Coverage Report

Created: 2025-07-01 06:26

/src/nspr/pr/src/misc/prtime.c
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2
/* This Source Code Form is subject to the terms of the Mozilla Public
3
 * License, v. 2.0. If a copy of the MPL was not distributed with this
4
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5
6
/*
7
 * prtime.c --
8
 *
9
 *     NSPR date and time functions
10
 *
11
 */
12
13
#include "prinit.h"
14
#include "prtime.h"
15
#include "prlock.h"
16
#include "prprf.h"
17
#include "prlog.h"
18
19
#include <string.h>
20
#include <ctype.h>
21
#include <errno.h> /* for EINVAL */
22
#include <time.h>
23
24
/*
25
 * The COUNT_LEAPS macro counts the number of leap years passed by
26
 * till the start of the given year Y.  At the start of the year 4
27
 * A.D. the number of leap years passed by is 0, while at the start of
28
 * the year 5 A.D. this count is 1. The number of years divisible by
29
 * 100 but not divisible by 400 (the non-leap years) is deducted from
30
 * the count to get the correct number of leap years.
31
 *
32
 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
33
 * start of the given year Y. The number of days at the start of the year
34
 * 1 is 0 while the number of days at the start of the year 2 is 365
35
 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
36
 * midnight 00:00:00.
37
 */
38
39
12.4k
#define COUNT_LEAPS(Y) (((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1) / 400)
40
12.4k
#define COUNT_DAYS(Y) (((Y) - 1) * 365 + COUNT_LEAPS(Y))
41
6.24k
#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
42
43
/*
44
 * Static variables used by functions in this file
45
 */
46
47
/*
48
 * The following array contains the day of year for the last day of
49
 * each month, where index 1 is January, and day 0 is January 1.
50
 */
51
52
static const int lastDayOfMonth[2][13] = {
53
    {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
54
    {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}};
55
56
/*
57
 * The number of days in a month
58
 */
59
60
static const PRInt8 nDays[2][12] = {
61
    {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
62
    {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
63
64
/*
65
 * Declarations for internal functions defined later in this file.
66
 */
67
68
static void ComputeGMT(PRTime time, PRExplodedTime* gmt);
69
static int IsLeapYear(PRInt16 year);
70
static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset);
71
72
/*
73
 *------------------------------------------------------------------------
74
 *
75
 * ComputeGMT --
76
 *
77
 *     Caveats:
78
 *     - we ignore leap seconds
79
 *
80
 *------------------------------------------------------------------------
81
 */
82
83
0
static void ComputeGMT(PRTime time, PRExplodedTime* gmt) {
84
0
  PRInt32 tmp, rem;
85
0
  PRInt32 numDays;
86
0
  PRInt64 numDays64, rem64;
87
0
  int isLeap;
88
0
  PRInt64 sec;
89
0
  PRInt64 usec;
90
0
  PRInt64 usecPerSec;
91
0
  PRInt64 secPerDay;
92
93
  /*
94
   * We first do the usec, sec, min, hour thing so that we do not
95
   * have to do LL arithmetic.
96
   */
97
98
0
  LL_I2L(usecPerSec, 1000000L);
99
0
  LL_DIV(sec, time, usecPerSec);
100
0
  LL_MOD(usec, time, usecPerSec);
101
0
  LL_L2I(gmt->tm_usec, usec);
102
  /* Correct for weird mod semantics so the remainder is always positive */
103
0
  if (gmt->tm_usec < 0) {
104
0
    PRInt64 one;
105
106
0
    LL_I2L(one, 1L);
107
0
    LL_SUB(sec, sec, one);
108
0
    gmt->tm_usec += 1000000L;
109
0
  }
110
111
0
  LL_I2L(secPerDay, 86400L);
112
0
  LL_DIV(numDays64, sec, secPerDay);
113
0
  LL_MOD(rem64, sec, secPerDay);
114
  /* We are sure both of these numbers can fit into PRInt32 */
115
0
  LL_L2I(numDays, numDays64);
116
0
  LL_L2I(rem, rem64);
117
0
  if (rem < 0) {
118
0
    numDays--;
119
0
    rem += 86400L;
120
0
  }
121
122
  /* Compute day of week.  Epoch started on a Thursday. */
123
124
0
  gmt->tm_wday = (numDays + 4) % 7;
125
0
  if (gmt->tm_wday < 0) {
126
0
    gmt->tm_wday += 7;
127
0
  }
128
129
  /* Compute the time of day. */
130
131
0
  gmt->tm_hour = rem / 3600;
132
0
  rem %= 3600;
133
0
  gmt->tm_min = rem / 60;
134
0
  gmt->tm_sec = rem % 60;
135
136
  /*
137
   * Compute the year by finding the 400 year period, then working
138
   * down from there.
139
   *
140
   * Since numDays is originally the number of days since January 1, 1970,
141
   * we must change it to be the number of days from January 1, 0001.
142
   */
143
144
0
  numDays += 719162;      /* 719162 = days from year 1 up to 1970 */
145
0
  tmp = numDays / 146097; /* 146097 = days in 400 years */
146
0
  rem = numDays % 146097;
147
0
  gmt->tm_year = tmp * 400 + 1;
148
149
  /* Compute the 100 year period. */
150
151
0
  tmp = rem / 36524; /* 36524 = days in 100 years */
152
0
  rem %= 36524;
153
0
  if (tmp == 4) { /* the 400th year is a leap year */
154
0
    tmp = 3;
155
0
    rem = 36524;
156
0
  }
157
0
  gmt->tm_year += tmp * 100;
158
159
  /* Compute the 4 year period. */
160
161
0
  tmp = rem / 1461; /* 1461 = days in 4 years */
162
0
  rem %= 1461;
163
0
  gmt->tm_year += tmp * 4;
164
165
  /* Compute which year in the 4. */
166
167
0
  tmp = rem / 365;
168
0
  rem %= 365;
169
0
  if (tmp == 4) { /* the 4th year is a leap year */
170
0
    tmp = 3;
171
0
    rem = 365;
172
0
  }
173
174
0
  gmt->tm_year += tmp;
175
0
  gmt->tm_yday = rem;
176
0
  isLeap = IsLeapYear(gmt->tm_year);
177
178
  /* Compute the month and day of month. */
179
180
0
  for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
181
0
  }
182
0
  gmt->tm_month = --tmp;
183
0
  gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
184
185
0
  gmt->tm_params.tp_gmt_offset = 0;
186
0
  gmt->tm_params.tp_dst_offset = 0;
187
0
}
188
189
/*
190
 *------------------------------------------------------------------------
191
 *
192
 * PR_ExplodeTime --
193
 *
194
 *     Cf. struct tm *gmtime(const time_t *tp) and
195
 *         struct tm *localtime(const time_t *tp)
196
 *
197
 *------------------------------------------------------------------------
198
 */
199
200
PR_IMPLEMENT(void)
201
0
PR_ExplodeTime(PRTime usecs, PRTimeParamFn params, PRExplodedTime* exploded) {
202
0
  ComputeGMT(usecs, exploded);
203
0
  exploded->tm_params = params(exploded);
204
0
  ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset +
205
0
                               exploded->tm_params.tp_dst_offset);
206
0
}
207
208
/*
209
 *------------------------------------------------------------------------
210
 *
211
 * PR_ImplodeTime --
212
 *
213
 *     Cf. time_t mktime(struct tm *tp)
214
 *     Note that 1 year has < 2^25 seconds.  So an PRInt32 is large enough.
215
 *
216
 *------------------------------------------------------------------------
217
 */
218
PR_IMPLEMENT(PRTime)
219
3.12k
PR_ImplodeTime(const PRExplodedTime* exploded) {
220
3.12k
  PRExplodedTime copy;
221
3.12k
  PRTime retVal;
222
3.12k
  PRInt64 secPerDay, usecPerSec;
223
3.12k
  PRInt64 temp;
224
3.12k
  PRInt64 numSecs64;
225
3.12k
  PRInt32 numDays;
226
3.12k
  PRInt32 numSecs;
227
228
  /* Normalize first.  Do this on our copy */
229
3.12k
  copy = *exploded;
230
3.12k
  PR_NormalizeTime(&copy, PR_GMTParameters);
231
232
3.12k
  numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
233
234
3.12k
  numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 +
235
3.12k
            copy.tm_sec;
236
237
3.12k
  LL_I2L(temp, numDays);
238
3.12k
  LL_I2L(secPerDay, 86400);
239
3.12k
  LL_MUL(temp, temp, secPerDay);
240
3.12k
  LL_I2L(numSecs64, numSecs);
241
3.12k
  LL_ADD(numSecs64, numSecs64, temp);
242
243
  /* apply the GMT and DST offsets */
244
3.12k
  LL_I2L(temp, copy.tm_params.tp_gmt_offset);
245
3.12k
  LL_SUB(numSecs64, numSecs64, temp);
246
3.12k
  LL_I2L(temp, copy.tm_params.tp_dst_offset);
247
3.12k
  LL_SUB(numSecs64, numSecs64, temp);
248
249
3.12k
  LL_I2L(usecPerSec, 1000000L);
250
3.12k
  LL_MUL(temp, numSecs64, usecPerSec);
251
3.12k
  LL_I2L(retVal, copy.tm_usec);
252
3.12k
  LL_ADD(retVal, retVal, temp);
253
254
3.12k
  return retVal;
255
3.12k
}
256
257
/*
258
 *-------------------------------------------------------------------------
259
 *
260
 * IsLeapYear --
261
 *
262
 *     Returns 1 if the year is a leap year, 0 otherwise.
263
 *
264
 *-------------------------------------------------------------------------
265
 */
266
267
6.30k
static int IsLeapYear(PRInt16 year) {
268
6.30k
  if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {
269
1.24k
    return 1;
270
1.24k
  }
271
5.06k
  return 0;
272
6.30k
}
273
274
/*
275
 * 'secOffset' should be less than 86400 (i.e., a day).
276
 * 'time' should point to a normalized PRExplodedTime.
277
 */
278
279
3.12k
static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset) {
280
3.12k
  time->tm_sec += secOffset;
281
282
  /* Note that in this implementation we do not count leap seconds */
283
3.12k
  if (time->tm_sec < 0 || time->tm_sec >= 60) {
284
0
    time->tm_min += time->tm_sec / 60;
285
0
    time->tm_sec %= 60;
286
0
    if (time->tm_sec < 0) {
287
0
      time->tm_sec += 60;
288
0
      time->tm_min--;
289
0
    }
290
0
  }
291
292
3.12k
  if (time->tm_min < 0 || time->tm_min >= 60) {
293
0
    time->tm_hour += time->tm_min / 60;
294
0
    time->tm_min %= 60;
295
0
    if (time->tm_min < 0) {
296
0
      time->tm_min += 60;
297
0
      time->tm_hour--;
298
0
    }
299
0
  }
300
301
3.12k
  if (time->tm_hour < 0) {
302
    /* Decrement mday, yday, and wday */
303
0
    time->tm_hour += 24;
304
0
    time->tm_mday--;
305
0
    time->tm_yday--;
306
0
    if (time->tm_mday < 1) {
307
0
      time->tm_month--;
308
0
      if (time->tm_month < 0) {
309
0
        time->tm_month = 11;
310
0
        time->tm_year--;
311
0
        if (IsLeapYear(time->tm_year)) {
312
0
          time->tm_yday = 365;
313
0
        } else {
314
0
          time->tm_yday = 364;
315
0
        }
316
0
      }
317
0
      time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
318
0
    }
319
0
    time->tm_wday--;
320
0
    if (time->tm_wday < 0) {
321
0
      time->tm_wday = 6;
322
0
    }
323
3.12k
  } else if (time->tm_hour > 23) {
324
    /* Increment mday, yday, and wday */
325
0
    time->tm_hour -= 24;
326
0
    time->tm_mday++;
327
0
    time->tm_yday++;
328
0
    if (time->tm_mday > nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
329
0
      time->tm_mday = 1;
330
0
      time->tm_month++;
331
0
      if (time->tm_month > 11) {
332
0
        time->tm_month = 0;
333
0
        time->tm_year++;
334
0
        time->tm_yday = 0;
335
0
      }
336
0
    }
337
0
    time->tm_wday++;
338
0
    if (time->tm_wday > 6) {
339
0
      time->tm_wday = 0;
340
0
    }
341
0
  }
342
3.12k
}
343
344
PR_IMPLEMENT(void)
345
3.12k
PR_NormalizeTime(PRExplodedTime* time, PRTimeParamFn params) {
346
3.12k
  int daysInMonth;
347
3.12k
  PRInt32 numDays;
348
349
  /* Get back to GMT */
350
3.12k
  time->tm_sec -= time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset;
351
3.12k
  time->tm_params.tp_gmt_offset = 0;
352
3.12k
  time->tm_params.tp_dst_offset = 0;
353
354
  /* Now normalize GMT */
355
356
3.12k
  if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
357
0
    time->tm_sec += time->tm_usec / 1000000;
358
0
    time->tm_usec %= 1000000;
359
0
    if (time->tm_usec < 0) {
360
0
      time->tm_usec += 1000000;
361
0
      time->tm_sec--;
362
0
    }
363
0
  }
364
365
  /* Note that we do not count leap seconds in this implementation */
366
3.12k
  if (time->tm_sec < 0 || time->tm_sec >= 60) {
367
0
    time->tm_min += time->tm_sec / 60;
368
0
    time->tm_sec %= 60;
369
0
    if (time->tm_sec < 0) {
370
0
      time->tm_sec += 60;
371
0
      time->tm_min--;
372
0
    }
373
0
  }
374
375
3.12k
  if (time->tm_min < 0 || time->tm_min >= 60) {
376
0
    time->tm_hour += time->tm_min / 60;
377
0
    time->tm_min %= 60;
378
0
    if (time->tm_min < 0) {
379
0
      time->tm_min += 60;
380
0
      time->tm_hour--;
381
0
    }
382
0
  }
383
384
3.12k
  if (time->tm_hour < 0 || time->tm_hour >= 24) {
385
0
    time->tm_mday += time->tm_hour / 24;
386
0
    time->tm_hour %= 24;
387
0
    if (time->tm_hour < 0) {
388
0
      time->tm_hour += 24;
389
0
      time->tm_mday--;
390
0
    }
391
0
  }
392
393
  /* Normalize month and year before mday */
394
3.12k
  if (time->tm_month < 0 || time->tm_month >= 12) {
395
0
    time->tm_year += time->tm_month / 12;
396
0
    time->tm_month %= 12;
397
0
    if (time->tm_month < 0) {
398
0
      time->tm_month += 12;
399
0
      time->tm_year--;
400
0
    }
401
0
  }
402
403
  /* Now that month and year are in proper range, normalize mday */
404
405
3.12k
  if (time->tm_mday < 1) {
406
    /* mday too small */
407
0
    do {
408
      /* the previous month */
409
0
      time->tm_month--;
410
0
      if (time->tm_month < 0) {
411
0
        time->tm_month = 11;
412
0
        time->tm_year--;
413
0
      }
414
0
      time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
415
0
    } while (time->tm_mday < 1);
416
3.12k
  } else {
417
3.12k
    daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
418
3.18k
    while (time->tm_mday > daysInMonth) {
419
      /* mday too large */
420
59
      time->tm_mday -= daysInMonth;
421
59
      time->tm_month++;
422
59
      if (time->tm_month > 11) {
423
0
        time->tm_month = 0;
424
0
        time->tm_year++;
425
0
      }
426
59
      daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
427
59
    }
428
3.12k
  }
429
430
  /* Recompute yday and wday */
431
3.12k
  time->tm_yday =
432
3.12k
      time->tm_mday + lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
433
434
3.12k
  numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
435
3.12k
  time->tm_wday = (numDays + 4) % 7;
436
3.12k
  if (time->tm_wday < 0) {
437
588
    time->tm_wday += 7;
438
588
  }
439
440
  /* Recompute time parameters */
441
442
3.12k
  time->tm_params = params(time);
443
444
3.12k
  ApplySecOffset(time,
445
3.12k
                 time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset);
446
3.12k
}
447
448
/*
449
 *-------------------------------------------------------------------------
450
 *
451
 * PR_LocalTimeParameters --
452
 *
453
 *     returns the time parameters for the local time zone
454
 *
455
 *     The following uses localtime() from the standard C library.
456
 *     (time.h)  This is our fallback implementation.  Unix, PC, and BeOS
457
 *     use this version.  A platform may have its own machine-dependent
458
 *     implementation of this function.
459
 *
460
 *-------------------------------------------------------------------------
461
 */
462
463
#if defined(HAVE_INT_LOCALTIME_R)
464
465
/*
466
 * In this case we could define the macro as
467
 *     #define MT_safe_localtime(timer, result) \
468
 *             (localtime_r(timer, result) == 0 ? result : NULL)
469
 * I chose to compare the return value of localtime_r with -1 so
470
 * that I can catch the cases where localtime_r returns a pointer
471
 * to struct tm.  The macro definition above would not be able to
472
 * detect such mistakes because it is legal to compare a pointer
473
 * with 0.
474
 */
475
476
#  define MT_safe_localtime(timer, result) \
477
    (localtime_r(timer, result) == -1 ? NULL : result)
478
479
#elif defined(HAVE_POINTER_LOCALTIME_R)
480
481
0
#  define MT_safe_localtime localtime_r
482
483
#elif defined(_MSC_VER)
484
485
/* Visual C++ has had localtime_s() since Visual C++ 2005. */
486
487
static struct tm* MT_safe_localtime(const time_t* clock, struct tm* result) {
488
  errno_t err = localtime_s(result, clock);
489
  if (err != 0) {
490
    errno = err;
491
    return NULL;
492
  }
493
  return result;
494
}
495
496
#else
497
498
#  define HAVE_LOCALTIME_MONITOR                 \
499
    1 /* We use 'monitor' to serialize our calls \
500
       * to localtime(). */
501
static PRLock* monitor = NULL;
502
503
static struct tm* MT_safe_localtime(const time_t* clock, struct tm* result) {
504
  struct tm* tmPtr;
505
  int needLock = PR_Initialized(); /* We need to use a lock to protect
506
                                    * against NSPR threads only when the
507
                                    * NSPR thread system is activated. */
508
509
  if (needLock) {
510
    PR_Lock(monitor);
511
  }
512
513
  /*
514
   * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
515
   * represents a time before midnight January 1, 1970.  In
516
   * that case, we also return a NULL pointer and the struct tm
517
   * object pointed to by 'result' is not modified.
518
   *
519
   */
520
521
  tmPtr = localtime(clock);
522
523
  if (tmPtr) {
524
    *result = *tmPtr;
525
  } else {
526
    result = NULL;
527
  }
528
529
  if (needLock) {
530
    PR_Unlock(monitor);
531
  }
532
533
  return result;
534
}
535
536
#endif /* definition of MT_safe_localtime() */
537
538
4
void _PR_InitTime(void) {
539
#ifdef HAVE_LOCALTIME_MONITOR
540
  monitor = PR_NewLock();
541
#endif
542
#ifdef WINCE
543
  _MD_InitTime();
544
#endif
545
4
}
546
547
0
void _PR_CleanupTime(void) {
548
#ifdef HAVE_LOCALTIME_MONITOR
549
  if (monitor) {
550
    PR_DestroyLock(monitor);
551
    monitor = NULL;
552
  }
553
#endif
554
#ifdef WINCE
555
  _MD_CleanupTime();
556
#endif
557
0
}
558
559
#if defined(XP_UNIX) || defined(XP_PC)
560
561
PR_IMPLEMENT(PRTimeParameters)
562
0
PR_LocalTimeParameters(const PRExplodedTime* gmt) {
563
0
  PRTimeParameters retVal;
564
0
  struct tm localTime;
565
0
  struct tm* localTimeResult;
566
0
  time_t secs;
567
0
  PRTime secs64;
568
0
  PRInt64 usecPerSec;
569
0
  PRInt64 usecPerSec_1;
570
0
  PRInt64 maxInt32;
571
0
  PRInt64 minInt32;
572
0
  PRInt32 dayOffset;
573
0
  PRInt32 offset2Jan1970;
574
0
  PRInt32 offsetNew;
575
0
  int isdst2Jan1970;
576
577
  /*
578
   * Calculate the GMT offset.  First, figure out what is
579
   * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
580
   * seconds, since the epoch) in local time.  Then we calculate
581
   * the difference between local time and GMT in seconds:
582
   *     gmt_offset = local_time - GMT
583
   *
584
   * Caveat: the validity of this calculation depends on two
585
   * assumptions:
586
   * 1. Daylight saving time was not in effect on Jan. 2, 1970.
587
   * 2. The time zone of the geographic location has not changed
588
   *    since Jan. 2, 1970.
589
   */
590
591
0
  secs = 86400L;
592
0
  localTimeResult = MT_safe_localtime(&secs, &localTime);
593
0
  PR_ASSERT(localTimeResult != NULL);
594
0
  if (localTimeResult == NULL) {
595
    /* Shouldn't happen. Use safe fallback for optimized builds. */
596
0
    return PR_GMTParameters(gmt);
597
0
  }
598
599
  /* GMT is 00:00:00, 2nd of Jan. */
600
601
0
  offset2Jan1970 = (PRInt32)localTime.tm_sec + 60L * (PRInt32)localTime.tm_min +
602
0
                   3600L * (PRInt32)localTime.tm_hour +
603
0
                   86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
604
605
0
  isdst2Jan1970 = localTime.tm_isdst;
606
607
  /*
608
   * Now compute DST offset.  We calculate the overall offset
609
   * of local time from GMT, similar to above.  The overall
610
   * offset has two components: gmt offset and dst offset.
611
   * We subtract gmt offset from the overall offset to get
612
   * the dst offset.
613
   *     overall_offset = local_time - GMT
614
   *     overall_offset = gmt_offset + dst_offset
615
   * ==> dst_offset = local_time - GMT - gmt_offset
616
   */
617
618
0
  secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */
619
0
  LL_I2L(usecPerSec, PR_USEC_PER_SEC);
620
0
  LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1);
621
  /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */
622
0
  if (LL_GE_ZERO(secs64)) {
623
0
    LL_DIV(secs64, secs64, usecPerSec);
624
0
  } else {
625
0
    LL_NEG(secs64, secs64);
626
0
    LL_ADD(secs64, secs64, usecPerSec_1);
627
0
    LL_DIV(secs64, secs64, usecPerSec);
628
0
    LL_NEG(secs64, secs64);
629
0
  }
630
0
  LL_I2L(maxInt32, PR_INT32_MAX);
631
0
  LL_I2L(minInt32, PR_INT32_MIN);
632
0
  if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
633
    /* secs64 is too large or too small for time_t (32-bit integer) */
634
0
    retVal.tp_gmt_offset = offset2Jan1970;
635
0
    retVal.tp_dst_offset = 0;
636
0
    return retVal;
637
0
  }
638
0
  LL_L2I(secs, secs64);
639
640
  /*
641
   * On Windows, localtime() (and our MT_safe_localtime() too)
642
   * returns a NULL pointer for time before midnight January 1,
643
   * 1970 GMT.  In that case, we just use the GMT offset for
644
   * Jan 2, 1970 and assume that DST was not in effect.
645
   */
646
647
0
  if (MT_safe_localtime(&secs, &localTime) == NULL) {
648
0
    retVal.tp_gmt_offset = offset2Jan1970;
649
0
    retVal.tp_dst_offset = 0;
650
0
    return retVal;
651
0
  }
652
653
  /*
654
   * dayOffset is the offset between local time and GMT in
655
   * the day component, which can only be -1, 0, or 1.  We
656
   * use the day of the week to compute dayOffset.
657
   */
658
659
0
  dayOffset = (PRInt32)localTime.tm_wday - gmt->tm_wday;
660
661
  /*
662
   * Need to adjust for wrapping around of day of the week from
663
   * 6 back to 0.
664
   */
665
666
0
  if (dayOffset == -6) {
667
    /* Local time is Sunday (0) and GMT is Saturday (6) */
668
0
    dayOffset = 1;
669
0
  } else if (dayOffset == 6) {
670
    /* Local time is Saturday (6) and GMT is Sunday (0) */
671
0
    dayOffset = -1;
672
0
  }
673
674
0
  offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec +
675
0
              60L * ((PRInt32)localTime.tm_min - gmt->tm_min) +
676
0
              3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) +
677
0
              86400L * (PRInt32)dayOffset;
678
679
0
  if (localTime.tm_isdst <= 0) {
680
    /* DST is not in effect */
681
0
    retVal.tp_gmt_offset = offsetNew;
682
0
    retVal.tp_dst_offset = 0;
683
0
  } else {
684
    /* DST is in effect */
685
0
    if (isdst2Jan1970 <= 0) {
686
      /*
687
       * DST was not in effect back in 2 Jan. 1970.
688
       * Use the offset back then as the GMT offset,
689
       * assuming the time zone has not changed since then.
690
       */
691
0
      retVal.tp_gmt_offset = offset2Jan1970;
692
0
      retVal.tp_dst_offset = offsetNew - offset2Jan1970;
693
0
    } else {
694
      /*
695
       * DST was also in effect back in 2 Jan. 1970.
696
       * Then our clever trick (or rather, ugly hack) fails.
697
       * We will just assume DST offset is an hour.
698
       */
699
0
      retVal.tp_gmt_offset = offsetNew - 3600;
700
0
      retVal.tp_dst_offset = 3600;
701
0
    }
702
0
  }
703
704
0
  return retVal;
705
0
}
706
707
#endif /* defined(XP_UNIX) || defined(XP_PC) */
708
709
/*
710
 *------------------------------------------------------------------------
711
 *
712
 * PR_USPacificTimeParameters --
713
 *
714
 *     The time parameters function for the US Pacific Time Zone.
715
 *
716
 *------------------------------------------------------------------------
717
 */
718
719
/*
720
 * Returns the mday of the first sunday of the month, where
721
 * mday and wday are for a given day in the month.
722
 * mdays start with 1 (e.g. 1..31).
723
 * wdays start with 0 and are in the range 0..6.  0 = Sunday.
724
 */
725
0
#define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1)
726
727
/*
728
 * Returns the mday for the N'th Sunday of the month, where
729
 * mday and wday are for a given day in the month.
730
 * mdays start with 1 (e.g. 1..31).
731
 * wdays start with 0 and are in the range 0..6.  0 = Sunday.
732
 * N has the following values: 0 = first, 1 = second (etc), -1 = last.
733
 * ndays is the number of days in that month, the same value as the
734
 * mday of the last day of the month.
735
 */
736
0
static PRInt32 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) {
737
0
  PRInt32 firstSun = firstSunday(mday, wday);
738
739
0
  if (N < 0) {
740
0
    N = (ndays - firstSun) / 7;
741
0
  }
742
0
  return firstSun + (7 * N);
743
0
}
744
745
typedef struct DSTParams {
746
  PRInt8 dst_start_month;       /* 0 = January */
747
  PRInt8 dst_start_Nth_Sunday;  /* N as defined above */
748
  PRInt8 dst_start_month_ndays; /* ndays as defined above */
749
  PRInt8 dst_end_month;         /* 0 = January */
750
  PRInt8 dst_end_Nth_Sunday;    /* N as defined above */
751
  PRInt8 dst_end_month_ndays;   /* ndays as defined above */
752
} DSTParams;
753
754
static const DSTParams dstParams[2] = {
755
    /* year < 2007:  First April Sunday - Last October Sunday */
756
    {3, 0, 30, 9, -1, 31},
757
    /* year >= 2007: Second March Sunday - First November Sunday */
758
    {2, 1, 31, 10, 0, 30}};
759
760
PR_IMPLEMENT(PRTimeParameters)
761
0
PR_USPacificTimeParameters(const PRExplodedTime* gmt) {
762
0
  const DSTParams* dst;
763
0
  PRTimeParameters retVal;
764
0
  PRExplodedTime st;
765
766
  /*
767
   * Based on geographic location and GMT, figure out offset of
768
   * standard time from GMT.  In this example implementation, we
769
   * assume the local time zone is US Pacific Time.
770
   */
771
772
0
  retVal.tp_gmt_offset = -8L * 3600L;
773
774
  /*
775
   * Make a copy of GMT.  Note that the tm_params field of this copy
776
   * is ignored.
777
   */
778
779
0
  st.tm_usec = gmt->tm_usec;
780
0
  st.tm_sec = gmt->tm_sec;
781
0
  st.tm_min = gmt->tm_min;
782
0
  st.tm_hour = gmt->tm_hour;
783
0
  st.tm_mday = gmt->tm_mday;
784
0
  st.tm_month = gmt->tm_month;
785
0
  st.tm_year = gmt->tm_year;
786
0
  st.tm_wday = gmt->tm_wday;
787
0
  st.tm_yday = gmt->tm_yday;
788
789
  /* Apply the offset to GMT to obtain the local standard time */
790
0
  ApplySecOffset(&st, retVal.tp_gmt_offset);
791
792
0
  if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */
793
0
    dst = &dstParams[0];
794
0
  } else { /* Second March Sunday - First November Sunday */
795
0
    dst = &dstParams[1];
796
0
  }
797
798
  /*
799
   * Apply the rules on standard time or GMT to obtain daylight saving
800
   * time offset.  In this implementation, we use the US DST rule.
801
   */
802
0
  if (st.tm_month < dst->dst_start_month) {
803
0
    retVal.tp_dst_offset = 0L;
804
0
  } else if (st.tm_month == dst->dst_start_month) {
805
0
    int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_start_Nth_Sunday,
806
0
                           dst->dst_start_month_ndays);
807
0
    if (st.tm_mday < NthSun) { /* Before starting Sunday */
808
0
      retVal.tp_dst_offset = 0L;
809
0
    } else if (st.tm_mday == NthSun) { /* Starting Sunday */
810
      /* 01:59:59 PST -> 03:00:00 PDT */
811
0
      if (st.tm_hour < 2) {
812
0
        retVal.tp_dst_offset = 0L;
813
0
      } else {
814
0
        retVal.tp_dst_offset = 3600L;
815
0
      }
816
0
    } else { /* After starting Sunday */
817
0
      retVal.tp_dst_offset = 3600L;
818
0
    }
819
0
  } else if (st.tm_month < dst->dst_end_month) {
820
0
    retVal.tp_dst_offset = 3600L;
821
0
  } else if (st.tm_month == dst->dst_end_month) {
822
0
    int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_end_Nth_Sunday,
823
0
                           dst->dst_end_month_ndays);
824
0
    if (st.tm_mday < NthSun) { /* Before ending Sunday */
825
0
      retVal.tp_dst_offset = 3600L;
826
0
    } else if (st.tm_mday == NthSun) { /* Ending Sunday */
827
      /* 01:59:59 PDT -> 01:00:00 PST */
828
0
      if (st.tm_hour < 1) {
829
0
        retVal.tp_dst_offset = 3600L;
830
0
      } else {
831
0
        retVal.tp_dst_offset = 0L;
832
0
      }
833
0
    } else { /* After ending Sunday */
834
0
      retVal.tp_dst_offset = 0L;
835
0
    }
836
0
  } else {
837
0
    retVal.tp_dst_offset = 0L;
838
0
  }
839
0
  return retVal;
840
0
}
841
842
/*
843
 *------------------------------------------------------------------------
844
 *
845
 * PR_GMTParameters --
846
 *
847
 *     Returns the PRTimeParameters for Greenwich Mean Time.
848
 *     Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
849
 *
850
 *------------------------------------------------------------------------
851
 */
852
853
PR_IMPLEMENT(PRTimeParameters)
854
3.12k
PR_GMTParameters(const PRExplodedTime* gmt) {
855
3.12k
  PRTimeParameters retVal = {0, 0};
856
3.12k
  return retVal;
857
3.12k
}
858
859
/*
860
 * The following code implements PR_ParseTimeString().  It is based on
861
 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
862
 */
863
864
/*
865
 * We only recognize the abbreviations of a small subset of time zones
866
 * in North America, Europe, and Japan.
867
 *
868
 * PST/PDT: Pacific Standard/Daylight Time
869
 * MST/MDT: Mountain Standard/Daylight Time
870
 * CST/CDT: Central Standard/Daylight Time
871
 * EST/EDT: Eastern Standard/Daylight Time
872
 * AST: Atlantic Standard Time
873
 * NST: Newfoundland Standard Time
874
 * GMT: Greenwich Mean Time
875
 * BST: British Summer Time
876
 * MET: Middle Europe Time
877
 * EET: Eastern Europe Time
878
 * JST: Japan Standard Time
879
 */
880
881
typedef enum {
882
  TT_UNKNOWN,
883
884
  TT_SUN,
885
  TT_MON,
886
  TT_TUE,
887
  TT_WED,
888
  TT_THU,
889
  TT_FRI,
890
  TT_SAT,
891
892
  TT_JAN,
893
  TT_FEB,
894
  TT_MAR,
895
  TT_APR,
896
  TT_MAY,
897
  TT_JUN,
898
  TT_JUL,
899
  TT_AUG,
900
  TT_SEP,
901
  TT_OCT,
902
  TT_NOV,
903
  TT_DEC,
904
905
  TT_PST,
906
  TT_PDT,
907
  TT_MST,
908
  TT_MDT,
909
  TT_CST,
910
  TT_CDT,
911
  TT_EST,
912
  TT_EDT,
913
  TT_AST,
914
  TT_NST,
915
  TT_GMT,
916
  TT_BST,
917
  TT_MET,
918
  TT_EET,
919
  TT_JST
920
} TIME_TOKEN;
921
922
/*
923
 * This parses a time/date string into a PRTime
924
 * (microseconds after "1-Jan-1970 00:00:00 GMT").
925
 * It returns PR_SUCCESS on success, and PR_FAILURE
926
 * if the time/date string can't be parsed.
927
 *
928
 * Many formats are handled, including:
929
 *
930
 *   14 Apr 89 03:20:12
931
 *   14 Apr 89 03:20 GMT
932
 *   Fri, 17 Mar 89 4:01:33
933
 *   Fri, 17 Mar 89 4:01 GMT
934
 *   Mon Jan 16 16:12 PDT 1989
935
 *   Mon Jan 16 16:12 +0130 1989
936
 *   6 May 1992 16:41-JST (Wednesday)
937
 *   22-AUG-1993 10:59:12.82
938
 *   22-AUG-1993 10:59pm
939
 *   22-AUG-1993 12:59am
940
 *   22-AUG-1993 12:59 PM
941
 *   Friday, August 04, 1995 3:54 PM
942
 *   06/21/95 04:24:34 PM
943
 *   20/06/95 21:07
944
 *   95-06-08 19:32:48 EDT
945
 *
946
 * If the input string doesn't contain a description of the timezone,
947
 * we consult the `default_to_gmt' to decide whether the string should
948
 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
949
 * The correct value for this argument depends on what standard specified
950
 * the time string which you are parsing.
951
 */
952
953
PR_IMPLEMENT(PRStatus)
954
PR_ParseTimeStringToExplodedTime(const char* string, PRBool default_to_gmt,
955
0
                                 PRExplodedTime* result) {
956
0
  TIME_TOKEN dotw = TT_UNKNOWN;
957
0
  TIME_TOKEN month = TT_UNKNOWN;
958
0
  TIME_TOKEN zone = TT_UNKNOWN;
959
0
  int zone_offset = -1;
960
0
  int dst_offset = 0;
961
0
  int date = -1;
962
0
  PRInt32 year = -1;
963
0
  int hour = -1;
964
0
  int min = -1;
965
0
  int sec = -1;
966
0
  struct tm* localTimeResult;
967
968
0
  const char* rest = string;
969
970
0
  int iterations = 0;
971
972
0
  PR_ASSERT(string && result);
973
0
  if (!string || !result) {
974
0
    return PR_FAILURE;
975
0
  }
976
977
0
  while (*rest) {
978
0
    if (iterations++ > 1000) {
979
0
      return PR_FAILURE;
980
0
    }
981
982
0
    switch (*rest) {
983
0
      case 'a':
984
0
      case 'A':
985
0
        if (month == TT_UNKNOWN && (rest[1] == 'p' || rest[1] == 'P') &&
986
0
            (rest[2] == 'r' || rest[2] == 'R')) {
987
0
          month = TT_APR;
988
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
989
0
                   (rest[2] == 't' || rest[2] == 'T')) {
990
0
          zone = TT_AST;
991
0
        } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
992
0
                   (rest[2] == 'g' || rest[2] == 'G')) {
993
0
          month = TT_AUG;
994
0
        }
995
0
        break;
996
0
      case 'b':
997
0
      case 'B':
998
0
        if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
999
0
            (rest[2] == 't' || rest[2] == 'T')) {
1000
0
          zone = TT_BST;
1001
0
        }
1002
0
        break;
1003
0
      case 'c':
1004
0
      case 'C':
1005
0
        if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
1006
0
            (rest[2] == 't' || rest[2] == 'T')) {
1007
0
          zone = TT_CDT;
1008
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1009
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1010
0
          zone = TT_CST;
1011
0
        }
1012
0
        break;
1013
0
      case 'd':
1014
0
      case 'D':
1015
0
        if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1016
0
            (rest[2] == 'c' || rest[2] == 'C')) {
1017
0
          month = TT_DEC;
1018
0
        }
1019
0
        break;
1020
0
      case 'e':
1021
0
      case 'E':
1022
0
        if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
1023
0
            (rest[2] == 't' || rest[2] == 'T')) {
1024
0
          zone = TT_EDT;
1025
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1026
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1027
0
          zone = TT_EET;
1028
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1029
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1030
0
          zone = TT_EST;
1031
0
        }
1032
0
        break;
1033
0
      case 'f':
1034
0
      case 'F':
1035
0
        if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1036
0
            (rest[2] == 'b' || rest[2] == 'B')) {
1037
0
          month = TT_FEB;
1038
0
        } else if (dotw == TT_UNKNOWN && (rest[1] == 'r' || rest[1] == 'R') &&
1039
0
                   (rest[2] == 'i' || rest[2] == 'I')) {
1040
0
          dotw = TT_FRI;
1041
0
        }
1042
0
        break;
1043
0
      case 'g':
1044
0
      case 'G':
1045
0
        if (zone == TT_UNKNOWN && (rest[1] == 'm' || rest[1] == 'M') &&
1046
0
            (rest[2] == 't' || rest[2] == 'T')) {
1047
0
          zone = TT_GMT;
1048
0
        }
1049
0
        break;
1050
0
      case 'j':
1051
0
      case 'J':
1052
0
        if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
1053
0
            (rest[2] == 'n' || rest[2] == 'N')) {
1054
0
          month = TT_JAN;
1055
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1056
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1057
0
          zone = TT_JST;
1058
0
        } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
1059
0
                   (rest[2] == 'l' || rest[2] == 'L')) {
1060
0
          month = TT_JUL;
1061
0
        } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
1062
0
                   (rest[2] == 'n' || rest[2] == 'N')) {
1063
0
          month = TT_JUN;
1064
0
        }
1065
0
        break;
1066
0
      case 'm':
1067
0
      case 'M':
1068
0
        if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
1069
0
            (rest[2] == 'r' || rest[2] == 'R')) {
1070
0
          month = TT_MAR;
1071
0
        } else if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
1072
0
                   (rest[2] == 'y' || rest[2] == 'Y')) {
1073
0
          month = TT_MAY;
1074
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
1075
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1076
0
          zone = TT_MDT;
1077
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1078
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1079
0
          zone = TT_MET;
1080
0
        } else if (dotw == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') &&
1081
0
                   (rest[2] == 'n' || rest[2] == 'N')) {
1082
0
          dotw = TT_MON;
1083
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1084
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1085
0
          zone = TT_MST;
1086
0
        }
1087
0
        break;
1088
0
      case 'n':
1089
0
      case 'N':
1090
0
        if (month == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') &&
1091
0
            (rest[2] == 'v' || rest[2] == 'V')) {
1092
0
          month = TT_NOV;
1093
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1094
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1095
0
          zone = TT_NST;
1096
0
        }
1097
0
        break;
1098
0
      case 'o':
1099
0
      case 'O':
1100
0
        if (month == TT_UNKNOWN && (rest[1] == 'c' || rest[1] == 'C') &&
1101
0
            (rest[2] == 't' || rest[2] == 'T')) {
1102
0
          month = TT_OCT;
1103
0
        }
1104
0
        break;
1105
0
      case 'p':
1106
0
      case 'P':
1107
0
        if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
1108
0
            (rest[2] == 't' || rest[2] == 'T')) {
1109
0
          zone = TT_PDT;
1110
0
        } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
1111
0
                   (rest[2] == 't' || rest[2] == 'T')) {
1112
0
          zone = TT_PST;
1113
0
        }
1114
0
        break;
1115
0
      case 's':
1116
0
      case 'S':
1117
0
        if (dotw == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
1118
0
            (rest[2] == 't' || rest[2] == 'T')) {
1119
0
          dotw = TT_SAT;
1120
0
        } else if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1121
0
                   (rest[2] == 'p' || rest[2] == 'P')) {
1122
0
          month = TT_SEP;
1123
0
        } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
1124
0
                   (rest[2] == 'n' || rest[2] == 'N')) {
1125
0
          dotw = TT_SUN;
1126
0
        }
1127
0
        break;
1128
0
      case 't':
1129
0
      case 'T':
1130
0
        if (dotw == TT_UNKNOWN && (rest[1] == 'h' || rest[1] == 'H') &&
1131
0
            (rest[2] == 'u' || rest[2] == 'U')) {
1132
0
          dotw = TT_THU;
1133
0
        } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
1134
0
                   (rest[2] == 'e' || rest[2] == 'E')) {
1135
0
          dotw = TT_TUE;
1136
0
        }
1137
0
        break;
1138
0
      case 'u':
1139
0
      case 'U':
1140
0
        if (zone == TT_UNKNOWN && (rest[1] == 't' || rest[1] == 'T') &&
1141
0
            !(rest[2] >= 'A' && rest[2] <= 'Z') &&
1142
0
            !(rest[2] >= 'a' && rest[2] <= 'z'))
1143
        /* UT is the same as GMT but UTx is not. */
1144
0
        {
1145
0
          zone = TT_GMT;
1146
0
        }
1147
0
        break;
1148
0
      case 'w':
1149
0
      case 'W':
1150
0
        if (dotw == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
1151
0
            (rest[2] == 'd' || rest[2] == 'D')) {
1152
0
          dotw = TT_WED;
1153
0
        }
1154
0
        break;
1155
1156
0
      case '+':
1157
0
      case '-': {
1158
0
        const char* end;
1159
0
        int sign;
1160
0
        if (zone_offset != -1) {
1161
          /* already got one... */
1162
0
          rest++;
1163
0
          break;
1164
0
        }
1165
0
        if (zone != TT_UNKNOWN && zone != TT_GMT) {
1166
          /* GMT+0300 is legal, but PST+0300 is not. */
1167
0
          rest++;
1168
0
          break;
1169
0
        }
1170
1171
0
        sign = ((*rest == '+') ? 1 : -1);
1172
0
        rest++; /* move over sign */
1173
0
        end = rest;
1174
0
        while (*end >= '0' && *end <= '9') {
1175
0
          end++;
1176
0
        }
1177
0
        if (rest == end) { /* no digits here */
1178
0
          break;
1179
0
        }
1180
1181
0
        if ((end - rest) == 4) /* offset in HHMM */
1182
0
          zone_offset = (((((rest[0] - '0') * 10) + (rest[1] - '0')) * 60) +
1183
0
                         (((rest[2] - '0') * 10) + (rest[3] - '0')));
1184
0
        else if ((end - rest) == 2)
1185
        /* offset in hours */
1186
0
        {
1187
0
          zone_offset = (((rest[0] - '0') * 10) + (rest[1] - '0')) * 60;
1188
0
        } else if ((end - rest) == 1)
1189
        /* offset in hours */
1190
0
        {
1191
0
          zone_offset = (rest[0] - '0') * 60;
1192
0
        } else
1193
        /* 3 or >4 */
1194
0
        {
1195
0
          break;
1196
0
        }
1197
1198
0
        zone_offset *= sign;
1199
0
        zone = TT_GMT;
1200
0
        break;
1201
0
      }
1202
1203
0
      case '0':
1204
0
      case '1':
1205
0
      case '2':
1206
0
      case '3':
1207
0
      case '4':
1208
0
      case '5':
1209
0
      case '6':
1210
0
      case '7':
1211
0
      case '8':
1212
0
      case '9': {
1213
0
        int tmp_hour = -1;
1214
0
        int tmp_min = -1;
1215
0
        int tmp_sec = -1;
1216
0
        const char* end = rest + 1;
1217
0
        while (*end >= '0' && *end <= '9') {
1218
0
          end++;
1219
0
        }
1220
1221
        /* end is now the first character after a range of digits. */
1222
1223
0
        if (*end == ':') {
1224
0
          if (hour >= 0 && min >= 0) { /* already got it */
1225
0
            break;
1226
0
          }
1227
1228
          /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
1229
0
          if ((end - rest) > 2)
1230
          /* it is [0-9][0-9][0-9]+: */
1231
0
          {
1232
0
            break;
1233
0
          }
1234
0
          if ((end - rest) == 2)
1235
0
            tmp_hour = ((rest[0] - '0') * 10 + (rest[1] - '0'));
1236
0
          else {
1237
0
            tmp_hour = (rest[0] - '0');
1238
0
          }
1239
1240
          /* move over the colon, and parse minutes */
1241
1242
0
          rest = ++end;
1243
0
          while (*end >= '0' && *end <= '9') {
1244
0
            end++;
1245
0
          }
1246
1247
0
          if (end == rest)
1248
          /* no digits after first colon? */
1249
0
          {
1250
0
            break;
1251
0
          }
1252
0
          if ((end - rest) > 2)
1253
          /* it is [0-9][0-9][0-9]+: */
1254
0
          {
1255
0
            break;
1256
0
          }
1257
0
          if ((end - rest) == 2)
1258
0
            tmp_min = ((rest[0] - '0') * 10 + (rest[1] - '0'));
1259
0
          else {
1260
0
            tmp_min = (rest[0] - '0');
1261
0
          }
1262
1263
          /* now go for seconds */
1264
0
          rest = end;
1265
0
          if (*rest == ':') {
1266
0
            rest++;
1267
0
          }
1268
0
          end = rest;
1269
0
          while (*end >= '0' && *end <= '9') {
1270
0
            end++;
1271
0
          }
1272
1273
0
          if (end == rest) /* no digits after second colon - that's ok. */
1274
0
            ;
1275
0
          else if ((end - rest) > 2)
1276
          /* it is [0-9][0-9][0-9]+: */
1277
0
          {
1278
0
            break;
1279
0
          }
1280
0
          if ((end - rest) == 2)
1281
0
            tmp_sec = ((rest[0] - '0') * 10 + (rest[1] - '0'));
1282
0
          else {
1283
0
            tmp_sec = (rest[0] - '0');
1284
0
          }
1285
1286
          /* If we made it here, we've parsed hour and min,
1287
             and possibly sec, so it worked as a unit. */
1288
1289
          /* skip over whitespace and see if there's an AM or PM
1290
             directly following the time.
1291
           */
1292
0
          if (tmp_hour <= 12) {
1293
0
            const char* s = end;
1294
0
            while (*s && (*s == ' ' || *s == '\t')) {
1295
0
              s++;
1296
0
            }
1297
0
            if ((s[0] == 'p' || s[0] == 'P') && (s[1] == 'm' || s[1] == 'M'))
1298
            /* 10:05pm == 22:05, and 12:05pm == 12:05 */
1299
0
            {
1300
0
              tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
1301
0
            } else if (tmp_hour == 12 && (s[0] == 'a' || s[0] == 'A') &&
1302
0
                       (s[1] == 'm' || s[1] == 'M'))
1303
            /* 12:05am == 00:05 */
1304
0
            {
1305
0
              tmp_hour = 0;
1306
0
            }
1307
0
          }
1308
1309
0
          hour = tmp_hour;
1310
0
          min = tmp_min;
1311
0
          sec = tmp_sec;
1312
0
          rest = end;
1313
0
          break;
1314
0
        }
1315
0
        if ((*end == '/' || *end == '-') && end[1] >= '0' && end[1] <= '9') {
1316
          /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
1317
             or even 95-06-05...
1318
             #### But it doesn't handle 1995-06-22.
1319
           */
1320
0
          int n1, n2, n3;
1321
0
          const char* s;
1322
1323
0
          if (month != TT_UNKNOWN)
1324
          /* if we saw a month name, this can't be. */
1325
0
          {
1326
0
            break;
1327
0
          }
1328
1329
0
          s = rest;
1330
1331
0
          n1 = (*s++ - '0'); /* first 1 or 2 digits */
1332
0
          if (*s >= '0' && *s <= '9') {
1333
0
            n1 = n1 * 10 + (*s++ - '0');
1334
0
          }
1335
1336
0
          if (*s != '/' && *s != '-') { /* slash */
1337
0
            break;
1338
0
          }
1339
0
          s++;
1340
1341
0
          if (*s < '0' || *s > '9') { /* second 1 or 2 digits */
1342
0
            break;
1343
0
          }
1344
0
          n2 = (*s++ - '0');
1345
0
          if (*s >= '0' && *s <= '9') {
1346
0
            n2 = n2 * 10 + (*s++ - '0');
1347
0
          }
1348
1349
0
          if (*s != '/' && *s != '-') { /* slash */
1350
0
            break;
1351
0
          }
1352
0
          s++;
1353
1354
0
          if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */
1355
0
            break;
1356
0
          }
1357
0
          n3 = (*s++ - '0');
1358
0
          if (*s >= '0' && *s <= '9') {
1359
0
            n3 = n3 * 10 + (*s++ - '0');
1360
0
          }
1361
1362
0
          if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
1363
0
          {
1364
0
            n3 = n3 * 10 + (*s++ - '0');
1365
0
            if (*s < '0' || *s > '9') {
1366
0
              break;
1367
0
            }
1368
0
            n3 = n3 * 10 + (*s++ - '0');
1369
0
            if (*s >= '0' && *s <= '9') {
1370
0
              n3 = n3 * 10 + (*s++ - '0');
1371
0
            }
1372
0
          }
1373
1374
0
          if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
1375
0
              (*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z')) {
1376
0
            break;
1377
0
          }
1378
1379
          /* Ok, we parsed three 1-2 digit numbers, with / or -
1380
             between them.  Now decide what the hell they are
1381
             (DD/MM/YY or MM/DD/YY or YY/MM/DD.)
1382
           */
1383
1384
0
          if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
1385
0
          {
1386
0
            if (n2 > 12) {
1387
0
              break;
1388
0
            }
1389
0
            if (n3 > 31) {
1390
0
              break;
1391
0
            }
1392
0
            year = n1;
1393
0
            if (year < 70) {
1394
0
              year += 2000;
1395
0
            } else if (year < 100) {
1396
0
              year += 1900;
1397
0
            }
1398
0
            month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1399
0
            date = n3;
1400
0
            rest = s;
1401
0
            break;
1402
0
          }
1403
1404
0
          if (n1 > 12 && n2 > 12) /* illegal */
1405
0
          {
1406
0
            rest = s;
1407
0
            break;
1408
0
          }
1409
1410
0
          if (n3 < 70) {
1411
0
            n3 += 2000;
1412
0
          } else if (n3 < 100) {
1413
0
            n3 += 1900;
1414
0
          }
1415
1416
0
          if (n1 > 12) /* must be DD/MM/YY */
1417
0
          {
1418
0
            date = n1;
1419
0
            month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1420
0
            year = n3;
1421
0
          } else /* assume MM/DD/YY */
1422
0
          {
1423
            /* #### In the ambiguous case, should we consult the
1424
               locale to find out the local default? */
1425
0
            month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
1426
0
            date = n2;
1427
0
            year = n3;
1428
0
          }
1429
0
          rest = s;
1430
0
        } else if ((*end >= 'A' && *end <= 'Z') || (*end >= 'a' && *end <= 'z'))
1431
          /* Digits followed by non-punctuation - what's that? */
1432
0
          ;
1433
0
        else if ((end - rest) == 5) /* five digits is a year */
1434
0
          year = (year < 0 ? ((rest[0] - '0') * 10000L +
1435
0
                              (rest[1] - '0') * 1000L + (rest[2] - '0') * 100L +
1436
0
                              (rest[3] - '0') * 10L + (rest[4] - '0'))
1437
0
                           : year);
1438
0
        else if ((end - rest) == 4) /* four digits is a year */
1439
0
          year = (year < 0 ? ((rest[0] - '0') * 1000L + (rest[1] - '0') * 100L +
1440
0
                              (rest[2] - '0') * 10L + (rest[3] - '0'))
1441
0
                           : year);
1442
0
        else if ((end - rest) == 2) /* two digits - date or year */
1443
0
        {
1444
0
          int n = ((rest[0] - '0') * 10 + (rest[1] - '0'));
1445
          /* If we don't have a date (day of the month) and we see a number
1446
               less than 32, then assume that is the date.
1447
1448
                   Otherwise, if we have a date and not a year, assume this is
1449
             the year.  If it is less than 70, then assume it refers to the 21st
1450
                   century.  If it is two digits (>= 70), assume it refers to
1451
             this century.  Otherwise, assume it refers to an unambiguous year.
1452
1453
                   The world will surely end soon.
1454
             */
1455
0
          if (date < 0 && n < 32) {
1456
0
            date = n;
1457
0
          } else if (year < 0) {
1458
0
            if (n < 70) {
1459
0
              year = 2000 + n;
1460
0
            } else if (n < 100) {
1461
0
              year = 1900 + n;
1462
0
            } else {
1463
0
              year = n;
1464
0
            }
1465
0
          }
1466
          /* else what the hell is this. */
1467
0
        } else if ((end - rest) == 1) { /* one digit - date */
1468
0
          date = (date < 0 ? (rest[0] - '0') : date);
1469
0
        }
1470
        /* else, three or more than five digits - what's that? */
1471
1472
0
        break;
1473
0
      }
1474
0
    }
1475
1476
    /* Skip to the end of this token, whether we parsed it or not.
1477
           Tokens are delimited by whitespace, or ,;-/
1478
           But explicitly not :+-.
1479
     */
1480
0
    while (*rest && *rest != ' ' && *rest != '\t' && *rest != ',' &&
1481
0
           *rest != ';' && *rest != '-' && *rest != '+' && *rest != '/' &&
1482
0
           *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') {
1483
0
      rest++;
1484
0
    }
1485
    /* skip over uninteresting chars. */
1486
0
  SKIP_MORE:
1487
0
    while (*rest && (*rest == ' ' || *rest == '\t' || *rest == ',' ||
1488
0
                     *rest == ';' || *rest == '/' || *rest == '(' ||
1489
0
                     *rest == ')' || *rest == '[' || *rest == ']')) {
1490
0
      rest++;
1491
0
    }
1492
1493
    /* "-" is ignored at the beginning of a token if we have not yet
1494
           parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1495
           the character after the dash is not a digit. */
1496
0
    if (*rest == '-' &&
1497
0
        ((rest > string && isalpha((unsigned char)rest[-1]) && year < 0) ||
1498
0
         rest[1] < '0' || rest[1] > '9')) {
1499
0
      rest++;
1500
0
      goto SKIP_MORE;
1501
0
    }
1502
0
  }
1503
1504
0
  if (zone != TT_UNKNOWN && zone_offset == -1) {
1505
0
    switch (zone) {
1506
0
      case TT_PST:
1507
0
        zone_offset = -8 * 60;
1508
0
        break;
1509
0
      case TT_PDT:
1510
0
        zone_offset = -8 * 60;
1511
0
        dst_offset = 1 * 60;
1512
0
        break;
1513
0
      case TT_MST:
1514
0
        zone_offset = -7 * 60;
1515
0
        break;
1516
0
      case TT_MDT:
1517
0
        zone_offset = -7 * 60;
1518
0
        dst_offset = 1 * 60;
1519
0
        break;
1520
0
      case TT_CST:
1521
0
        zone_offset = -6 * 60;
1522
0
        break;
1523
0
      case TT_CDT:
1524
0
        zone_offset = -6 * 60;
1525
0
        dst_offset = 1 * 60;
1526
0
        break;
1527
0
      case TT_EST:
1528
0
        zone_offset = -5 * 60;
1529
0
        break;
1530
0
      case TT_EDT:
1531
0
        zone_offset = -5 * 60;
1532
0
        dst_offset = 1 * 60;
1533
0
        break;
1534
0
      case TT_AST:
1535
0
        zone_offset = -4 * 60;
1536
0
        break;
1537
0
      case TT_NST:
1538
0
        zone_offset = -3 * 60 - 30;
1539
0
        break;
1540
0
      case TT_GMT:
1541
0
        zone_offset = 0 * 60;
1542
0
        break;
1543
0
      case TT_BST:
1544
0
        zone_offset = 0 * 60;
1545
0
        dst_offset = 1 * 60;
1546
0
        break;
1547
0
      case TT_MET:
1548
0
        zone_offset = 1 * 60;
1549
0
        break;
1550
0
      case TT_EET:
1551
0
        zone_offset = 2 * 60;
1552
0
        break;
1553
0
      case TT_JST:
1554
0
        zone_offset = 9 * 60;
1555
0
        break;
1556
0
      default:
1557
0
        PR_ASSERT(0);
1558
0
        break;
1559
0
    }
1560
0
  }
1561
1562
  /* If we didn't find a year, month, or day-of-the-month, we can't
1563
         possibly parse this, and in fact, mktime() will do something random
1564
         (I'm seeing it return "Tue Feb  5 06:28:16 2036", which is no doubt
1565
         a numerologically significant date... */
1566
0
  if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) {
1567
0
    return PR_FAILURE;
1568
0
  }
1569
1570
0
  memset(result, 0, sizeof(*result));
1571
0
  if (sec != -1) {
1572
0
    result->tm_sec = sec;
1573
0
  }
1574
0
  if (min != -1) {
1575
0
    result->tm_min = min;
1576
0
  }
1577
0
  if (hour != -1) {
1578
0
    result->tm_hour = hour;
1579
0
  }
1580
0
  if (date != -1) {
1581
0
    result->tm_mday = date;
1582
0
  }
1583
0
  if (month != TT_UNKNOWN) {
1584
0
    result->tm_month = (((int)month) - ((int)TT_JAN));
1585
0
  }
1586
0
  if (year != -1) {
1587
0
    result->tm_year = year;
1588
0
  }
1589
0
  if (dotw != TT_UNKNOWN) {
1590
0
    result->tm_wday = (((int)dotw) - ((int)TT_SUN));
1591
0
  }
1592
  /*
1593
   * Mainly to compute wday and yday, but normalized time is also required
1594
   * by the check below that works around a Visual C++ 2005 mktime problem.
1595
   */
1596
0
  PR_NormalizeTime(result, PR_GMTParameters);
1597
  /* The remaining work is to set the gmt and dst offsets in tm_params. */
1598
1599
0
  if (zone == TT_UNKNOWN && default_to_gmt) {
1600
    /* No zone was specified, so pretend the zone was GMT. */
1601
0
    zone = TT_GMT;
1602
0
    zone_offset = 0;
1603
0
  }
1604
1605
0
  if (zone_offset == -1) {
1606
    /* no zone was specified, and we're to assume that everything
1607
      is local. */
1608
0
    struct tm localTime;
1609
0
    time_t secs;
1610
1611
0
    PR_ASSERT(result->tm_month > -1 && result->tm_mday > 0 &&
1612
0
              result->tm_hour > -1 && result->tm_min > -1 &&
1613
0
              result->tm_sec > -1);
1614
1615
    /*
1616
     * To obtain time_t from a tm structure representing the local
1617
     * time, we call mktime().  However, we need to see if we are
1618
     * on 1-Jan-1970 or before.  If we are, we can't call mktime()
1619
     * because mktime() will crash on win16. In that case, we
1620
     * calculate zone_offset based on the zone offset at
1621
     * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1622
     * date we are parsing to transform the date to GMT.  We also
1623
     * do so if mktime() returns (time_t) -1 (time out of range).
1624
     */
1625
1626
    /* month, day, hours, mins and secs are always non-negative
1627
       so we dont need to worry about them. */
1628
0
    if (result->tm_year >= 1970) {
1629
0
      PRInt64 usec_per_sec;
1630
1631
0
      localTime.tm_sec = result->tm_sec;
1632
0
      localTime.tm_min = result->tm_min;
1633
0
      localTime.tm_hour = result->tm_hour;
1634
0
      localTime.tm_mday = result->tm_mday;
1635
0
      localTime.tm_mon = result->tm_month;
1636
0
      localTime.tm_year = result->tm_year - 1900;
1637
      /* Set this to -1 to tell mktime "I don't care".  If you set
1638
         it to 0 or 1, you are making assertions about whether the
1639
         date you are handing it is in daylight savings mode or not;
1640
         and if you're wrong, it will "fix" it for you. */
1641
0
      localTime.tm_isdst = -1;
1642
1643
#if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
1644
      /*
1645
       * mktime will return (time_t) -1 if the input is a date
1646
       * after 23:59:59, December 31, 3000, US Pacific Time (not
1647
       * UTC as documented):
1648
       * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1649
       * But if the year is 3001, mktime also invokes the invalid
1650
       * parameter handler, causing the application to crash.  This
1651
       * problem has been reported in
1652
       * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1653
       * We avoid this crash by not calling mktime if the date is
1654
       * out of range.  To use a simple test that works in any time
1655
       * zone, we consider year 3000 out of range as well.  (See
1656
       * bug 480740.)
1657
       */
1658
      if (result->tm_year >= 3000) {
1659
        /* Emulate what mktime would have done. */
1660
        errno = EINVAL;
1661
        secs = (time_t)-1;
1662
      } else {
1663
        secs = mktime(&localTime);
1664
      }
1665
#else
1666
0
      secs = mktime(&localTime);
1667
0
#endif
1668
0
      if (secs != (time_t)-1) {
1669
0
        PRTime usecs64;
1670
0
        LL_I2L(usecs64, secs);
1671
0
        LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
1672
0
        LL_MUL(usecs64, usecs64, usec_per_sec);
1673
0
        PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result);
1674
0
        return PR_SUCCESS;
1675
0
      }
1676
0
    }
1677
1678
    /* So mktime() can't handle this case.  We assume the
1679
       zone_offset for the date we are parsing is the same as
1680
       the zone offset on 00:00:00 2 Jan 1970 GMT. */
1681
0
    secs = 86400;
1682
0
    localTimeResult = MT_safe_localtime(&secs, &localTime);
1683
0
    PR_ASSERT(localTimeResult != NULL);
1684
0
    if (localTimeResult == NULL) {
1685
0
      return PR_FAILURE;
1686
0
    }
1687
0
    zone_offset = localTime.tm_min + 60 * localTime.tm_hour +
1688
0
                  1440 * (localTime.tm_mday - 2);
1689
0
  }
1690
1691
0
  result->tm_params.tp_gmt_offset = zone_offset * 60;
1692
0
  result->tm_params.tp_dst_offset = dst_offset * 60;
1693
1694
0
  return PR_SUCCESS;
1695
0
}
1696
1697
PR_IMPLEMENT(PRStatus)
1698
0
PR_ParseTimeString(const char* string, PRBool default_to_gmt, PRTime* result) {
1699
0
  PRExplodedTime tm;
1700
0
  PRStatus rv;
1701
1702
0
  rv = PR_ParseTimeStringToExplodedTime(string, default_to_gmt, &tm);
1703
0
  if (rv != PR_SUCCESS) {
1704
0
    return rv;
1705
0
  }
1706
1707
0
  *result = PR_ImplodeTime(&tm);
1708
1709
0
  return PR_SUCCESS;
1710
0
}
1711
1712
/*
1713
 *******************************************************************
1714
 *******************************************************************
1715
 **
1716
 **    OLD COMPATIBILITY FUNCTIONS
1717
 **
1718
 *******************************************************************
1719
 *******************************************************************
1720
 */
1721
1722
/*
1723
 *-----------------------------------------------------------------------
1724
 *
1725
 * PR_FormatTime --
1726
 *
1727
 *     Format a time value into a buffer. Same semantics as strftime().
1728
 *
1729
 *-----------------------------------------------------------------------
1730
 */
1731
1732
PR_IMPLEMENT(PRUint32)
1733
PR_FormatTime(char* buf, int buflen, const char* fmt,
1734
0
              const PRExplodedTime* time) {
1735
0
  size_t rv;
1736
0
  struct tm a;
1737
0
  struct tm* ap;
1738
1739
0
  if (time) {
1740
0
    ap = &a;
1741
0
    a.tm_sec = time->tm_sec;
1742
0
    a.tm_min = time->tm_min;
1743
0
    a.tm_hour = time->tm_hour;
1744
0
    a.tm_mday = time->tm_mday;
1745
0
    a.tm_mon = time->tm_month;
1746
0
    a.tm_wday = time->tm_wday;
1747
0
    a.tm_year = time->tm_year - 1900;
1748
0
    a.tm_yday = time->tm_yday;
1749
0
    a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0;
1750
1751
    /*
1752
     * On some platforms, for example SunOS 4, struct tm has two
1753
     * additional fields: tm_zone and tm_gmtoff.
1754
     */
1755
1756
0
#if (__GLIBC__ >= 2) || defined(NETBSD) || defined(OPENBSD) || \
1757
0
    defined(FREEBSD) || defined(DARWIN) || defined(ANDROID)
1758
0
    a.tm_zone = NULL;
1759
0
    a.tm_gmtoff = time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset;
1760
0
#endif
1761
0
  } else {
1762
0
    ap = NULL;
1763
0
  }
1764
1765
0
  rv = strftime(buf, buflen, fmt, ap);
1766
0
  if (!rv && buf && buflen > 0) {
1767
    /*
1768
     * When strftime fails, the contents of buf are indeterminate.
1769
     * Some callers don't check the return value from this function,
1770
     * so store an empty string in buf in case they try to print it.
1771
     */
1772
0
    buf[0] = '\0';
1773
0
  }
1774
0
  return rv;
1775
0
}
1776
1777
/*
1778
 * The following string arrays and macros are used by PR_FormatTimeUSEnglish().
1779
 */
1780
1781
static const char* abbrevDays[] = {"Sun", "Mon", "Tue", "Wed",
1782
                                   "Thu", "Fri", "Sat"};
1783
1784
static const char* days[] = {"Sunday",   "Monday", "Tuesday", "Wednesday",
1785
                             "Thursday", "Friday", "Saturday"};
1786
1787
static const char* abbrevMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
1788
                                     "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
1789
1790
static const char* months[] = {"January",   "February", "March",    "April",
1791
                               "May",       "June",     "July",     "August",
1792
                               "September", "October",  "November", "December"};
1793
1794
/*
1795
 * Add a single character to the given buffer, incrementing the buffer pointer
1796
 * and decrementing the buffer size. Return 0 on error.
1797
 */
1798
#define ADDCHAR(buf, bufSize, ch) \
1799
0
  do {                            \
1800
0
    if (bufSize < 1) {            \
1801
0
      *(--buf) = '\0';            \
1802
0
      return 0;                   \
1803
0
    }                             \
1804
0
    *buf++ = ch;                  \
1805
0
    bufSize--;                    \
1806
0
  } while (0)
1807
1808
/*
1809
 * Add a string to the given buffer, incrementing the buffer pointer
1810
 * and decrementing the buffer size appropriately.  Return 0 on error.
1811
 */
1812
#define ADDSTR(buf, bufSize, str)   \
1813
0
  do {                              \
1814
0
    PRUint32 strSize = strlen(str); \
1815
0
    if (strSize > bufSize) {        \
1816
0
      if (bufSize == 0)             \
1817
0
        *(--buf) = '\0';            \
1818
0
      else                          \
1819
0
        *buf = '\0';                \
1820
0
      return 0;                     \
1821
0
    }                               \
1822
0
    memcpy(buf, str, strSize);      \
1823
0
    buf += strSize;                 \
1824
0
    bufSize -= strSize;             \
1825
0
  } while (0)
1826
1827
/* Needed by PR_FormatTimeUSEnglish() */
1828
static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
1829
                                  unsigned int firstDayOfWeek);
1830
1831
/***********************************************************************************
1832
 *
1833
 * Description:
1834
 *  This is a dumbed down version of strftime that will format the date in US
1835
 *  English regardless of the setting of the global locale.  This functionality
1836
 *is needed to write things like MIME headers which must always be in US
1837
 *English.
1838
 *
1839
 **********************************************************************************/
1840
1841
PR_IMPLEMENT(PRUint32)
1842
PR_FormatTimeUSEnglish(char* buf, PRUint32 bufSize, const char* format,
1843
0
                       const PRExplodedTime* time) {
1844
0
  char* bufPtr = buf;
1845
0
  const char* fmtPtr;
1846
0
  char tmpBuf[40];
1847
0
  const int tmpBufSize = sizeof(tmpBuf);
1848
1849
0
  for (fmtPtr = format; *fmtPtr != '\0'; fmtPtr++) {
1850
0
    if (*fmtPtr != '%') {
1851
0
      ADDCHAR(bufPtr, bufSize, *fmtPtr);
1852
0
    } else {
1853
0
      switch (*(++fmtPtr)) {
1854
0
        case '%':
1855
          /* escaped '%' character */
1856
0
          ADDCHAR(bufPtr, bufSize, '%');
1857
0
          break;
1858
1859
0
        case 'a':
1860
          /* abbreviated weekday name */
1861
0
          ADDSTR(bufPtr, bufSize, abbrevDays[time->tm_wday]);
1862
0
          break;
1863
1864
0
        case 'A':
1865
          /* full weekday name */
1866
0
          ADDSTR(bufPtr, bufSize, days[time->tm_wday]);
1867
0
          break;
1868
1869
0
        case 'b':
1870
          /* abbreviated month name */
1871
0
          ADDSTR(bufPtr, bufSize, abbrevMonths[time->tm_month]);
1872
0
          break;
1873
1874
0
        case 'B':
1875
          /* full month name */
1876
0
          ADDSTR(bufPtr, bufSize, months[time->tm_month]);
1877
0
          break;
1878
1879
0
        case 'c':
1880
          /* Date and time. */
1881
0
          PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y",
1882
0
                                 time);
1883
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1884
0
          break;
1885
1886
0
        case 'd':
1887
          /* day of month ( 01 - 31 ) */
1888
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_mday);
1889
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1890
0
          break;
1891
1892
0
        case 'e':
1893
          /* day of month with space prefix for single digits ( 1 - 31 ) */
1894
0
          PR_snprintf(tmpBuf, tmpBufSize, "%2ld", time->tm_mday);
1895
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1896
0
          break;
1897
1898
0
        case 'H':
1899
          /* hour ( 00 - 23 ) */
1900
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_hour);
1901
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1902
0
          break;
1903
1904
0
        case 'I':
1905
          /* hour ( 01 - 12 ) */
1906
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld",
1907
0
                      (time->tm_hour % 12) ? time->tm_hour % 12 : (PRInt32)12);
1908
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1909
0
          break;
1910
1911
0
        case 'j':
1912
          /* day number of year ( 001 - 366 ) */
1913
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.3d", time->tm_yday + 1);
1914
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1915
0
          break;
1916
1917
0
        case 'm':
1918
          /* month number ( 01 - 12 ) */
1919
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_month + 1);
1920
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1921
0
          break;
1922
1923
0
        case 'M':
1924
          /* minute ( 00 - 59 ) */
1925
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_min);
1926
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1927
0
          break;
1928
1929
0
        case 'p':
1930
          /* locale's equivalent of either AM or PM */
1931
0
          ADDSTR(bufPtr, bufSize, (time->tm_hour < 12) ? "AM" : "PM");
1932
0
          break;
1933
1934
0
        case 'S':
1935
          /* seconds ( 00 - 61 ), allows for leap seconds */
1936
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_sec);
1937
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1938
0
          break;
1939
1940
0
        case 'U':
1941
          /* week number of year ( 00 - 53  ),  Sunday  is  the first day of
1942
           * week 1 */
1943
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 0));
1944
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1945
0
          break;
1946
1947
0
        case 'w':
1948
          /* weekday number ( 0 - 6 ), Sunday = 0 */
1949
0
          PR_snprintf(tmpBuf, tmpBufSize, "%d", time->tm_wday);
1950
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1951
0
          break;
1952
1953
0
        case 'W':
1954
          /* Week number of year ( 00 - 53  ),  Monday  is  the first day of
1955
           * week 1 */
1956
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 1));
1957
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1958
0
          break;
1959
1960
0
        case 'x':
1961
          /* Date representation */
1962
0
          PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%m/%d/%y", time);
1963
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1964
0
          break;
1965
1966
0
        case 'X':
1967
          /* Time representation. */
1968
0
          PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%H:%M:%S", time);
1969
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1970
0
          break;
1971
1972
0
        case 'y':
1973
          /* year within century ( 00 - 99 ) */
1974
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.2d", time->tm_year % 100);
1975
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1976
0
          break;
1977
1978
0
        case 'Y':
1979
          /* year as ccyy ( for example 1986 ) */
1980
0
          PR_snprintf(tmpBuf, tmpBufSize, "%.4d", time->tm_year);
1981
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1982
0
          break;
1983
1984
0
        case 'Z':
1985
          /* Time zone name or no characters if  no  time  zone exists.
1986
           * Since time zone name is supposed to be independant of locale, we
1987
           * defer to PR_FormatTime() for this option.
1988
           */
1989
0
          PR_FormatTime(tmpBuf, tmpBufSize, "%Z", time);
1990
0
          ADDSTR(bufPtr, bufSize, tmpBuf);
1991
0
          break;
1992
1993
0
        default:
1994
          /* Unknown format.  Simply copy format into output buffer. */
1995
0
          ADDCHAR(bufPtr, bufSize, '%');
1996
0
          ADDCHAR(bufPtr, bufSize, *fmtPtr);
1997
0
          break;
1998
0
      }
1999
0
    }
2000
0
  }
2001
2002
0
  ADDCHAR(bufPtr, bufSize, '\0');
2003
0
  return (PRUint32)(bufPtr - buf - 1);
2004
0
}
2005
2006
/***********************************************************************************
2007
 *
2008
 * Description:
2009
 *  Returns the week number of the year (0-53) for the given time.
2010
 *firstDayOfWeek is the day on which the week is considered to start (0=Sun,
2011
 *1=Mon, ...). Week 1 starts the first time firstDayOfWeek occurs in the year.
2012
 *In other words, a partial week at the start of the year is considered week 0.
2013
 *
2014
 **********************************************************************************/
2015
2016
static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
2017
0
                                  unsigned int firstDayOfWeek) {
2018
0
  int dayOfWeek;
2019
0
  int dayOfYear;
2020
2021
  /* Get the day of the year for the given time then adjust it to represent the
2022
   * first day of the week containing the given time.
2023
   */
2024
0
  dayOfWeek = time->tm_wday - firstDayOfWeek;
2025
0
  if (dayOfWeek < 0) {
2026
0
    dayOfWeek += 7;
2027
0
  }
2028
2029
0
  dayOfYear = time->tm_yday - dayOfWeek;
2030
2031
0
  if (dayOfYear <= 0) {
2032
    /* If dayOfYear is <= 0, it is in the first partial week of the year. */
2033
0
    return 0;
2034
0
  }
2035
2036
  /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
2037
   * are any days left over ( dayOfYear % 7 ).  Because we are only counting to
2038
   * the first day of the week containing the given time, rather than to the
2039
   * actual day representing the given time, any days in week 0 will be
2040
   * "absorbed" as extra days in the given week.
2041
   */
2042
0
  return (dayOfYear / 7) + ((dayOfYear % 7) == 0 ? 0 : 1);
2043
0
}