Coverage Report

Created: 2023-05-19 06:16

/src/ntp-dev/ntpd/ntp_timer.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * ntp_timer.c - event timer support routines
3
 */
4
#ifdef HAVE_CONFIG_H
5
# include <config.h>
6
#endif
7
8
#include "ntp_machine.h"
9
#include "ntpd.h"
10
#include "ntp_stdlib.h"
11
#include "ntp_calendar.h"
12
#include "ntp_leapsec.h"
13
14
#if defined(HAVE_IO_COMPLETION_PORT)
15
# include "ntp_iocompletionport.h"
16
# include "ntp_timer.h"
17
#endif
18
19
#include <stdio.h>
20
#include <signal.h>
21
#ifdef HAVE_SYS_SIGNAL_H
22
# include <sys/signal.h>
23
#endif
24
#ifdef HAVE_UNISTD_H
25
# include <unistd.h>
26
#endif
27
28
#ifdef KERNEL_PLL
29
#include "ntp_syscall.h"
30
#endif /* KERNEL_PLL */
31
32
#ifdef AUTOKEY
33
#include <openssl/rand.h>
34
#endif  /* AUTOKEY */
35
36
37
/* TC_ERR represents the timer_create() error return value. */
38
#ifdef SYS_VXWORKS
39
#define TC_ERR  ERROR
40
#else
41
#define TC_ERR  (-1)
42
#endif
43
44
45
static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
46
47
/*
48
 * These routines provide support for the event timer.  The timer is
49
 * implemented by an interrupt routine which sets a flag once every
50
 * second, and a timer routine which is called when the mainline code
51
 * gets around to seeing the flag.  The timer routine dispatches the
52
 * clock adjustment code if its time has come, then searches the timer
53
 * queue for expiries which are dispatched to the transmit procedure.
54
 * Finally, we call the hourly procedure to do cleanup and print a
55
 * message.
56
 */
57
volatile int interface_interval;     /* init_io() sets def. 300s */
58
59
/*
60
 * Initializing flag.  All async routines watch this and only do their
61
 * thing when it is clear.
62
 */
63
int initializing;
64
65
/*
66
 * Alarm flag. The mainline code imports this.
67
 */
68
volatile int alarm_flag;
69
70
/*
71
 * The counters and timeouts
72
 */
73
static  u_long interface_timer; /* interface update timer */
74
static  u_long adjust_timer;  /* second timer */
75
static  u_long stats_timer; /* stats timer */
76
static  u_long leapf_timer; /* Report leapfile problems once/day */
77
static  u_long huffpuff_timer;  /* huff-n'-puff timer */
78
static  u_long worker_idle_timer;/* next check for idle intres */
79
u_long  leapsec;          /* seconds to next leap (proximity class) */
80
int     leapdif;                /* TAI difference step at next leap second*/
81
u_long  orphwait;     /* orphan wait time */
82
#ifdef AUTOKEY
83
static  u_long revoke_timer;  /* keys revoke timer */
84
static  u_long keys_timer;  /* session key timer */
85
u_char  sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
86
u_char  sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
87
#endif  /* AUTOKEY */
88
89
/*
90
 * Statistics counter for the interested.
91
 */
92
volatile u_long alarm_overflow;
93
94
u_long current_time;    /* seconds since startup */
95
96
/*
97
 * Stats.  Number of overflows and number of calls to transmit().
98
 */
99
u_long timer_timereset;
100
u_long timer_overflows;
101
u_long timer_xmtcalls;
102
103
#if defined(VMS)
104
static int vmstimer[2];   /* time for next timer AST */
105
static int vmsinc[2];   /* timer increment */
106
#endif /* VMS */
107
108
#ifdef SYS_WINNT
109
HANDLE WaitableTimerHandle;
110
#else
111
static  RETSIGTYPE alarming (int);
112
#endif /* SYS_WINNT */
113
114
#if !defined(VMS)
115
# if !defined SYS_WINNT || defined(SYS_CYGWIN32)
116
#  ifdef HAVE_TIMER_CREATE
117
static timer_t timer_id;
118
typedef struct itimerspec intervaltimer;
119
#   define  itv_frac  tv_nsec
120
#  else
121
typedef struct itimerval intervaltimer;
122
2
#   define  itv_frac  tv_usec
123
#  endif
124
intervaltimer itimer;
125
# endif
126
#endif
127
128
#if !defined(SYS_WINNT) && !defined(VMS)
129
void  set_timer_or_die(const intervaltimer *);
130
#endif
131
132
133
#if !defined(SYS_WINNT) && !defined(VMS)
134
void
135
set_timer_or_die(
136
  const intervaltimer * ptimer
137
  )
138
1
{
139
1
  const char *  setfunc;
140
1
  int   rc;
141
142
# ifdef HAVE_TIMER_CREATE
143
  setfunc = "timer_settime";
144
  rc = timer_settime(timer_id, 0, &itimer, NULL);
145
# else
146
1
  setfunc = "setitimer";
147
1
  rc = setitimer(ITIMER_REAL, &itimer, NULL);
148
1
# endif
149
1
  if (-1 == rc) {
150
0
    msyslog(LOG_ERR, "interval timer %s failed, %m",
151
0
      setfunc);
152
0
    exit(1);
153
0
  }
154
1
}
155
#endif  /* !SYS_WINNT && !VMS */
156
157
158
/*
159
 * reinit_timer - reinitialize interval timer after a clock step.
160
 */
161
void
162
reinit_timer(void)
163
0
{
164
0
#if !defined(SYS_WINNT) && !defined(VMS)
165
0
  ZERO(itimer);
166
# ifdef HAVE_TIMER_CREATE
167
  timer_gettime(timer_id, &itimer);
168
# else
169
0
  getitimer(ITIMER_REAL, &itimer);
170
0
# endif
171
0
  if (itimer.it_value.tv_sec < 0 ||
172
0
      itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
173
0
    itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
174
0
  if (itimer.it_value.itv_frac < 0)
175
0
    itimer.it_value.itv_frac = 0;
176
0
  if (0 == itimer.it_value.tv_sec &&
177
0
      0 == itimer.it_value.itv_frac)
178
0
    itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
179
0
  itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
180
0
  itimer.it_interval.itv_frac = 0;
181
0
  set_timer_or_die(&itimer);
182
0
# endif /* VMS */
183
0
}
184
185
186
/*
187
 * init_timer - initialize the timer data structures
188
 */
189
void
190
init_timer(void)
191
1
{
192
  /*
193
   * Initialize...
194
   */
195
1
  alarm_flag = FALSE;
196
1
  alarm_overflow = 0;
197
1
  adjust_timer = 1;
198
1
  stats_timer = SECSPERHR;
199
1
  leapf_timer = SECSPERDAY;
200
1
  huffpuff_timer = 0;
201
1
  interface_timer = 0;
202
1
  current_time = 0;
203
1
  timer_overflows = 0;
204
1
  timer_xmtcalls = 0;
205
1
  timer_timereset = 0;
206
207
1
#ifndef SYS_WINNT
208
  /*
209
   * Set up the alarm interrupt.  The first comes 2**EVENT_TIMEOUT
210
   * seconds from now and they continue on every 2**EVENT_TIMEOUT
211
   * seconds.
212
   */
213
1
# ifndef VMS
214
#  ifdef HAVE_TIMER_CREATE
215
  if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
216
    msyslog(LOG_ERR, "timer_create failed, %m");
217
    exit(1);
218
  }
219
#  endif
220
1
  signal_no_reset(SIGALRM, alarming);
221
1
  itimer.it_interval.tv_sec =
222
1
    itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
223
1
  itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
224
1
  set_timer_or_die(&itimer);
225
# else  /* VMS follows */
226
  vmsinc[0] = 10000000;   /* 1 sec */
227
  vmsinc[1] = 0;
228
  lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
229
230
  sys$gettim(&vmstimer);  /* that's "now" as abstime */
231
232
  lib$addx(&vmsinc, &vmstimer, &vmstimer);
233
  sys$setimr(0, &vmstimer, alarming, alarming, 0);
234
# endif /* VMS */
235
#else /* SYS_WINNT follows */
236
  /*
237
   * Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
238
   * Under Windows/NT,
239
   */
240
241
  WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
242
  if (WaitableTimerHandle == NULL) {
243
    msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
244
    exit(1);
245
  }
246
  else {
247
    DWORD   Period;
248
    LARGE_INTEGER DueTime;
249
    BOOL    rc;
250
251
    Period = (1 << EVENT_TIMEOUT) * 1000;
252
    DueTime.QuadPart = Period * 10000i64;
253
    rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
254
              Period, NULL, NULL, FALSE);
255
    if (!rc) {
256
      msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
257
      exit(1);
258
    }
259
  }
260
261
#endif  /* SYS_WINNT */
262
1
}
263
264
265
/*
266
 * intres_timeout_req(s) is invoked in the parent to schedule an idle
267
 * timeout to fire in s seconds, if not reset earlier by a call to
268
 * intres_timeout_req(0), which clears any pending timeout.  When the
269
 * timeout expires, worker_idle_timer_fired() is invoked (again, in the
270
 * parent).
271
 *
272
 * sntp and ntpd each provide implementations adapted to their timers.
273
 */
274
void
275
intres_timeout_req(
276
  u_int seconds   /* 0 cancels */
277
  )
278
0
{
279
#if defined(HAVE_DROPROOT) && defined(NEED_EARLY_FORK)
280
  if (droproot) {
281
    worker_idle_timer = 0;
282
    return;
283
  }
284
#endif
285
0
  if (0 == seconds) {
286
0
    worker_idle_timer = 0;
287
0
    return;
288
0
  }
289
0
  worker_idle_timer = current_time + seconds;
290
0
}
291
292
293
/*
294
 * timer - event timer
295
 */
296
void
297
timer(void)
298
0
{
299
0
  struct peer * p;
300
0
  struct peer * next_peer;
301
0
  l_fp    now;
302
0
  time_t          tnow;
303
304
  /*
305
   * The basic timerevent is one second.  This is used to adjust the
306
   * system clock in time and frequency, implement the kiss-o'-death
307
   * function and the association polling function.
308
   */
309
0
  current_time++;
310
0
  if (adjust_timer <= current_time) {
311
0
    adjust_timer += 1;
312
0
    adj_host_clock();
313
0
#ifdef REFCLOCK
314
0
    for (p = peer_list; p != NULL; p = next_peer) {
315
0
      next_peer = p->p_link;
316
0
      if (FLAG_REFCLOCK & p->flags)
317
0
        refclock_timer(p);
318
0
    }
319
0
#endif /* REFCLOCK */
320
0
  }
321
322
  /*
323
   * Now dispatch any peers whose event timer has expired. Be
324
   * careful here, since the peer structure might go away as the
325
   * result of the call.
326
   */
327
0
  for (p = peer_list; p != NULL; p = next_peer) {
328
0
    next_peer = p->p_link;
329
330
    /*
331
     * Restrain the non-burst packet rate not more
332
     * than one packet every 16 seconds. This is
333
     * usually tripped using iburst and minpoll of
334
     * 128 s or less.
335
     */
336
0
    if (p->throttle > 0)
337
0
      p->throttle--;
338
0
    if (p->nextdate <= current_time) {
339
0
#ifdef REFCLOCK
340
0
      if (FLAG_REFCLOCK & p->flags)
341
0
        refclock_transmit(p);
342
0
      else
343
0
#endif  /* REFCLOCK */
344
0
        transmit(p);
345
0
    }
346
0
  }
347
348
  /*
349
   * Orphan mode is active when enabled and when no servers less
350
   * than the orphan stratum are available. A server with no other
351
   * synchronization source is an orphan. It shows offset zero and
352
   * reference ID the loopback address.
353
   */
354
0
  if (sys_orphan < STRATUM_UNSPEC && sys_peer == NULL &&
355
0
      current_time > orphwait) {
356
0
    if (sys_leap == LEAP_NOTINSYNC) {
357
0
      set_sys_leap(LEAP_NOWARNING);
358
#ifdef AUTOKEY
359
      if (crypto_flags)
360
        crypto_update();
361
#endif  /* AUTOKEY */
362
0
    }
363
0
    sys_stratum = (u_char)sys_orphan;
364
0
    if (sys_stratum > 1)
365
0
      sys_refid = htonl(LOOPBACKADR);
366
0
    else
367
0
      memcpy(&sys_refid, "LOOP", 4);
368
0
    sys_offset = 0;
369
0
    sys_rootdelay = 0;
370
0
    sys_rootdisp = 0;
371
0
  }
372
373
0
  get_systime(&now);
374
0
  time(&tnow);
375
376
  /*
377
   * Leapseconds. Get time and defer to worker if either something
378
   * is imminent or every 8th second.
379
   */
380
0
  if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
381
0
    check_leapsec(now.l_ui, &tnow,
382
0
                                (sys_leap == LEAP_NOTINSYNC));
383
0
        if (sys_leap != LEAP_NOTINSYNC) {
384
0
                if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
385
0
            if (leapdif > 0)
386
0
              set_sys_leap(LEAP_ADDSECOND);
387
0
            else
388
0
              set_sys_leap(LEAP_DELSECOND);
389
0
                } else {
390
0
                        set_sys_leap(LEAP_NOWARNING);
391
0
                }
392
0
  }
393
394
  /*
395
   * Update huff-n'-puff filter.
396
   */
397
0
  if (huffpuff_timer <= current_time) {
398
0
    huffpuff_timer += HUFFPUFF;
399
0
    huffpuff();
400
0
  }
401
402
#ifdef AUTOKEY
403
  /*
404
   * Garbage collect expired keys.
405
   */
406
  if (keys_timer <= current_time) {
407
    keys_timer += (1UL << sys_automax);
408
    auth_agekeys();
409
  }
410
411
  /*
412
   * Generate new private value. This causes all associations
413
   * to regenerate cookies.
414
   */
415
  if (revoke_timer && revoke_timer <= current_time) {
416
    revoke_timer += (1UL << sys_revoke);
417
    RAND_bytes((u_char *)&sys_private, 4);
418
  }
419
#endif  /* AUTOKEY */
420
421
  /*
422
   * Interface update timer
423
   */
424
0
  if (interface_interval && interface_timer <= current_time) {
425
0
    timer_interfacetimeout(current_time +
426
0
        interface_interval);
427
0
    DPRINTF(2, ("timer: interface update\n"));
428
0
    interface_update(NULL, NULL);
429
0
  }
430
431
0
  if (worker_idle_timer && worker_idle_timer <= current_time)
432
0
    worker_idle_timer_fired();
433
434
  /*
435
   * Finally, write hourly stats and do the hourly
436
   * and daily leapfile checks.
437
   */
438
0
  if (stats_timer <= current_time) {
439
0
    stats_timer += SECSPERHR;
440
0
    write_stats();
441
0
    if (leapf_timer <= current_time) {
442
0
      leapf_timer += SECSPERDAY;
443
0
      check_leap_file(TRUE, now.l_ui, &tnow);
444
0
    } else {
445
0
      check_leap_file(FALSE, now.l_ui, &tnow);
446
0
    }
447
0
  }
448
0
}
449
450
451
#ifndef SYS_WINNT
452
/*
453
 * alarming - tell the world we've been alarmed
454
 */
455
static RETSIGTYPE
456
alarming(
457
  int sig
458
  )
459
0
{
460
0
# ifdef DEBUG
461
0
  const char *msg = "alarming: initializing TRUE\n";
462
0
# endif
463
464
0
  if (!initializing) {
465
0
    if (alarm_flag) {
466
0
      alarm_overflow++;
467
0
# ifdef DEBUG
468
0
      msg = "alarming: overflow\n";
469
0
# endif
470
0
    } else {
471
0
# ifndef VMS
472
0
      alarm_flag++;
473
# else
474
      /* VMS AST routine, increment is no good */
475
      alarm_flag = 1;
476
# endif
477
0
# ifdef DEBUG
478
0
      msg = "alarming: normal\n";
479
0
# endif
480
0
    }
481
0
  }
482
# ifdef VMS
483
  lib$addx(&vmsinc, &vmstimer, &vmstimer);
484
  sys$setimr(0, &vmstimer, alarming, alarming, 0);
485
# endif
486
0
# ifdef DEBUG
487
0
  if (debug >= 4)
488
0
    (void)(-1 == write(1, msg, strlen(msg)));
489
0
# endif
490
0
}
491
#endif /* SYS_WINNT */
492
493
494
void
495
timer_interfacetimeout(u_long timeout)
496
0
{
497
0
  interface_timer = timeout;
498
0
}
499
500
501
/*
502
 * timer_clr_stats - clear timer module stat counters
503
 */
504
void
505
timer_clr_stats(void)
506
0
{
507
0
  timer_overflows = 0;
508
0
  timer_xmtcalls = 0;
509
0
  timer_timereset = current_time;
510
0
}
511
512
513
static void
514
0
check_leap_sec_in_progress( const leap_result_t *lsdata ) {
515
0
  int prv_leap_sec_in_progress = leap_sec_in_progress;
516
0
  leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
517
518
  /* if changed we may have to update the leap status sent to clients */
519
0
  if (leap_sec_in_progress != prv_leap_sec_in_progress)
520
0
    set_sys_leap(sys_leap);
521
0
}
522
523
524
static void
525
check_leapsec(
526
  u_int32        now  ,
527
  const time_t * tpiv ,
528
        int/*BOOL*/    reset)
529
0
{
530
0
  static const char leapmsg_p_step[] =
531
0
      "Positive leap second, stepped backward.";
532
0
  static const char leapmsg_p_slew[] =
533
0
      "Positive leap second, no step correction. "
534
0
      "System clock will be inaccurate for a long time.";
535
536
0
  static const char leapmsg_n_step[] =
537
0
      "Negative leap second, stepped forward.";
538
0
  static const char leapmsg_n_slew[] =
539
0
      "Negative leap second, no step correction. "
540
0
      "System clock will be inaccurate for a long time.";
541
542
0
  leap_result_t lsdata;
543
0
  u_int32       lsprox;
544
#ifdef AUTOKEY
545
  int/*BOOL*/   update_autokey = FALSE;
546
#endif
547
548
0
#ifndef SYS_WINNT  /* WinNT port has its own leap second handling */
549
0
# ifdef KERNEL_PLL
550
0
  leapsec_electric(pll_control && kern_enable);
551
# else
552
  leapsec_electric(0);
553
# endif
554
0
#endif
555
#ifdef LEAP_SMEAR
556
  leap_smear.enabled = leap_smear_intv != 0;
557
#endif
558
0
  if (reset) {
559
0
    lsprox = LSPROX_NOWARN;
560
0
    leapsec_reset_frame();
561
0
    memset(&lsdata, 0, sizeof(lsdata));
562
0
  } else {
563
0
    int fired;
564
565
0
    fired = leapsec_query(&lsdata, now, tpiv);
566
567
0
    DPRINTF(3, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
568
0
      fired, now, now, lsdata.tai_diff, lsdata.ddist));
569
570
#ifdef LEAP_SMEAR
571
    leap_smear.in_progress = 0;
572
    leap_smear.doffset = 0.0;
573
574
    if (leap_smear.enabled) {
575
    if (lsdata.tai_diff) {
576
      if (leap_smear.interval == 0) {
577
        leap_smear.interval = leap_smear_intv;
578
        leap_smear.intv_end = lsdata.ttime.Q_s;
579
        leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
580
        DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
581
          leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
582
      }
583
    } else {
584
      if (leap_smear.interval)
585
        DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
586
      leap_smear.interval = 0;
587
    }
588
589
    if (leap_smear.interval) {
590
      double dtemp = now;
591
      if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
592
        double leap_smear_time = dtemp - leap_smear.intv_start;
593
        /*
594
         * For now we just do a linear interpolation over the smear interval
595
         */
596
#if 0
597
        // linear interpolation
598
        leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
599
#else
600
        // Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
601
        leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
602
#endif
603
        /*
604
         * TODO see if we're inside an inserted leap second, so we need to compute
605
         * leap_smear.doffset = 1.0 - leap_smear.doffset
606
         */
607
        leap_smear.in_progress = 1;
608
#if 0 && defined( DEBUG )
609
        msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
610
          leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
611
          now, leap_smear_time, leap_smear.doffset);
612
#else
613
        DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
614
          leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
615
          now, leap_smear_time, leap_smear.doffset));
616
#endif
617
618
      }
619
    }
620
    }
621
    else
622
    leap_smear.interval = 0;
623
624
    /*
625
     * Update the current leap smear offset, eventually 0.0 if outside smear interval.
626
     */
627
    DTOLFP(leap_smear.doffset, &leap_smear.offset);
628
629
#endif  /* LEAP_SMEAR */
630
631
0
    if (fired) {
632
    /* Full hit. Eventually step the clock, but always
633
     * announce the leap event has happened.
634
     */
635
0
    const char *leapmsg = NULL;
636
0
    double      lswarp  = lsdata.warped;
637
0
    if (lswarp < 0.0) {
638
0
      if (clock_max_back > 0.0 &&
639
0
          clock_max_back < -lswarp) {
640
0
        step_systime(lswarp);
641
0
        leapmsg = leapmsg_p_step;
642
0
      } else {
643
0
        leapmsg = leapmsg_p_slew;
644
0
      }
645
0
    } else  if (lswarp > 0.0) {
646
0
      if (clock_max_fwd > 0.0 &&
647
0
          clock_max_fwd < lswarp) {
648
0
        step_systime(lswarp);
649
0
        leapmsg = leapmsg_n_step;
650
0
      } else {
651
0
        leapmsg = leapmsg_n_slew;
652
0
      }
653
0
    }
654
0
    if (leapmsg)
655
0
      msyslog(LOG_NOTICE, "%s", leapmsg);
656
0
    report_event(EVNT_LEAP, NULL, NULL);
657
#ifdef AUTOKEY
658
    update_autokey = TRUE;
659
#endif
660
0
    lsprox  = LSPROX_NOWARN;
661
0
    leapsec = LSPROX_NOWARN;
662
0
    sys_tai = lsdata.tai_offs;
663
0
    } else {
664
#ifdef AUTOKEY
665
      update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
666
#endif
667
0
      lsprox  = lsdata.proximity;
668
0
      sys_tai = lsdata.tai_offs;
669
0
    }
670
0
  }
671
672
  /* We guard against panic alarming during the red alert phase.
673
   * Strange and evil things might happen if we go from stone cold
674
   * to piping hot in one step. If things are already that wobbly,
675
   * we let the normal clock correction take over, even if a jump
676
   * is involved.
677
         * Also make sure the alarming events are edge-triggered, that is,
678
         * ceated only when the threshold is crossed.
679
         */
680
0
  if (  (leapsec > 0 || lsprox < LSPROX_ALERT)
681
0
      && leapsec < lsprox                     ) {
682
0
    if (  leapsec < LSPROX_SCHEDULE
683
0
                   && lsprox >= LSPROX_SCHEDULE) {
684
0
      if (lsdata.dynamic)
685
0
        report_event(PEVNT_ARMED, sys_peer, NULL);
686
0
      else
687
0
        report_event(EVNT_ARMED, NULL, NULL);
688
0
    }
689
0
    leapsec = lsprox;
690
0
  }
691
0
  if (leapsec > lsprox) {
692
0
    if (  leapsec >= LSPROX_SCHEDULE
693
0
                   && lsprox   < LSPROX_SCHEDULE) {
694
0
      report_event(EVNT_DISARMED, NULL, NULL);
695
0
    }
696
0
    leapsec = lsprox;
697
0
  }
698
699
0
  if (leapsec >= LSPROX_SCHEDULE)
700
0
    leapdif = lsdata.tai_diff;
701
0
  else
702
0
    leapdif = 0;
703
704
0
  check_leap_sec_in_progress(&lsdata);
705
706
#ifdef AUTOKEY
707
  if (update_autokey)
708
    crypto_update_taichange();
709
#endif
710
0
}