/src/nss/lib/freebl/mpi/mp_gf2m.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | #include "mp_gf2m.h" |
6 | | #include "mp_gf2m-priv.h" |
7 | | #include "mplogic.h" |
8 | | #include "mpi-priv.h" |
9 | | |
10 | | const mp_digit mp_gf2m_sqr_tb[16] = { |
11 | | 0, 1, 4, 5, 16, 17, 20, 21, |
12 | | 64, 65, 68, 69, 80, 81, 84, 85 |
13 | | }; |
14 | | |
15 | | /* Multiply two binary polynomials mp_digits a, b. |
16 | | * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. |
17 | | * Output in two mp_digits rh, rl. |
18 | | */ |
19 | | #if MP_DIGIT_BITS == 32 |
20 | | void |
21 | | s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
22 | | { |
23 | | register mp_digit h, l, s; |
24 | | mp_digit tab[8], top2b = a >> 30; |
25 | | register mp_digit a1, a2, a4; |
26 | | |
27 | | a1 = a & (0x3FFFFFFF); |
28 | | a2 = a1 << 1; |
29 | | a4 = a2 << 1; |
30 | | |
31 | | tab[0] = 0; |
32 | | tab[1] = a1; |
33 | | tab[2] = a2; |
34 | | tab[3] = a1 ^ a2; |
35 | | tab[4] = a4; |
36 | | tab[5] = a1 ^ a4; |
37 | | tab[6] = a2 ^ a4; |
38 | | tab[7] = a1 ^ a2 ^ a4; |
39 | | |
40 | | s = tab[b & 0x7]; |
41 | | l = s; |
42 | | s = tab[b >> 3 & 0x7]; |
43 | | l ^= s << 3; |
44 | | h = s >> 29; |
45 | | s = tab[b >> 6 & 0x7]; |
46 | | l ^= s << 6; |
47 | | h ^= s >> 26; |
48 | | s = tab[b >> 9 & 0x7]; |
49 | | l ^= s << 9; |
50 | | h ^= s >> 23; |
51 | | s = tab[b >> 12 & 0x7]; |
52 | | l ^= s << 12; |
53 | | h ^= s >> 20; |
54 | | s = tab[b >> 15 & 0x7]; |
55 | | l ^= s << 15; |
56 | | h ^= s >> 17; |
57 | | s = tab[b >> 18 & 0x7]; |
58 | | l ^= s << 18; |
59 | | h ^= s >> 14; |
60 | | s = tab[b >> 21 & 0x7]; |
61 | | l ^= s << 21; |
62 | | h ^= s >> 11; |
63 | | s = tab[b >> 24 & 0x7]; |
64 | | l ^= s << 24; |
65 | | h ^= s >> 8; |
66 | | s = tab[b >> 27 & 0x7]; |
67 | | l ^= s << 27; |
68 | | h ^= s >> 5; |
69 | | s = tab[b >> 30]; |
70 | | l ^= s << 30; |
71 | | h ^= s >> 2; |
72 | | |
73 | | /* compensate for the top two bits of a */ |
74 | | |
75 | | if (top2b & 01) { |
76 | | l ^= b << 30; |
77 | | h ^= b >> 2; |
78 | | } |
79 | | if (top2b & 02) { |
80 | | l ^= b << 31; |
81 | | h ^= b >> 1; |
82 | | } |
83 | | |
84 | | *rh = h; |
85 | | *rl = l; |
86 | | } |
87 | | #else |
88 | | void |
89 | | s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
90 | 0 | { |
91 | 0 | register mp_digit h, l, s; |
92 | 0 | mp_digit tab[16], top3b = a >> 61; |
93 | 0 | register mp_digit a1, a2, a4, a8; |
94 | |
|
95 | 0 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
96 | 0 | a2 = a1 << 1; |
97 | 0 | a4 = a2 << 1; |
98 | 0 | a8 = a4 << 1; |
99 | 0 | tab[0] = 0; |
100 | 0 | tab[1] = a1; |
101 | 0 | tab[2] = a2; |
102 | 0 | tab[3] = a1 ^ a2; |
103 | 0 | tab[4] = a4; |
104 | 0 | tab[5] = a1 ^ a4; |
105 | 0 | tab[6] = a2 ^ a4; |
106 | 0 | tab[7] = a1 ^ a2 ^ a4; |
107 | 0 | tab[8] = a8; |
108 | 0 | tab[9] = a1 ^ a8; |
109 | 0 | tab[10] = a2 ^ a8; |
110 | 0 | tab[11] = a1 ^ a2 ^ a8; |
111 | 0 | tab[12] = a4 ^ a8; |
112 | 0 | tab[13] = a1 ^ a4 ^ a8; |
113 | 0 | tab[14] = a2 ^ a4 ^ a8; |
114 | 0 | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
115 | |
|
116 | 0 | s = tab[b & 0xF]; |
117 | 0 | l = s; |
118 | 0 | s = tab[b >> 4 & 0xF]; |
119 | 0 | l ^= s << 4; |
120 | 0 | h = s >> 60; |
121 | 0 | s = tab[b >> 8 & 0xF]; |
122 | 0 | l ^= s << 8; |
123 | 0 | h ^= s >> 56; |
124 | 0 | s = tab[b >> 12 & 0xF]; |
125 | 0 | l ^= s << 12; |
126 | 0 | h ^= s >> 52; |
127 | 0 | s = tab[b >> 16 & 0xF]; |
128 | 0 | l ^= s << 16; |
129 | 0 | h ^= s >> 48; |
130 | 0 | s = tab[b >> 20 & 0xF]; |
131 | 0 | l ^= s << 20; |
132 | 0 | h ^= s >> 44; |
133 | 0 | s = tab[b >> 24 & 0xF]; |
134 | 0 | l ^= s << 24; |
135 | 0 | h ^= s >> 40; |
136 | 0 | s = tab[b >> 28 & 0xF]; |
137 | 0 | l ^= s << 28; |
138 | 0 | h ^= s >> 36; |
139 | 0 | s = tab[b >> 32 & 0xF]; |
140 | 0 | l ^= s << 32; |
141 | 0 | h ^= s >> 32; |
142 | 0 | s = tab[b >> 36 & 0xF]; |
143 | 0 | l ^= s << 36; |
144 | 0 | h ^= s >> 28; |
145 | 0 | s = tab[b >> 40 & 0xF]; |
146 | 0 | l ^= s << 40; |
147 | 0 | h ^= s >> 24; |
148 | 0 | s = tab[b >> 44 & 0xF]; |
149 | 0 | l ^= s << 44; |
150 | 0 | h ^= s >> 20; |
151 | 0 | s = tab[b >> 48 & 0xF]; |
152 | 0 | l ^= s << 48; |
153 | 0 | h ^= s >> 16; |
154 | 0 | s = tab[b >> 52 & 0xF]; |
155 | 0 | l ^= s << 52; |
156 | 0 | h ^= s >> 12; |
157 | 0 | s = tab[b >> 56 & 0xF]; |
158 | 0 | l ^= s << 56; |
159 | 0 | h ^= s >> 8; |
160 | 0 | s = tab[b >> 60]; |
161 | 0 | l ^= s << 60; |
162 | 0 | h ^= s >> 4; |
163 | | |
164 | | /* compensate for the top three bits of a */ |
165 | |
|
166 | 0 | if (top3b & 01) { |
167 | 0 | l ^= b << 61; |
168 | 0 | h ^= b >> 3; |
169 | 0 | } |
170 | 0 | if (top3b & 02) { |
171 | 0 | l ^= b << 62; |
172 | 0 | h ^= b >> 2; |
173 | 0 | } |
174 | 0 | if (top3b & 04) { |
175 | 0 | l ^= b << 63; |
176 | 0 | h ^= b >> 1; |
177 | 0 | } |
178 | |
|
179 | 0 | *rh = h; |
180 | 0 | *rl = l; |
181 | 0 | } |
182 | | #endif |
183 | | |
184 | | /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) |
185 | | * result is a binary polynomial in 4 mp_digits r[4]. |
186 | | * The caller MUST ensure that r has the right amount of space allocated. |
187 | | */ |
188 | | void |
189 | | s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, |
190 | | const mp_digit b0) |
191 | 0 | { |
192 | 0 | mp_digit m1, m0; |
193 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
194 | 0 | s_bmul_1x1(r + 3, r + 2, a1, b1); |
195 | 0 | s_bmul_1x1(r + 1, r, a0, b0); |
196 | 0 | s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
197 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
198 | 0 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
199 | 0 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
200 | 0 | } |
201 | | |
202 | | /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) |
203 | | * result is a binary polynomial in 6 mp_digits r[6]. |
204 | | * The caller MUST ensure that r has the right amount of space allocated. |
205 | | */ |
206 | | void |
207 | | s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, |
208 | | const mp_digit b2, const mp_digit b1, const mp_digit b0) |
209 | 0 | { |
210 | 0 | mp_digit zm[4]; |
211 | |
|
212 | 0 | s_bmul_1x1(r + 5, r + 4, a2, b2); /* fill top 2 words */ |
213 | 0 | s_bmul_2x2(zm, a1, a2 ^ a0, b1, b2 ^ b0); /* fill middle 4 words */ |
214 | 0 | s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
215 | |
|
216 | 0 | zm[3] ^= r[3]; |
217 | 0 | zm[2] ^= r[2]; |
218 | 0 | zm[1] ^= r[1] ^ r[5]; |
219 | 0 | zm[0] ^= r[0] ^ r[4]; |
220 | |
|
221 | 0 | r[5] ^= zm[3]; |
222 | 0 | r[4] ^= zm[2]; |
223 | 0 | r[3] ^= zm[1]; |
224 | 0 | r[2] ^= zm[0]; |
225 | 0 | } |
226 | | |
227 | | /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) |
228 | | * result is a binary polynomial in 8 mp_digits r[8]. |
229 | | * The caller MUST ensure that r has the right amount of space allocated. |
230 | | */ |
231 | | void |
232 | | s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, |
233 | | const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, |
234 | | const mp_digit b0) |
235 | 0 | { |
236 | 0 | mp_digit zm[4]; |
237 | |
|
238 | 0 | s_bmul_2x2(r + 4, a3, a2, b3, b2); /* fill top 4 words */ |
239 | 0 | s_bmul_2x2(zm, a3 ^ a1, a2 ^ a0, b3 ^ b1, b2 ^ b0); /* fill middle 4 words */ |
240 | 0 | s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
241 | |
|
242 | 0 | zm[3] ^= r[3] ^ r[7]; |
243 | 0 | zm[2] ^= r[2] ^ r[6]; |
244 | 0 | zm[1] ^= r[1] ^ r[5]; |
245 | 0 | zm[0] ^= r[0] ^ r[4]; |
246 | |
|
247 | 0 | r[5] ^= zm[3]; |
248 | 0 | r[4] ^= zm[2]; |
249 | 0 | r[3] ^= zm[1]; |
250 | 0 | r[2] ^= zm[0]; |
251 | 0 | } |
252 | | |
253 | | /* Compute addition of two binary polynomials a and b, |
254 | | * store result in c; c could be a or b, a and b could be equal; |
255 | | * c is the bitwise XOR of a and b. |
256 | | */ |
257 | | mp_err |
258 | | mp_badd(const mp_int *a, const mp_int *b, mp_int *c) |
259 | 0 | { |
260 | 0 | mp_digit *pa, *pb, *pc; |
261 | 0 | mp_size ix; |
262 | 0 | mp_size used_pa, used_pb; |
263 | 0 | mp_err res = MP_OKAY; |
264 | | |
265 | | /* Add all digits up to the precision of b. If b had more |
266 | | * precision than a initially, swap a, b first |
267 | | */ |
268 | 0 | if (MP_USED(a) >= MP_USED(b)) { |
269 | 0 | pa = MP_DIGITS(a); |
270 | 0 | pb = MP_DIGITS(b); |
271 | 0 | used_pa = MP_USED(a); |
272 | 0 | used_pb = MP_USED(b); |
273 | 0 | } else { |
274 | 0 | pa = MP_DIGITS(b); |
275 | 0 | pb = MP_DIGITS(a); |
276 | 0 | used_pa = MP_USED(b); |
277 | 0 | used_pb = MP_USED(a); |
278 | 0 | } |
279 | | |
280 | | /* Make sure c has enough precision for the output value */ |
281 | 0 | MP_CHECKOK(s_mp_pad(c, used_pa)); |
282 | | |
283 | | /* Do word-by-word xor */ |
284 | 0 | pc = MP_DIGITS(c); |
285 | 0 | for (ix = 0; ix < used_pb; ix++) { |
286 | 0 | (*pc++) = (*pa++) ^ (*pb++); |
287 | 0 | } |
288 | | |
289 | | /* Finish the rest of digits until we're actually done */ |
290 | 0 | for (; ix < used_pa; ++ix) { |
291 | 0 | *pc++ = *pa++; |
292 | 0 | } |
293 | |
|
294 | 0 | MP_USED(c) = used_pa; |
295 | 0 | MP_SIGN(c) = ZPOS; |
296 | 0 | s_mp_clamp(c); |
297 | |
|
298 | 0 | CLEANUP: |
299 | 0 | return res; |
300 | 0 | } |
301 | | |
302 | 0 | #define s_mp_div2(a) MP_CHECKOK(mpl_rsh((a), (a), 1)); |
303 | | |
304 | | /* Compute binary polynomial multiply d = a * b */ |
305 | | static void |
306 | | s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
307 | 0 | { |
308 | 0 | mp_digit a_i, a0b0, a1b1, carry = 0; |
309 | 0 | while (a_len--) { |
310 | 0 | a_i = *a++; |
311 | 0 | s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
312 | 0 | *d++ = a0b0 ^ carry; |
313 | 0 | carry = a1b1; |
314 | 0 | } |
315 | 0 | *d = carry; |
316 | 0 | } |
317 | | |
318 | | /* Compute binary polynomial xor multiply accumulate d ^= a * b */ |
319 | | static void |
320 | | s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
321 | 0 | { |
322 | 0 | mp_digit a_i, a0b0, a1b1, carry = 0; |
323 | 0 | while (a_len--) { |
324 | 0 | a_i = *a++; |
325 | 0 | s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
326 | 0 | *d++ ^= a0b0 ^ carry; |
327 | 0 | carry = a1b1; |
328 | 0 | } |
329 | 0 | *d ^= carry; |
330 | 0 | } |
331 | | |
332 | | /* Compute binary polynomial xor multiply c = a * b. |
333 | | * All parameters may be identical. |
334 | | */ |
335 | | mp_err |
336 | | mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) |
337 | 0 | { |
338 | 0 | mp_digit *pb, b_i; |
339 | 0 | mp_int tmp; |
340 | 0 | mp_size ib, a_used, b_used; |
341 | 0 | mp_err res = MP_OKAY; |
342 | |
|
343 | 0 | MP_DIGITS(&tmp) = 0; |
344 | |
|
345 | 0 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
346 | | |
347 | 0 | if (a == c) { |
348 | 0 | MP_CHECKOK(mp_init_copy(&tmp, a)); |
349 | 0 | if (a == b) |
350 | 0 | b = &tmp; |
351 | 0 | a = &tmp; |
352 | 0 | } else if (b == c) { |
353 | 0 | MP_CHECKOK(mp_init_copy(&tmp, b)); |
354 | 0 | b = &tmp; |
355 | 0 | } |
356 | | |
357 | 0 | if (MP_USED(a) < MP_USED(b)) { |
358 | 0 | const mp_int *xch = b; /* switch a and b if b longer */ |
359 | 0 | b = a; |
360 | 0 | a = xch; |
361 | 0 | } |
362 | |
|
363 | 0 | MP_USED(c) = 1; |
364 | 0 | MP_DIGIT(c, 0) = 0; |
365 | 0 | MP_CHECKOK(s_mp_pad(c, USED(a) + USED(b))); |
366 | | |
367 | 0 | pb = MP_DIGITS(b); |
368 | 0 | s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
369 | | |
370 | | /* Outer loop: Digits of b */ |
371 | 0 | a_used = MP_USED(a); |
372 | 0 | b_used = MP_USED(b); |
373 | 0 | MP_USED(c) = a_used + b_used; |
374 | 0 | for (ib = 1; ib < b_used; ib++) { |
375 | 0 | b_i = *pb++; |
376 | | |
377 | | /* Inner product: Digits of a */ |
378 | 0 | if (b_i) |
379 | 0 | s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); |
380 | 0 | else |
381 | 0 | MP_DIGIT(c, ib + a_used) = b_i; |
382 | 0 | } |
383 | |
|
384 | 0 | s_mp_clamp(c); |
385 | |
|
386 | 0 | SIGN(c) = ZPOS; |
387 | |
|
388 | 0 | CLEANUP: |
389 | 0 | mp_clear(&tmp); |
390 | 0 | return res; |
391 | 0 | } |
392 | | |
393 | | /* Compute modular reduction of a and store result in r. |
394 | | * r could be a. |
395 | | * For modular arithmetic, the irreducible polynomial f(t) is represented |
396 | | * as an array of int[], where f(t) is of the form: |
397 | | * f(t) = t^p[0] + t^p[1] + ... + t^p[k] |
398 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
399 | | */ |
400 | | mp_err |
401 | | mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) |
402 | 0 | { |
403 | 0 | int j, k; |
404 | 0 | int n, dN, d0, d1; |
405 | 0 | mp_digit zz, *z, tmp; |
406 | 0 | mp_size used; |
407 | 0 | mp_err res = MP_OKAY; |
408 | | |
409 | | /* The algorithm does the reduction in place in r, |
410 | | * if a != r, copy a into r first so reduction can be done in r |
411 | | */ |
412 | 0 | if (a != r) { |
413 | 0 | MP_CHECKOK(mp_copy(a, r)); |
414 | 0 | } |
415 | 0 | z = MP_DIGITS(r); |
416 | | |
417 | | /* start reduction */ |
418 | | /*dN = p[0] / MP_DIGIT_BITS; */ |
419 | 0 | dN = p[0] >> MP_DIGIT_BITS_LOG_2; |
420 | 0 | used = MP_USED(r); |
421 | |
|
422 | 0 | for (j = used - 1; j > dN;) { |
423 | |
|
424 | 0 | zz = z[j]; |
425 | 0 | if (zz == 0) { |
426 | 0 | j--; |
427 | 0 | continue; |
428 | 0 | } |
429 | 0 | z[j] = 0; |
430 | |
|
431 | 0 | for (k = 1; p[k] > 0; k++) { |
432 | | /* reducing component t^p[k] */ |
433 | 0 | n = p[0] - p[k]; |
434 | | /*d0 = n % MP_DIGIT_BITS; */ |
435 | 0 | d0 = n & MP_DIGIT_BITS_MASK; |
436 | 0 | d1 = MP_DIGIT_BITS - d0; |
437 | | /*n /= MP_DIGIT_BITS; */ |
438 | 0 | n >>= MP_DIGIT_BITS_LOG_2; |
439 | 0 | z[j - n] ^= (zz >> d0); |
440 | 0 | if (d0) |
441 | 0 | z[j - n - 1] ^= (zz << d1); |
442 | 0 | } |
443 | | |
444 | | /* reducing component t^0 */ |
445 | 0 | n = dN; |
446 | | /*d0 = p[0] % MP_DIGIT_BITS;*/ |
447 | 0 | d0 = p[0] & MP_DIGIT_BITS_MASK; |
448 | 0 | d1 = MP_DIGIT_BITS - d0; |
449 | 0 | z[j - n] ^= (zz >> d0); |
450 | 0 | if (d0) |
451 | 0 | z[j - n - 1] ^= (zz << d1); |
452 | 0 | } |
453 | | |
454 | | /* final round of reduction */ |
455 | 0 | while (j == dN) { |
456 | | |
457 | | /* d0 = p[0] % MP_DIGIT_BITS; */ |
458 | 0 | d0 = p[0] & MP_DIGIT_BITS_MASK; |
459 | 0 | zz = z[dN] >> d0; |
460 | 0 | if (zz == 0) |
461 | 0 | break; |
462 | 0 | d1 = MP_DIGIT_BITS - d0; |
463 | | |
464 | | /* clear up the top d1 bits */ |
465 | 0 | if (d0) { |
466 | 0 | z[dN] = (z[dN] << d1) >> d1; |
467 | 0 | } else { |
468 | 0 | z[dN] = 0; |
469 | 0 | } |
470 | 0 | *z ^= zz; /* reduction t^0 component */ |
471 | |
|
472 | 0 | for (k = 1; p[k] > 0; k++) { |
473 | | /* reducing component t^p[k]*/ |
474 | | /* n = p[k] / MP_DIGIT_BITS; */ |
475 | 0 | n = p[k] >> MP_DIGIT_BITS_LOG_2; |
476 | | /* d0 = p[k] % MP_DIGIT_BITS; */ |
477 | 0 | d0 = p[k] & MP_DIGIT_BITS_MASK; |
478 | 0 | d1 = MP_DIGIT_BITS - d0; |
479 | 0 | z[n] ^= (zz << d0); |
480 | 0 | tmp = zz >> d1; |
481 | 0 | if (d0 && tmp) |
482 | 0 | z[n + 1] ^= tmp; |
483 | 0 | } |
484 | 0 | } |
485 | |
|
486 | 0 | s_mp_clamp(r); |
487 | 0 | CLEANUP: |
488 | 0 | return res; |
489 | 0 | } |
490 | | |
491 | | /* Compute the product of two polynomials a and b, reduce modulo p, |
492 | | * Store the result in r. r could be a or b; a could be b. |
493 | | */ |
494 | | mp_err |
495 | | mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) |
496 | 0 | { |
497 | 0 | mp_err res; |
498 | |
|
499 | 0 | if (a == b) |
500 | 0 | return mp_bsqrmod(a, p, r); |
501 | 0 | if ((res = mp_bmul(a, b, r)) != MP_OKAY) |
502 | 0 | return res; |
503 | 0 | return mp_bmod(r, p, r); |
504 | 0 | } |
505 | | |
506 | | /* Compute binary polynomial squaring c = a*a mod p . |
507 | | * Parameter r and a can be identical. |
508 | | */ |
509 | | |
510 | | mp_err |
511 | | mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) |
512 | 0 | { |
513 | 0 | mp_digit *pa, *pr, a_i; |
514 | 0 | mp_int tmp; |
515 | 0 | mp_size ia, a_used; |
516 | 0 | mp_err res; |
517 | |
|
518 | 0 | ARGCHK(a != NULL && r != NULL, MP_BADARG); |
519 | 0 | MP_DIGITS(&tmp) = 0; |
520 | |
|
521 | 0 | if (a == r) { |
522 | 0 | MP_CHECKOK(mp_init_copy(&tmp, a)); |
523 | 0 | a = &tmp; |
524 | 0 | } |
525 | | |
526 | 0 | MP_USED(r) = 1; |
527 | 0 | MP_DIGIT(r, 0) = 0; |
528 | 0 | MP_CHECKOK(s_mp_pad(r, 2 * USED(a))); |
529 | | |
530 | 0 | pa = MP_DIGITS(a); |
531 | 0 | pr = MP_DIGITS(r); |
532 | 0 | a_used = MP_USED(a); |
533 | 0 | MP_USED(r) = 2 * a_used; |
534 | |
|
535 | 0 | for (ia = 0; ia < a_used; ia++) { |
536 | 0 | a_i = *pa++; |
537 | 0 | *pr++ = gf2m_SQR0(a_i); |
538 | 0 | *pr++ = gf2m_SQR1(a_i); |
539 | 0 | } |
540 | |
|
541 | 0 | MP_CHECKOK(mp_bmod(r, p, r)); |
542 | 0 | s_mp_clamp(r); |
543 | 0 | SIGN(r) = ZPOS; |
544 | |
|
545 | 0 | CLEANUP: |
546 | 0 | mp_clear(&tmp); |
547 | 0 | return res; |
548 | 0 | } |
549 | | |
550 | | /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. |
551 | | * Store the result in r. r could be x or y, and x could equal y. |
552 | | * Uses algorithm Modular_Division_GF(2^m) from |
553 | | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
554 | | * the Great Divide". |
555 | | */ |
556 | | int |
557 | | mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, |
558 | | const unsigned int p[], mp_int *r) |
559 | 0 | { |
560 | 0 | mp_int aa, bb, uu; |
561 | 0 | mp_int *a, *b, *u, *v; |
562 | 0 | mp_err res = MP_OKAY; |
563 | |
|
564 | 0 | MP_DIGITS(&aa) = 0; |
565 | 0 | MP_DIGITS(&bb) = 0; |
566 | 0 | MP_DIGITS(&uu) = 0; |
567 | |
|
568 | 0 | MP_CHECKOK(mp_init_copy(&aa, x)); |
569 | 0 | MP_CHECKOK(mp_init_copy(&uu, y)); |
570 | 0 | MP_CHECKOK(mp_init_copy(&bb, pp)); |
571 | 0 | MP_CHECKOK(s_mp_pad(r, USED(pp))); |
572 | 0 | MP_USED(r) = 1; |
573 | 0 | MP_DIGIT(r, 0) = 0; |
574 | |
|
575 | 0 | a = &aa; |
576 | 0 | b = &bb; |
577 | 0 | u = &uu; |
578 | 0 | v = r; |
579 | | /* reduce x and y mod p */ |
580 | 0 | MP_CHECKOK(mp_bmod(a, p, a)); |
581 | 0 | MP_CHECKOK(mp_bmod(u, p, u)); |
582 | | |
583 | 0 | while (!mp_isodd(a)) { |
584 | 0 | s_mp_div2(a); |
585 | 0 | if (mp_isodd(u)) { |
586 | 0 | MP_CHECKOK(mp_badd(u, pp, u)); |
587 | 0 | } |
588 | 0 | s_mp_div2(u); |
589 | 0 | } |
590 | | |
591 | 0 | do { |
592 | 0 | if (mp_cmp_mag(b, a) > 0) { |
593 | 0 | MP_CHECKOK(mp_badd(b, a, b)); |
594 | 0 | MP_CHECKOK(mp_badd(v, u, v)); |
595 | 0 | do { |
596 | 0 | s_mp_div2(b); |
597 | 0 | if (mp_isodd(v)) { |
598 | 0 | MP_CHECKOK(mp_badd(v, pp, v)); |
599 | 0 | } |
600 | 0 | s_mp_div2(v); |
601 | 0 | } while (!mp_isodd(b)); |
602 | 0 | } else if ((MP_DIGIT(a, 0) == 1) && (MP_USED(a) == 1)) |
603 | 0 | break; |
604 | 0 | else { |
605 | 0 | MP_CHECKOK(mp_badd(a, b, a)); |
606 | 0 | MP_CHECKOK(mp_badd(u, v, u)); |
607 | 0 | do { |
608 | 0 | s_mp_div2(a); |
609 | 0 | if (mp_isodd(u)) { |
610 | 0 | MP_CHECKOK(mp_badd(u, pp, u)); |
611 | 0 | } |
612 | 0 | s_mp_div2(u); |
613 | 0 | } while (!mp_isodd(a)); |
614 | 0 | } |
615 | 0 | } while (1); |
616 | | |
617 | 0 | MP_CHECKOK(mp_copy(u, r)); |
618 | | |
619 | 0 | CLEANUP: |
620 | 0 | mp_clear(&aa); |
621 | 0 | mp_clear(&bb); |
622 | 0 | mp_clear(&uu); |
623 | 0 | return res; |
624 | 0 | } |
625 | | |
626 | | /* Convert the bit-string representation of a polynomial a into an array |
627 | | * of integers corresponding to the bits with non-zero coefficient. |
628 | | * Up to max elements of the array will be filled. Return value is total |
629 | | * number of coefficients that would be extracted if array was large enough. |
630 | | */ |
631 | | int |
632 | | mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) |
633 | 0 | { |
634 | 0 | int i, j, k; |
635 | 0 | mp_digit top_bit, mask; |
636 | |
|
637 | 0 | top_bit = 1; |
638 | 0 | top_bit <<= MP_DIGIT_BIT - 1; |
639 | |
|
640 | 0 | for (k = 0; k < max; k++) |
641 | 0 | p[k] = 0; |
642 | 0 | k = 0; |
643 | |
|
644 | 0 | for (i = MP_USED(a) - 1; i >= 0; i--) { |
645 | 0 | mask = top_bit; |
646 | 0 | for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { |
647 | 0 | if (MP_DIGITS(a)[i] & mask) { |
648 | 0 | if (k < max) |
649 | 0 | p[k] = MP_DIGIT_BIT * i + j; |
650 | 0 | k++; |
651 | 0 | } |
652 | 0 | mask >>= 1; |
653 | 0 | } |
654 | 0 | } |
655 | |
|
656 | 0 | return k; |
657 | 0 | } |
658 | | |
659 | | /* Convert the coefficient array representation of a polynomial to a |
660 | | * bit-string. The array must be terminated by 0. |
661 | | */ |
662 | | mp_err |
663 | | mp_barr2poly(const unsigned int p[], mp_int *a) |
664 | 0 | { |
665 | |
|
666 | 0 | mp_err res = MP_OKAY; |
667 | 0 | int i; |
668 | |
|
669 | 0 | mp_zero(a); |
670 | 0 | for (i = 0; p[i] > 0; i++) { |
671 | 0 | MP_CHECKOK(mpl_set_bit(a, p[i], 1)); |
672 | 0 | } |
673 | 0 | MP_CHECKOK(mpl_set_bit(a, 0, 1)); |
674 | | |
675 | 0 | CLEANUP: |
676 | 0 | return res; |
677 | 0 | } |