accr, &accr, group->meth));
286
19.4k
    if (mp_cmp_z(&accr) != 0) {
287
5.15k
        res = MP_NO;
288
5.15k
        goto CLEANUP;
289
5.15k
    }
290
    /* 4: Verify that the order of the curve times the publicValue
291
     *    is the point at infinity.
292
     */
293
14.2k
    MP_CHECKOK(ECPoint_mul(group, &group->order, px, py, &pxt, &pyt));
294
14.2k
    if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
295
0
        res = MP_NO;
296
0
        goto CLEANUP;
297
0
    }
298
299
14.2k
    res = MP_YES;
300
301
19.4k
CLEANUP:
302
19.4k
    mp_clear(&accl);
303
19.4k
    mp_clear(&accr);
304
19.4k
    mp_clear(&tmp);
305
19.4k
    mp_clear(&pxt);
306
19.4k
    mp_clear(&pyt);
307
19.4k
    return res;
308
14.2k
}