/src/ntp-dev/ntpd/refclock_arc.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * refclock_arc - clock driver for ARCRON MSF/DCF/WWVB receivers |
3 | | */ |
4 | | |
5 | | #ifdef HAVE_CONFIG_H |
6 | | #include <config.h> |
7 | | #endif |
8 | | |
9 | | #include "ntp_types.h" |
10 | | |
11 | | #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF) |
12 | | |
13 | | static const char arc_version[] = { "V1.3 2003/02/21" }; |
14 | | |
15 | | /* define PRE_NTP420 for compatibility to previous versions of NTP (at least |
16 | | to 4.1.0 */ |
17 | | #undef PRE_NTP420 |
18 | | |
19 | | #ifndef ARCRON_NOT_KEEN |
20 | | #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */ |
21 | | #endif |
22 | | |
23 | | #ifndef ARCRON_NOT_MULTIPLE_SAMPLES |
24 | | #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */ |
25 | | #endif |
26 | | |
27 | | #ifndef ARCRON_NOT_LEAPSECOND_KEEN |
28 | | #ifndef ARCRON_LEAPSECOND_KEEN |
29 | | #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */ |
30 | | #endif |
31 | | #endif |
32 | | |
33 | | /* |
34 | | Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997. |
35 | | Modifications by Damon Hart-Davis, <d@hd.org>, 1997. |
36 | | Modifications by Paul Alfille, <palfille@partners.org>, 2003. |
37 | | Modifications by Christopher Price, <cprice@cs-home.com>, 2003. |
38 | | Modifications by Nigel Roles <nigel@9fs.org>, 2003. |
39 | | |
40 | | |
41 | | THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND. USE AT |
42 | | YOUR OWN RISK. |
43 | | |
44 | | Orginally developed and used with ntp3-5.85 by Derek Mulcahy. |
45 | | |
46 | | Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2. |
47 | | |
48 | | This code may be freely copied and used and incorporated in other |
49 | | systems providing the disclaimer and notice of authorship are |
50 | | reproduced. |
51 | | |
52 | | ------------------------------------------------------------------------------- |
53 | | |
54 | | Nigel's notes: |
55 | | |
56 | | 1) Called tcgetattr() before modifying, so that fields correctly initialised |
57 | | for all operating systems |
58 | | |
59 | | 2) Altered parsing of timestamp line so that it copes with fields which are |
60 | | not always ASCII digits (e.g. status field when battery low) |
61 | | |
62 | | ------------------------------------------------------------------------------- |
63 | | |
64 | | Christopher's notes: |
65 | | |
66 | | MAJOR CHANGES SINCE V1.2 |
67 | | ======================== |
68 | | 1) Applied patch by Andrey Bray <abuse@madhouse.demon.co.uk> |
69 | | 2001-02-17 comp.protocols.time.ntp |
70 | | |
71 | | 2) Added WWVB support via clock mode command, localtime/UTC time configured |
72 | | via flag1=(0=UTC, 1=localtime) |
73 | | |
74 | | 3) Added ignore resync request via flag2=(0=resync, 1=ignore resync) |
75 | | |
76 | | 4) Added simplified conversion from localtime to UTC with dst/bst translation |
77 | | |
78 | | 5) Added average signal quality poll |
79 | | |
80 | | 6) Fixed a badformat error when no code is available due to stripping |
81 | | \n & \r's |
82 | | |
83 | | 7) Fixed a badformat error when clearing lencode & memset a_lastcode in poll |
84 | | routine |
85 | | |
86 | | 8) Lots of code cleanup, including standardized DEBUG macros and removal |
87 | | of unused code |
88 | | |
89 | | ------------------------------------------------------------------------------- |
90 | | |
91 | | Author's original note: |
92 | | |
93 | | I enclose my ntp driver for the Galleon Systems Arc MSF receiver. |
94 | | |
95 | | It works (after a fashion) on both Solaris-1 and Solaris-2. |
96 | | |
97 | | I am currently using ntp3-5.85. I have been running the code for |
98 | | about 7 months without any problems. Even coped with the change to BST! |
99 | | |
100 | | I had to do some funky things to read from the clock because it uses the |
101 | | power from the receive lines to drive the transmit lines. This makes the |
102 | | code look a bit stupid but it works. I also had to put in some delays to |
103 | | allow for the turnaround time from receive to transmit. These delays |
104 | | are between characters when requesting a time stamp so that shouldn't affect |
105 | | the results too drastically. |
106 | | |
107 | | ... |
108 | | |
109 | | The bottom line is that it works but could easily be improved. You are |
110 | | free to do what you will with the code. I haven't been able to determine |
111 | | how good the clock is. I think that this requires a known good clock |
112 | | to compare it against. |
113 | | |
114 | | ------------------------------------------------------------------------------- |
115 | | |
116 | | Damon's notes for adjustments: |
117 | | |
118 | | MAJOR CHANGES SINCE V1.0 |
119 | | ======================== |
120 | | 1) Removal of pollcnt variable that made the clock go permanently |
121 | | off-line once two time polls failed to gain responses. |
122 | | |
123 | | 2) Avoiding (at least on Solaris-2) terminal becoming the controlling |
124 | | terminal of the process when we do a low-level open(). |
125 | | |
126 | | 3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being |
127 | | defined) to try to resync quickly after a potential leap-second |
128 | | insertion or deletion. |
129 | | |
130 | | 4) Code significantly slimmer at run-time than V1.0. |
131 | | |
132 | | |
133 | | GENERAL |
134 | | ======= |
135 | | |
136 | | 1) The C preprocessor symbol to have the clock built has been changed |
137 | | from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the |
138 | | possiblity of clashes with other symbols in the future. |
139 | | |
140 | | 2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons: |
141 | | |
142 | | a) The ARC documentation claims the internal clock is (only) |
143 | | accurate to about 20ms relative to Rugby (plus there must be |
144 | | noticable drift and delay in the ms range due to transmission |
145 | | delays and changing atmospheric effects). This clock is not |
146 | | designed for ms accuracy as NTP has spoilt us all to expect. |
147 | | |
148 | | b) The clock oscillator looks like a simple uncompensated quartz |
149 | | crystal of the sort used in digital watches (ie 32768Hz) which |
150 | | can have large temperature coefficients and drifts; it is not |
151 | | clear if this oscillator is properly disciplined to the MSF |
152 | | transmission, but as the default is to resync only once per |
153 | | *day*, we can imagine that it is not, and is free-running. We |
154 | | can minimise drift by resyncing more often (at the cost of |
155 | | reduced battery life), but drift/wander may still be |
156 | | significant. |
157 | | |
158 | | c) Note that the bit time of 3.3ms adds to the potential error in |
159 | | the the clock timestamp, since the bit clock of the serial link |
160 | | may effectively be free-running with respect to the host clock |
161 | | and the MSF clock. Actually, the error is probably 1/16th of |
162 | | the above, since the input data is probably sampled at at least |
163 | | 16x the bit rate. |
164 | | |
165 | | By keeping the clock marked as not very precise, it will have a |
166 | | fairly large dispersion, and thus will tend to be used as a |
167 | | `backup' time source and sanity checker, which this clock is |
168 | | probably ideal for. For an isolated network without other time |
169 | | sources, this clock can probably be expected to provide *much* |
170 | | better than 1s accuracy, which will be fine. |
171 | | |
172 | | By default, PRECISION is set to -4, but experience, especially at a |
173 | | particular geographic location with a particular clock, may allow |
174 | | this to be altered to -5. (Note that skews of +/- 10ms are to be |
175 | | expected from the clock from time-to-time.) This improvement of |
176 | | reported precision can be instigated by setting flag3 to 1, though |
177 | | the PRECISION will revert to the normal value while the clock |
178 | | signal quality is unknown whatever the flag3 setting. |
179 | | |
180 | | IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE |
181 | | ANY RESIDUAL SKEW, eg: |
182 | | |
183 | | server 127.127.27.0 # ARCRON MSF radio clock unit 0. |
184 | | # Fudge timestamps by about 20ms. |
185 | | fudge 127.127.27.0 time1 0.020 |
186 | | |
187 | | You will need to observe your system's behaviour, assuming you have |
188 | | some other NTP source to compare it with, to work out what the |
189 | | fudge factor should be. For my Sun SS1 running SunOS 4.1.3_U1 with |
190 | | my MSF clock with my distance from the MSF transmitter, +20ms |
191 | | seemed about right, after some observation. |
192 | | |
193 | | 3) REFID has been made "MSFa" to reflect the MSF time source and the |
194 | | ARCRON receiver. |
195 | | |
196 | | 4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before |
197 | | forcing a resync since the last attempt. This is picked to give a |
198 | | little less than an hour between resyncs and to try to avoid |
199 | | clashing with any regular event at a regular time-past-the-hour |
200 | | which might cause systematic errors. |
201 | | |
202 | | The INITIAL_RESYNC_DELAY is to avoid bothering the clock and |
203 | | running down its batteries unnecesarily if ntpd is going to crash |
204 | | or be killed or reconfigured quickly. If ARCRON_KEEN is defined |
205 | | then this period is long enough for (with normal polling rates) |
206 | | enough time samples to have been taken to allow ntpd to sync to |
207 | | the clock before the interruption for the clock to resync to MSF. |
208 | | This avoids ntpd syncing to another peer first and then |
209 | | almost immediately hopping to the MSF clock. |
210 | | |
211 | | The RETRY_RESYNC_TIME is used before rescheduling a resync after a |
212 | | resync failed to reveal a statisfatory signal quality (too low or |
213 | | unknown). |
214 | | |
215 | | 5) The clock seems quite jittery, so I have increased the |
216 | | median-filter size from the typical (previous) value of 3. I |
217 | | discard up to half the results in the filter. It looks like maybe |
218 | | 1 sample in 10 or so (maybe less) is a spike, so allow the median |
219 | | filter to discard at least 10% of its entries or 1 entry, whichever |
220 | | is greater. |
221 | | |
222 | | 6) Sleeping *before* each character sent to the unit to allow required |
223 | | inter-character time but without introducting jitter and delay in |
224 | | handling the response if possible. |
225 | | |
226 | | 7) If the flag ARCRON_KEEN is defined, take time samples whenever |
227 | | possible, even while resyncing, etc. We rely, in this case, on the |
228 | | clock always giving us a reasonable time or else telling us in the |
229 | | status byte at the end of the timestamp that it failed to sync to |
230 | | MSF---thus we should never end up syncing to completely the wrong |
231 | | time. |
232 | | |
233 | | 8) If the flag ARCRON_OWN_FILTER is defined, use own versions of |
234 | | refclock median-filter routines to get round small bug in 3-5.90 |
235 | | code which does not return the median offset. XXX Removed this |
236 | | bit due NTP Version 4 upgrade - dlm. |
237 | | |
238 | | 9) We would appear to have a year-2000 problem with this clock since |
239 | | it returns only the two least-significant digits of the year. But |
240 | | ntpd ignores the year and uses the local-system year instead, so |
241 | | this is in fact not a problem. Nevertheless, we attempt to do a |
242 | | sensible thing with the dates, wrapping them into a 100-year |
243 | | window. |
244 | | |
245 | | 10)Logs stats information that can be used by Derek's Tcl/Tk utility |
246 | | to show the status of the clock. |
247 | | |
248 | | 11)The clock documentation insists that the number of bits per |
249 | | character to be sent to the clock, and sent by it, is 11, including |
250 | | one start bit and two stop bits. The data format is either 7+even |
251 | | or 8+none. |
252 | | |
253 | | |
254 | | TO-DO LIST |
255 | | ========== |
256 | | |
257 | | * Eliminate use of scanf(), and maybe sprintf(). |
258 | | |
259 | | * Allow user setting of resync interval to trade battery life for |
260 | | accuracy; maybe could be done via fudge factor or unit number. |
261 | | |
262 | | * Possibly note the time since the last resync of the MSF clock to |
263 | | MSF as the age of the last reference timestamp, ie trust the |
264 | | clock's oscillator not very much... |
265 | | |
266 | | * Add very slow auto-adjustment up to a value of +/- time2 to correct |
267 | | for long-term errors in the clock value (time2 defaults to 0 so the |
268 | | correction would be disabled by default). |
269 | | |
270 | | * Consider trying to use the tty_clk/ppsclock support. |
271 | | |
272 | | * Possibly use average or maximum signal quality reported during |
273 | | resync, rather than just the last one, which may be atypical. |
274 | | |
275 | | */ |
276 | | |
277 | | |
278 | | /* Notes for HKW Elektronik GmBH Radio clock driver */ |
279 | | /* Author Lyndon David, Sentinet Ltd, Feb 1997 */ |
280 | | /* These notes seem also to apply usefully to the ARCRON clock. */ |
281 | | |
282 | | /* The HKW clock module is a radio receiver tuned into the Rugby */ |
283 | | /* MSF time signal tranmitted on 60 kHz. The clock module connects */ |
284 | | /* to the computer via a serial line and transmits the time encoded */ |
285 | | /* in 15 bytes at 300 baud 7 bits two stop bits even parity */ |
286 | | |
287 | | /* Clock communications, from the datasheet */ |
288 | | /* All characters sent to the clock are echoed back to the controlling */ |
289 | | /* device. */ |
290 | | /* Transmit time/date information */ |
291 | | /* syntax ASCII o<cr> */ |
292 | | /* Character o may be replaced if neccesary by a character whose code */ |
293 | | /* contains the lowest four bits f(hex) eg */ |
294 | | /* syntax binary: xxxx1111 00001101 */ |
295 | | |
296 | | /* DHD note: |
297 | | You have to wait for character echo + 10ms before sending next character. |
298 | | */ |
299 | | |
300 | | /* The clock replies to this command with a sequence of 15 characters */ |
301 | | /* which contain the complete time and a final <cr> making 16 characters */ |
302 | | /* in total. */ |
303 | | /* The RC computer clock will not reply immediately to this command because */ |
304 | | /* the start bit edge of the first reply character marks the beginning of */ |
305 | | /* the second. So the RC Computer Clock will reply to this command at the */ |
306 | | /* start of the next second */ |
307 | | /* The characters have the following meaning */ |
308 | | /* 1. hours tens */ |
309 | | /* 2. hours units */ |
310 | | /* 3. minutes tens */ |
311 | | /* 4. minutes units */ |
312 | | /* 5. seconds tens */ |
313 | | /* 6. seconds units */ |
314 | | /* 7. day of week 1-monday 7-sunday */ |
315 | | /* 8. day of month tens */ |
316 | | /* 9. day of month units */ |
317 | | /* 10. month tens */ |
318 | | /* 11. month units */ |
319 | | /* 12. year tens */ |
320 | | /* 13. year units */ |
321 | | /* 14. BST/UTC status */ |
322 | | /* bit 7 parity */ |
323 | | /* bit 6 always 0 */ |
324 | | /* bit 5 always 1 */ |
325 | | /* bit 4 always 1 */ |
326 | | /* bit 3 always 0 */ |
327 | | /* bit 2 =1 if UTC is in effect, complementary to the BST bit */ |
328 | | /* bit 1 =1 if BST is in effect, according to the BST bit */ |
329 | | /* bit 0 BST/UTC change impending bit=1 in case of change impending */ |
330 | | /* 15. status */ |
331 | | /* bit 7 parity */ |
332 | | /* bit 6 always 0 */ |
333 | | /* bit 5 always 1 */ |
334 | | /* bit 4 always 1 */ |
335 | | /* bit 3 =1 if low battery is detected */ |
336 | | /* bit 2 =1 if the very last reception attempt failed and a valid */ |
337 | | /* time information already exists (bit0=1) */ |
338 | | /* =0 if the last reception attempt was successful */ |
339 | | /* bit 1 =1 if at least one reception since 2:30 am was successful */ |
340 | | /* =0 if no reception attempt since 2:30 am was successful */ |
341 | | /* bit 0 =1 if the RC Computer Clock contains valid time information */ |
342 | | /* This bit is zero after reset and one after the first */ |
343 | | /* successful reception attempt */ |
344 | | |
345 | | /* DHD note: |
346 | | Also note g<cr> command which confirms that a resync is in progress, and |
347 | | if so what signal quality (0--5) is available. |
348 | | Also note h<cr> command which starts a resync to MSF signal. |
349 | | */ |
350 | | |
351 | | |
352 | | #include "ntpd.h" |
353 | | #include "ntp_io.h" |
354 | | #include "ntp_refclock.h" |
355 | | #include "ntp_calendar.h" |
356 | | #include "ntp_stdlib.h" |
357 | | |
358 | | #include <stdio.h> |
359 | | #include <ctype.h> |
360 | | |
361 | | #if defined(HAVE_BSD_TTYS) |
362 | | #include <sgtty.h> |
363 | | #endif /* HAVE_BSD_TTYS */ |
364 | | |
365 | | #if defined(HAVE_SYSV_TTYS) |
366 | | #include <termio.h> |
367 | | #endif /* HAVE_SYSV_TTYS */ |
368 | | |
369 | | #if defined(HAVE_TERMIOS) |
370 | | #include <termios.h> |
371 | | #endif |
372 | | |
373 | | /* |
374 | | * This driver supports the ARCRON MSF/DCF/WWVB Radio Controlled Clock |
375 | | */ |
376 | | |
377 | | /* |
378 | | * Interface definitions |
379 | | */ |
380 | | #define DEVICE "/dev/arc%d" /* Device name and unit. */ |
381 | 0 | #define SPEED B300 /* UART speed (300 baud) */ |
382 | 0 | #define PRECISION (-4) /* Precision (~63 ms). */ |
383 | 0 | #define HIGHPRECISION (-5) /* If things are going well... */ |
384 | 0 | #define REFID "MSFa" /* Reference ID. */ |
385 | 0 | #define REFID_MSF "MSF" /* Reference ID. */ |
386 | 0 | #define REFID_DCF77 "DCF" /* Reference ID. */ |
387 | 0 | #define REFID_WWVB "WWVB" /* Reference ID. */ |
388 | 0 | #define DESCRIPTION "ARCRON MSF/DCF/WWVB Receiver" |
389 | | |
390 | | #ifdef PRE_NTP420 |
391 | | #define MODE ttlmax |
392 | | #else |
393 | 0 | #define MODE ttl |
394 | | #endif |
395 | | |
396 | 0 | #define LENARC 16 /* Format `o' timecode length. */ |
397 | | |
398 | | #define BITSPERCHAR 11 /* Bits per character. */ |
399 | | #define BITTIME 0x0DA740E /* Time for 1 bit at 300bps. */ |
400 | | #define CHARTIME10 0x8888888 /* Time for 10-bit char at 300bps. */ |
401 | | #define CHARTIME11 0x962FC96 /* Time for 11-bit char at 300bps. */ |
402 | | #define CHARTIME /* Time for char at 300bps. */ \ |
403 | | ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \ |
404 | | (BITSPERCHAR * BITTIME) ) ) |
405 | | |
406 | | /* Allow for UART to accept char half-way through final stop bit. */ |
407 | | #define INITIALOFFSET ((u_int32)(-BITTIME/2)) |
408 | | |
409 | | /* |
410 | | charoffsets[x] is the time after the start of the second that byte |
411 | | x (with the first byte being byte 1) is received by the UART, |
412 | | assuming that the initial edge of the start bit of the first byte |
413 | | is on-time. The values are represented as the fractional part of |
414 | | an l_fp. |
415 | | |
416 | | We store enough values to have the offset of each byte including |
417 | | the trailing \r, on the assumption that the bytes follow one |
418 | | another without gaps. |
419 | | */ |
420 | | static const u_int32 charoffsets[LENARC+1] = { |
421 | | #if BITSPERCHAR == 11 /* Usual case. */ |
422 | | /* Offsets computed as accurately as possible... */ |
423 | | 0, |
424 | | INITIALOFFSET + 0x0962fc96, /* 1 chars, 11 bits */ |
425 | | INITIALOFFSET + 0x12c5f92c, /* 2 chars, 22 bits */ |
426 | | INITIALOFFSET + 0x1c28f5c3, /* 3 chars, 33 bits */ |
427 | | INITIALOFFSET + 0x258bf259, /* 4 chars, 44 bits */ |
428 | | INITIALOFFSET + 0x2eeeeeef, /* 5 chars, 55 bits */ |
429 | | INITIALOFFSET + 0x3851eb85, /* 6 chars, 66 bits */ |
430 | | INITIALOFFSET + 0x41b4e81b, /* 7 chars, 77 bits */ |
431 | | INITIALOFFSET + 0x4b17e4b1, /* 8 chars, 88 bits */ |
432 | | INITIALOFFSET + 0x547ae148, /* 9 chars, 99 bits */ |
433 | | INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */ |
434 | | INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */ |
435 | | INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */ |
436 | | INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */ |
437 | | INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */ |
438 | | INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */ |
439 | | INITIALOFFSET + 0x962fc963 /* 16 chars, 176 bits */ |
440 | | #else |
441 | | /* Offsets computed with a small rounding error... */ |
442 | | 0, |
443 | | INITIALOFFSET + 1 * CHARTIME, |
444 | | INITIALOFFSET + 2 * CHARTIME, |
445 | | INITIALOFFSET + 3 * CHARTIME, |
446 | | INITIALOFFSET + 4 * CHARTIME, |
447 | | INITIALOFFSET + 5 * CHARTIME, |
448 | | INITIALOFFSET + 6 * CHARTIME, |
449 | | INITIALOFFSET + 7 * CHARTIME, |
450 | | INITIALOFFSET + 8 * CHARTIME, |
451 | | INITIALOFFSET + 9 * CHARTIME, |
452 | | INITIALOFFSET + 10 * CHARTIME, |
453 | | INITIALOFFSET + 11 * CHARTIME, |
454 | | INITIALOFFSET + 12 * CHARTIME, |
455 | | INITIALOFFSET + 13 * CHARTIME, |
456 | | INITIALOFFSET + 14 * CHARTIME, |
457 | | INITIALOFFSET + 15 * CHARTIME, |
458 | | INITIALOFFSET + 16 * CHARTIME |
459 | | #endif |
460 | | }; |
461 | | |
462 | 0 | #define DEFAULT_RESYNC_TIME (57*60) /* Gap between resync attempts (s). */ |
463 | 0 | #define RETRY_RESYNC_TIME (27*60) /* Gap to emergency resync attempt. */ |
464 | | #ifdef ARCRON_KEEN |
465 | 0 | #define INITIAL_RESYNC_DELAY 500 /* Delay before first resync. */ |
466 | | #else |
467 | | #define INITIAL_RESYNC_DELAY 50 /* Delay before first resync. */ |
468 | | #endif |
469 | | |
470 | | static const int moff[12] = |
471 | | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; |
472 | | /* Flags for a raw open() of the clock serial device. */ |
473 | | #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */ |
474 | | #define OPEN_FLAGS (O_RDWR | O_NOCTTY) |
475 | | #else /* Oh well, it may not matter... */ |
476 | | #define OPEN_FLAGS (O_RDWR) |
477 | | #endif |
478 | | |
479 | | |
480 | | /* Length of queue of command bytes to be sent. */ |
481 | 0 | #define CMDQUEUELEN 4 /* Enough for two cmds + each \r. */ |
482 | | /* Queue tick time; interval in seconds between chars taken off queue. */ |
483 | | /* Must be >= 2 to allow o\r response to come back uninterrupted. */ |
484 | 0 | #define QUEUETICK 2 /* Allow o\r reply to finish. */ |
485 | | |
486 | | /* |
487 | | * ARC unit control structure |
488 | | */ |
489 | | struct arcunit { |
490 | | l_fp lastrec; /* Time tag for the receive time (system). */ |
491 | | int status; /* Clock status. */ |
492 | | |
493 | | int quality; /* Quality of reception 0--5 for unit. */ |
494 | | /* We may also use the values -1 or 6 internally. */ |
495 | | u_long quality_stamp; /* Next time to reset quality average. */ |
496 | | |
497 | | u_long next_resync; /* Next resync time (s) compared to current_time. */ |
498 | | int resyncing; /* Resync in progress if true. */ |
499 | | |
500 | | /* In the outgoing queue, cmdqueue[0] is next to be sent. */ |
501 | | char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */ |
502 | | |
503 | | u_long saved_flags; /* Saved fudge flags. */ |
504 | | }; |
505 | | |
506 | | #ifdef ARCRON_LEAPSECOND_KEEN |
507 | | /* The flag `possible_leap' is set non-zero when any MSF unit |
508 | | thinks a leap-second may have happened. |
509 | | |
510 | | Set whenever we receive a valid time sample in the first hour of |
511 | | the first day of the first/seventh months. |
512 | | |
513 | | Outside the special hour this value is unconditionally set |
514 | | to zero by the receive routine. |
515 | | |
516 | | On finding itself in this timeslot, as long as the value is |
517 | | non-negative, the receive routine sets it to a positive value to |
518 | | indicate a resync to MSF should be performed. |
519 | | |
520 | | In the poll routine, if this value is positive and we are not |
521 | | already resyncing (eg from a sync that started just before |
522 | | midnight), start resyncing and set this value negative to |
523 | | indicate that a leap-triggered resync has been started. Having |
524 | | set this negative prevents the receive routine setting it |
525 | | positive and thus prevents multiple resyncs during the witching |
526 | | hour. |
527 | | */ |
528 | | static int possible_leap = 0; /* No resync required by default. */ |
529 | | #endif |
530 | | |
531 | | #if 0 |
532 | | static void dummy_event_handler (struct peer *); |
533 | | static void arc_event_handler (struct peer *); |
534 | | #endif /* 0 */ |
535 | | |
536 | 0 | #define QUALITY_UNKNOWN -1 /* Indicates unknown clock quality. */ |
537 | | #define MIN_CLOCK_QUALITY 0 /* Min quality clock will return. */ |
538 | 0 | #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */ |
539 | 0 | #define MAX_CLOCK_QUALITY 5 /* Max quality clock will return. */ |
540 | | |
541 | | /* |
542 | | * Function prototypes |
543 | | */ |
544 | | static int arc_start (int, struct peer *); |
545 | | static void arc_shutdown (int, struct peer *); |
546 | | static void arc_receive (struct recvbuf *); |
547 | | static void arc_poll (int, struct peer *); |
548 | | |
549 | | /* |
550 | | * Transfer vector |
551 | | */ |
552 | | struct refclock refclock_arc = { |
553 | | arc_start, /* start up driver */ |
554 | | arc_shutdown, /* shut down driver */ |
555 | | arc_poll, /* transmit poll message */ |
556 | | noentry, /* not used (old arc_control) */ |
557 | | noentry, /* initialize driver (not used) */ |
558 | | noentry, /* not used (old arc_buginfo) */ |
559 | | NOFLAGS /* not used */ |
560 | | }; |
561 | | |
562 | | /* Queue us up for the next tick. */ |
563 | | #define ENQUEUE(up) \ |
564 | 0 | do { \ |
565 | 0 | peer->procptr->nextaction = current_time + QUEUETICK; \ |
566 | 0 | } while(0) |
567 | | |
568 | | /* Placeholder event handler---does nothing safely---soaks up loose tick. */ |
569 | | static void |
570 | | dummy_event_handler( |
571 | | struct peer *peer |
572 | | ) |
573 | 0 | { |
574 | 0 | #ifdef DEBUG |
575 | 0 | if(debug) { printf("arc: dummy_event_handler() called.\n"); } |
576 | 0 | #endif |
577 | 0 | } |
578 | | |
579 | | /* |
580 | | Normal event handler. |
581 | | |
582 | | Take first character off queue and send to clock if not a null. |
583 | | |
584 | | Shift characters down and put a null on the end. |
585 | | |
586 | | We assume that there is no parallelism so no race condition, but even |
587 | | if there is nothing bad will happen except that we might send some bad |
588 | | data to the clock once in a while. |
589 | | */ |
590 | | static void |
591 | | arc_event_handler( |
592 | | struct peer *peer |
593 | | ) |
594 | 0 | { |
595 | 0 | struct refclockproc *pp = peer->procptr; |
596 | 0 | register struct arcunit *up = pp->unitptr; |
597 | 0 | int i; |
598 | 0 | char c; |
599 | 0 | #ifdef DEBUG |
600 | 0 | if(debug > 2) { printf("arc: arc_event_handler() called.\n"); } |
601 | 0 | #endif |
602 | |
|
603 | 0 | c = up->cmdqueue[0]; /* Next char to be sent. */ |
604 | | /* Shift down characters, shifting trailing \0 in at end. */ |
605 | 0 | for(i = 0; i < CMDQUEUELEN; ++i) |
606 | 0 | { up->cmdqueue[i] = up->cmdqueue[i+1]; } |
607 | | |
608 | | /* Don't send '\0' characters. */ |
609 | 0 | if(c != '\0') { |
610 | 0 | if(write(pp->io.fd, &c, 1) != 1) { |
611 | 0 | msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd); |
612 | 0 | } |
613 | 0 | #ifdef DEBUG |
614 | 0 | else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); } |
615 | 0 | #endif |
616 | 0 | } |
617 | |
|
618 | 0 | ENQUEUE(up); |
619 | 0 | } |
620 | | |
621 | | /* |
622 | | * arc_start - open the devices and initialize data for processing |
623 | | */ |
624 | | static int |
625 | | arc_start( |
626 | | int unit, |
627 | | struct peer *peer |
628 | | ) |
629 | 0 | { |
630 | 0 | register struct arcunit *up; |
631 | 0 | struct refclockproc *pp; |
632 | 0 | int temp_fd; |
633 | 0 | int fd; |
634 | 0 | char device[20]; |
635 | 0 | #ifdef HAVE_TERMIOS |
636 | 0 | struct termios arg; |
637 | 0 | #endif |
638 | |
|
639 | 0 | msyslog(LOG_NOTICE, "MSF_ARCRON %s: opening unit %d", |
640 | 0 | arc_version, unit); |
641 | 0 | DPRINTF(1, ("arc: %s: attempt to open unit %d.\n", arc_version, |
642 | 0 | unit)); |
643 | | |
644 | | /* |
645 | | * Open serial port. Use CLK line discipline, if available. |
646 | | */ |
647 | 0 | snprintf(device, sizeof(device), DEVICE, unit); |
648 | 0 | temp_fd = refclock_open(device, SPEED, LDISC_CLK); |
649 | 0 | if (temp_fd <= 0) |
650 | 0 | return 0; |
651 | 0 | DPRINTF(1, ("arc: unit %d using tty_open().\n", unit)); |
652 | 0 | fd = tty_open(device, OPEN_FLAGS, 0777); |
653 | 0 | if (fd < 0) { |
654 | 0 | msyslog(LOG_ERR, "MSF_ARCRON(%d): failed second open(%s, 0777): %m.", |
655 | 0 | unit, device); |
656 | 0 | close(temp_fd); |
657 | 0 | return 0; |
658 | 0 | } |
659 | 0 | close(temp_fd); |
660 | 0 | temp_fd = -1; /* not used after this, at *this* time. */ |
661 | |
|
662 | 0 | #ifndef SYS_WINNT |
663 | 0 | if (-1 == fcntl(fd, F_SETFL, 0)) /* clear the descriptor flags */ |
664 | 0 | msyslog(LOG_ERR, "MSF_ARCRON(%d): fcntl(F_SETFL, 0): %m.", |
665 | 0 | unit); |
666 | |
|
667 | 0 | #endif |
668 | 0 | DPRINTF(1, ("arc: opened RS232 port with file descriptor %d.\n", fd)); |
669 | |
|
670 | 0 | #ifdef HAVE_TERMIOS |
671 | |
|
672 | 0 | if (tcgetattr(fd, &arg) < 0) { |
673 | 0 | msyslog(LOG_ERR, "MSF_ARCRON(%d): tcgetattr(%s): %m.", |
674 | 0 | unit, device); |
675 | 0 | close(fd); |
676 | 0 | return 0; |
677 | 0 | } |
678 | | |
679 | 0 | arg.c_iflag = IGNBRK | ISTRIP; |
680 | 0 | arg.c_oflag = 0; |
681 | 0 | arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB; |
682 | 0 | arg.c_lflag = 0; |
683 | 0 | arg.c_cc[VMIN] = 1; |
684 | 0 | arg.c_cc[VTIME] = 0; |
685 | |
|
686 | 0 | if (tcsetattr(fd, TCSANOW, &arg) < 0) { |
687 | 0 | msyslog(LOG_ERR, "MSF_ARCRON(%d): tcsetattr(%s): %m.", |
688 | 0 | unit, device); |
689 | 0 | close(fd); |
690 | 0 | return 0; |
691 | 0 | } |
692 | | |
693 | | #else |
694 | | |
695 | | msyslog(LOG_ERR, "ARCRON: termios required by this driver"); |
696 | | (void)close(fd); |
697 | | |
698 | | return 0; |
699 | | |
700 | | #endif |
701 | | |
702 | | /* Set structure to all zeros... */ |
703 | 0 | up = emalloc_zero(sizeof(*up)); |
704 | 0 | pp = peer->procptr; |
705 | 0 | pp->io.clock_recv = arc_receive; |
706 | 0 | pp->io.srcclock = peer; |
707 | 0 | pp->io.datalen = 0; |
708 | 0 | pp->io.fd = fd; |
709 | 0 | if (!io_addclock(&pp->io)) { |
710 | 0 | close(fd); |
711 | 0 | pp->io.fd = -1; |
712 | 0 | free(up); |
713 | 0 | return(0); |
714 | 0 | } |
715 | 0 | pp->unitptr = up; |
716 | | |
717 | | /* |
718 | | * Initialize miscellaneous variables |
719 | | */ |
720 | 0 | peer->precision = PRECISION; |
721 | 0 | peer->stratum = 2; /* Default to stratum 2 not 0. */ |
722 | 0 | pp->clockdesc = DESCRIPTION; |
723 | 0 | if (peer->MODE > 3) { |
724 | 0 | msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", peer->MODE); |
725 | 0 | return 0; |
726 | 0 | } |
727 | 0 | #ifdef DEBUG |
728 | 0 | if(debug) { printf("arc: mode = %d.\n", peer->MODE); } |
729 | 0 | #endif |
730 | 0 | switch (peer->MODE) { |
731 | 0 | case 1: |
732 | 0 | memcpy((char *)&pp->refid, REFID_MSF, 4); |
733 | 0 | break; |
734 | 0 | case 2: |
735 | 0 | memcpy((char *)&pp->refid, REFID_DCF77, 4); |
736 | 0 | break; |
737 | 0 | case 3: |
738 | 0 | memcpy((char *)&pp->refid, REFID_WWVB, 4); |
739 | 0 | break; |
740 | 0 | default: |
741 | 0 | memcpy((char *)&pp->refid, REFID, 4); |
742 | 0 | break; |
743 | 0 | } |
744 | | /* Spread out resyncs so that they should remain separated. */ |
745 | 0 | up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009; |
746 | |
|
747 | | #if 0 /* Not needed because of zeroing of arcunit structure... */ |
748 | | up->resyncing = 0; /* Not resyncing yet. */ |
749 | | up->saved_flags = 0; /* Default is all flags off. */ |
750 | | /* Clear send buffer out... */ |
751 | | { |
752 | | int i; |
753 | | for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; } |
754 | | } |
755 | | #endif |
756 | |
|
757 | 0 | #ifdef ARCRON_KEEN |
758 | 0 | up->quality = QUALITY_UNKNOWN; /* Trust the clock immediately. */ |
759 | | #else |
760 | | up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */ |
761 | | #endif |
762 | |
|
763 | 0 | peer->procptr->action = arc_event_handler; |
764 | |
|
765 | 0 | ENQUEUE(up); |
766 | |
|
767 | 0 | return(1); |
768 | 0 | } |
769 | | |
770 | | |
771 | | /* |
772 | | * arc_shutdown - shut down the clock |
773 | | */ |
774 | | static void |
775 | | arc_shutdown( |
776 | | int unit, |
777 | | struct peer *peer |
778 | | ) |
779 | 0 | { |
780 | 0 | register struct arcunit *up; |
781 | 0 | struct refclockproc *pp; |
782 | |
|
783 | 0 | peer->procptr->action = dummy_event_handler; |
784 | |
|
785 | 0 | pp = peer->procptr; |
786 | 0 | up = pp->unitptr; |
787 | 0 | if (-1 != pp->io.fd) |
788 | 0 | io_closeclock(&pp->io); |
789 | 0 | if (NULL != up) |
790 | 0 | free(up); |
791 | 0 | } |
792 | | |
793 | | /* |
794 | | Compute space left in output buffer. |
795 | | */ |
796 | | static int |
797 | | space_left( |
798 | | register struct arcunit *up |
799 | | ) |
800 | 0 | { |
801 | 0 | int spaceleft; |
802 | | |
803 | | /* Compute space left in buffer after any pending output. */ |
804 | 0 | for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft) |
805 | 0 | { if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } } |
806 | 0 | return(spaceleft); |
807 | 0 | } |
808 | | |
809 | | /* |
810 | | Send command by copying into command buffer as far forward as possible, |
811 | | after any pending output. |
812 | | |
813 | | Indicate an error by returning 0 if there is not space for the command. |
814 | | */ |
815 | | static int |
816 | | send_slow( |
817 | | register struct arcunit *up, |
818 | | int fd, |
819 | | const char *s |
820 | | ) |
821 | 0 | { |
822 | 0 | int sl = strlen(s); |
823 | 0 | int spaceleft = space_left(up); |
824 | |
|
825 | 0 | #ifdef DEBUG |
826 | 0 | if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); } |
827 | 0 | #endif |
828 | 0 | if(spaceleft < sl) { /* Should not normally happen... */ |
829 | 0 | #ifdef DEBUG |
830 | 0 | msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)", |
831 | 0 | sl, spaceleft); |
832 | 0 | #endif |
833 | 0 | return(0); /* FAILED! */ |
834 | 0 | } |
835 | | |
836 | | /* Copy in the command to be sent. */ |
837 | 0 | while(*s && spaceleft > 0) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; } |
838 | |
|
839 | 0 | return(1); |
840 | 0 | } |
841 | | |
842 | | |
843 | | static int |
844 | | get2(char *p, int *val) |
845 | 0 | { |
846 | 0 | if (!isdigit((unsigned char)p[0]) || !isdigit((unsigned char)p[1])) return 0; |
847 | 0 | *val = (p[0] - '0') * 10 + p[1] - '0'; |
848 | 0 | return 1; |
849 | 0 | } |
850 | | |
851 | | static int |
852 | | get1(char *p, int *val) |
853 | 0 | { |
854 | 0 | if (!isdigit((unsigned char)p[0])) return 0; |
855 | 0 | *val = p[0] - '0'; |
856 | 0 | return 1; |
857 | 0 | } |
858 | | |
859 | | /* Macro indicating action we will take for different quality values. */ |
860 | 0 | #define quality_action(q) \ |
861 | 0 | (((q) == QUALITY_UNKNOWN) ? "UNKNOWN, will use clock anyway" : \ |
862 | 0 | (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \ |
863 | 0 | "OK, will use clock")) |
864 | | |
865 | | /* |
866 | | * arc_receive - receive data from the serial interface |
867 | | */ |
868 | | static void |
869 | | arc_receive( |
870 | | struct recvbuf *rbufp |
871 | | ) |
872 | 0 | { |
873 | 0 | register struct arcunit *up; |
874 | 0 | struct refclockproc *pp; |
875 | 0 | struct peer *peer; |
876 | 0 | char c; |
877 | 0 | int i, n, wday, month, flags, status; |
878 | 0 | int arc_last_offset; |
879 | 0 | static int quality_average = 0; |
880 | 0 | static int quality_sum = 0; |
881 | 0 | static int quality_polls = 0; |
882 | | |
883 | | /* |
884 | | * Initialize pointers and read the timecode and timestamp |
885 | | */ |
886 | 0 | peer = rbufp->recv_peer; |
887 | 0 | pp = peer->procptr; |
888 | 0 | up = pp->unitptr; |
889 | | |
890 | | |
891 | | /* |
892 | | If the command buffer is empty, and we are resyncing, insert a |
893 | | g\r quality request into it to poll for signal quality again. |
894 | | */ |
895 | 0 | if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) { |
896 | 0 | #ifdef DEBUG |
897 | 0 | if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); } |
898 | 0 | #endif |
899 | 0 | send_slow(up, pp->io.fd, "g\r"); |
900 | 0 | } |
901 | | |
902 | | /* |
903 | | The `arc_last_offset' is the offset in lastcode[] of the last byte |
904 | | received, and which we assume actually received the input |
905 | | timestamp. |
906 | | |
907 | | (When we get round to using tty_clk and it is available, we |
908 | | assume that we will receive the whole timecode with the |
909 | | trailing \r, and that that \r will be timestamped. But this |
910 | | assumption also works if receive the characters one-by-one.) |
911 | | */ |
912 | 0 | arc_last_offset = pp->lencode+rbufp->recv_length - 1; |
913 | | |
914 | | /* |
915 | | We catch a timestamp iff: |
916 | | |
917 | | * The command code is `o' for a timestamp. |
918 | | |
919 | | * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have |
920 | | exactly char in the buffer (the command code) so that we |
921 | | only sample the first character of the timecode as our |
922 | | `on-time' character. |
923 | | |
924 | | * The first character in the buffer is not the echoed `\r' |
925 | | from the `o` command (so if we are to timestamp an `\r' it |
926 | | must not be first in the receive buffer with lencode==1. |
927 | | (Even if we had other characters following it, we probably |
928 | | would have a premature timestamp on the '\r'.) |
929 | | |
930 | | * We have received at least one character (I cannot imagine |
931 | | how it could be otherwise, but anyway...). |
932 | | */ |
933 | 0 | c = rbufp->recv_buffer[0]; |
934 | 0 | if((pp->a_lastcode[0] == 'o') && |
935 | | #ifndef ARCRON_MULTIPLE_SAMPLES |
936 | | (pp->lencode == 1) && |
937 | | #endif |
938 | 0 | ((pp->lencode != 1) || (c != '\r')) && |
939 | 0 | (arc_last_offset >= 1)) { |
940 | | /* Note that the timestamp should be corrected if >1 char rcvd. */ |
941 | 0 | l_fp timestamp; |
942 | 0 | timestamp = rbufp->recv_time; |
943 | 0 | #ifdef DEBUG |
944 | 0 | if(debug) { /* Show \r as `R', other non-printing char as `?'. */ |
945 | 0 | printf("arc: stamp -->%c<-- (%d chars rcvd)\n", |
946 | 0 | ((c == '\r') ? 'R' : (isgraph((unsigned char)c) ? c : '?')), |
947 | 0 | rbufp->recv_length); |
948 | 0 | } |
949 | 0 | #endif |
950 | | |
951 | | /* |
952 | | Now correct timestamp by offset of last byte received---we |
953 | | subtract from the receive time the delay implied by the |
954 | | extra characters received. |
955 | | |
956 | | Reject the input if the resulting code is too long, but |
957 | | allow for the trailing \r, normally not used but a good |
958 | | handle for tty_clk or somesuch kernel timestamper. |
959 | | */ |
960 | 0 | if(arc_last_offset > LENARC) { |
961 | 0 | #ifdef DEBUG |
962 | 0 | if(debug) { |
963 | 0 | printf("arc: input code too long (%d cf %d); rejected.\n", |
964 | 0 | arc_last_offset, LENARC); |
965 | 0 | } |
966 | 0 | #endif |
967 | 0 | pp->lencode = 0; |
968 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
969 | 0 | return; |
970 | 0 | } |
971 | | |
972 | 0 | L_SUBUF(×tamp, charoffsets[arc_last_offset]); |
973 | 0 | #ifdef DEBUG |
974 | 0 | if(debug > 1) { |
975 | 0 | printf( |
976 | 0 | "arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n", |
977 | 0 | ((rbufp->recv_length > 1) ? "*** " : ""), |
978 | 0 | rbufp->recv_length, |
979 | 0 | arc_last_offset, |
980 | 0 | mfptoms((unsigned long)0, |
981 | 0 | charoffsets[arc_last_offset], |
982 | 0 | 1)); |
983 | 0 | } |
984 | 0 | #endif |
985 | |
|
986 | 0 | #ifdef ARCRON_MULTIPLE_SAMPLES |
987 | | /* |
988 | | If taking multiple samples, capture the current adjusted |
989 | | sample iff: |
990 | | |
991 | | * No timestamp has yet been captured (it is zero), OR |
992 | | |
993 | | * This adjusted timestamp is earlier than the one already |
994 | | captured, on the grounds that this one suffered less |
995 | | delay in being delivered to us and is more accurate. |
996 | | |
997 | | */ |
998 | 0 | if(L_ISZERO(&(up->lastrec)) || |
999 | 0 | L_ISGEQ(&(up->lastrec), ×tamp)) |
1000 | 0 | #endif |
1001 | 0 | { |
1002 | 0 | #ifdef DEBUG |
1003 | 0 | if(debug > 1) { |
1004 | 0 | printf("arc: system timestamp captured.\n"); |
1005 | 0 | #ifdef ARCRON_MULTIPLE_SAMPLES |
1006 | 0 | if(!L_ISZERO(&(up->lastrec))) { |
1007 | 0 | l_fp diff; |
1008 | 0 | diff = up->lastrec; |
1009 | 0 | L_SUB(&diff, ×tamp); |
1010 | 0 | printf("arc: adjusted timestamp by -%sms.\n", |
1011 | 0 | mfptoms(diff.l_ui, diff.l_uf, 3)); |
1012 | 0 | } |
1013 | 0 | #endif |
1014 | 0 | } |
1015 | 0 | #endif |
1016 | 0 | up->lastrec = timestamp; |
1017 | 0 | } |
1018 | |
|
1019 | 0 | } |
1020 | | |
1021 | | /* Just in case we still have lots of rubbish in the buffer... */ |
1022 | | /* ...and to avoid the same timestamp being reused by mistake, */ |
1023 | | /* eg on receipt of the \r coming in on its own after the */ |
1024 | | /* timecode. */ |
1025 | 0 | if(pp->lencode >= LENARC) { |
1026 | 0 | #ifdef DEBUG |
1027 | 0 | if(debug && (rbufp->recv_buffer[0] != '\r')) |
1028 | 0 | { printf("arc: rubbish in pp->a_lastcode[].\n"); } |
1029 | 0 | #endif |
1030 | 0 | pp->lencode = 0; |
1031 | 0 | return; |
1032 | 0 | } |
1033 | | |
1034 | | /* Append input to code buffer, avoiding overflow. */ |
1035 | 0 | for(i = 0; i < rbufp->recv_length; i++) { |
1036 | 0 | if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */ |
1037 | 0 | c = rbufp->recv_buffer[i]; |
1038 | | |
1039 | | /* Drop trailing '\r's and drop `h' command echo totally. */ |
1040 | 0 | if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; } |
1041 | | |
1042 | | /* |
1043 | | If we've just put an `o' in the lastcode[0], clear the |
1044 | | timestamp in anticipation of a timecode arriving soon. |
1045 | | |
1046 | | We would expect to get to process this before any of the |
1047 | | timecode arrives. |
1048 | | */ |
1049 | 0 | if((c == 'o') && (pp->lencode == 1)) { |
1050 | 0 | L_CLR(&(up->lastrec)); |
1051 | 0 | #ifdef DEBUG |
1052 | 0 | if(debug > 1) { printf("arc: clearing timestamp.\n"); } |
1053 | 0 | #endif |
1054 | 0 | } |
1055 | 0 | } |
1056 | 0 | if (pp->lencode == 0) return; |
1057 | | |
1058 | | /* Handle a quality message. */ |
1059 | 0 | if(pp->a_lastcode[0] == 'g') { |
1060 | 0 | int r, q; |
1061 | |
|
1062 | 0 | if(pp->lencode < 3) { return; } /* Need more data... */ |
1063 | 0 | r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */ |
1064 | 0 | q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */ |
1065 | 0 | if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) || |
1066 | 0 | ((r & 0x70) != 0x30)) { |
1067 | | /* Badly formatted response. */ |
1068 | 0 | #ifdef DEBUG |
1069 | 0 | if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); } |
1070 | 0 | #endif |
1071 | 0 | return; |
1072 | 0 | } |
1073 | 0 | if(r == '3') { /* Only use quality value whilst sync in progress. */ |
1074 | 0 | if (up->quality_stamp < current_time) { |
1075 | 0 | struct calendar cal; |
1076 | 0 | l_fp new_stamp; |
1077 | | |
1078 | 0 | get_systime (&new_stamp); |
1079 | 0 | caljulian (new_stamp.l_ui, &cal); |
1080 | 0 | up->quality_stamp = |
1081 | 0 | current_time + 60 - cal.second + 5; |
1082 | 0 | quality_sum = 0; |
1083 | 0 | quality_polls = 0; |
1084 | 0 | } |
1085 | 0 | quality_sum += (q & 0xf); |
1086 | 0 | quality_polls++; |
1087 | 0 | quality_average = (quality_sum / quality_polls); |
1088 | 0 | #ifdef DEBUG |
1089 | 0 | if(debug) { printf("arc: signal quality %d (%d).\n", quality_average, (q & 0xf)); } |
1090 | 0 | #endif |
1091 | 0 | } else if( /* (r == '2') && */ up->resyncing) { |
1092 | 0 | up->quality = quality_average; |
1093 | 0 | #ifdef DEBUG |
1094 | 0 | if(debug) |
1095 | 0 | { |
1096 | 0 | printf("arc: sync finished, signal quality %d: %s\n", |
1097 | 0 | up->quality, |
1098 | 0 | quality_action(up->quality)); |
1099 | 0 | } |
1100 | 0 | #endif |
1101 | 0 | msyslog(LOG_NOTICE, |
1102 | 0 | "ARCRON: sync finished, signal quality %d: %s", |
1103 | 0 | up->quality, |
1104 | 0 | quality_action(up->quality)); |
1105 | 0 | up->resyncing = 0; /* Resync is over. */ |
1106 | 0 | quality_average = 0; |
1107 | 0 | quality_sum = 0; |
1108 | 0 | quality_polls = 0; |
1109 | |
|
1110 | 0 | #ifdef ARCRON_KEEN |
1111 | | /* Clock quality dubious; resync earlier than usual. */ |
1112 | 0 | if((up->quality == QUALITY_UNKNOWN) || |
1113 | 0 | (up->quality < MIN_CLOCK_QUALITY_OK)) |
1114 | 0 | { up->next_resync = current_time + RETRY_RESYNC_TIME; } |
1115 | 0 | #endif |
1116 | 0 | } |
1117 | 0 | pp->lencode = 0; |
1118 | 0 | return; |
1119 | 0 | } |
1120 | | |
1121 | | /* Stop now if this is not a timecode message. */ |
1122 | 0 | if(pp->a_lastcode[0] != 'o') { |
1123 | 0 | pp->lencode = 0; |
1124 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
1125 | 0 | return; |
1126 | 0 | } |
1127 | | |
1128 | | /* If we don't have enough data, wait for more... */ |
1129 | 0 | if(pp->lencode < LENARC) { return; } |
1130 | | |
1131 | | |
1132 | | /* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */ |
1133 | 0 | #ifdef DEBUG |
1134 | 0 | if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); } |
1135 | 0 | #endif |
1136 | | |
1137 | | /* But check that we actually captured a system timestamp on it. */ |
1138 | 0 | if(L_ISZERO(&(up->lastrec))) { |
1139 | 0 | #ifdef DEBUG |
1140 | 0 | if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); } |
1141 | 0 | #endif |
1142 | 0 | pp->lencode = 0; |
1143 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
1144 | 0 | return; |
1145 | 0 | } |
1146 | | /* |
1147 | | Append a mark of the clock's received signal quality for the |
1148 | | benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown' |
1149 | | quality value to `6' for his s/w) and terminate the string for |
1150 | | sure. This should not go off the buffer end. |
1151 | | */ |
1152 | 0 | pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ? |
1153 | 0 | '6' : ('0' + up->quality)); |
1154 | 0 | pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */ |
1155 | |
|
1156 | | #ifdef PRE_NTP420 |
1157 | | /* We don't use the micro-/milli- second part... */ |
1158 | | pp->usec = 0; |
1159 | | pp->msec = 0; |
1160 | | #else |
1161 | | /* We don't use the nano-second part... */ |
1162 | 0 | pp->nsec = 0; |
1163 | 0 | #endif |
1164 | | /* Validate format and numbers. */ |
1165 | 0 | if (pp->a_lastcode[0] != 'o' |
1166 | 0 | || !get2(pp->a_lastcode + 1, &pp->hour) |
1167 | 0 | || !get2(pp->a_lastcode + 3, &pp->minute) |
1168 | 0 | || !get2(pp->a_lastcode + 5, &pp->second) |
1169 | 0 | || !get1(pp->a_lastcode + 7, &wday) |
1170 | 0 | || !get2(pp->a_lastcode + 8, &pp->day) |
1171 | 0 | || !get2(pp->a_lastcode + 10, &month) |
1172 | 0 | || !get2(pp->a_lastcode + 12, &pp->year)) { |
1173 | 0 | #ifdef DEBUG |
1174 | | /* Would expect to have caught major problems already... */ |
1175 | 0 | if(debug) { printf("arc: badly formatted data.\n"); } |
1176 | 0 | #endif |
1177 | 0 | pp->lencode = 0; |
1178 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
1179 | 0 | return; |
1180 | 0 | } |
1181 | 0 | flags = pp->a_lastcode[14]; |
1182 | 0 | status = pp->a_lastcode[15]; |
1183 | 0 | #ifdef DEBUG |
1184 | 0 | if(debug) { printf("arc: status 0x%.2x flags 0x%.2x\n", flags, status); } |
1185 | 0 | #endif |
1186 | 0 | n = 9; |
1187 | | |
1188 | | /* |
1189 | | Validate received values at least enough to prevent internal |
1190 | | array-bounds problems, etc. |
1191 | | */ |
1192 | 0 | if((pp->hour < 0) || (pp->hour > 23) || |
1193 | 0 | (pp->minute < 0) || (pp->minute > 59) || |
1194 | 0 | (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ || |
1195 | 0 | (wday < 1) || (wday > 7) || |
1196 | 0 | (pp->day < 1) || (pp->day > 31) || |
1197 | 0 | (month < 1) || (month > 12) || |
1198 | 0 | (pp->year < 0) || (pp->year > 99)) { |
1199 | | /* Data out of range. */ |
1200 | 0 | pp->lencode = 0; |
1201 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
1202 | 0 | return; |
1203 | 0 | } |
1204 | | |
1205 | | |
1206 | 0 | if(peer->MODE == 0) { /* compatiblity to original version */ |
1207 | 0 | int bst = flags; |
1208 | | /* Check that BST/UTC bits are the complement of one another. */ |
1209 | 0 | if(!(bst & 2) == !(bst & 4)) { |
1210 | 0 | pp->lencode = 0; |
1211 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
1212 | 0 | return; |
1213 | 0 | } |
1214 | 0 | } |
1215 | 0 | if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); } |
1216 | | |
1217 | | /* Year-2000 alert! */ |
1218 | | /* Attempt to wrap 2-digit date into sensible window. */ |
1219 | 0 | if(pp->year < YEAR_PIVOT) { pp->year += 100; } /* Y2KFixes */ |
1220 | 0 | pp->year += 1900; /* use full four-digit year */ /* Y2KFixes */ |
1221 | | /* |
1222 | | Attempt to do the right thing by screaming that the code will |
1223 | | soon break when we get to the end of its useful life. What a |
1224 | | hero I am... PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X! |
1225 | | */ |
1226 | 0 | if(pp->year >= YEAR_PIVOT+2000-2 ) { /* Y2KFixes */ |
1227 | | /*This should get attention B^> */ |
1228 | 0 | msyslog(LOG_NOTICE, |
1229 | 0 | "ARCRON: fix me! EITHER YOUR DATE IS BADLY WRONG or else I will break soon!"); |
1230 | 0 | } |
1231 | 0 | #ifdef DEBUG |
1232 | 0 | if(debug) { |
1233 | 0 | printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n", |
1234 | 0 | n, |
1235 | 0 | pp->hour, pp->minute, pp->second, |
1236 | 0 | pp->day, month, pp->year, flags, status); |
1237 | 0 | } |
1238 | 0 | #endif |
1239 | | |
1240 | | /* |
1241 | | The status value tested for is not strictly supported by the |
1242 | | clock spec since the value of bit 2 (0x4) is claimed to be |
1243 | | undefined for MSF, yet does seem to indicate if the last resync |
1244 | | was successful or not. |
1245 | | */ |
1246 | 0 | pp->leap = LEAP_NOWARNING; |
1247 | 0 | status &= 0x7; |
1248 | 0 | if(status == 0x3) { |
1249 | 0 | if(status != up->status) |
1250 | 0 | { msyslog(LOG_NOTICE, "ARCRON: signal acquired"); } |
1251 | 0 | } else { |
1252 | 0 | if(status != up->status) { |
1253 | 0 | msyslog(LOG_NOTICE, "ARCRON: signal lost"); |
1254 | 0 | pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */ |
1255 | 0 | up->status = status; |
1256 | 0 | pp->lencode = 0; |
1257 | 0 | refclock_report(peer, CEVNT_FAULT); |
1258 | 0 | return; |
1259 | 0 | } |
1260 | 0 | } |
1261 | 0 | up->status = status; |
1262 | |
|
1263 | 0 | if (peer->MODE == 0) { /* compatiblity to original version */ |
1264 | 0 | int bst = flags; |
1265 | |
|
1266 | 0 | pp->day += moff[month - 1]; |
1267 | |
|
1268 | 0 | if(isleap_4(pp->year) && month > 2) { pp->day++; }/* Y2KFixes */ |
1269 | | |
1270 | | /* Convert to UTC if required */ |
1271 | 0 | if(bst & 2) { |
1272 | 0 | pp->hour--; |
1273 | 0 | if (pp->hour < 0) { |
1274 | 0 | pp->hour = 23; |
1275 | 0 | pp->day--; |
1276 | | /* If we try to wrap round the year |
1277 | | * (BST on 1st Jan), reject.*/ |
1278 | 0 | if(pp->day < 0) { |
1279 | 0 | pp->lencode = 0; |
1280 | 0 | refclock_report(peer, CEVNT_BADTIME); |
1281 | 0 | return; |
1282 | 0 | } |
1283 | 0 | } |
1284 | 0 | } |
1285 | 0 | } |
1286 | | |
1287 | 0 | if(peer->MODE > 0) { |
1288 | 0 | if(pp->sloppyclockflag & CLK_FLAG1) { |
1289 | 0 | struct tm local; |
1290 | 0 | struct tm *gmtp; |
1291 | 0 | time_t unixtime; |
1292 | | |
1293 | | /* |
1294 | | * Convert to GMT for sites that distribute localtime. |
1295 | | * This means we have to do Y2K conversion on the |
1296 | | * 2-digit year; otherwise, we get the time wrong. |
1297 | | */ |
1298 | |
|
1299 | 0 | memset(&local, 0, sizeof(local)); |
1300 | |
|
1301 | 0 | local.tm_year = pp->year-1900; |
1302 | 0 | local.tm_mon = month-1; |
1303 | 0 | local.tm_mday = pp->day; |
1304 | 0 | local.tm_hour = pp->hour; |
1305 | 0 | local.tm_min = pp->minute; |
1306 | 0 | local.tm_sec = pp->second; |
1307 | 0 | switch (peer->MODE) { |
1308 | 0 | case 1: |
1309 | 0 | local.tm_isdst = (flags & 2); |
1310 | 0 | break; |
1311 | 0 | case 2: |
1312 | 0 | local.tm_isdst = (flags & 2); |
1313 | 0 | break; |
1314 | 0 | case 3: |
1315 | 0 | switch (flags & 3) { |
1316 | 0 | case 0: /* It is unclear exactly when the |
1317 | | Arcron changes from DST->ST and |
1318 | | ST->DST. Testing has shown this |
1319 | | to be irregular. For the time |
1320 | | being, let the OS decide. */ |
1321 | 0 | local.tm_isdst = 0; |
1322 | 0 | #ifdef DEBUG |
1323 | 0 | if (debug) |
1324 | 0 | printf ("arc: DST = 00 (0)\n"); |
1325 | 0 | #endif |
1326 | 0 | break; |
1327 | 0 | case 1: /* dst->st time */ |
1328 | 0 | local.tm_isdst = -1; |
1329 | 0 | #ifdef DEBUG |
1330 | 0 | if (debug) |
1331 | 0 | printf ("arc: DST = 01 (1)\n"); |
1332 | 0 | #endif |
1333 | 0 | break; |
1334 | 0 | case 2: /* st->dst time */ |
1335 | 0 | local.tm_isdst = -1; |
1336 | 0 | #ifdef DEBUG |
1337 | 0 | if (debug) |
1338 | 0 | printf ("arc: DST = 10 (2)\n"); |
1339 | 0 | #endif |
1340 | 0 | break; |
1341 | 0 | case 3: /* dst time */ |
1342 | 0 | local.tm_isdst = 1; |
1343 | 0 | #ifdef DEBUG |
1344 | 0 | if (debug) |
1345 | 0 | printf ("arc: DST = 11 (3)\n"); |
1346 | 0 | #endif |
1347 | 0 | break; |
1348 | 0 | } |
1349 | 0 | break; |
1350 | 0 | default: |
1351 | 0 | msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", |
1352 | 0 | peer->MODE); |
1353 | 0 | return; |
1354 | 0 | break; |
1355 | 0 | } |
1356 | 0 | unixtime = mktime (&local); |
1357 | 0 | if ((gmtp = gmtime (&unixtime)) == NULL) |
1358 | 0 | { |
1359 | 0 | pp->lencode = 0; |
1360 | 0 | refclock_report (peer, CEVNT_FAULT); |
1361 | 0 | return; |
1362 | 0 | } |
1363 | 0 | pp->year = gmtp->tm_year+1900; |
1364 | 0 | month = gmtp->tm_mon+1; |
1365 | 0 | pp->day = ymd2yd(pp->year,month,gmtp->tm_mday); |
1366 | | /* pp->day = gmtp->tm_yday; */ |
1367 | 0 | pp->hour = gmtp->tm_hour; |
1368 | 0 | pp->minute = gmtp->tm_min; |
1369 | 0 | pp->second = gmtp->tm_sec; |
1370 | 0 | #ifdef DEBUG |
1371 | 0 | if (debug) |
1372 | 0 | { |
1373 | 0 | printf ("arc: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n", |
1374 | 0 | pp->year,month,gmtp->tm_mday,pp->hour,pp->minute, |
1375 | 0 | pp->second); |
1376 | 0 | } |
1377 | 0 | #endif |
1378 | 0 | } else |
1379 | 0 | { |
1380 | | /* |
1381 | | * For more rational sites distributing UTC |
1382 | | */ |
1383 | 0 | pp->day = ymd2yd(pp->year,month,pp->day); |
1384 | 0 | } |
1385 | 0 | } |
1386 | | |
1387 | 0 | if (peer->MODE == 0) { /* compatiblity to original version */ |
1388 | | /* If clock signal quality is |
1389 | | * unknown, revert to default PRECISION...*/ |
1390 | 0 | if(up->quality == QUALITY_UNKNOWN) { |
1391 | 0 | peer->precision = PRECISION; |
1392 | 0 | } else { /* ...else improve precision if flag3 is set... */ |
1393 | 0 | peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? |
1394 | 0 | HIGHPRECISION : PRECISION); |
1395 | 0 | } |
1396 | 0 | } else { |
1397 | 0 | if ((status == 0x3) && (pp->sloppyclockflag & CLK_FLAG2)) { |
1398 | 0 | peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? |
1399 | 0 | HIGHPRECISION : PRECISION); |
1400 | 0 | } else if (up->quality == QUALITY_UNKNOWN) { |
1401 | 0 | peer->precision = PRECISION; |
1402 | 0 | } else { |
1403 | 0 | peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ? |
1404 | 0 | HIGHPRECISION : PRECISION); |
1405 | 0 | } |
1406 | 0 | } |
1407 | | |
1408 | | /* Notice and log any change (eg from initial defaults) for flags. */ |
1409 | 0 | if(up->saved_flags != pp->sloppyclockflag) { |
1410 | 0 | #ifdef DEBUG |
1411 | 0 | msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s", |
1412 | 0 | ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."), |
1413 | 0 | ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."), |
1414 | 0 | ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."), |
1415 | 0 | ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : ".")); |
1416 | | /* Note effects of flags changing... */ |
1417 | 0 | if(debug) { |
1418 | 0 | printf("arc: PRECISION = %d.\n", peer->precision); |
1419 | 0 | } |
1420 | 0 | #endif |
1421 | 0 | up->saved_flags = pp->sloppyclockflag; |
1422 | 0 | } |
1423 | | |
1424 | | /* Note time of last believable timestamp. */ |
1425 | 0 | pp->lastrec = up->lastrec; |
1426 | |
|
1427 | | #ifdef ARCRON_LEAPSECOND_KEEN |
1428 | | /* Find out if a leap-second might just have happened... |
1429 | | (ie is this the first hour of the first day of Jan or Jul?) |
1430 | | */ |
1431 | | if((pp->hour == 0) && |
1432 | | (pp->day == 1) && |
1433 | | ((month == 1) || (month == 7))) { |
1434 | | if(possible_leap >= 0) { |
1435 | | /* A leap may have happened, and no resync has started yet...*/ |
1436 | | possible_leap = 1; |
1437 | | } |
1438 | | } else { |
1439 | | /* Definitely not leap-second territory... */ |
1440 | | possible_leap = 0; |
1441 | | } |
1442 | | #endif |
1443 | |
|
1444 | 0 | if (!refclock_process(pp)) { |
1445 | 0 | pp->lencode = 0; |
1446 | 0 | refclock_report(peer, CEVNT_BADTIME); |
1447 | 0 | return; |
1448 | 0 | } |
1449 | 0 | record_clock_stats(&peer->srcadr, pp->a_lastcode); |
1450 | 0 | refclock_receive(peer); |
1451 | 0 | } |
1452 | | |
1453 | | |
1454 | | /* request_time() sends a time request to the clock with given peer. */ |
1455 | | /* This automatically reports a fault if necessary. */ |
1456 | | /* No data should be sent after this until arc_poll() returns. */ |
1457 | | static void request_time (int, struct peer *); |
1458 | | static void |
1459 | | request_time( |
1460 | | int unit, |
1461 | | struct peer *peer |
1462 | | ) |
1463 | 0 | { |
1464 | 0 | struct refclockproc *pp = peer->procptr; |
1465 | 0 | register struct arcunit *up = pp->unitptr; |
1466 | 0 | #ifdef DEBUG |
1467 | 0 | if(debug) { printf("arc: unit %d: requesting time.\n", unit); } |
1468 | 0 | #endif |
1469 | 0 | if (!send_slow(up, pp->io.fd, "o\r")) { |
1470 | 0 | #ifdef DEBUG |
1471 | 0 | if (debug) { |
1472 | 0 | printf("arc: unit %d: problem sending", unit); |
1473 | 0 | } |
1474 | 0 | #endif |
1475 | 0 | pp->lencode = 0; |
1476 | 0 | refclock_report(peer, CEVNT_FAULT); |
1477 | 0 | return; |
1478 | 0 | } |
1479 | 0 | pp->polls++; |
1480 | 0 | } |
1481 | | |
1482 | | /* |
1483 | | * arc_poll - called by the transmit procedure |
1484 | | */ |
1485 | | static void |
1486 | | arc_poll( |
1487 | | int unit, |
1488 | | struct peer *peer |
1489 | | ) |
1490 | 0 | { |
1491 | 0 | register struct arcunit *up; |
1492 | 0 | struct refclockproc *pp; |
1493 | 0 | int resync_needed; /* Should we start a resync? */ |
1494 | |
|
1495 | 0 | pp = peer->procptr; |
1496 | 0 | up = pp->unitptr; |
1497 | | #if 0 |
1498 | | pp->lencode = 0; |
1499 | | memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode)); |
1500 | | #endif |
1501 | |
|
1502 | | #if 0 |
1503 | | /* Flush input. */ |
1504 | | tcflush(pp->io.fd, TCIFLUSH); |
1505 | | #endif |
1506 | | |
1507 | | /* Resync if our next scheduled resync time is here or has passed. */ |
1508 | 0 | resync_needed = ( !(pp->sloppyclockflag & CLK_FLAG2) && |
1509 | 0 | (up->next_resync <= current_time) ); |
1510 | |
|
1511 | | #ifdef ARCRON_LEAPSECOND_KEEN |
1512 | | /* |
1513 | | Try to catch a potential leap-second insertion or deletion quickly. |
1514 | | |
1515 | | In addition to the normal NTP fun of clocks that don't report |
1516 | | leap-seconds spooking their hosts, this clock does not even |
1517 | | sample the radio sugnal the whole time, so may miss a |
1518 | | leap-second insertion or deletion for up to a whole sample |
1519 | | time. |
1520 | | |
1521 | | To try to minimise this effect, if in the first few minutes of |
1522 | | the day immediately following a leap-second-insertion point |
1523 | | (ie in the first hour of the first day of the first and sixth |
1524 | | months), and if the last resync was in the previous day, and a |
1525 | | resync is not already in progress, resync the clock |
1526 | | immediately. |
1527 | | |
1528 | | */ |
1529 | | if((possible_leap > 0) && /* Must be 00:XX 01/0{1,7}/XXXX. */ |
1530 | | (!up->resyncing)) { /* No resync in progress yet. */ |
1531 | | resync_needed = 1; |
1532 | | possible_leap = -1; /* Prevent multiple resyncs. */ |
1533 | | msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit); |
1534 | | } |
1535 | | #endif |
1536 | | |
1537 | | /* Do a resync if required... */ |
1538 | 0 | if(resync_needed) { |
1539 | | /* First, reset quality value to `unknown' so we can detect */ |
1540 | | /* when a quality message has been responded to by this */ |
1541 | | /* being set to some other value. */ |
1542 | 0 | up->quality = QUALITY_UNKNOWN; |
1543 | | |
1544 | | /* Note that we are resyncing... */ |
1545 | 0 | up->resyncing = 1; |
1546 | | |
1547 | | /* Now actually send the resync command and an immediate poll. */ |
1548 | 0 | #ifdef DEBUG |
1549 | 0 | if(debug) { printf("arc: sending resync command (h\\r).\n"); } |
1550 | 0 | #endif |
1551 | 0 | msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit); |
1552 | 0 | send_slow(up, pp->io.fd, "h\r"); |
1553 | | |
1554 | | /* Schedule our next resync... */ |
1555 | 0 | up->next_resync = current_time + DEFAULT_RESYNC_TIME; |
1556 | | |
1557 | | /* Drop through to request time if appropriate. */ |
1558 | 0 | } |
1559 | | |
1560 | | /* If clock quality is too poor to trust, indicate a fault. */ |
1561 | | /* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/ |
1562 | | /* we'll cross our fingers and just hope that the thing */ |
1563 | | /* synced so quickly we did not catch it---we'll */ |
1564 | | /* double-check the clock is OK elsewhere. */ |
1565 | 0 | if( |
1566 | 0 | #ifdef ARCRON_KEEN |
1567 | 0 | (up->quality != QUALITY_UNKNOWN) && |
1568 | | #else |
1569 | | (up->quality == QUALITY_UNKNOWN) || |
1570 | | #endif |
1571 | 0 | (up->quality < MIN_CLOCK_QUALITY_OK)) { |
1572 | 0 | #ifdef DEBUG |
1573 | 0 | if(debug) { |
1574 | 0 | printf("arc: clock quality %d too poor.\n", up->quality); |
1575 | 0 | } |
1576 | 0 | #endif |
1577 | 0 | pp->lencode = 0; |
1578 | 0 | refclock_report(peer, CEVNT_FAULT); |
1579 | 0 | return; |
1580 | 0 | } |
1581 | | /* This is the normal case: request a timestamp. */ |
1582 | 0 | request_time(unit, peer); |
1583 | 0 | } |
1584 | | |
1585 | | #else |
1586 | | NONEMPTY_TRANSLATION_UNIT |
1587 | | #endif |