Coverage Report

Created: 2025-07-11 07:06

/src/nss/lib/freebl/verified/Hacl_P384.c
Line
Count
Source (jump to first uncovered line)
1
/* MIT License
2
 *
3
 * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
4
 * Copyright (c) 2022-2023 HACL* Contributors
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in all
14
 * copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
 * SOFTWARE.
23
 */
24
25
#include "Hacl_P384.h"
26
27
#include "internal/Hacl_Krmllib.h"
28
#include "internal/Hacl_Bignum_Base.h"
29
30
static inline uint64_t
31
bn_is_eq_mask(uint64_t *x, uint64_t *y)
32
1.38k
{
33
1.38k
    uint64_t mask = 0xFFFFFFFFFFFFFFFFULL;
34
1.38k
    KRML_MAYBE_FOR6(i,
35
1.38k
                    0U,
36
1.38k
                    6U,
37
1.38k
                    1U,
38
1.38k
                    uint64_t uu____0 = FStar_UInt64_eq_mask(x[i], y[i]);
39
1.38k
                    mask = uu____0 & mask;);
40
1.38k
    uint64_t mask1 = mask;
41
1.38k
    return mask1;
42
1.38k
}
43
44
static inline void
45
bn_cmovznz(uint64_t *a, uint64_t b, uint64_t *c, uint64_t *d)
46
136
{
47
136
    uint64_t mask = ~FStar_UInt64_eq_mask(b, 0ULL);
48
136
    KRML_MAYBE_FOR6(i,
49
136
                    0U,
50
136
                    6U,
51
136
                    1U,
52
136
                    uint64_t *os = a;
53
136
                    uint64_t uu____0 = c[i];
54
136
                    uint64_t x = uu____0 ^ (mask & (d[i] ^ uu____0));
55
136
                    os[i] = x;);
56
136
}
57
58
static inline void
59
bn_add_mod(uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d)
60
3.27M
{
61
3.27M
    uint64_t c10 = 0ULL;
62
3.27M
    {
63
3.27M
        uint64_t t1 = c[4U * 0U];
64
3.27M
        uint64_t t20 = d[4U * 0U];
65
3.27M
        uint64_t *res_i0 = a + 4U * 0U;
66
3.27M
        c10 = Lib_IntTypes_Intrinsics_add_carry_u64(c10, t1, t20, res_i0);
67
3.27M
        uint64_t t10 = c[4U * 0U + 1U];
68
3.27M
        uint64_t t21 = d[4U * 0U + 1U];
69
3.27M
        uint64_t *res_i1 = a + 4U * 0U + 1U;
70
3.27M
        c10 = Lib_IntTypes_Intrinsics_add_carry_u64(c10, t10, t21, res_i1);
71
3.27M
        uint64_t t11 = c[4U * 0U + 2U];
72
3.27M
        uint64_t t22 = d[4U * 0U + 2U];
73
3.27M
        uint64_t *res_i2 = a + 4U * 0U + 2U;
74
3.27M
        c10 = Lib_IntTypes_Intrinsics_add_carry_u64(c10, t11, t22, res_i2);
75
3.27M
        uint64_t t12 = c[4U * 0U + 3U];
76
3.27M
        uint64_t t2 = d[4U * 0U + 3U];
77
3.27M
        uint64_t *res_i = a + 4U * 0U + 3U;
78
3.27M
        c10 = Lib_IntTypes_Intrinsics_add_carry_u64(c10, t12, t2, res_i);
79
3.27M
    }
80
3.27M
    KRML_MAYBE_FOR2(i,
81
3.27M
                    4U,
82
3.27M
                    6U,
83
3.27M
                    1U,
84
3.27M
                    uint64_t t1 = c[i];
85
3.27M
                    uint64_t t2 = d[i];
86
3.27M
                    uint64_t *res_i = a + i;
87
3.27M
                    c10 = Lib_IntTypes_Intrinsics_add_carry_u64(c10, t1, t2, res_i););
88
3.27M
    uint64_t c0 = c10;
89
3.27M
    uint64_t tmp[6U] = { 0U };
90
3.27M
    uint64_t c1 = 0ULL;
91
3.27M
    {
92
3.27M
        uint64_t t1 = a[4U * 0U];
93
3.27M
        uint64_t t20 = b[4U * 0U];
94
3.27M
        uint64_t *res_i0 = tmp + 4U * 0U;
95
3.27M
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t1, t20, res_i0);
96
3.27M
        uint64_t t10 = a[4U * 0U + 1U];
97
3.27M
        uint64_t t21 = b[4U * 0U + 1U];
98
3.27M
        uint64_t *res_i1 = tmp + 4U * 0U + 1U;
99
3.27M
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t10, t21, res_i1);
100
3.27M
        uint64_t t11 = a[4U * 0U + 2U];
101
3.27M
        uint64_t t22 = b[4U * 0U + 2U];
102
3.27M
        uint64_t *res_i2 = tmp + 4U * 0U + 2U;
103
3.27M
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t11, t22, res_i2);
104
3.27M
        uint64_t t12 = a[4U * 0U + 3U];
105
3.27M
        uint64_t t2 = b[4U * 0U + 3U];
106
3.27M
        uint64_t *res_i = tmp + 4U * 0U + 3U;
107
3.27M
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t12, t2, res_i);
108
3.27M
    }
109
3.27M
    KRML_MAYBE_FOR2(i,
110
3.27M
                    4U,
111
3.27M
                    6U,
112
3.27M
                    1U,
113
3.27M
                    uint64_t t1 = a[i];
114
3.27M
                    uint64_t t2 = b[i];
115
3.27M
                    uint64_t *res_i = tmp + i;
116
3.27M
                    c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t1, t2, res_i););
117
3.27M
    uint64_t c11 = c1;
118
3.27M
    uint64_t c2 = c0 - c11;
119
3.27M
    KRML_MAYBE_FOR6(i,
120
3.27M
                    0U,
121
3.27M
                    6U,
122
3.27M
                    1U,
123
3.27M
                    uint64_t *os = a;
124
3.27M
                    uint64_t x = (c2 & a[i]) | (~c2 & tmp[i]);
125
3.27M
                    os[i] = x;);
126
3.27M
}
127
128
static inline uint64_t
129
bn_sub(uint64_t *a, uint64_t *b, uint64_t *c)
130
2.05k
{
131
2.05k
    uint64_t c1 = 0ULL;
132
2.05k
    {
133
2.05k
        uint64_t t1 = b[4U * 0U];
134
2.05k
        uint64_t t20 = c[4U * 0U];
135
2.05k
        uint64_t *res_i0 = a + 4U * 0U;
136
2.05k
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t1, t20, res_i0);
137
2.05k
        uint64_t t10 = b[4U * 0U + 1U];
138
2.05k
        uint64_t t21 = c[4U * 0U + 1U];
139
2.05k
        uint64_t *res_i1 = a + 4U * 0U + 1U;
140
2.05k
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t10, t21, res_i1);
141
2.05k
        uint64_t t11 = b[4U * 0U + 2U];
142
2.05k
        uint64_t t22 = c[4U * 0U + 2U];
143
2.05k
        uint64_t *res_i2 = a + 4U * 0U + 2U;
144
2.05k
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t11, t22, res_i2);
145
2.05k
        uint64_t t12 = b[4U * 0U + 3U];
146
2.05k
        uint64_t t2 = c[4U * 0U + 3U];
147
2.05k
        uint64_t *res_i = a + 4U * 0U + 3U;
148
2.05k
        c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t12, t2, res_i);
149
2.05k
    }
150
2.05k
    KRML_MAYBE_FOR2(i,
151
2.05k
                    4U,
152
2.05k
                    6U,
153
2.05k
                    1U,
154
2.05k
                    uint64_t t1 = b[i];
155
2.05k
                    uint64_t t2 = c[i];
156
2.05k
                    uint64_t *res_i = a + i;
157
2.05k
                    c1 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c1, t1, t2, res_i););
158
2.05k
    uint64_t c10 = c1;
159
2.05k
    return c10;
160
2.05k
}
161
162
static inline void
163
bn_sub_mod(uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d)
164
1.35M
{
165
1.35M
    uint64_t c10 = 0ULL;
166
1.35M
    {
167
1.35M
        uint64_t t1 = c[4U * 0U];
168
1.35M
        uint64_t t20 = d[4U * 0U];
169
1.35M
        uint64_t *res_i0 = a + 4U * 0U;
170
1.35M
        c10 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c10, t1, t20, res_i0);
171
1.35M
        uint64_t t10 = c[4U * 0U + 1U];
172
1.35M
        uint64_t t21 = d[4U * 0U + 1U];
173
1.35M
        uint64_t *res_i1 = a + 4U * 0U + 1U;
174
1.35M
        c10 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c10, t10, t21, res_i1);
175
1.35M
        uint64_t t11 = c[4U * 0U + 2U];
176
1.35M
        uint64_t t22 = d[4U * 0U + 2U];
177
1.35M
        uint64_t *res_i2 = a + 4U * 0U + 2U;
178
1.35M
        c10 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c10, t11, t22, res_i2);
179
1.35M
        uint64_t t12 = c[4U * 0U + 3U];
180
1.35M
        uint64_t t2 = d[4U * 0U + 3U];
181
1.35M
        uint64_t *res_i = a + 4U * 0U + 3U;
182
1.35M
        c10 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c10, t12, t2, res_i);
183
1.35M
    }
184
1.35M
    KRML_MAYBE_FOR2(i,
185
1.35M
                    4U,
186
1.35M
                    6U,
187
1.35M
                    1U,
188
1.35M
                    uint64_t t1 = c[i];
189
1.35M
                    uint64_t t2 = d[i];
190
1.35M
                    uint64_t *res_i = a + i;
191
1.35M
                    c10 = Lib_IntTypes_Intrinsics_sub_borrow_u64(c10, t1, t2, res_i););
192
1.35M
    uint64_t c0 = c10;
193
1.35M
    uint64_t tmp[6U] = { 0U };
194
1.35M
    uint64_t c1 = 0ULL;
195
1.35M
    {
196
1.35M
        uint64_t t1 = a[4U * 0U];
197
1.35M
        uint64_t t20 = b[4U * 0U];
198
1.35M
        uint64_t *res_i0 = tmp + 4U * 0U;
199
1.35M
        c1 = Lib_IntTypes_Intrinsics_add_carry_u64(c1, t1, t20, res_i0);
200
1.35M
        uint64_t t10 = a[4U * 0U + 1U];
201
1.35M
        uint64_t t21 = b[4U * 0U + 1U];
202
1.35M
        uint64_t *res_i1 = tmp + 4U * 0U + 1U;
203
1.35M
        c1 = Lib_IntTypes_Intrinsics_add_carry_u64(c1, t10, t21, res_i1);
204
1.35M
        uint64_t t11 = a[4U * 0U + 2U];
205
1.35M
        uint64_t t22 = b[4U * 0U + 2U];
206
1.35M
        uint64_t *res_i2 = tmp + 4U * 0U + 2U;
207
1.35M
        c1 = Lib_IntTypes_Intrinsics_add_carry_u64(c1, t11, t22, res_i2);
208
1.35M
        uint64_t t12 = a[4U * 0U + 3U];
209
1.35M
        uint64_t t2 = b[4U * 0U + 3U];
210
1.35M
        uint64_t *res_i = tmp + 4U * 0U + 3U;
211
1.35M
        c1 = Lib_IntTypes_Intrinsics_add_carry_u64(c1, t12, t2, res_i);
212
1.35M
    }
213
1.35M
    KRML_MAYBE_FOR2(i,
214
1.35M
                    4U,
215
1.35M
                    6U,
216
1.35M
                    1U,
217
1.35M
                    uint64_t t1 = a[i];
218
1.35M
                    uint64_t t2 = b[i];
219
1.35M
                    uint64_t *res_i = tmp + i;
220
1.35M
                    c1 = Lib_IntTypes_Intrinsics_add_carry_u64(c1, t1, t2, res_i););
221
1.35M
    uint64_t c11 = c1;
222
1.35M
    KRML_MAYBE_UNUSED_VAR(c11);
223
1.35M
    uint64_t c2 = 0ULL - c0;
224
1.35M
    KRML_MAYBE_FOR6(i,
225
1.35M
                    0U,
226
1.35M
                    6U,
227
1.35M
                    1U,
228
1.35M
                    uint64_t *os = a;
229
1.35M
                    uint64_t x = (c2 & tmp[i]) | (~c2 & a[i]);
230
1.35M
                    os[i] = x;);
231
1.35M
}
232
233
static inline void
234
bn_mul(uint64_t *a, uint64_t *b, uint64_t *c)
235
2.25M
{
236
2.25M
    memset(a, 0U, 12U * sizeof(uint64_t));
237
2.25M
    KRML_MAYBE_FOR6(
238
2.25M
        i0,
239
2.25M
        0U,
240
2.25M
        6U,
241
2.25M
        1U,
242
2.25M
        uint64_t bj = c[i0];
243
2.25M
        uint64_t *res_j = a + i0;
244
2.25M
        uint64_t c1 = 0ULL;
245
2.25M
        {
246
2.25M
            uint64_t a_i = b[4U * 0U];
247
2.25M
            uint64_t *res_i0 = res_j + 4U * 0U;
248
2.25M
            c1 = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, bj, c1, res_i0);
249
2.25M
            uint64_t a_i0 = b[4U * 0U + 1U];
250
2.25M
            uint64_t *res_i1 = res_j + 4U * 0U + 1U;
251
2.25M
            c1 = Hacl_Bignum_Base_mul_wide_add2_u64(a_i0, bj, c1, res_i1);
252
2.25M
            uint64_t a_i1 = b[4U * 0U + 2U];
253
2.25M
            uint64_t *res_i2 = res_j + 4U * 0U + 2U;
254
2.25M
            c1 = Hacl_Bignum_Base_mul_wide_add2_u64(a_i1, bj, c1, res_i2);
255
2.25M
            uint64_t a_i2 = b[4U * 0U + 3U];
256
2.25M
            uint64_t *res_i = res_j + 4U * 0U + 3U;
257
2.25M
            c1 = Hacl_Bignum_Base_mul_wide_add2_u64(a_i2, bj, c1, res_i);
258
2.25M
        } KRML_MAYBE_FOR2(i,
259
2.25M
                          4U,
260
2.25M
                          6U,
261
2.25M
                          1U,
262
2.25M
                          uint64_t a_i = b[i];
263
2.25M
                          uint64_t *res_i = res_j + i;
264
2.25M
                          c1 = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, bj, c1, res_i););
265
2.25M
        uint64_t r = c1;
266
2.25M
        a[6U + i0] = r;);
267
2.25M
}
268
269
static inline void
270
bn_sqr(uint64_t *a, uint64_t *b)
271
648k
{
272
648k
    memset(a, 0U, 12U * sizeof(uint64_t));
273
648k
    KRML_MAYBE_FOR6(
274
648k
        i0,
275
648k
        0U,
276
648k
        6U,
277
648k
        1U,
278
648k
        uint64_t *ab = b;
279
648k
        uint64_t a_j = b[i0];
280
648k
        uint64_t *res_j = a + i0;
281
648k
        uint64_t c = 0ULL;
282
648k
        for (uint32_t i = 0U; i < i0 / 4U; i++) {
283
648k
            uint64_t a_i = ab[4U * i];
284
648k
            uint64_t *res_i0 = res_j + 4U * i;
285
648k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, a_j, c, res_i0);
286
648k
            uint64_t a_i0 = ab[4U * i + 1U];
287
648k
            uint64_t *res_i1 = res_j + 4U * i + 1U;
288
648k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i0, a_j, c, res_i1);
289
648k
            uint64_t a_i1 = ab[4U * i + 2U];
290
648k
            uint64_t *res_i2 = res_j + 4U * i + 2U;
291
648k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i1, a_j, c, res_i2);
292
648k
            uint64_t a_i2 = ab[4U * i + 3U];
293
648k
            uint64_t *res_i = res_j + 4U * i + 3U;
294
648k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i2, a_j, c, res_i);
295
648k
        } for (uint32_t i = i0 / 4U * 4U; i < i0; i++) {
296
648k
            uint64_t a_i = ab[i];
297
648k
            uint64_t *res_i = res_j + i;
298
648k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, a_j, c, res_i);
299
648k
        } uint64_t r = c;
300
648k
        a[i0 + i0] = r;);
301
648k
    uint64_t c0 = Hacl_Bignum_Addition_bn_add_eq_len_u64(12U, a, a, a);
302
648k
    KRML_MAYBE_UNUSED_VAR(c0);
303
648k
    uint64_t tmp[12U] = { 0U };
304
648k
    KRML_MAYBE_FOR6(i,
305
648k
                    0U,
306
648k
                    6U,
307
648k
                    1U,
308
648k
                    FStar_UInt128_uint128 res = FStar_UInt128_mul_wide(b[i], b[i]);
309
648k
                    uint64_t hi = FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(res, 64U));
310
648k
                    uint64_t lo = FStar_UInt128_uint128_to_uint64(res);
311
648k
                    tmp[2U * i] = lo;
312
648k
                    tmp[2U * i + 1U] = hi;);
313
648k
    uint64_t c1 = Hacl_Bignum_Addition_bn_add_eq_len_u64(12U, a, tmp, a);
314
648k
    KRML_MAYBE_UNUSED_VAR(c1);
315
648k
}
316
317
static inline void
318
bn_to_bytes_be(uint8_t *a, uint64_t *b)
319
558
{
320
558
    uint8_t tmp[48U] = { 0U };
321
558
    KRML_MAYBE_UNUSED_VAR(tmp);
322
558
    KRML_MAYBE_FOR6(i, 0U, 6U, 1U, store64_be(a + i * 8U, b[6U - i - 1U]););
323
558
}
324
325
static inline void
326
bn_from_bytes_be(uint64_t *a, uint8_t *b)
327
1.98k
{
328
1.98k
    KRML_MAYBE_FOR6(i,
329
1.98k
                    0U,
330
1.98k
                    6U,
331
1.98k
                    1U,
332
1.98k
                    uint64_t *os = a;
333
1.98k
                    uint64_t u = load64_be(b + (6U - i - 1U) * 8U);
334
1.98k
                    uint64_t x = u;
335
1.98k
                    os[i] = x;);
336
1.98k
}
337
338
static inline void
339
p384_make_prime(uint64_t *n)
340
7.49M
{
341
7.49M
    n[0U] = 0x00000000ffffffffULL;
342
7.49M
    n[1U] = 0xffffffff00000000ULL;
343
7.49M
    n[2U] = 0xfffffffffffffffeULL;
344
7.49M
    n[3U] = 0xffffffffffffffffULL;
345
7.49M
    n[4U] = 0xffffffffffffffffULL;
346
7.49M
    n[5U] = 0xffffffffffffffffULL;
347
7.49M
}
348
349
static inline void
350
p384_make_order(uint64_t *n)
351
33.6k
{
352
33.6k
    n[0U] = 0xecec196accc52973ULL;
353
33.6k
    n[1U] = 0x581a0db248b0a77aULL;
354
33.6k
    n[2U] = 0xc7634d81f4372ddfULL;
355
33.6k
    n[3U] = 0xffffffffffffffffULL;
356
33.6k
    n[4U] = 0xffffffffffffffffULL;
357
33.6k
    n[5U] = 0xffffffffffffffffULL;
358
33.6k
}
359
360
static inline void
361
p384_make_a_coeff(uint64_t *a)
362
619
{
363
619
    a[0U] = 0x00000003fffffffcULL;
364
619
    a[1U] = 0xfffffffc00000000ULL;
365
619
    a[2U] = 0xfffffffffffffffbULL;
366
619
    a[3U] = 0xffffffffffffffffULL;
367
619
    a[4U] = 0xffffffffffffffffULL;
368
619
    a[5U] = 0xffffffffffffffffULL;
369
619
}
370
371
static inline void
372
p384_make_b_coeff(uint64_t *b)
373
408k
{
374
408k
    b[0U] = 0x081188719d412dccULL;
375
408k
    b[1U] = 0xf729add87a4c32ecULL;
376
408k
    b[2U] = 0x77f2209b1920022eULL;
377
408k
    b[3U] = 0xe3374bee94938ae2ULL;
378
408k
    b[4U] = 0xb62b21f41f022094ULL;
379
408k
    b[5U] = 0xcd08114b604fbff9ULL;
380
408k
}
381
382
static inline void
383
p384_make_g_x(uint64_t *n)
384
332
{
385
332
    n[0U] = 0x3dd0756649c0b528ULL;
386
332
    n[1U] = 0x20e378e2a0d6ce38ULL;
387
332
    n[2U] = 0x879c3afc541b4d6eULL;
388
332
    n[3U] = 0x6454868459a30effULL;
389
332
    n[4U] = 0x812ff723614ede2bULL;
390
332
    n[5U] = 0x4d3aadc2299e1513ULL;
391
332
}
392
393
static inline void
394
p384_make_g_y(uint64_t *n)
395
332
{
396
332
    n[0U] = 0x23043dad4b03a4feULL;
397
332
    n[1U] = 0xa1bfa8bf7bb4a9acULL;
398
332
    n[2U] = 0x8bade7562e83b050ULL;
399
332
    n[3U] = 0xc6c3521968f4ffd9ULL;
400
332
    n[4U] = 0xdd8002263969a840ULL;
401
332
    n[5U] = 0x2b78abc25a15c5e9ULL;
402
332
}
403
404
static inline void
405
p384_make_fmont_R2(uint64_t *n)
406
2.10k
{
407
2.10k
    n[0U] = 0xfffffffe00000001ULL;
408
2.10k
    n[1U] = 0x0000000200000000ULL;
409
2.10k
    n[2U] = 0xfffffffe00000000ULL;
410
2.10k
    n[3U] = 0x0000000200000000ULL;
411
2.10k
    n[4U] = 0x0000000000000001ULL;
412
2.10k
    n[5U] = 0x0ULL;
413
2.10k
}
414
415
static inline void
416
p384_make_fzero(uint64_t *n)
417
1.65k
{
418
1.65k
    memset(n, 0U, 6U * sizeof(uint64_t));
419
1.65k
    n[0U] = 0ULL;
420
1.65k
}
421
422
static inline void
423
p384_make_fone(uint64_t *n)
424
1.93k
{
425
1.93k
    n[0U] = 0xffffffff00000001ULL;
426
1.93k
    n[1U] = 0x00000000ffffffffULL;
427
1.93k
    n[2U] = 0x1ULL;
428
1.93k
    n[3U] = 0x0ULL;
429
1.93k
    n[4U] = 0x0ULL;
430
1.93k
    n[5U] = 0x0ULL;
431
1.93k
}
432
433
static inline void
434
p384_make_qone(uint64_t *f)
435
67
{
436
67
    f[0U] = 0x1313e695333ad68dULL;
437
67
    f[1U] = 0xa7e5f24db74f5885ULL;
438
67
    f[2U] = 0x389cb27e0bc8d220ULL;
439
67
    f[3U] = 0x0ULL;
440
67
    f[4U] = 0x0ULL;
441
67
    f[5U] = 0x0ULL;
442
67
}
443
444
static inline void
445
fmont_reduction(uint64_t *res, uint64_t *x)
446
2.86M
{
447
2.86M
    uint64_t n[6U] = { 0U };
448
2.86M
    p384_make_prime(n);
449
2.86M
    uint64_t c0 = 0ULL;
450
2.86M
    KRML_MAYBE_FOR6(
451
2.86M
        i0,
452
2.86M
        0U,
453
2.86M
        6U,
454
2.86M
        1U,
455
2.86M
        uint64_t qj = 4294967297ULL * x[i0];
456
2.86M
        uint64_t *res_j0 = x + i0;
457
2.86M
        uint64_t c = 0ULL;
458
2.86M
        {
459
2.86M
            uint64_t a_i = n[4U * 0U];
460
2.86M
            uint64_t *res_i0 = res_j0 + 4U * 0U;
461
2.86M
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, qj, c, res_i0);
462
2.86M
            uint64_t a_i0 = n[4U * 0U + 1U];
463
2.86M
            uint64_t *res_i1 = res_j0 + 4U * 0U + 1U;
464
2.86M
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i0, qj, c, res_i1);
465
2.86M
            uint64_t a_i1 = n[4U * 0U + 2U];
466
2.86M
            uint64_t *res_i2 = res_j0 + 4U * 0U + 2U;
467
2.86M
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i1, qj, c, res_i2);
468
2.86M
            uint64_t a_i2 = n[4U * 0U + 3U];
469
2.86M
            uint64_t *res_i = res_j0 + 4U * 0U + 3U;
470
2.86M
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i2, qj, c, res_i);
471
2.86M
        } KRML_MAYBE_FOR2(i,
472
2.86M
                          4U,
473
2.86M
                          6U,
474
2.86M
                          1U,
475
2.86M
                          uint64_t a_i = n[i];
476
2.86M
                          uint64_t *res_i = res_j0 + i;
477
2.86M
                          c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, qj, c, res_i););
478
2.86M
        uint64_t r = c;
479
2.86M
        uint64_t c1 = r;
480
2.86M
        uint64_t *resb = x + 6U + i0;
481
2.86M
        uint64_t res_j = x[6U + i0];
482
2.86M
        c0 = Lib_IntTypes_Intrinsics_add_carry_u64(c0, c1, res_j, resb););
483
2.86M
    memcpy(res, x + 6U, 6U * sizeof(uint64_t));
484
2.86M
    uint64_t c00 = c0;
485
2.86M
    uint64_t tmp[6U] = { 0U };
486
2.86M
    uint64_t c = 0ULL;
487
2.86M
    {
488
2.86M
        uint64_t t1 = res[4U * 0U];
489
2.86M
        uint64_t t20 = n[4U * 0U];
490
2.86M
        uint64_t *res_i0 = tmp + 4U * 0U;
491
2.86M
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t1, t20, res_i0);
492
2.86M
        uint64_t t10 = res[4U * 0U + 1U];
493
2.86M
        uint64_t t21 = n[4U * 0U + 1U];
494
2.86M
        uint64_t *res_i1 = tmp + 4U * 0U + 1U;
495
2.86M
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t10, t21, res_i1);
496
2.86M
        uint64_t t11 = res[4U * 0U + 2U];
497
2.86M
        uint64_t t22 = n[4U * 0U + 2U];
498
2.86M
        uint64_t *res_i2 = tmp + 4U * 0U + 2U;
499
2.86M
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t11, t22, res_i2);
500
2.86M
        uint64_t t12 = res[4U * 0U + 3U];
501
2.86M
        uint64_t t2 = n[4U * 0U + 3U];
502
2.86M
        uint64_t *res_i = tmp + 4U * 0U + 3U;
503
2.86M
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t12, t2, res_i);
504
2.86M
    }
505
2.86M
    KRML_MAYBE_FOR2(i,
506
2.86M
                    4U,
507
2.86M
                    6U,
508
2.86M
                    1U,
509
2.86M
                    uint64_t t1 = res[i];
510
2.86M
                    uint64_t t2 = n[i];
511
2.86M
                    uint64_t *res_i = tmp + i;
512
2.86M
                    c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t1, t2, res_i););
513
2.86M
    uint64_t c1 = c;
514
2.86M
    uint64_t c2 = c00 - c1;
515
2.86M
    KRML_MAYBE_FOR6(i,
516
2.86M
                    0U,
517
2.86M
                    6U,
518
2.86M
                    1U,
519
2.86M
                    uint64_t *os = res;
520
2.86M
                    uint64_t x1 = (c2 & res[i]) | (~c2 & tmp[i]);
521
2.86M
                    os[i] = x1;);
522
2.86M
}
523
524
static inline void
525
qmont_reduction(uint64_t *res, uint64_t *x)
526
32.8k
{
527
32.8k
    uint64_t n[6U] = { 0U };
528
32.8k
    p384_make_order(n);
529
32.8k
    uint64_t c0 = 0ULL;
530
32.8k
    KRML_MAYBE_FOR6(
531
32.8k
        i0,
532
32.8k
        0U,
533
32.8k
        6U,
534
32.8k
        1U,
535
32.8k
        uint64_t qj = 7986114184663260229ULL * x[i0];
536
32.8k
        uint64_t *res_j0 = x + i0;
537
32.8k
        uint64_t c = 0ULL;
538
32.8k
        {
539
32.8k
            uint64_t a_i = n[4U * 0U];
540
32.8k
            uint64_t *res_i0 = res_j0 + 4U * 0U;
541
32.8k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, qj, c, res_i0);
542
32.8k
            uint64_t a_i0 = n[4U * 0U + 1U];
543
32.8k
            uint64_t *res_i1 = res_j0 + 4U * 0U + 1U;
544
32.8k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i0, qj, c, res_i1);
545
32.8k
            uint64_t a_i1 = n[4U * 0U + 2U];
546
32.8k
            uint64_t *res_i2 = res_j0 + 4U * 0U + 2U;
547
32.8k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i1, qj, c, res_i2);
548
32.8k
            uint64_t a_i2 = n[4U * 0U + 3U];
549
32.8k
            uint64_t *res_i = res_j0 + 4U * 0U + 3U;
550
32.8k
            c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i2, qj, c, res_i);
551
32.8k
        } KRML_MAYBE_FOR2(i,
552
32.8k
                          4U,
553
32.8k
                          6U,
554
32.8k
                          1U,
555
32.8k
                          uint64_t a_i = n[i];
556
32.8k
                          uint64_t *res_i = res_j0 + i;
557
32.8k
                          c = Hacl_Bignum_Base_mul_wide_add2_u64(a_i, qj, c, res_i););
558
32.8k
        uint64_t r = c;
559
32.8k
        uint64_t c1 = r;
560
32.8k
        uint64_t *resb = x + 6U + i0;
561
32.8k
        uint64_t res_j = x[6U + i0];
562
32.8k
        c0 = Lib_IntTypes_Intrinsics_add_carry_u64(c0, c1, res_j, resb););
563
32.8k
    memcpy(res, x + 6U, 6U * sizeof(uint64_t));
564
32.8k
    uint64_t c00 = c0;
565
32.8k
    uint64_t tmp[6U] = { 0U };
566
32.8k
    uint64_t c = 0ULL;
567
32.8k
    {
568
32.8k
        uint64_t t1 = res[4U * 0U];
569
32.8k
        uint64_t t20 = n[4U * 0U];
570
32.8k
        uint64_t *res_i0 = tmp + 4U * 0U;
571
32.8k
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t1, t20, res_i0);
572
32.8k
        uint64_t t10 = res[4U * 0U + 1U];
573
32.8k
        uint64_t t21 = n[4U * 0U + 1U];
574
32.8k
        uint64_t *res_i1 = tmp + 4U * 0U + 1U;
575
32.8k
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t10, t21, res_i1);
576
32.8k
        uint64_t t11 = res[4U * 0U + 2U];
577
32.8k
        uint64_t t22 = n[4U * 0U + 2U];
578
32.8k
        uint64_t *res_i2 = tmp + 4U * 0U + 2U;
579
32.8k
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t11, t22, res_i2);
580
32.8k
        uint64_t t12 = res[4U * 0U + 3U];
581
32.8k
        uint64_t t2 = n[4U * 0U + 3U];
582
32.8k
        uint64_t *res_i = tmp + 4U * 0U + 3U;
583
32.8k
        c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t12, t2, res_i);
584
32.8k
    }
585
32.8k
    KRML_MAYBE_FOR2(i,
586
32.8k
                    4U,
587
32.8k
                    6U,
588
32.8k
                    1U,
589
32.8k
                    uint64_t t1 = res[i];
590
32.8k
                    uint64_t t2 = n[i];
591
32.8k
                    uint64_t *res_i = tmp + i;
592
32.8k
                    c = Lib_IntTypes_Intrinsics_sub_borrow_u64(c, t1, t2, res_i););
593
32.8k
    uint64_t c1 = c;
594
32.8k
    uint64_t c2 = c00 - c1;
595
32.8k
    KRML_MAYBE_FOR6(i,
596
32.8k
                    0U,
597
32.8k
                    6U,
598
32.8k
                    1U,
599
32.8k
                    uint64_t *os = res;
600
32.8k
                    uint64_t x1 = (c2 & res[i]) | (~c2 & tmp[i]);
601
32.8k
                    os[i] = x1;);
602
32.8k
}
603
604
static inline uint64_t
605
bn_is_lt_prime_mask(uint64_t *f)
606
1.28k
{
607
1.28k
    uint64_t tmp[6U] = { 0U };
608
1.28k
    p384_make_prime(tmp);
609
1.28k
    uint64_t c = bn_sub(tmp, f, tmp);
610
1.28k
    uint64_t m = FStar_UInt64_gte_mask(c, 0ULL) & ~FStar_UInt64_eq_mask(c, 0ULL);
611
1.28k
    return m;
612
1.28k
}
613
614
static inline void
615
fadd0(uint64_t *a, uint64_t *b, uint64_t *c)
616
3.27M
{
617
3.27M
    uint64_t n[6U] = { 0U };
618
3.27M
    p384_make_prime(n);
619
3.27M
    bn_add_mod(a, n, b, c);
620
3.27M
}
621
622
static inline void
623
fsub0(uint64_t *a, uint64_t *b, uint64_t *c)
624
1.35M
{
625
1.35M
    uint64_t n[6U] = { 0U };
626
1.35M
    p384_make_prime(n);
627
1.35M
    bn_sub_mod(a, n, b, c);
628
1.35M
}
629
630
static inline void
631
fmul0(uint64_t *a, uint64_t *b, uint64_t *c)
632
2.24M
{
633
2.24M
    uint64_t tmp[12U] = { 0U };
634
2.24M
    bn_mul(tmp, b, c);
635
2.24M
    fmont_reduction(a, tmp);
636
2.24M
}
637
638
static inline void
639
fsqr0(uint64_t *a, uint64_t *b)
640
622k
{
641
622k
    uint64_t tmp[12U] = { 0U };
642
622k
    bn_sqr(tmp, b);
643
622k
    fmont_reduction(a, tmp);
644
622k
}
645
646
static inline void
647
from_mont(uint64_t *a, uint64_t *b)
648
625
{
649
625
    uint64_t tmp[12U] = { 0U };
650
625
    memcpy(tmp, b, 6U * sizeof(uint64_t));
651
625
    fmont_reduction(a, tmp);
652
625
}
653
654
static inline void
655
to_mont(uint64_t *a, uint64_t *b)
656
2.10k
{
657
2.10k
    uint64_t r2modn[6U] = { 0U };
658
2.10k
    p384_make_fmont_R2(r2modn);
659
2.10k
    uint64_t tmp[12U] = { 0U };
660
2.10k
    bn_mul(tmp, b, r2modn);
661
2.10k
    fmont_reduction(a, tmp);
662
2.10k
}
663
664
static inline void
665
fexp_consttime(uint64_t *out, uint64_t *a, uint64_t *b)
666
346
{
667
346
    uint64_t table[192U] = { 0U };
668
346
    uint64_t tmp[6U] = { 0U };
669
346
    uint64_t *t0 = table;
670
346
    uint64_t *t1 = table + 6U;
671
346
    p384_make_fone(t0);
672
346
    memcpy(t1, a, 6U * sizeof(uint64_t));
673
346
    KRML_MAYBE_FOR15(i,
674
346
                     0U,
675
346
                     15U,
676
346
                     1U,
677
346
                     uint64_t *t11 = table + (i + 1U) * 6U;
678
346
                     fsqr0(tmp, t11);
679
346
                     memcpy(table + (2U * i + 2U) * 6U, tmp, 6U * sizeof(uint64_t));
680
346
                     uint64_t *t2 = table + (2U * i + 2U) * 6U;
681
346
                     fmul0(tmp, a, t2);
682
346
                     memcpy(table + (2U * i + 3U) * 6U, tmp, 6U * sizeof(uint64_t)););
683
346
    uint32_t i0 = 380U;
684
346
    uint64_t bits_c = Hacl_Bignum_Lib_bn_get_bits_u64(6U, b, i0, 5U);
685
346
    memcpy(out, (uint64_t *)table, 6U * sizeof(uint64_t));
686
11.0k
    for (uint32_t i1 = 0U; i1 < 31U; i1++) {
687
10.7k
        uint64_t c = FStar_UInt64_eq_mask(bits_c, (uint64_t)(i1 + 1U));
688
10.7k
        const uint64_t *res_j = table + (i1 + 1U) * 6U;
689
10.7k
        KRML_MAYBE_FOR6(i,
690
10.7k
                        0U,
691
10.7k
                        6U,
692
10.7k
                        1U,
693
10.7k
                        uint64_t *os = out;
694
10.7k
                        uint64_t x = (c & res_j[i]) | (~c & out[i]);
695
10.7k
                        os[i] = x;);
696
10.7k
    }
697
346
    uint64_t tmp0[6U] = { 0U };
698
26.6k
    for (uint32_t i1 = 0U; i1 < 76U; i1++) {
699
26.2k
        KRML_MAYBE_FOR5(i, 0U, 5U, 1U, fsqr0(out, out););
700
26.2k
        uint32_t k = 380U - 5U * i1 - 5U;
701
26.2k
        uint64_t bits_l = Hacl_Bignum_Lib_bn_get_bits_u64(6U, b, k, 5U);
702
26.2k
        memcpy(tmp0, (uint64_t *)table, 6U * sizeof(uint64_t));
703
841k
        for (uint32_t i2 = 0U; i2 < 31U; i2++) {
704
815k
            uint64_t c = FStar_UInt64_eq_mask(bits_l, (uint64_t)(i2 + 1U));
705
815k
            const uint64_t *res_j = table + (i2 + 1U) * 6U;
706
815k
            KRML_MAYBE_FOR6(i,
707
815k
                            0U,
708
815k
                            6U,
709
815k
                            1U,
710
815k
                            uint64_t *os = tmp0;
711
815k
                            uint64_t x = (c & res_j[i]) | (~c & tmp0[i]);
712
815k
                            os[i] = x;);
713
815k
        }
714
26.2k
        fmul0(out, out, tmp0);
715
26.2k
    }
716
346
}
717
718
static inline void
719
p384_finv(uint64_t *res, uint64_t *a)
720
346
{
721
346
    uint64_t b[6U] = { 0U };
722
346
    b[0U] = 0x00000000fffffffdULL;
723
346
    b[1U] = 0xffffffff00000000ULL;
724
346
    b[2U] = 0xfffffffffffffffeULL;
725
346
    b[3U] = 0xffffffffffffffffULL;
726
346
    b[4U] = 0xffffffffffffffffULL;
727
346
    b[5U] = 0xffffffffffffffffULL;
728
346
    fexp_consttime(res, a, b);
729
346
}
730
731
static inline void
732
p384_fsqrt(uint64_t *res, uint64_t *a)
733
0
{
734
0
    uint64_t b[6U] = { 0U };
735
0
    b[0U] = 0x0000000040000000ULL;
736
0
    b[1U] = 0xbfffffffc0000000ULL;
737
0
    b[2U] = 0xffffffffffffffffULL;
738
0
    b[3U] = 0xffffffffffffffffULL;
739
0
    b[4U] = 0xffffffffffffffffULL;
740
0
    b[5U] = 0x3fffffffffffffffULL;
741
0
    fexp_consttime(res, a, b);
742
0
}
743
744
static inline uint64_t
745
load_qelem_conditional(uint64_t *a, uint8_t *b)
746
279
{
747
279
    bn_from_bytes_be(a, b);
748
279
    uint64_t tmp[6U] = { 0U };
749
279
    p384_make_order(tmp);
750
279
    uint64_t c = bn_sub(tmp, a, tmp);
751
279
    uint64_t is_lt_order = FStar_UInt64_gte_mask(c, 0ULL) & ~FStar_UInt64_eq_mask(c, 0ULL);
752
279
    uint64_t bn_zero[6U] = { 0U };
753
279
    uint64_t res = bn_is_eq_mask(a, bn_zero);
754
279
    uint64_t is_eq_zero = res;
755
279
    uint64_t is_b_valid = is_lt_order & ~is_eq_zero;
756
279
    uint64_t oneq[6U] = { 0U };
757
279
    memset(oneq, 0U, 6U * sizeof(uint64_t));
758
279
    oneq[0U] = 1ULL;
759
279
    KRML_MAYBE_FOR6(i,
760
279
                    0U,
761
279
                    6U,
762
279
                    1U,
763
279
                    uint64_t *os = a;
764
279
                    uint64_t uu____0 = oneq[i];
765
279
                    uint64_t x = uu____0 ^ (is_b_valid & (a[i] ^ uu____0));
766
279
                    os[i] = x;);
767
279
    return is_b_valid;
768
279
}
769
770
static inline void
771
qmod_short(uint64_t *a, uint64_t *b)
772
136
{
773
136
    uint64_t tmp[6U] = { 0U };
774
136
    p384_make_order(tmp);
775
136
    uint64_t c = bn_sub(tmp, b, tmp);
776
136
    bn_cmovznz(a, c, tmp, b);
777
136
}
778
779
static inline void
780
qadd(uint64_t *a, uint64_t *b, uint64_t *c)
781
0
{
782
0
    uint64_t n[6U] = { 0U };
783
0
    p384_make_order(n);
784
0
    bn_add_mod(a, n, b, c);
785
0
}
786
787
static inline void
788
qmul(uint64_t *a, uint64_t *b, uint64_t *c)
789
6.23k
{
790
6.23k
    uint64_t tmp[12U] = { 0U };
791
6.23k
    bn_mul(tmp, b, c);
792
6.23k
    qmont_reduction(a, tmp);
793
6.23k
}
794
795
static inline void
796
qsqr(uint64_t *a, uint64_t *b)
797
26.4k
{
798
26.4k
    uint64_t tmp[12U] = { 0U };
799
26.4k
    bn_sqr(tmp, b);
800
26.4k
    qmont_reduction(a, tmp);
801
26.4k
}
802
803
static inline void
804
from_qmont(uint64_t *a, uint64_t *b)
805
134
{
806
134
    uint64_t tmp[12U] = { 0U };
807
134
    memcpy(tmp, b, 6U * sizeof(uint64_t));
808
134
    qmont_reduction(a, tmp);
809
134
}
810
811
static inline void
812
qexp_consttime(uint64_t *out, uint64_t *a, uint64_t *b)
813
67
{
814
67
    uint64_t table[192U] = { 0U };
815
67
    uint64_t tmp[6U] = { 0U };
816
67
    uint64_t *t0 = table;
817
67
    uint64_t *t1 = table + 6U;
818
67
    p384_make_qone(t0);
819
67
    memcpy(t1, a, 6U * sizeof(uint64_t));
820
67
    KRML_MAYBE_FOR15(i,
821
67
                     0U,
822
67
                     15U,
823
67
                     1U,
824
67
                     uint64_t *t11 = table + (i + 1U) * 6U;
825
67
                     qsqr(tmp, t11);
826
67
                     memcpy(table + (2U * i + 2U) * 6U, tmp, 6U * sizeof(uint64_t));
827
67
                     uint64_t *t2 = table + (2U * i + 2U) * 6U;
828
67
                     qmul(tmp, a, t2);
829
67
                     memcpy(table + (2U * i + 3U) * 6U, tmp, 6U * sizeof(uint64_t)););
830
67
    uint32_t i0 = 380U;
831
67
    uint64_t bits_c = Hacl_Bignum_Lib_bn_get_bits_u64(6U, b, i0, 5U);
832
67
    memcpy(out, (uint64_t *)table, 6U * sizeof(uint64_t));
833
2.14k
    for (uint32_t i1 = 0U; i1 < 31U; i1++) {
834
2.07k
        uint64_t c = FStar_UInt64_eq_mask(bits_c, (uint64_t)(i1 + 1U));
835
2.07k
        const uint64_t *res_j = table + (i1 + 1U) * 6U;
836
2.07k
        KRML_MAYBE_FOR6(i,
837
2.07k
                        0U,
838
2.07k
                        6U,
839
2.07k
                        1U,
840
2.07k
                        uint64_t *os = out;
841
2.07k
                        uint64_t x = (c & res_j[i]) | (~c & out[i]);
842
2.07k
                        os[i] = x;);
843
2.07k
    }
844
67
    uint64_t tmp0[6U] = { 0U };
845
5.15k
    for (uint32_t i1 = 0U; i1 < 76U; i1++) {
846
5.09k
        KRML_MAYBE_FOR5(i, 0U, 5U, 1U, qsqr(out, out););
847
5.09k
        uint32_t k = 380U - 5U * i1 - 5U;
848
5.09k
        uint64_t bits_l = Hacl_Bignum_Lib_bn_get_bits_u64(6U, b, k, 5U);
849
5.09k
        memcpy(tmp0, (uint64_t *)table, 6U * sizeof(uint64_t));
850
162k
        for (uint32_t i2 = 0U; i2 < 31U; i2++) {
851
157k
            uint64_t c = FStar_UInt64_eq_mask(bits_l, (uint64_t)(i2 + 1U));
852
157k
            const uint64_t *res_j = table + (i2 + 1U) * 6U;
853
157k
            KRML_MAYBE_FOR6(i,
854
157k
                            0U,
855
157k
                            6U,
856
157k
                            1U,
857
157k
                            uint64_t *os = tmp0;
858
157k
                            uint64_t x = (c & res_j[i]) | (~c & tmp0[i]);
859
157k
                            os[i] = x;);
860
157k
        }
861
5.09k
        qmul(out, out, tmp0);
862
5.09k
    }
863
67
}
864
865
static inline void
866
p384_qinv(uint64_t *res, uint64_t *a)
867
67
{
868
67
    uint64_t b[6U] = { 0U };
869
67
    b[0U] = 0xecec196accc52971ULL;
870
67
    b[1U] = 0x581a0db248b0a77aULL;
871
67
    b[2U] = 0xc7634d81f4372ddfULL;
872
67
    b[3U] = 0xffffffffffffffffULL;
873
67
    b[4U] = 0xffffffffffffffffULL;
874
67
    b[5U] = 0xffffffffffffffffULL;
875
67
    qexp_consttime(res, a, b);
876
67
}
877
878
static inline void
879
point_add(uint64_t *x, uint64_t *y, uint64_t *xy)
880
42.6k
{
881
42.6k
    uint64_t tmp[54U] = { 0U };
882
42.6k
    uint64_t *t0 = tmp;
883
42.6k
    uint64_t *t1 = tmp + 36U;
884
42.6k
    uint64_t *x3 = t1;
885
42.6k
    uint64_t *y3 = t1 + 6U;
886
42.6k
    uint64_t *z3 = t1 + 12U;
887
42.6k
    uint64_t *t01 = t0;
888
42.6k
    uint64_t *t11 = t0 + 6U;
889
42.6k
    uint64_t *t2 = t0 + 12U;
890
42.6k
    uint64_t *t3 = t0 + 18U;
891
42.6k
    uint64_t *t4 = t0 + 24U;
892
42.6k
    uint64_t *t5 = t0 + 30U;
893
42.6k
    uint64_t *x1 = x;
894
42.6k
    uint64_t *y1 = x + 6U;
895
42.6k
    uint64_t *z10 = x + 12U;
896
42.6k
    uint64_t *x20 = y;
897
42.6k
    uint64_t *y20 = y + 6U;
898
42.6k
    uint64_t *z20 = y + 12U;
899
42.6k
    fmul0(t01, x1, x20);
900
42.6k
    fmul0(t11, y1, y20);
901
42.6k
    fmul0(t2, z10, z20);
902
42.6k
    fadd0(t3, x1, y1);
903
42.6k
    fadd0(t4, x20, y20);
904
42.6k
    fmul0(t3, t3, t4);
905
42.6k
    fadd0(t4, t01, t11);
906
42.6k
    uint64_t *y10 = x + 6U;
907
42.6k
    uint64_t *z11 = x + 12U;
908
42.6k
    uint64_t *y2 = y + 6U;
909
42.6k
    uint64_t *z21 = y + 12U;
910
42.6k
    fsub0(t3, t3, t4);
911
42.6k
    fadd0(t4, y10, z11);
912
42.6k
    fadd0(t5, y2, z21);
913
42.6k
    fmul0(t4, t4, t5);
914
42.6k
    fadd0(t5, t11, t2);
915
42.6k
    fsub0(t4, t4, t5);
916
42.6k
    uint64_t *x10 = x;
917
42.6k
    uint64_t *z1 = x + 12U;
918
42.6k
    uint64_t *x2 = y;
919
42.6k
    uint64_t *z2 = y + 12U;
920
42.6k
    fadd0(x3, x10, z1);
921
42.6k
    fadd0(y3, x2, z2);
922
42.6k
    fmul0(x3, x3, y3);
923
42.6k
    fadd0(y3, t01, t2);
924
42.6k
    fsub0(y3, x3, y3);
925
42.6k
    uint64_t b_coeff[6U] = { 0U };
926
42.6k
    p384_make_b_coeff(b_coeff);
927
42.6k
    fmul0(z3, b_coeff, t2);
928
42.6k
    fsub0(x3, y3, z3);
929
42.6k
    fadd0(z3, x3, x3);
930
42.6k
    fadd0(x3, x3, z3);
931
42.6k
    fsub0(z3, t11, x3);
932
42.6k
    fadd0(x3, t11, x3);
933
42.6k
    uint64_t b_coeff0[6U] = { 0U };
934
42.6k
    p384_make_b_coeff(b_coeff0);
935
42.6k
    fmul0(y3, b_coeff0, y3);
936
42.6k
    fadd0(t11, t2, t2);
937
42.6k
    fadd0(t2, t11, t2);
938
42.6k
    fsub0(y3, y3, t2);
939
42.6k
    fsub0(y3, y3, t01);
940
42.6k
    fadd0(t11, y3, y3);
941
42.6k
    fadd0(y3, t11, y3);
942
42.6k
    fadd0(t11, t01, t01);
943
42.6k
    fadd0(t01, t11, t01);
944
42.6k
    fsub0(t01, t01, t2);
945
42.6k
    fmul0(t11, t4, y3);
946
42.6k
    fmul0(t2, t01, y3);
947
42.6k
    fmul0(y3, x3, z3);
948
42.6k
    fadd0(y3, y3, t2);
949
42.6k
    fmul0(x3, t3, x3);
950
42.6k
    fsub0(x3, x3, t11);
951
42.6k
    fmul0(z3, t4, z3);
952
42.6k
    fmul0(t11, t3, t01);
953
42.6k
    fadd0(z3, z3, t11);
954
42.6k
    memcpy(xy, t1, 18U * sizeof(uint64_t));
955
42.6k
}
956
957
static inline void
958
point_double(uint64_t *x, uint64_t *xx)
959
161k
{
960
161k
    uint64_t tmp[30U] = { 0U };
961
161k
    uint64_t *x1 = x;
962
161k
    uint64_t *z = x + 12U;
963
161k
    uint64_t *x3 = xx;
964
161k
    uint64_t *y3 = xx + 6U;
965
161k
    uint64_t *z3 = xx + 12U;
966
161k
    uint64_t *t0 = tmp;
967
161k
    uint64_t *t1 = tmp + 6U;
968
161k
    uint64_t *t2 = tmp + 12U;
969
161k
    uint64_t *t3 = tmp + 18U;
970
161k
    uint64_t *t4 = tmp + 24U;
971
161k
    uint64_t *x2 = x;
972
161k
    uint64_t *y = x + 6U;
973
161k
    uint64_t *z1 = x + 12U;
974
161k
    fsqr0(t0, x2);
975
161k
    fsqr0(t1, y);
976
161k
    fsqr0(t2, z1);
977
161k
    fmul0(t3, x2, y);
978
161k
    fadd0(t3, t3, t3);
979
161k
    fmul0(t4, y, z1);
980
161k
    fmul0(z3, x1, z);
981
161k
    fadd0(z3, z3, z3);
982
161k
    uint64_t b_coeff[6U] = { 0U };
983
161k
    p384_make_b_coeff(b_coeff);
984
161k
    fmul0(y3, b_coeff, t2);
985
161k
    fsub0(y3, y3, z3);
986
161k
    fadd0(x3, y3, y3);
987
161k
    fadd0(y3, x3, y3);
988
161k
    fsub0(x3, t1, y3);
989
161k
    fadd0(y3, t1, y3);
990
161k
    fmul0(y3, x3, y3);
991
161k
    fmul0(x3, x3, t3);
992
161k
    fadd0(t3, t2, t2);
993
161k
    fadd0(t2, t2, t3);
994
161k
    uint64_t b_coeff0[6U] = { 0U };
995
161k
    p384_make_b_coeff(b_coeff0);
996
161k
    fmul0(z3, b_coeff0, z3);
997
161k
    fsub0(z3, z3, t2);
998
161k
    fsub0(z3, z3, t0);
999
161k
    fadd0(t3, z3, z3);
1000
161k
    fadd0(z3, z3, t3);
1001
161k
    fadd0(t3, t0, t0);
1002
161k
    fadd0(t0, t3, t0);
1003
161k
    fsub0(t0, t0, t2);
1004
161k
    fmul0(t0, t0, z3);
1005
161k
    fadd0(y3, y3, t0);
1006
161k
    fadd0(t0, t4, t4);
1007
161k
    fmul0(z3, t0, z3);
1008
161k
    fsub0(x3, x3, z3);
1009
161k
    fmul0(z3, t0, t1);
1010
161k
    fadd0(z3, z3, z3);
1011
161k
    fadd0(z3, z3, z3);
1012
161k
}
1013
1014
static inline void
1015
point_zero(uint64_t *one)
1016
826
{
1017
826
    uint64_t *x = one;
1018
826
    uint64_t *y = one + 6U;
1019
826
    uint64_t *z = one + 12U;
1020
826
    p384_make_fzero(x);
1021
826
    p384_make_fone(y);
1022
826
    p384_make_fzero(z);
1023
826
}
1024
1025
static inline void
1026
point_mul(uint64_t *res, uint64_t *scalar, uint64_t *p)
1027
413
{
1028
413
    uint64_t table[288U] = { 0U };
1029
413
    uint64_t tmp[18U] = { 0U };
1030
413
    uint64_t *t0 = table;
1031
413
    uint64_t *t1 = table + 18U;
1032
413
    point_zero(t0);
1033
413
    memcpy(t1, p, 18U * sizeof(uint64_t));
1034
413
    KRML_MAYBE_FOR7(i,
1035
413
                    0U,
1036
413
                    7U,
1037
413
                    1U,
1038
413
                    uint64_t *t11 = table + (i + 1U) * 18U;
1039
413
                    point_double(t11, tmp);
1040
413
                    memcpy(table + (2U * i + 2U) * 18U, tmp, 18U * sizeof(uint64_t));
1041
413
                    uint64_t *t2 = table + (2U * i + 2U) * 18U;
1042
413
                    point_add(p, t2, tmp);
1043
413
                    memcpy(table + (2U * i + 3U) * 18U, tmp, 18U * sizeof(uint64_t)););
1044
413
    point_zero(res);
1045
413
    uint64_t tmp0[18U] = { 0U };
1046
40.0k
    for (uint32_t i0 = 0U; i0 < 96U; i0++) {
1047
39.6k
        KRML_MAYBE_FOR4(i, 0U, 4U, 1U, point_double(res, res););
1048
39.6k
        uint32_t k = 384U - 4U * i0 - 4U;
1049
39.6k
        uint64_t bits_l = Hacl_Bignum_Lib_bn_get_bits_u64(6U, scalar, k, 4U);
1050
39.6k
        memcpy(tmp0, (uint64_t *)table, 18U * sizeof(uint64_t));
1051
39.6k
        KRML_MAYBE_FOR15(
1052
39.6k
            i1,
1053
39.6k
            0U,
1054
39.6k
            15U,
1055
39.6k
            1U,
1056
39.6k
            uint64_t c = FStar_UInt64_eq_mask(bits_l, (uint64_t)(i1 + 1U));
1057
39.6k
            const uint64_t *res_j = table + (i1 + 1U) * 18U;
1058
39.6k
            for (uint32_t i = 0U; i < 18U; i++) {
1059
39.6k
                uint64_t *os = tmp0;
1060
39.6k
                uint64_t x = (c & res_j[i]) | (~c & tmp0[i]);
1061
39.6k
                os[i] = x;
1062
39.6k
            });
1063
39.6k
        point_add(res, tmp0, res);
1064
39.6k
    }
1065
413
}
1066
1067
static inline void
1068
point_mul_g(uint64_t *res, uint64_t *scalar)
1069
332
{
1070
332
    uint64_t g[18U] = { 0U };
1071
332
    uint64_t *x = g;
1072
332
    uint64_t *y = g + 6U;
1073
332
    uint64_t *z = g + 12U;
1074
332
    p384_make_g_x(x);
1075
332
    p384_make_g_y(y);
1076
332
    p384_make_fone(z);
1077
332
    point_mul(res, scalar, g);
1078
332
}
1079
1080
static inline void
1081
point_mul_double_g(uint64_t *res, uint64_t *scalar1, uint64_t *scalar2, uint64_t *p)
1082
67
{
1083
67
    uint64_t tmp[18U] = { 0U };
1084
67
    point_mul_g(tmp, scalar1);
1085
67
    point_mul(res, scalar2, p);
1086
67
    point_add(res, tmp, res);
1087
67
}
1088
1089
static inline bool
1090
ecdsa_sign_msg_as_qelem(
1091
    uint8_t *signature,
1092
    uint64_t *m_q,
1093
    uint8_t *private_key,
1094
    uint8_t *nonce)
1095
0
{
1096
0
    uint64_t rsdk_q[24U] = { 0U };
1097
0
    uint64_t *r_q = rsdk_q;
1098
0
    uint64_t *s_q = rsdk_q + 6U;
1099
0
    uint64_t *d_a = rsdk_q + 12U;
1100
0
    uint64_t *k_q = rsdk_q + 18U;
1101
0
    uint64_t is_sk_valid = load_qelem_conditional(d_a, private_key);
1102
0
    uint64_t is_nonce_valid = load_qelem_conditional(k_q, nonce);
1103
0
    uint64_t are_sk_nonce_valid = is_sk_valid & is_nonce_valid;
1104
0
    uint64_t p[18U] = { 0U };
1105
0
    point_mul_g(p, k_q);
1106
0
    uint64_t zinv[6U] = { 0U };
1107
0
    uint64_t *px = p;
1108
0
    uint64_t *pz = p + 12U;
1109
0
    p384_finv(zinv, pz);
1110
0
    fmul0(r_q, px, zinv);
1111
0
    from_mont(r_q, r_q);
1112
0
    qmod_short(r_q, r_q);
1113
0
    uint64_t kinv[6U] = { 0U };
1114
0
    p384_qinv(kinv, k_q);
1115
0
    qmul(s_q, r_q, d_a);
1116
0
    from_qmont(m_q, m_q);
1117
0
    qadd(s_q, m_q, s_q);
1118
0
    qmul(s_q, kinv, s_q);
1119
0
    bn_to_bytes_be(signature, r_q);
1120
0
    bn_to_bytes_be(signature + 48U, s_q);
1121
0
    uint64_t bn_zero0[6U] = { 0U };
1122
0
    uint64_t res = bn_is_eq_mask(r_q, bn_zero0);
1123
0
    uint64_t is_r_zero = res;
1124
0
    uint64_t bn_zero[6U] = { 0U };
1125
0
    uint64_t res0 = bn_is_eq_mask(s_q, bn_zero);
1126
0
    uint64_t is_s_zero = res0;
1127
0
    uint64_t m = are_sk_nonce_valid & (~is_r_zero & ~is_s_zero);
1128
0
    bool res1 = m == 0xFFFFFFFFFFFFFFFFULL;
1129
0
    return res1;
1130
0
}
1131
1132
static inline bool
1133
ecdsa_verify_msg_as_qelem(
1134
    uint64_t *m_q,
1135
    uint8_t *public_key,
1136
    uint8_t *signature_r,
1137
    uint8_t *signature_s)
1138
69
{
1139
69
    uint64_t tmp[42U] = { 0U };
1140
69
    uint64_t *pk = tmp;
1141
69
    uint64_t *r_q = tmp + 18U;
1142
69
    uint64_t *s_q = tmp + 24U;
1143
69
    uint64_t *u1 = tmp + 30U;
1144
69
    uint64_t *u2 = tmp + 36U;
1145
69
    uint64_t p_aff[12U] = { 0U };
1146
69
    uint8_t *p_x = public_key;
1147
69
    uint8_t *p_y = public_key + 48U;
1148
69
    uint64_t *bn_p_x = p_aff;
1149
69
    uint64_t *bn_p_y = p_aff + 6U;
1150
69
    bn_from_bytes_be(bn_p_x, p_x);
1151
69
    bn_from_bytes_be(bn_p_y, p_y);
1152
69
    uint64_t *px0 = p_aff;
1153
69
    uint64_t *py0 = p_aff + 6U;
1154
69
    uint64_t lessX = bn_is_lt_prime_mask(px0);
1155
69
    uint64_t lessY = bn_is_lt_prime_mask(py0);
1156
69
    uint64_t res0 = lessX & lessY;
1157
69
    bool is_xy_valid = res0 == 0xFFFFFFFFFFFFFFFFULL;
1158
69
    bool res;
1159
69
    if (!is_xy_valid) {
1160
0
        res = false;
1161
69
    } else {
1162
69
        uint64_t rp[6U] = { 0U };
1163
69
        uint64_t tx[6U] = { 0U };
1164
69
        uint64_t ty[6U] = { 0U };
1165
69
        uint64_t *px = p_aff;
1166
69
        uint64_t *py = p_aff + 6U;
1167
69
        to_mont(tx, px);
1168
69
        to_mont(ty, py);
1169
69
        uint64_t tmp1[6U] = { 0U };
1170
69
        fsqr0(rp, tx);
1171
69
        fmul0(rp, rp, tx);
1172
69
        p384_make_a_coeff(tmp1);
1173
69
        fmul0(tmp1, tmp1, tx);
1174
69
        fadd0(rp, tmp1, rp);
1175
69
        p384_make_b_coeff(tmp1);
1176
69
        fadd0(rp, tmp1, rp);
1177
69
        fsqr0(ty, ty);
1178
69
        uint64_t r = bn_is_eq_mask(ty, rp);
1179
69
        uint64_t r0 = r;
1180
69
        bool r1 = r0 == 0xFFFFFFFFFFFFFFFFULL;
1181
69
        res = r1;
1182
69
    }
1183
69
    if (res) {
1184
69
        uint64_t *px = p_aff;
1185
69
        uint64_t *py = p_aff + 6U;
1186
69
        uint64_t *rx = pk;
1187
69
        uint64_t *ry = pk + 6U;
1188
69
        uint64_t *rz = pk + 12U;
1189
69
        to_mont(rx, px);
1190
69
        to_mont(ry, py);
1191
69
        p384_make_fone(rz);
1192
69
    }
1193
69
    bool is_pk_valid = res;
1194
69
    bn_from_bytes_be(r_q, signature_r);
1195
69
    bn_from_bytes_be(s_q, signature_s);
1196
69
    uint64_t tmp10[6U] = { 0U };
1197
69
    p384_make_order(tmp10);
1198
69
    uint64_t c = bn_sub(tmp10, r_q, tmp10);
1199
69
    uint64_t is_lt_order = FStar_UInt64_gte_mask(c, 0ULL) & ~FStar_UInt64_eq_mask(c, 0ULL);
1200
69
    uint64_t bn_zero0[6U] = { 0U };
1201
69
    uint64_t res1 = bn_is_eq_mask(r_q, bn_zero0);
1202
69
    uint64_t is_eq_zero = res1;
1203
69
    uint64_t is_r_valid = is_lt_order & ~is_eq_zero;
1204
69
    uint64_t tmp11[6U] = { 0U };
1205
69
    p384_make_order(tmp11);
1206
69
    uint64_t c0 = bn_sub(tmp11, s_q, tmp11);
1207
69
    uint64_t is_lt_order0 = FStar_UInt64_gte_mask(c0, 0ULL) & ~FStar_UInt64_eq_mask(c0, 0ULL);
1208
69
    uint64_t bn_zero1[6U] = { 0U };
1209
69
    uint64_t res2 = bn_is_eq_mask(s_q, bn_zero1);
1210
69
    uint64_t is_eq_zero0 = res2;
1211
69
    uint64_t is_s_valid = is_lt_order0 & ~is_eq_zero0;
1212
69
    bool is_rs_valid = is_r_valid == 0xFFFFFFFFFFFFFFFFULL && is_s_valid == 0xFFFFFFFFFFFFFFFFULL;
1213
69
    if (!(is_pk_valid && is_rs_valid)) {
1214
2
        return false;
1215
2
    }
1216
67
    uint64_t sinv[6U] = { 0U };
1217
67
    p384_qinv(sinv, s_q);
1218
67
    uint64_t tmp1[6U] = { 0U };
1219
67
    from_qmont(tmp1, m_q);
1220
67
    qmul(u1, sinv, tmp1);
1221
67
    uint64_t tmp12[6U] = { 0U };
1222
67
    from_qmont(tmp12, r_q);
1223
67
    qmul(u2, sinv, tmp12);
1224
67
    uint64_t res3[18U] = { 0U };
1225
67
    point_mul_double_g(res3, u1, u2, pk);
1226
67
    uint64_t *pz0 = res3 + 12U;
1227
67
    uint64_t bn_zero[6U] = { 0U };
1228
67
    uint64_t res10 = bn_is_eq_mask(pz0, bn_zero);
1229
67
    uint64_t m = res10;
1230
67
    if (m == 0xFFFFFFFFFFFFFFFFULL) {
1231
0
        return false;
1232
0
    }
1233
67
    uint64_t x[6U] = { 0U };
1234
67
    uint64_t zinv[6U] = { 0U };
1235
67
    uint64_t *px = res3;
1236
67
    uint64_t *pz = res3 + 12U;
1237
67
    p384_finv(zinv, pz);
1238
67
    fmul0(x, px, zinv);
1239
67
    from_mont(x, x);
1240
67
    qmod_short(x, x);
1241
67
    uint64_t m0 = bn_is_eq_mask(x, r_q);
1242
67
    bool res11 = m0 == 0xFFFFFFFFFFFFFFFFULL;
1243
67
    return res11;
1244
67
}
1245
1246
/*******************************************************************************
1247
1248
 Verified C library for ECDSA and ECDH functions over the P-384 NIST curve.
1249
1250
 This module implements signing and verification, key validation, conversions
1251
 between various point representations, and ECDH key agreement.
1252
1253
*******************************************************************************/
1254
1255
/*****************/
1256
/* ECDSA signing */
1257
/*****************/
1258
1259
/**
1260
Create an ECDSA signature WITHOUT hashing first.
1261
1262
  This function is intended to receive a hash of the input.
1263
  For convenience, we recommend using one of the hash-and-sign combined functions above.
1264
1265
  The argument `msg` MUST be at least 48 bytes (i.e. `msg_len >= 48`).
1266
1267
  NOTE: The equivalent functions in OpenSSL and Fiat-Crypto both accept inputs
1268
  smaller than 48 bytes. These libraries left-pad the input with enough zeroes to
1269
  reach the minimum 48 byte size. Clients who need behavior identical to OpenSSL
1270
  need to perform the left-padding themselves.
1271
1272
  The function returns `true` for successful creation of an ECDSA signature and `false` otherwise.
1273
1274
  The outparam `signature` (R || S) points to 96 bytes of valid memory, i.e., uint8_t[96].
1275
  The argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].
1276
  The arguments `private_key` and `nonce` point to 48 bytes of valid memory, i.e., uint8_t[48].
1277
1278
  The function also checks whether `private_key` and `nonce` are valid values:
1279
    • 0 < `private_key` < the order of the curve
1280
    • 0 < `nonce` < the order of the curve
1281
*/
1282
bool
1283
Hacl_P384_ecdsa_sign_p384_without_hash(
1284
    uint8_t *signature,
1285
    uint32_t msg_len,
1286
    uint8_t *msg,
1287
    uint8_t *private_key,
1288
    uint8_t *nonce)
1289
0
{
1290
0
    uint64_t m_q[6U] = { 0U };
1291
0
    uint8_t mHash[48U] = { 0U };
1292
0
    memcpy(mHash, msg, 48U * sizeof(uint8_t));
1293
0
    KRML_MAYBE_UNUSED_VAR(msg_len);
1294
0
    uint8_t *mHash48 = mHash;
1295
0
    bn_from_bytes_be(m_q, mHash48);
1296
0
    qmod_short(m_q, m_q);
1297
0
    bool res = ecdsa_sign_msg_as_qelem(signature, m_q, private_key, nonce);
1298
0
    return res;
1299
0
}
1300
1301
/**********************/
1302
/* ECDSA verification */
1303
/**********************/
1304
1305
/**
1306
Verify an ECDSA signature WITHOUT hashing first.
1307
1308
  This function is intended to receive a hash of the input.
1309
  For convenience, we recommend using one of the hash-and-verify combined functions above.
1310
1311
  The argument `msg` MUST be at least 48 bytes (i.e. `msg_len >= 48`).
1312
1313
  The function returns `true` if the signature is valid and `false` otherwise.
1314
1315
  The argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].
1316
  The argument `public_key` (x || y) points to 96 bytes of valid memory, i.e., uint8_t[96].
1317
  The arguments `signature_r` and `signature_s` point to 48 bytes of valid memory, i.e., uint8_t[48].
1318
1319
  The function also checks whether `public_key` is valid
1320
*/
1321
bool
1322
Hacl_P384_ecdsa_verif_without_hash(
1323
    uint32_t msg_len,
1324
    uint8_t *msg,
1325
    uint8_t *public_key,
1326
    uint8_t *signature_r,
1327
    uint8_t *signature_s)
1328
69
{
1329
69
    uint64_t m_q[6U] = { 0U };
1330
69
    uint8_t mHash[48U] = { 0U };
1331
69
    memcpy(mHash, msg, 48U * sizeof(uint8_t));
1332
69
    KRML_MAYBE_UNUSED_VAR(msg_len);
1333
69
    uint8_t *mHash48 = mHash;
1334
69
    bn_from_bytes_be(m_q, mHash48);
1335
69
    qmod_short(m_q, m_q);
1336
69
    bool res = ecdsa_verify_msg_as_qelem(m_q, public_key, signature_r, signature_s);
1337
69
    return res;
1338
69
}
1339
1340
/******************/
1341
/* Key validation */
1342
/******************/
1343
1344
/**
1345
Public key validation.
1346
1347
  The function returns `true` if a public key is valid and `false` otherwise.
1348
1349
  The argument `public_key` points to 96 bytes of valid memory, i.e., uint8_t[96].
1350
1351
  The public key (x || y) is valid (with respect to SP 800-56A):
1352
    • the public key is not the “point at infinity”, represented as O.
1353
    • the affine x and y coordinates of the point represented by the public key are
1354
      in the range [0, p – 1] where p is the prime defining the finite field.
1355
    • y^2 = x^3 + ax + b where a and b are the coefficients of the curve equation.
1356
  The last extract is taken from: https://neilmadden.blog/2017/05/17/so-how-do-you-validate-nist-ecdh-public-keys/
1357
*/
1358
bool
1359
Hacl_P384_validate_public_key(uint8_t *public_key)
1360
557
{
1361
557
    uint64_t point_jac[18U] = { 0U };
1362
557
    uint64_t p_aff[12U] = { 0U };
1363
557
    uint8_t *p_x = public_key;
1364
557
    uint8_t *p_y = public_key + 48U;
1365
557
    uint64_t *bn_p_x = p_aff;
1366
557
    uint64_t *bn_p_y = p_aff + 6U;
1367
557
    bn_from_bytes_be(bn_p_x, p_x);
1368
557
    bn_from_bytes_be(bn_p_y, p_y);
1369
557
    uint64_t *px0 = p_aff;
1370
557
    uint64_t *py0 = p_aff + 6U;
1371
557
    uint64_t lessX = bn_is_lt_prime_mask(px0);
1372
557
    uint64_t lessY = bn_is_lt_prime_mask(py0);
1373
557
    uint64_t res0 = lessX & lessY;
1374
557
    bool is_xy_valid = res0 == 0xFFFFFFFFFFFFFFFFULL;
1375
557
    bool res;
1376
557
    if (!is_xy_valid) {
1377
21
        res = false;
1378
536
    } else {
1379
536
        uint64_t rp[6U] = { 0U };
1380
536
        uint64_t tx[6U] = { 0U };
1381
536
        uint64_t ty[6U] = { 0U };
1382
536
        uint64_t *px = p_aff;
1383
536
        uint64_t *py = p_aff + 6U;
1384
536
        to_mont(tx, px);
1385
536
        to_mont(ty, py);
1386
536
        uint64_t tmp[6U] = { 0U };
1387
536
        fsqr0(rp, tx);
1388
536
        fmul0(rp, rp, tx);
1389
536
        p384_make_a_coeff(tmp);
1390
536
        fmul0(tmp, tmp, tx);
1391
536
        fadd0(rp, tmp, rp);
1392
536
        p384_make_b_coeff(tmp);
1393
536
        fadd0(rp, tmp, rp);
1394
536
        fsqr0(ty, ty);
1395
536
        uint64_t r = bn_is_eq_mask(ty, rp);
1396
536
        uint64_t r0 = r;
1397
536
        bool r1 = r0 == 0xFFFFFFFFFFFFFFFFULL;
1398
536
        res = r1;
1399
536
    }
1400
557
    if (res) {
1401
350
        uint64_t *px = p_aff;
1402
350
        uint64_t *py = p_aff + 6U;
1403
350
        uint64_t *rx = point_jac;
1404
350
        uint64_t *ry = point_jac + 6U;
1405
350
        uint64_t *rz = point_jac + 12U;
1406
350
        to_mont(rx, px);
1407
350
        to_mont(ry, py);
1408
350
        p384_make_fone(rz);
1409
350
    }
1410
557
    bool res1 = res;
1411
557
    return res1;
1412
557
}
1413
1414
/**
1415
Private key validation.
1416
1417
  The function returns `true` if a private key is valid and `false` otherwise.
1418
1419
  The argument `private_key` points to 48 bytes of valid memory, i.e., uint8_t[48].
1420
1421
  The private key is valid:
1422
    • 0 < `private_key` < the order of the curve
1423
*/
1424
bool
1425
Hacl_P384_validate_private_key(uint8_t *private_key)
1426
217
{
1427
217
    uint64_t bn_sk[6U] = { 0U };
1428
217
    bn_from_bytes_be(bn_sk, private_key);
1429
217
    uint64_t tmp[6U] = { 0U };
1430
217
    p384_make_order(tmp);
1431
217
    uint64_t c = bn_sub(tmp, bn_sk, tmp);
1432
217
    uint64_t is_lt_order = FStar_UInt64_gte_mask(c, 0ULL) & ~FStar_UInt64_eq_mask(c, 0ULL);
1433
217
    uint64_t bn_zero[6U] = { 0U };
1434
217
    uint64_t res = bn_is_eq_mask(bn_sk, bn_zero);
1435
217
    uint64_t is_eq_zero = res;
1436
217
    uint64_t res0 = is_lt_order & ~is_eq_zero;
1437
217
    return res0 == 0xFFFFFFFFFFFFFFFFULL;
1438
217
}
1439
1440
/*******************************************************************************
1441
  Parsing and Serializing public keys.
1442
1443
  A public key is a point (x, y) on the P-384 NIST curve.
1444
1445
  The point can be represented in the following three ways.
1446
    • raw          = [ x || y ], 96 bytes
1447
    • uncompressed = [ 0x04 || x || y ], 97 bytes
1448
    • compressed   = [ (0x02 for even `y` and 0x03 for odd `y`) || x ], 33 bytes
1449
1450
*******************************************************************************/
1451
1452
/**
1453
Convert a public key from uncompressed to its raw form.
1454
1455
  The function returns `true` for successful conversion of a public key and `false` otherwise.
1456
1457
  The outparam `pk_raw` points to 96 bytes of valid memory, i.e., uint8_t[96].
1458
  The argument `pk` points to 97 bytes of valid memory, i.e., uint8_t[97].
1459
1460
  The function DOESN'T check whether (x, y) is a valid point.
1461
*/
1462
bool
1463
Hacl_P384_uncompressed_to_raw(uint8_t *pk, uint8_t *pk_raw)
1464
0
{
1465
0
    uint8_t pk0 = pk[0U];
1466
0
    if (pk0 != 0x04U) {
1467
0
        return false;
1468
0
    }
1469
0
    memcpy(pk_raw, pk + 1U, 96U * sizeof(uint8_t));
1470
0
    return true;
1471
0
}
1472
1473
/**
1474
Convert a public key from compressed to its raw form.
1475
1476
  The function returns `true` for successful conversion of a public key and `false` otherwise.
1477
1478
  The outparam `pk_raw` points to 96 bytes of valid memory, i.e., uint8_t[96].
1479
  The argument `pk` points to 33 bytes of valid memory, i.e., uint8_t[33].
1480
1481
  The function also checks whether (x, y) is a valid point.
1482
*/
1483
bool
1484
Hacl_P384_compressed_to_raw(uint8_t *pk, uint8_t *pk_raw)
1485
0
{
1486
0
    uint64_t xa[6U] = { 0U };
1487
0
    uint64_t ya[6U] = { 0U };
1488
0
    uint8_t *pk_xb = pk + 1U;
1489
0
    uint8_t s0 = pk[0U];
1490
0
    uint8_t s01 = s0;
1491
0
    bool b;
1492
0
    if (!(s01 == 0x02U || s01 == 0x03U)) {
1493
0
        b = false;
1494
0
    } else {
1495
0
        uint8_t *xb = pk + 1U;
1496
0
        bn_from_bytes_be(xa, xb);
1497
0
        uint64_t is_x_valid = bn_is_lt_prime_mask(xa);
1498
0
        bool is_x_valid1 = is_x_valid == 0xFFFFFFFFFFFFFFFFULL;
1499
0
        bool is_y_odd = s01 == 0x03U;
1500
0
        if (!is_x_valid1) {
1501
0
            b = false;
1502
0
        } else {
1503
0
            uint64_t y2M[6U] = { 0U };
1504
0
            uint64_t xM[6U] = { 0U };
1505
0
            uint64_t yM[6U] = { 0U };
1506
0
            to_mont(xM, xa);
1507
0
            uint64_t tmp[6U] = { 0U };
1508
0
            fsqr0(y2M, xM);
1509
0
            fmul0(y2M, y2M, xM);
1510
0
            p384_make_a_coeff(tmp);
1511
0
            fmul0(tmp, tmp, xM);
1512
0
            fadd0(y2M, tmp, y2M);
1513
0
            p384_make_b_coeff(tmp);
1514
0
            fadd0(y2M, tmp, y2M);
1515
0
            p384_fsqrt(yM, y2M);
1516
0
            from_mont(ya, yM);
1517
0
            fsqr0(yM, yM);
1518
0
            uint64_t r = bn_is_eq_mask(yM, y2M);
1519
0
            uint64_t r0 = r;
1520
0
            bool is_y_valid = r0 == 0xFFFFFFFFFFFFFFFFULL;
1521
0
            bool is_y_valid0 = is_y_valid;
1522
0
            if (!is_y_valid0) {
1523
0
                b = false;
1524
0
            } else {
1525
0
                uint64_t is_y_odd1 = ya[0U] & 1ULL;
1526
0
                bool is_y_odd2 = is_y_odd1 == 1ULL;
1527
0
                uint64_t zero[6U] = { 0U };
1528
0
                if (is_y_odd2 != is_y_odd) {
1529
0
                    fsub0(ya, zero, ya);
1530
0
                }
1531
0
                b = true;
1532
0
            }
1533
0
        }
1534
0
    }
1535
0
    if (b) {
1536
0
        memcpy(pk_raw, pk_xb, 48U * sizeof(uint8_t));
1537
0
        bn_to_bytes_be(pk_raw + 48U, ya);
1538
0
    }
1539
0
    return b;
1540
0
}
1541
1542
/**
1543
Convert a public key from raw to its uncompressed form.
1544
1545
  The outparam `pk` points to 97 bytes of valid memory, i.e., uint8_t[97].
1546
  The argument `pk_raw` points to 96 bytes of valid memory, i.e., uint8_t[96].
1547
1548
  The function DOESN'T check whether (x, y) is a valid point.
1549
*/
1550
void
1551
Hacl_P384_raw_to_uncompressed(uint8_t *pk_raw, uint8_t *pk)
1552
0
{
1553
0
    pk[0U] = 0x04U;
1554
0
    memcpy(pk + 1U, pk_raw, 96U * sizeof(uint8_t));
1555
0
}
1556
1557
/**
1558
Convert a public key from raw to its compressed form.
1559
1560
  The outparam `pk` points to 33 bytes of valid memory, i.e., uint8_t[33].
1561
  The argument `pk_raw` points to 96 bytes of valid memory, i.e., uint8_t[96].
1562
1563
  The function DOESN'T check whether (x, y) is a valid point.
1564
*/
1565
void
1566
Hacl_P384_raw_to_compressed(uint8_t *pk_raw, uint8_t *pk)
1567
0
{
1568
0
    uint8_t *pk_x = pk_raw;
1569
0
    uint8_t *pk_y = pk_raw + 48U;
1570
0
    uint64_t bn_f[6U] = { 0U };
1571
0
    bn_from_bytes_be(bn_f, pk_y);
1572
0
    uint64_t is_odd_f = bn_f[0U] & 1ULL;
1573
0
    pk[0U] = (uint32_t)(uint8_t)is_odd_f + 0x02U;
1574
0
    memcpy(pk + 1U, pk_x, 48U * sizeof(uint8_t));
1575
0
}
1576
1577
/******************/
1578
/* ECDH agreement */
1579
/******************/
1580
1581
/**
1582
Compute the public key from the private key.
1583
1584
  The function returns `true` if a private key is valid and `false` otherwise.
1585
1586
  The outparam `public_key`  points to 96 bytes of valid memory, i.e., uint8_t[96].
1587
  The argument `private_key` points to 48 bytes of valid memory, i.e., uint8_t[48].
1588
1589
  The private key is valid:
1590
    • 0 < `private_key` < the order of the curve.
1591
*/
1592
bool
1593
Hacl_P384_dh_initiator(uint8_t *public_key, uint8_t *private_key)
1594
265
{
1595
265
    uint64_t tmp[24U] = { 0U };
1596
265
    uint64_t *sk = tmp;
1597
265
    uint64_t *pk = tmp + 6U;
1598
265
    uint64_t is_sk_valid = load_qelem_conditional(sk, private_key);
1599
265
    point_mul_g(pk, sk);
1600
265
    uint64_t aff_p[12U] = { 0U };
1601
265
    uint64_t zinv[6U] = { 0U };
1602
265
    uint64_t *px = pk;
1603
265
    uint64_t *py0 = pk + 6U;
1604
265
    uint64_t *pz = pk + 12U;
1605
265
    uint64_t *x = aff_p;
1606
265
    uint64_t *y = aff_p + 6U;
1607
265
    p384_finv(zinv, pz);
1608
265
    fmul0(x, px, zinv);
1609
265
    fmul0(y, py0, zinv);
1610
265
    from_mont(x, x);
1611
265
    from_mont(y, y);
1612
265
    uint64_t *px0 = aff_p;
1613
265
    uint64_t *py = aff_p + 6U;
1614
265
    bn_to_bytes_be(public_key, px0);
1615
265
    bn_to_bytes_be(public_key + 48U, py);
1616
265
    return is_sk_valid == 0xFFFFFFFFFFFFFFFFULL;
1617
265
}
1618
1619
/**
1620
Execute the diffie-hellmann key exchange.
1621
1622
  The function returns `true` for successful creation of an ECDH shared secret and
1623
  `false` otherwise.
1624
1625
  The outparam `shared_secret` points to 96 bytes of valid memory, i.e., uint8_t[96].
1626
  The argument `their_pubkey` points to 96 bytes of valid memory, i.e., uint8_t[96].
1627
  The argument `private_key` points to 48 bytes of valid memory, i.e., uint8_t[48].
1628
1629
  The function also checks whether `private_key` and `their_pubkey` are valid.
1630
*/
1631
bool
1632
Hacl_P384_dh_responder(uint8_t *shared_secret, uint8_t *their_pubkey, uint8_t *private_key)
1633
14
{
1634
14
    uint64_t tmp[192U] = { 0U };
1635
14
    uint64_t *sk = tmp;
1636
14
    uint64_t *pk = tmp + 6U;
1637
14
    uint64_t p_aff[12U] = { 0U };
1638
14
    uint8_t *p_x = their_pubkey;
1639
14
    uint8_t *p_y = their_pubkey + 48U;
1640
14
    uint64_t *bn_p_x = p_aff;
1641
14
    uint64_t *bn_p_y = p_aff + 6U;
1642
14
    bn_from_bytes_be(bn_p_x, p_x);
1643
14
    bn_from_bytes_be(bn_p_y, p_y);
1644
14
    uint64_t *px0 = p_aff;
1645
14
    uint64_t *py0 = p_aff + 6U;
1646
14
    uint64_t lessX = bn_is_lt_prime_mask(px0);
1647
14
    uint64_t lessY = bn_is_lt_prime_mask(py0);
1648
14
    uint64_t res0 = lessX & lessY;
1649
14
    bool is_xy_valid = res0 == 0xFFFFFFFFFFFFFFFFULL;
1650
14
    bool res;
1651
14
    if (!is_xy_valid) {
1652
0
        res = false;
1653
14
    } else {
1654
14
        uint64_t rp[6U] = { 0U };
1655
14
        uint64_t tx[6U] = { 0U };
1656
14
        uint64_t ty[6U] = { 0U };
1657
14
        uint64_t *px = p_aff;
1658
14
        uint64_t *py = p_aff + 6U;
1659
14
        to_mont(tx, px);
1660
14
        to_mont(ty, py);
1661
14
        uint64_t tmp1[6U] = { 0U };
1662
14
        fsqr0(rp, tx);
1663
14
        fmul0(rp, rp, tx);
1664
14
        p384_make_a_coeff(tmp1);
1665
14
        fmul0(tmp1, tmp1, tx);
1666
14
        fadd0(rp, tmp1, rp);
1667
14
        p384_make_b_coeff(tmp1);
1668
14
        fadd0(rp, tmp1, rp);
1669
14
        fsqr0(ty, ty);
1670
14
        uint64_t r = bn_is_eq_mask(ty, rp);
1671
14
        uint64_t r0 = r;
1672
14
        bool r1 = r0 == 0xFFFFFFFFFFFFFFFFULL;
1673
14
        res = r1;
1674
14
    }
1675
14
    if (res) {
1676
14
        uint64_t *px = p_aff;
1677
14
        uint64_t *py = p_aff + 6U;
1678
14
        uint64_t *rx = pk;
1679
14
        uint64_t *ry = pk + 6U;
1680
14
        uint64_t *rz = pk + 12U;
1681
14
        to_mont(rx, px);
1682
14
        to_mont(ry, py);
1683
14
        p384_make_fone(rz);
1684
14
    }
1685
14
    bool is_pk_valid = res;
1686
14
    uint64_t is_sk_valid = load_qelem_conditional(sk, private_key);
1687
14
    uint64_t ss_proj[18U] = { 0U };
1688
14
    if (is_pk_valid) {
1689
14
        point_mul(ss_proj, sk, pk);
1690
14
        uint64_t aff_p[12U] = { 0U };
1691
14
        uint64_t zinv[6U] = { 0U };
1692
14
        uint64_t *px = ss_proj;
1693
14
        uint64_t *py1 = ss_proj + 6U;
1694
14
        uint64_t *pz = ss_proj + 12U;
1695
14
        uint64_t *x = aff_p;
1696
14
        uint64_t *y = aff_p + 6U;
1697
14
        p384_finv(zinv, pz);
1698
14
        fmul0(x, px, zinv);
1699
14
        fmul0(y, py1, zinv);
1700
14
        from_mont(x, x);
1701
14
        from_mont(y, y);
1702
14
        uint64_t *px1 = aff_p;
1703
14
        uint64_t *py = aff_p + 6U;
1704
14
        bn_to_bytes_be(shared_secret, px1);
1705
14
        bn_to_bytes_be(shared_secret + 48U, py);
1706
14
    }
1707
14
    return is_sk_valid == 0xFFFFFFFFFFFFFFFFULL && is_pk_valid;
1708
14
}