/src/nss/lib/smime/cmscipher.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | /* |
6 | | * Encryption/decryption routines for CMS implementation, none of which are exported. |
7 | | */ |
8 | | |
9 | | #include "cmslocal.h" |
10 | | |
11 | | #include "secoid.h" |
12 | | #include "secitem.h" |
13 | | #include "pk11func.h" |
14 | | #include "secerr.h" |
15 | | #include "secpkcs5.h" |
16 | | |
17 | | /* |
18 | | * ------------------------------------------------------------------- |
19 | | * Cipher stuff. |
20 | | */ |
21 | | |
22 | | typedef SECStatus (*nss_cms_cipher_function)(void *, unsigned char *, unsigned int *, |
23 | | unsigned int, const unsigned char *, unsigned int); |
24 | | typedef SECStatus (*nss_cms_cipher_destroy)(void *, PRBool); |
25 | | |
26 | 0 | #define BLOCK_SIZE 4096 |
27 | | |
28 | | struct NSSCMSCipherContextStr { |
29 | | void *cx; /* PK11 cipher context */ |
30 | | nss_cms_cipher_function doit; |
31 | | nss_cms_cipher_destroy destroy; |
32 | | PRBool encrypt; /* encrypt / decrypt switch */ |
33 | | int block_size; /* block & pad sizes for cipher */ |
34 | | int pad_size; |
35 | | int pending_count; /* pending data (not yet en/decrypted */ |
36 | | unsigned char pending_buf[BLOCK_SIZE]; /* because of blocking */ |
37 | | }; |
38 | | |
39 | | /* |
40 | | * NSS_CMSCipherContext_StartDecrypt - create a cipher context to do decryption |
41 | | * based on the given bulk encryption key and algorithm identifier (which |
42 | | * may include an iv). |
43 | | * |
44 | | * XXX Once both are working, it might be nice to combine this and the |
45 | | * function below (for starting up encryption) into one routine, and just |
46 | | * have two simple cover functions which call it. |
47 | | */ |
48 | | NSSCMSCipherContext * |
49 | | NSS_CMSCipherContext_StartDecrypt(PK11SymKey *key, SECAlgorithmID *algid) |
50 | 0 | { |
51 | 0 | NSSCMSCipherContext *cc; |
52 | 0 | void *ciphercx; |
53 | 0 | CK_MECHANISM_TYPE cryptoMechType; |
54 | 0 | PK11SlotInfo *slot; |
55 | 0 | SECOidTag algtag; |
56 | 0 | SECItem *param = NULL; |
57 | |
|
58 | 0 | algtag = SECOID_GetAlgorithmTag(algid); |
59 | | |
60 | | /* set param and mechanism */ |
61 | 0 | if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
62 | 0 | SECItem *pwitem; |
63 | |
|
64 | 0 | pwitem = PK11_GetSymKeyUserData(key); |
65 | 0 | if (!pwitem) |
66 | 0 | return NULL; |
67 | | |
68 | 0 | cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
69 | 0 | if (cryptoMechType == CKM_INVALID_MECHANISM) { |
70 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
71 | 0 | return NULL; |
72 | 0 | } |
73 | |
|
74 | 0 | } else { |
75 | 0 | cryptoMechType = PK11_AlgtagToMechanism(algtag); |
76 | 0 | if ((param = PK11_ParamFromAlgid(algid)) == NULL) |
77 | 0 | return NULL; |
78 | 0 | } |
79 | | |
80 | 0 | cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext)); |
81 | 0 | if (cc == NULL) { |
82 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
83 | 0 | return NULL; |
84 | 0 | } |
85 | | |
86 | | /* figure out pad and block sizes */ |
87 | 0 | cc->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
88 | 0 | slot = PK11_GetSlotFromKey(key); |
89 | 0 | cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size; |
90 | 0 | PK11_FreeSlot(slot); |
91 | | |
92 | | /* create PK11 cipher context */ |
93 | 0 | ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT, |
94 | 0 | key, param); |
95 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
96 | 0 | if (ciphercx == NULL) { |
97 | 0 | PORT_Free(cc); |
98 | 0 | return NULL; |
99 | 0 | } |
100 | | |
101 | 0 | cc->cx = ciphercx; |
102 | 0 | cc->doit = (nss_cms_cipher_function)PK11_CipherOp; |
103 | 0 | cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext; |
104 | 0 | cc->encrypt = PR_FALSE; |
105 | 0 | cc->pending_count = 0; |
106 | |
|
107 | 0 | return cc; |
108 | 0 | } |
109 | | |
110 | | /* |
111 | | * NSS_CMSCipherContext_StartEncrypt - create a cipher object to do encryption, |
112 | | * based on the given bulk encryption key and algorithm tag. Fill in the |
113 | | * algorithm identifier (which may include an iv) appropriately. |
114 | | * |
115 | | * XXX Once both are working, it might be nice to combine this and the |
116 | | * function above (for starting up decryption) into one routine, and just |
117 | | * have two simple cover functions which call it. |
118 | | */ |
119 | | NSSCMSCipherContext * |
120 | | NSS_CMSCipherContext_StartEncrypt(PLArenaPool *poolp, PK11SymKey *key, SECAlgorithmID *algid) |
121 | 0 | { |
122 | 0 | NSSCMSCipherContext *cc; |
123 | 0 | void *ciphercx = NULL; |
124 | 0 | SECStatus rv; |
125 | 0 | CK_MECHANISM_TYPE cryptoMechType; |
126 | 0 | PK11SlotInfo *slot; |
127 | 0 | SECItem *param = NULL; |
128 | 0 | PRBool needToEncodeAlgid = PR_FALSE; |
129 | 0 | SECOidTag algtag = SECOID_GetAlgorithmTag(algid); |
130 | | |
131 | | /* set param and mechanism */ |
132 | 0 | if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
133 | 0 | SECItem *pwitem; |
134 | |
|
135 | 0 | pwitem = PK11_GetSymKeyUserData(key); |
136 | 0 | if (!pwitem) |
137 | 0 | return NULL; |
138 | | |
139 | 0 | cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
140 | 0 | if (cryptoMechType == CKM_INVALID_MECHANISM) { |
141 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
142 | 0 | return NULL; |
143 | 0 | } |
144 | 0 | } else { |
145 | 0 | cryptoMechType = PK11_AlgtagToMechanism(algtag); |
146 | 0 | if ((param = PK11_GenerateNewParam(cryptoMechType, key)) == NULL) |
147 | 0 | return NULL; |
148 | 0 | needToEncodeAlgid = PR_TRUE; |
149 | 0 | } |
150 | | |
151 | 0 | cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext)); |
152 | 0 | if (cc == NULL) { |
153 | 0 | goto loser; |
154 | 0 | } |
155 | | |
156 | | /* now find pad and block sizes for our mechanism */ |
157 | 0 | cc->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
158 | 0 | slot = PK11_GetSlotFromKey(key); |
159 | 0 | cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size; |
160 | 0 | PK11_FreeSlot(slot); |
161 | | |
162 | | /* and here we go, creating a PK11 cipher context */ |
163 | 0 | ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT, |
164 | 0 | key, param); |
165 | 0 | if (ciphercx == NULL) { |
166 | 0 | PORT_Free(cc); |
167 | 0 | cc = NULL; |
168 | 0 | goto loser; |
169 | 0 | } |
170 | | |
171 | | /* |
172 | | * These are placed after the CreateContextBySymKey() because some |
173 | | * mechanisms have to generate their IVs from their card (i.e. FORTEZZA). |
174 | | * Don't move it from here. |
175 | | * XXX is that right? the purpose of this is to get the correct algid |
176 | | * containing the IVs etc. for encoding. this means we need to set this up |
177 | | * BEFORE encoding the algid in the contentInfo, right? |
178 | | */ |
179 | 0 | if (needToEncodeAlgid) { |
180 | 0 | rv = PK11_ParamToAlgid(algtag, param, poolp, algid); |
181 | 0 | if (rv != SECSuccess) { |
182 | 0 | PORT_Free(cc); |
183 | 0 | cc = NULL; |
184 | 0 | goto loser; |
185 | 0 | } |
186 | 0 | } |
187 | | |
188 | 0 | cc->cx = ciphercx; |
189 | 0 | ciphercx = NULL; |
190 | 0 | cc->doit = (nss_cms_cipher_function)PK11_CipherOp; |
191 | 0 | cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext; |
192 | 0 | cc->encrypt = PR_TRUE; |
193 | 0 | cc->pending_count = 0; |
194 | |
|
195 | 0 | loser: |
196 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
197 | 0 | if (ciphercx) { |
198 | 0 | PK11_DestroyContext(ciphercx, PR_TRUE); |
199 | 0 | } |
200 | |
|
201 | 0 | return cc; |
202 | 0 | } |
203 | | |
204 | | void |
205 | | NSS_CMSCipherContext_Destroy(NSSCMSCipherContext *cc) |
206 | 0 | { |
207 | 0 | PORT_Assert(cc != NULL); |
208 | 0 | if (cc == NULL) |
209 | 0 | return; |
210 | 0 | (*cc->destroy)(cc->cx, PR_TRUE); |
211 | 0 | PORT_Free(cc); |
212 | 0 | } |
213 | | |
214 | | /* |
215 | | * NSS_CMSCipherContext_DecryptLength - find the output length of the next call to decrypt. |
216 | | * |
217 | | * cc - the cipher context |
218 | | * input_len - number of bytes used as input |
219 | | * final - true if this is the final chunk of data |
220 | | * |
221 | | * Result can be used to perform memory allocations. Note that the amount |
222 | | * is exactly accurate only when not doing a block cipher or when final |
223 | | * is false, otherwise it is an upper bound on the amount because until |
224 | | * we see the data we do not know how many padding bytes there are |
225 | | * (always between 1 and bsize). |
226 | | * |
227 | | * Note that this can return zero, which does not mean that the decrypt |
228 | | * operation can be skipped! (It simply means that there are not enough |
229 | | * bytes to make up an entire block; the bytes will be reserved until |
230 | | * there are enough to encrypt/decrypt at least one block.) However, |
231 | | * if zero is returned it *does* mean that no output buffer need be |
232 | | * passed in to the subsequent decrypt operation, as no output bytes |
233 | | * will be stored. |
234 | | */ |
235 | | unsigned int |
236 | | NSS_CMSCipherContext_DecryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final) |
237 | 0 | { |
238 | 0 | int blocks, block_size; |
239 | |
|
240 | 0 | PORT_Assert(!cc->encrypt); |
241 | |
|
242 | 0 | block_size = cc->block_size; |
243 | | |
244 | | /* |
245 | | * If this is not a block cipher, then we always have the same |
246 | | * number of output bytes as we had input bytes. |
247 | | */ |
248 | 0 | if (block_size == 0) |
249 | 0 | return input_len; |
250 | | |
251 | | /* |
252 | | * On the final call, we will always use up all of the pending |
253 | | * bytes plus all of the input bytes, *but*, there will be padding |
254 | | * at the end and we cannot predict how many bytes of padding we |
255 | | * will end up removing. The amount given here is actually known |
256 | | * to be at least 1 byte too long (because we know we will have |
257 | | * at least 1 byte of padding), but seemed clearer/better to me. |
258 | | */ |
259 | 0 | if (final) |
260 | 0 | return cc->pending_count + input_len; |
261 | | |
262 | | /* |
263 | | * Okay, this amount is exactly what we will output on the |
264 | | * next cipher operation. We will always hang onto the last |
265 | | * 1 - block_size bytes for non-final operations. That is, |
266 | | * we will do as many complete blocks as we can *except* the |
267 | | * last block (complete or partial). (This is because until |
268 | | * we know we are at the end, we cannot know when to interpret |
269 | | * and removing the padding byte(s), which are guaranteed to |
270 | | * be there.) |
271 | | */ |
272 | 0 | blocks = (cc->pending_count + input_len - 1) / block_size; |
273 | 0 | return blocks * block_size; |
274 | 0 | } |
275 | | |
276 | | /* |
277 | | * NSS_CMSCipherContext_EncryptLength - find the output length of the next call to encrypt. |
278 | | * |
279 | | * cc - the cipher context |
280 | | * input_len - number of bytes used as input |
281 | | * final - true if this is the final chunk of data |
282 | | * |
283 | | * Result can be used to perform memory allocations. |
284 | | * |
285 | | * Note that this can return zero, which does not mean that the encrypt |
286 | | * operation can be skipped! (It simply means that there are not enough |
287 | | * bytes to make up an entire block; the bytes will be reserved until |
288 | | * there are enough to encrypt/decrypt at least one block.) However, |
289 | | * if zero is returned it *does* mean that no output buffer need be |
290 | | * passed in to the subsequent encrypt operation, as no output bytes |
291 | | * will be stored. |
292 | | */ |
293 | | unsigned int |
294 | | NSS_CMSCipherContext_EncryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final) |
295 | 0 | { |
296 | 0 | int blocks, block_size; |
297 | 0 | int pad_size; |
298 | |
|
299 | 0 | PORT_Assert(cc->encrypt); |
300 | |
|
301 | 0 | block_size = cc->block_size; |
302 | 0 | pad_size = cc->pad_size; |
303 | | |
304 | | /* |
305 | | * If this is not a block cipher, then we always have the same |
306 | | * number of output bytes as we had input bytes. |
307 | | */ |
308 | 0 | if (block_size == 0) |
309 | 0 | return input_len; |
310 | | |
311 | | /* |
312 | | * On the final call, we only send out what we need for |
313 | | * remaining bytes plus the padding. (There is always padding, |
314 | | * so even if we have an exact number of blocks as input, we |
315 | | * will add another full block that is just padding.) |
316 | | */ |
317 | 0 | if (final) { |
318 | 0 | if (pad_size == 0) { |
319 | 0 | return cc->pending_count + input_len; |
320 | 0 | } else { |
321 | 0 | blocks = (cc->pending_count + input_len) / pad_size; |
322 | 0 | blocks++; |
323 | 0 | return blocks * pad_size; |
324 | 0 | } |
325 | 0 | } |
326 | | |
327 | | /* |
328 | | * Now, count the number of complete blocks of data we have. |
329 | | */ |
330 | 0 | blocks = (cc->pending_count + input_len) / block_size; |
331 | |
|
332 | 0 | return blocks * block_size; |
333 | 0 | } |
334 | | |
335 | | /* |
336 | | * NSS_CMSCipherContext_Decrypt - do the decryption |
337 | | * |
338 | | * cc - the cipher context |
339 | | * output - buffer for decrypted result bytes |
340 | | * output_len_p - number of bytes in output |
341 | | * max_output_len - upper bound on bytes to put into output |
342 | | * input - pointer to input bytes |
343 | | * input_len - number of input bytes |
344 | | * final - true if this is the final chunk of data |
345 | | * |
346 | | * Decrypts a given length of input buffer (starting at "input" and |
347 | | * containing "input_len" bytes), placing the decrypted bytes in |
348 | | * "output" and storing the output length in "*output_len_p". |
349 | | * "cc" is the return value from NSS_CMSCipher_StartDecrypt. |
350 | | * When "final" is true, this is the last of the data to be decrypted. |
351 | | * |
352 | | * This is much more complicated than it sounds when the cipher is |
353 | | * a block-type, meaning that the decryption function will only |
354 | | * operate on whole blocks. But our caller is operating stream-wise, |
355 | | * and can pass in any number of bytes. So we need to keep track |
356 | | * of block boundaries. We save excess bytes between calls in "cc". |
357 | | * We also need to determine which bytes are padding, and remove |
358 | | * them from the output. We can only do this step when we know we |
359 | | * have the final block of data. PKCS #7 specifies that the padding |
360 | | * used for a block cipher is a string of bytes, each of whose value is |
361 | | * the same as the length of the padding, and that all data is padded. |
362 | | * (Even data that starts out with an exact multiple of blocks gets |
363 | | * added to it another block, all of which is padding.) |
364 | | */ |
365 | | SECStatus |
366 | | NSS_CMSCipherContext_Decrypt(NSSCMSCipherContext *cc, unsigned char *output, |
367 | | unsigned int *output_len_p, unsigned int max_output_len, |
368 | | const unsigned char *input, unsigned int input_len, |
369 | | PRBool final) |
370 | 0 | { |
371 | 0 | unsigned int blocks, bsize, pcount, padsize; |
372 | 0 | unsigned int max_needed, ifraglen, ofraglen, output_len; |
373 | 0 | unsigned char *pbuf; |
374 | 0 | SECStatus rv; |
375 | |
|
376 | 0 | PORT_Assert(!cc->encrypt); |
377 | | |
378 | | /* |
379 | | * Check that we have enough room for the output. Our caller should |
380 | | * already handle this; failure is really an internal error (i.e. bug). |
381 | | */ |
382 | 0 | max_needed = NSS_CMSCipherContext_DecryptLength(cc, input_len, final); |
383 | 0 | PORT_Assert(max_output_len >= max_needed); |
384 | 0 | if (max_output_len < max_needed) { |
385 | | /* PORT_SetError (XXX); */ |
386 | 0 | return SECFailure; |
387 | 0 | } |
388 | | |
389 | | /* |
390 | | * hardware encryption does not like small decryption sizes here, so we |
391 | | * allow both blocking and padding. |
392 | | */ |
393 | 0 | bsize = cc->block_size; |
394 | 0 | padsize = cc->pad_size; |
395 | | |
396 | | /* |
397 | | * When no blocking or padding work to do, we can simply call the |
398 | | * cipher function and we are done. |
399 | | */ |
400 | 0 | if (bsize == 0) { |
401 | 0 | return (*cc->doit)(cc->cx, output, output_len_p, max_output_len, |
402 | 0 | input, input_len); |
403 | 0 | } |
404 | | |
405 | 0 | pcount = cc->pending_count; |
406 | 0 | pbuf = cc->pending_buf; |
407 | |
|
408 | 0 | output_len = 0; |
409 | |
|
410 | 0 | if (pcount) { |
411 | | /* |
412 | | * Try to fill in an entire block, starting with the bytes |
413 | | * we already have saved away. |
414 | | */ |
415 | 0 | while (input_len && pcount < bsize) { |
416 | 0 | pbuf[pcount++] = *input++; |
417 | 0 | input_len--; |
418 | 0 | } |
419 | | /* |
420 | | * If we have at most a whole block and this is not our last call, |
421 | | * then we are done for now. (We do not try to decrypt a lone |
422 | | * single block because we cannot interpret the padding bytes |
423 | | * until we know we are handling the very last block of all input.) |
424 | | */ |
425 | 0 | if (input_len == 0 && !final) { |
426 | 0 | cc->pending_count = pcount; |
427 | 0 | if (output_len_p) |
428 | 0 | *output_len_p = 0; |
429 | 0 | return SECSuccess; |
430 | 0 | } |
431 | | /* |
432 | | * Given the logic above, we expect to have a full block by now. |
433 | | * If we do not, there is something wrong, either with our own |
434 | | * logic or with (length of) the data given to us. |
435 | | */ |
436 | 0 | if ((padsize != 0) && (pcount % padsize) != 0) { |
437 | 0 | PORT_Assert(final); |
438 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
439 | 0 | return SECFailure; |
440 | 0 | } |
441 | | /* |
442 | | * Decrypt the block. |
443 | | */ |
444 | 0 | rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
445 | 0 | pbuf, pcount); |
446 | 0 | if (rv != SECSuccess) |
447 | 0 | return rv; |
448 | | |
449 | | /* |
450 | | * For now anyway, all of our ciphers have the same number of |
451 | | * bytes of output as they do input. If this ever becomes untrue, |
452 | | * then NSS_CMSCipherContext_DecryptLength needs to be made smarter! |
453 | | */ |
454 | 0 | PORT_Assert(ofraglen == pcount); |
455 | | |
456 | | /* |
457 | | * Account for the bytes now in output. |
458 | | */ |
459 | 0 | max_output_len -= ofraglen; |
460 | 0 | output_len += ofraglen; |
461 | 0 | output += ofraglen; |
462 | 0 | } |
463 | | |
464 | | /* |
465 | | * If this is our last call, we expect to have an exact number of |
466 | | * blocks left to be decrypted; we will decrypt them all. |
467 | | * |
468 | | * If not our last call, we always save between 1 and bsize bytes |
469 | | * until next time. (We must do this because we cannot be sure |
470 | | * that none of the decrypted bytes are padding bytes until we |
471 | | * have at least another whole block of data. You cannot tell by |
472 | | * looking -- the data could be anything -- you can only tell by |
473 | | * context, knowing you are looking at the last block.) We could |
474 | | * decrypt a whole block now but it is easier if we just treat it |
475 | | * the same way we treat partial block bytes. |
476 | | */ |
477 | 0 | if (final) { |
478 | 0 | if (padsize) { |
479 | 0 | blocks = input_len / padsize; |
480 | 0 | ifraglen = blocks * padsize; |
481 | 0 | } else |
482 | 0 | ifraglen = input_len; |
483 | 0 | PORT_Assert(ifraglen == input_len); |
484 | |
|
485 | 0 | if (ifraglen != input_len) { |
486 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
487 | 0 | return SECFailure; |
488 | 0 | } |
489 | 0 | } else { |
490 | 0 | blocks = (input_len - 1) / bsize; |
491 | 0 | ifraglen = blocks * bsize; |
492 | 0 | PORT_Assert(ifraglen < input_len); |
493 | |
|
494 | 0 | pcount = input_len - ifraglen; |
495 | 0 | PORT_Memcpy(pbuf, input + ifraglen, pcount); |
496 | 0 | cc->pending_count = pcount; |
497 | 0 | } |
498 | | |
499 | 0 | if (ifraglen) { |
500 | 0 | rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
501 | 0 | input, ifraglen); |
502 | 0 | if (rv != SECSuccess) |
503 | 0 | return rv; |
504 | | |
505 | | /* |
506 | | * For now anyway, all of our ciphers have the same number of |
507 | | * bytes of output as they do input. If this ever becomes untrue, |
508 | | * then sec_PKCS7DecryptLength needs to be made smarter! |
509 | | */ |
510 | 0 | PORT_Assert(ifraglen == ofraglen); |
511 | 0 | if (ifraglen != ofraglen) { |
512 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
513 | 0 | return SECFailure; |
514 | 0 | } |
515 | | |
516 | 0 | output_len += ofraglen; |
517 | 0 | } else { |
518 | 0 | ofraglen = 0; |
519 | 0 | } |
520 | | |
521 | | /* |
522 | | * If we just did our very last block, "remove" the padding by |
523 | | * adjusting the output length. |
524 | | */ |
525 | 0 | if (final && (padsize != 0)) { |
526 | 0 | unsigned int padlen = *(output + ofraglen - 1); |
527 | |
|
528 | 0 | if (padlen == 0 || padlen > padsize) { |
529 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
530 | 0 | return SECFailure; |
531 | 0 | } |
532 | 0 | output_len -= padlen; |
533 | 0 | } |
534 | | |
535 | 0 | PORT_Assert(output_len_p != NULL || output_len == 0); |
536 | 0 | if (output_len_p != NULL) |
537 | 0 | *output_len_p = output_len; |
538 | |
|
539 | 0 | return SECSuccess; |
540 | 0 | } |
541 | | |
542 | | /* |
543 | | * NSS_CMSCipherContext_Encrypt - do the encryption |
544 | | * |
545 | | * cc - the cipher context |
546 | | * output - buffer for decrypted result bytes |
547 | | * output_len_p - number of bytes in output |
548 | | * max_output_len - upper bound on bytes to put into output |
549 | | * input - pointer to input bytes |
550 | | * input_len - number of input bytes |
551 | | * final - true if this is the final chunk of data |
552 | | * |
553 | | * Encrypts a given length of input buffer (starting at "input" and |
554 | | * containing "input_len" bytes), placing the encrypted bytes in |
555 | | * "output" and storing the output length in "*output_len_p". |
556 | | * "cc" is the return value from NSS_CMSCipher_StartEncrypt. |
557 | | * When "final" is true, this is the last of the data to be encrypted. |
558 | | * |
559 | | * This is much more complicated than it sounds when the cipher is |
560 | | * a block-type, meaning that the encryption function will only |
561 | | * operate on whole blocks. But our caller is operating stream-wise, |
562 | | * and can pass in any number of bytes. So we need to keep track |
563 | | * of block boundaries. We save excess bytes between calls in "cc". |
564 | | * We also need to add padding bytes at the end. PKCS #7 specifies |
565 | | * that the padding used for a block cipher is a string of bytes, |
566 | | * each of whose value is the same as the length of the padding, |
567 | | * and that all data is padded. (Even data that starts out with |
568 | | * an exact multiple of blocks gets added to it another block, |
569 | | * all of which is padding.) |
570 | | * |
571 | | * XXX I would kind of like to combine this with the function above |
572 | | * which does decryption, since they have a lot in common. But the |
573 | | * tricky parts about padding and filling blocks would be much |
574 | | * harder to read that way, so I left them separate. At least for |
575 | | * now until it is clear that they are right. |
576 | | */ |
577 | | SECStatus |
578 | | NSS_CMSCipherContext_Encrypt(NSSCMSCipherContext *cc, unsigned char *output, |
579 | | unsigned int *output_len_p, unsigned int max_output_len, |
580 | | const unsigned char *input, unsigned int input_len, |
581 | | PRBool final) |
582 | 0 | { |
583 | 0 | int blocks, bsize, padlen, pcount, padsize; |
584 | 0 | unsigned int max_needed, ifraglen, ofraglen, output_len; |
585 | 0 | unsigned char *pbuf; |
586 | 0 | SECStatus rv; |
587 | |
|
588 | 0 | PORT_Assert(cc->encrypt); |
589 | | |
590 | | /* |
591 | | * Check that we have enough room for the output. Our caller should |
592 | | * already handle this; failure is really an internal error (i.e. bug). |
593 | | */ |
594 | 0 | max_needed = NSS_CMSCipherContext_EncryptLength(cc, input_len, final); |
595 | 0 | PORT_Assert(max_output_len >= max_needed); |
596 | 0 | if (max_output_len < max_needed) { |
597 | | /* PORT_SetError (XXX); */ |
598 | 0 | return SECFailure; |
599 | 0 | } |
600 | | |
601 | 0 | bsize = cc->block_size; |
602 | 0 | padsize = cc->pad_size; |
603 | | |
604 | | /* |
605 | | * When no blocking and padding work to do, we can simply call the |
606 | | * cipher function and we are done. |
607 | | */ |
608 | 0 | if (bsize == 0) { |
609 | 0 | return (*cc->doit)(cc->cx, output, output_len_p, max_output_len, |
610 | 0 | input, input_len); |
611 | 0 | } |
612 | | |
613 | 0 | pcount = cc->pending_count; |
614 | 0 | pbuf = cc->pending_buf; |
615 | |
|
616 | 0 | output_len = 0; |
617 | |
|
618 | 0 | if (pcount) { |
619 | | /* |
620 | | * Try to fill in an entire block, starting with the bytes |
621 | | * we already have saved away. |
622 | | */ |
623 | 0 | while (input_len && pcount < bsize) { |
624 | 0 | pbuf[pcount++] = *input++; |
625 | 0 | input_len--; |
626 | 0 | } |
627 | | /* |
628 | | * If we do not have a full block and we know we will be |
629 | | * called again, then we are done for now. |
630 | | */ |
631 | 0 | if (pcount < bsize && !final) { |
632 | 0 | cc->pending_count = pcount; |
633 | 0 | if (output_len_p != NULL) |
634 | 0 | *output_len_p = 0; |
635 | 0 | return SECSuccess; |
636 | 0 | } |
637 | | /* |
638 | | * If we have a whole block available, encrypt it. |
639 | | */ |
640 | 0 | if ((padsize == 0) || (pcount % padsize) == 0) { |
641 | 0 | rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
642 | 0 | pbuf, pcount); |
643 | 0 | if (rv != SECSuccess) |
644 | 0 | return rv; |
645 | | |
646 | | /* |
647 | | * For now anyway, all of our ciphers have the same number of |
648 | | * bytes of output as they do input. If this ever becomes untrue, |
649 | | * then sec_PKCS7EncryptLength needs to be made smarter! |
650 | | */ |
651 | 0 | PORT_Assert(ofraglen == pcount); |
652 | | |
653 | | /* |
654 | | * Account for the bytes now in output. |
655 | | */ |
656 | 0 | max_output_len -= ofraglen; |
657 | 0 | output_len += ofraglen; |
658 | 0 | output += ofraglen; |
659 | |
|
660 | 0 | pcount = 0; |
661 | 0 | } |
662 | 0 | } |
663 | | |
664 | 0 | if (input_len) { |
665 | 0 | PORT_Assert(pcount == 0); |
666 | |
|
667 | 0 | blocks = input_len / bsize; |
668 | 0 | ifraglen = blocks * bsize; |
669 | |
|
670 | 0 | if (ifraglen) { |
671 | 0 | rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
672 | 0 | input, ifraglen); |
673 | 0 | if (rv != SECSuccess) |
674 | 0 | return rv; |
675 | | |
676 | | /* |
677 | | * For now anyway, all of our ciphers have the same number of |
678 | | * bytes of output as they do input. If this ever becomes untrue, |
679 | | * then sec_PKCS7EncryptLength needs to be made smarter! |
680 | | */ |
681 | 0 | PORT_Assert(ifraglen == ofraglen); |
682 | |
|
683 | 0 | max_output_len -= ofraglen; |
684 | 0 | output_len += ofraglen; |
685 | 0 | output += ofraglen; |
686 | 0 | } |
687 | | |
688 | 0 | pcount = input_len - ifraglen; |
689 | 0 | PORT_Assert(pcount < bsize); |
690 | 0 | if (pcount) |
691 | 0 | PORT_Memcpy(pbuf, input + ifraglen, pcount); |
692 | 0 | } |
693 | | |
694 | 0 | if (final) { |
695 | 0 | if (padsize <= 0) { |
696 | 0 | padlen = 0; |
697 | 0 | } else { |
698 | 0 | padlen = padsize - (pcount % padsize); |
699 | 0 | PORT_Memset(pbuf + pcount, padlen, padlen); |
700 | 0 | } |
701 | 0 | rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len, |
702 | 0 | pbuf, pcount + padlen); |
703 | 0 | if (rv != SECSuccess) |
704 | 0 | return rv; |
705 | | |
706 | | /* |
707 | | * For now anyway, all of our ciphers have the same number of |
708 | | * bytes of output as they do input. If this ever becomes untrue, |
709 | | * then sec_PKCS7EncryptLength needs to be made smarter! |
710 | | */ |
711 | 0 | PORT_Assert(ofraglen == (pcount + padlen)); |
712 | 0 | output_len += ofraglen; |
713 | 0 | } else { |
714 | 0 | cc->pending_count = pcount; |
715 | 0 | } |
716 | | |
717 | 0 | PORT_Assert(output_len_p != NULL || output_len == 0); |
718 | 0 | if (output_len_p != NULL) |
719 | 0 | *output_len_p = output_len; |
720 | |
|
721 | 0 | return SECSuccess; |
722 | 0 | } |