/src/ntp-dev/ntpd/refclock_chu.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * refclock_chu - clock driver for Canadian CHU time/frequency station |
3 | | */ |
4 | | #ifdef HAVE_CONFIG_H |
5 | | #include <config.h> |
6 | | #endif |
7 | | |
8 | | #include "ntp_types.h" |
9 | | |
10 | | #if defined(REFCLOCK) && defined(CLOCK_CHU) |
11 | | |
12 | | #include "ntpd.h" |
13 | | #include "ntp_io.h" |
14 | | #include "ntp_refclock.h" |
15 | | #include "ntp_calendar.h" |
16 | | #include "ntp_stdlib.h" |
17 | | |
18 | | #include <stdio.h> |
19 | | #include <ctype.h> |
20 | | #include <math.h> |
21 | | |
22 | | #ifdef HAVE_AUDIO |
23 | | #include "audio.h" |
24 | | #endif /* HAVE_AUDIO */ |
25 | | |
26 | | #define ICOM 1 /* undefine to suppress ICOM code */ |
27 | | |
28 | | #ifdef ICOM |
29 | | #include "icom.h" |
30 | | #endif /* ICOM */ |
31 | | /* |
32 | | * Audio CHU demodulator/decoder |
33 | | * |
34 | | * This driver synchronizes the computer time using data encoded in |
35 | | * radio transmissions from Canadian time/frequency station CHU in |
36 | | * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz, |
37 | | * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An |
38 | | * ordinary shortwave receiver can be tuned manually to one of these |
39 | | * frequencies or, in the case of ICOM receivers, the receiver can be |
40 | | * tuned automatically as propagation conditions change throughout the |
41 | | * day and season. |
42 | | * |
43 | | * The driver requires an audio codec or sound card with sampling rate 8 |
44 | | * kHz and mu-law companding. This is the same standard as used by the |
45 | | * telephone industry and is supported by most hardware and operating |
46 | | * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this |
47 | | * implementation, only one audio driver and codec can be supported on a |
48 | | * single machine. |
49 | | * |
50 | | * The driver can be compiled to use a Bell 103 compatible modem or |
51 | | * modem chip to receive the radio signal and demodulate the data. |
52 | | * Alternatively, the driver can be compiled to use the audio codec of |
53 | | * the workstation or another with compatible audio drivers. In the |
54 | | * latter case, the driver implements the modem using DSP routines, so |
55 | | * the radio can be connected directly to either the microphone on line |
56 | | * input port. In either case, the driver decodes the data using a |
57 | | * maximum-likelihood technique which exploits the considerable degree |
58 | | * of redundancy available to maximize accuracy and minimize errors. |
59 | | * |
60 | | * The CHU time broadcast includes an audio signal compatible with the |
61 | | * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal |
62 | | * consists of nine, ten-character bursts transmitted at 300 bps between |
63 | | * seconds 31 and 39 of each minute. Each character consists of eight |
64 | | * data bits plus one start bit and two stop bits to encode two hex |
65 | | * digits. The burst data consist of five characters (ten hex digits) |
66 | | * followed by a repeat of these characters. In format A, the characters |
67 | | * are repeated in the same polarity; in format B, the characters are |
68 | | * repeated in the opposite polarity. |
69 | | * |
70 | | * Format A bursts are sent at seconds 32 through 39 of the minute in |
71 | | * hex digits (nibble swapped) |
72 | | * |
73 | | * 6dddhhmmss6dddhhmmss |
74 | | * |
75 | | * The first ten digits encode a frame marker (6) followed by the day |
76 | | * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since |
77 | | * format A bursts are sent during the third decade of seconds the tens |
78 | | * digit of ss is always 3. The driver uses this to determine correct |
79 | | * burst synchronization. These digits are then repeated with the same |
80 | | * polarity. |
81 | | * |
82 | | * Format B bursts are sent at second 31 of the minute in hex digits |
83 | | * |
84 | | * xdyyyyttaaxdyyyyttaa |
85 | | * |
86 | | * The first ten digits encode a code (x described below) followed by |
87 | | * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI - |
88 | | * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These |
89 | | * digits are then repeated with inverted polarity. |
90 | | * |
91 | | * The x is coded |
92 | | * |
93 | | * 1 Sign of DUT (0 = +) |
94 | | * 2 Leap second warning. One second will be added. |
95 | | * 4 Leap second warning. One second will be subtracted. |
96 | | * 8 Even parity bit for this nibble. |
97 | | * |
98 | | * By design, the last stop bit of the last character in the burst |
99 | | * coincides with 0.5 second. Since characters have 11 bits and are |
100 | | * transmitted at 300 bps, the last stop bit of the first character |
101 | | * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the |
102 | | * UART, character interrupts can vary somewhere between the end of bit |
103 | | * 9 and end of bit 11. These eccentricities can be corrected along with |
104 | | * the radio propagation delay using fudge time 1. |
105 | | * |
106 | | * Debugging aids |
107 | | * |
108 | | * The timecode format used for debugging and data recording includes |
109 | | * data helpful in diagnosing problems with the radio signal and serial |
110 | | * connections. With debugging enabled (-d on the ntpd command line), |
111 | | * the driver produces one line for each burst in two formats |
112 | | * corresponding to format A and B.Each line begins with the format code |
113 | | * chuA or chuB followed by the status code and signal level (0-9999). |
114 | | * The remainder of the line is as follows. |
115 | | * |
116 | | * Following is format A: |
117 | | * |
118 | | * n b f s m code |
119 | | * |
120 | | * where n is the number of characters in the burst (0-10), b the burst |
121 | | * distance (0-40), f the field alignment (-1, 0, 1), s the |
122 | | * synchronization distance (0-16), m the burst number (2-9) and code |
123 | | * the burst characters as received. Note that the hex digits in each |
124 | | * character are reversed, so the burst |
125 | | * |
126 | | * 10 38 0 16 9 06851292930685129293 |
127 | | * |
128 | | * is interpreted as containing 10 characters with burst distance 38, |
129 | | * field alignment 0, synchronization distance 16 and burst number 9. |
130 | | * The nibble-swapped timecode shows day 58, hour 21, minute 29 and |
131 | | * second 39. |
132 | | * |
133 | | * Following is format B: |
134 | | * |
135 | | * n b s code |
136 | | * |
137 | | * where n is the number of characters in the burst (0-10), b the burst |
138 | | * distance (0-40), s the synchronization distance (0-40) and code the |
139 | | * burst characters as received. Note that the hex digits in each |
140 | | * character are reversed and the last ten digits inverted, so the burst |
141 | | * |
142 | | * 10 40 1091891300ef6e76ec |
143 | | * |
144 | | * is interpreted as containing 10 characters with burst distance 40. |
145 | | * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI |
146 | | * - UTC 31 seconds. |
147 | | * |
148 | | * Each line is preceeded by the code chuA or chuB, as appropriate. If |
149 | | * the audio driver is compiled, the current gain (0-255) and relative |
150 | | * signal level (0-9999) follow the code. The receiver volume control |
151 | | * should be set so that the gain is somewhere near the middle of the |
152 | | * range 0-255, which results in a signal level near 1000. |
153 | | * |
154 | | * In addition to the above, the reference timecode is updated and |
155 | | * written to the clockstats file and debug score after the last burst |
156 | | * received in the minute. The format is |
157 | | * |
158 | | * sq yyyy ddd hh:mm:ss l s dd t agc ident m b |
159 | | * |
160 | | * s '?' before first synchronized and ' ' after that |
161 | | * q status code (see below) |
162 | | * yyyy year |
163 | | * ddd day of year |
164 | | * hh:mm:ss time of day |
165 | | * l leap second indicator (space, L or D) |
166 | | * dst Canadian daylight code (opaque) |
167 | | * t number of minutes since last synchronized |
168 | | * agc audio gain (0 - 255) |
169 | | * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz) |
170 | | * m signal metric (0 - 100) |
171 | | * b number of timecodes for the previous minute (0 - 59) |
172 | | * |
173 | | * Fudge factors |
174 | | * |
175 | | * For accuracies better than the low millisceconds, fudge time1 can be |
176 | | * set to the radio propagation delay from CHU to the receiver. This can |
177 | | * be done conviently using the minimuf program. |
178 | | * |
179 | | * Fudge flag4 causes the dubugging output described above to be |
180 | | * recorded in the clockstats file. When the audio driver is compiled, |
181 | | * fudge flag2 selects the audio input port, where 0 is the mike port |
182 | | * (default) and 1 is the line-in port. It does not seem useful to |
183 | | * select the compact disc player port. Fudge flag3 enables audio |
184 | | * monitoring of the input signal. For this purpose, the monitor gain is |
185 | | * set to a default value. |
186 | | * |
187 | | * The audio codec code is normally compiled in the driver if the |
188 | | * architecture supports it (HAVE_AUDIO defined), but is used only if |
189 | | * the link /dev/chu_audio is defined and valid. The serial port code is |
190 | | * always compiled in the driver, but is used only if the autdio codec |
191 | | * is not available and the link /dev/chu%d is defined and valid. |
192 | | * |
193 | | * The ICOM code is normally compiled in the driver if selected (ICOM |
194 | | * defined), but is used only if the link /dev/icom%d is defined and |
195 | | * valid and the mode keyword on the server configuration command |
196 | | * specifies a nonzero mode (ICOM ID select code). The C-IV speed is |
197 | | * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps |
198 | | * if one. The C-IV trace is turned on if the debug level is greater |
199 | | * than one. |
200 | | * |
201 | | * Alarm codes |
202 | | * |
203 | | * CEVNT_BADTIME invalid date or time |
204 | | * CEVNT_PROP propagation failure - no stations heard |
205 | | */ |
206 | | /* |
207 | | * Interface definitions |
208 | | */ |
209 | | #define SPEED232 B300 /* uart speed (300 baud) */ |
210 | 0 | #define PRECISION (-10) /* precision assumed (about 1 ms) */ |
211 | | #define REFID "CHU" /* reference ID */ |
212 | | #define DEVICE "/dev/chu%d" /* device name and unit */ |
213 | 0 | #define SPEED232 B300 /* UART speed (300 baud) */ |
214 | | #ifdef ICOM |
215 | 0 | #define TUNE .001 /* offset for narrow filter (MHz) */ |
216 | 0 | #define DWELL 5 /* minutes in a dwell */ |
217 | 0 | #define NCHAN 3 /* number of channels */ |
218 | 0 | #define ISTAGE 3 /* number of integrator stages */ |
219 | | #endif /* ICOM */ |
220 | | |
221 | | #ifdef HAVE_AUDIO |
222 | | /* |
223 | | * Audio demodulator definitions |
224 | | */ |
225 | 0 | #define SECOND 8000 /* nominal sample rate (Hz) */ |
226 | 0 | #define BAUD 300 /* modulation rate (bps) */ |
227 | 0 | #define OFFSET 128 /* companded sample offset */ |
228 | | #define SIZE 256 /* decompanding table size */ |
229 | 0 | #define MAXAMP 6000. /* maximum signal level */ |
230 | 0 | #define MAXCLP 100 /* max clips above reference per s */ |
231 | 0 | #define SPAN 800. /* min envelope span */ |
232 | 0 | #define LIMIT 1000. /* soft limiter threshold */ |
233 | 0 | #define AGAIN 6. /* baseband gain */ |
234 | 0 | #define LAG 10 /* discriminator lag */ |
235 | 0 | #define DEVICE_AUDIO "/dev/audio" /* device name */ |
236 | 0 | #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */ |
237 | 0 | #define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */ |
238 | | #else |
239 | | #define DESCRIPTION "CHU Modem Receiver" /* WRU */ |
240 | | #endif /* HAVE_AUDIO */ |
241 | | |
242 | | /* |
243 | | * Decoder definitions |
244 | | */ |
245 | 0 | #define CHAR (11. / 300.) /* character time (s) */ |
246 | 0 | #define BURST 11 /* max characters per burst */ |
247 | 0 | #define MINCHARS 9 /* min characters per burst */ |
248 | 0 | #define MINDIST 28 /* min burst distance (of 40) */ |
249 | 0 | #define MINSYNC 8 /* min sync distance (of 16) */ |
250 | 0 | #define MINSTAMP 20 /* min timestamps (of 60) */ |
251 | 0 | #define MINMETRIC 50 /* min channel metric (of 160) */ |
252 | | |
253 | | /* |
254 | | * The on-time synchronization point for the driver is the last stop bit |
255 | | * of the first character 170 ms. The modem delay is 0.8 ms, while the |
256 | | * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3 |
257 | | * ms due to the codec and other causes was determined by calibrating to |
258 | | * a PPS signal from a GPS receiver. The additional propagation delay |
259 | | * specific to each receiver location can be programmed in the fudge |
260 | | * time1. |
261 | | * |
262 | | * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are |
263 | | * generally within 0.5 ms short term with 0.3 ms jitter. The long-term |
264 | | * offsets vary up to 0.3 ms due to ionospheric layer height variations. |
265 | | * The processor load due to the driver is 0.4 percent. |
266 | | */ |
267 | 0 | #define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */ |
268 | | |
269 | | /* |
270 | | * Status bits (status) |
271 | | */ |
272 | 0 | #define RUNT 0x0001 /* runt burst */ |
273 | 0 | #define NOISE 0x0002 /* noise burst */ |
274 | 0 | #define BFRAME 0x0004 /* invalid format B frame sync */ |
275 | 0 | #define BFORMAT 0x0008 /* invalid format B data */ |
276 | 0 | #define AFRAME 0x0010 /* invalid format A frame sync */ |
277 | 0 | #define AFORMAT 0x0020 /* invalid format A data */ |
278 | 0 | #define DECODE 0x0040 /* invalid data decode */ |
279 | 0 | #define STAMP 0x0080 /* too few timestamps */ |
280 | 0 | #define AVALID 0x0100 /* valid A frame */ |
281 | 0 | #define BVALID 0x0200 /* valid B frame */ |
282 | 0 | #define INSYNC 0x0400 /* clock synchronized */ |
283 | 0 | #define METRIC 0x0800 /* one or more stations heard */ |
284 | | |
285 | | /* |
286 | | * Alarm status bits (alarm) |
287 | | * |
288 | | * These alarms are set at the end of a minute in which at least one |
289 | | * burst was received. SYNERR is raised if the AFRAME or BFRAME status |
290 | | * bits are set during the minute, FMTERR is raised if the AFORMAT or |
291 | | * BFORMAT status bits are set, DECERR is raised if the DECODE status |
292 | | * bit is set and TSPERR is raised if the STAMP status bit is set. |
293 | | */ |
294 | 0 | #define SYNERR 0x01 /* frame sync error */ |
295 | 0 | #define FMTERR 0x02 /* data format error */ |
296 | 0 | #define DECERR 0x04 /* data decoding error */ |
297 | 0 | #define TSPERR 0x08 /* insufficient data */ |
298 | | |
299 | | #ifdef HAVE_AUDIO |
300 | | /* |
301 | | * Maximum-likelihood UART structure. There are eight of these |
302 | | * corresponding to the number of phases. |
303 | | */ |
304 | | struct surv { |
305 | | l_fp cstamp; /* last bit timestamp */ |
306 | | double shift[12]; /* sample shift register */ |
307 | | double span; /* shift register envelope span */ |
308 | | double dist; /* sample distance */ |
309 | | int uart; /* decoded character */ |
310 | | }; |
311 | | #endif /* HAVE_AUDIO */ |
312 | | |
313 | | #ifdef ICOM |
314 | | /* |
315 | | * CHU station structure. There are three of these corresponding to the |
316 | | * three frequencies. |
317 | | */ |
318 | | struct xmtr { |
319 | | double integ[ISTAGE]; /* circular integrator */ |
320 | | double metric; /* integrator sum */ |
321 | | int iptr; /* integrator pointer */ |
322 | | int probe; /* dwells since last probe */ |
323 | | }; |
324 | | #endif /* ICOM */ |
325 | | |
326 | | /* |
327 | | * CHU unit control structure |
328 | | */ |
329 | | struct chuunit { |
330 | | u_char decode[20][16]; /* maximum-likelihood decoding matrix */ |
331 | | l_fp cstamp[BURST]; /* character timestamps */ |
332 | | l_fp tstamp[MAXSTAGE]; /* timestamp samples */ |
333 | | l_fp timestamp; /* current buffer timestamp */ |
334 | | l_fp laststamp; /* last buffer timestamp */ |
335 | | l_fp charstamp; /* character time as a l_fp */ |
336 | | int second; /* counts the seconds of the minute */ |
337 | | int errflg; /* error flags */ |
338 | | int status; /* status bits */ |
339 | | char ident[5]; /* station ID and channel */ |
340 | | #ifdef ICOM |
341 | | int fd_icom; /* ICOM file descriptor */ |
342 | | int chan; /* radio channel */ |
343 | | int dwell; /* dwell cycle */ |
344 | | struct xmtr xmtr[NCHAN]; /* station metric */ |
345 | | #endif /* ICOM */ |
346 | | |
347 | | /* |
348 | | * Character burst variables |
349 | | */ |
350 | | int cbuf[BURST]; /* character buffer */ |
351 | | int ntstamp; /* number of timestamp samples */ |
352 | | int ndx; /* buffer start index */ |
353 | | int prevsec; /* previous burst second */ |
354 | | int burdist; /* burst distance */ |
355 | | int syndist; /* sync distance */ |
356 | | int burstcnt; /* format A bursts this minute */ |
357 | | double maxsignal; /* signal level (modem only) */ |
358 | | int gain; /* codec gain (modem only) */ |
359 | | |
360 | | /* |
361 | | * Format particulars |
362 | | */ |
363 | | int leap; /* leap/dut code */ |
364 | | int dut; /* UTC1 correction */ |
365 | | int tai; /* TAI - UTC correction */ |
366 | | int dst; /* Canadian DST code */ |
367 | | |
368 | | #ifdef HAVE_AUDIO |
369 | | /* |
370 | | * Audio codec variables |
371 | | */ |
372 | | int fd_audio; /* audio port file descriptor */ |
373 | | double comp[SIZE]; /* decompanding table */ |
374 | | int port; /* codec port */ |
375 | | int mongain; /* codec monitor gain */ |
376 | | int clipcnt; /* sample clip count */ |
377 | | int seccnt; /* second interval counter */ |
378 | | |
379 | | /* |
380 | | * Modem variables |
381 | | */ |
382 | | l_fp tick; /* audio sample increment */ |
383 | | double bpf[9]; /* IIR bandpass filter */ |
384 | | double disc[LAG]; /* discriminator shift register */ |
385 | | double lpf[27]; /* FIR lowpass filter */ |
386 | | double monitor; /* audio monitor */ |
387 | | int discptr; /* discriminator pointer */ |
388 | | |
389 | | /* |
390 | | * Maximum-likelihood UART variables |
391 | | */ |
392 | | double baud; /* baud interval */ |
393 | | struct surv surv[8]; /* UART survivor structures */ |
394 | | int decptr; /* decode pointer */ |
395 | | int decpha; /* decode phase */ |
396 | | int dbrk; /* holdoff counter */ |
397 | | #endif /* HAVE_AUDIO */ |
398 | | }; |
399 | | |
400 | | /* |
401 | | * Function prototypes |
402 | | */ |
403 | | static int chu_start (int, struct peer *); |
404 | | static void chu_shutdown (int, struct peer *); |
405 | | static void chu_receive (struct recvbuf *); |
406 | | static void chu_second (int, struct peer *); |
407 | | static void chu_poll (int, struct peer *); |
408 | | |
409 | | /* |
410 | | * More function prototypes |
411 | | */ |
412 | | static void chu_decode (struct peer *, int, l_fp); |
413 | | static void chu_burst (struct peer *); |
414 | | static void chu_clear (struct peer *); |
415 | | static void chu_a (struct peer *, int); |
416 | | static void chu_b (struct peer *, int); |
417 | | static int chu_dist (int, int); |
418 | | static double chu_major (struct peer *); |
419 | | #ifdef HAVE_AUDIO |
420 | | static void chu_uart (struct surv *, double); |
421 | | static void chu_rf (struct peer *, double); |
422 | | static void chu_gain (struct peer *); |
423 | | static void chu_audio_receive (struct recvbuf *rbufp); |
424 | | #endif /* HAVE_AUDIO */ |
425 | | #ifdef ICOM |
426 | | static int chu_newchan (struct peer *, double); |
427 | | #endif /* ICOM */ |
428 | | static void chu_serial_receive (struct recvbuf *rbufp); |
429 | | |
430 | | /* |
431 | | * Global variables |
432 | | */ |
433 | | static char hexchar[] = "0123456789abcdef_*="; |
434 | | |
435 | | #ifdef ICOM |
436 | | /* |
437 | | * Note the tuned frequencies are 1 kHz higher than the carrier. CHU |
438 | | * transmits on USB with carrier so we can use AM and the narrow SSB |
439 | | * filter. |
440 | | */ |
441 | | static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */ |
442 | | #endif /* ICOM */ |
443 | | |
444 | | /* |
445 | | * Transfer vector |
446 | | */ |
447 | | struct refclock refclock_chu = { |
448 | | chu_start, /* start up driver */ |
449 | | chu_shutdown, /* shut down driver */ |
450 | | chu_poll, /* transmit poll message */ |
451 | | noentry, /* not used (old chu_control) */ |
452 | | noentry, /* initialize driver (not used) */ |
453 | | noentry, /* not used (old chu_buginfo) */ |
454 | | chu_second /* housekeeping timer */ |
455 | | }; |
456 | | |
457 | | |
458 | | /* |
459 | | * chu_start - open the devices and initialize data for processing |
460 | | */ |
461 | | static int |
462 | | chu_start( |
463 | | int unit, /* instance number (not used) */ |
464 | | struct peer *peer /* peer structure pointer */ |
465 | | ) |
466 | 0 | { |
467 | 0 | struct chuunit *up; |
468 | 0 | struct refclockproc *pp; |
469 | 0 | char device[20]; /* device name */ |
470 | 0 | int fd; /* file descriptor */ |
471 | 0 | #ifdef ICOM |
472 | 0 | int temp; |
473 | 0 | #endif /* ICOM */ |
474 | 0 | #ifdef HAVE_AUDIO |
475 | 0 | int fd_audio; /* audio port file descriptor */ |
476 | 0 | int i; /* index */ |
477 | 0 | double step; /* codec adjustment */ |
478 | | |
479 | | /* |
480 | | * Open audio device. Don't complain if not there. |
481 | | */ |
482 | 0 | fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); |
483 | |
|
484 | 0 | #ifdef DEBUG |
485 | 0 | if (fd_audio >= 0 && debug) |
486 | 0 | audio_show(); |
487 | 0 | #endif |
488 | | |
489 | | /* |
490 | | * If audio is unavailable, Open serial port in raw mode. |
491 | | */ |
492 | 0 | if (fd_audio >= 0) { |
493 | 0 | fd = fd_audio; |
494 | 0 | } else { |
495 | 0 | snprintf(device, sizeof(device), DEVICE, unit); |
496 | 0 | fd = refclock_open(device, SPEED232, LDISC_RAW); |
497 | 0 | } |
498 | | #else /* HAVE_AUDIO */ |
499 | | |
500 | | /* |
501 | | * Open serial port in raw mode. |
502 | | */ |
503 | | snprintf(device, sizeof(device), DEVICE, unit); |
504 | | fd = refclock_open(device, SPEED232, LDISC_RAW); |
505 | | #endif /* HAVE_AUDIO */ |
506 | |
|
507 | 0 | if (fd < 0) |
508 | 0 | return (0); |
509 | | |
510 | | /* |
511 | | * Allocate and initialize unit structure |
512 | | */ |
513 | 0 | up = emalloc_zero(sizeof(*up)); |
514 | 0 | pp = peer->procptr; |
515 | 0 | pp->unitptr = up; |
516 | 0 | pp->io.clock_recv = chu_receive; |
517 | 0 | pp->io.srcclock = peer; |
518 | 0 | pp->io.datalen = 0; |
519 | 0 | pp->io.fd = fd; |
520 | 0 | if (!io_addclock(&pp->io)) { |
521 | 0 | close(fd); |
522 | 0 | pp->io.fd = -1; |
523 | 0 | free(up); |
524 | 0 | pp->unitptr = NULL; |
525 | 0 | return (0); |
526 | 0 | } |
527 | | |
528 | | /* |
529 | | * Initialize miscellaneous variables |
530 | | */ |
531 | 0 | peer->precision = PRECISION; |
532 | 0 | pp->clockdesc = DESCRIPTION; |
533 | 0 | strlcpy(up->ident, "CHU", sizeof(up->ident)); |
534 | 0 | memcpy(&pp->refid, up->ident, 4); |
535 | 0 | DTOLFP(CHAR, &up->charstamp); |
536 | 0 | #ifdef HAVE_AUDIO |
537 | | |
538 | | /* |
539 | | * The companded samples are encoded sign-magnitude. The table |
540 | | * contains all the 256 values in the interest of speed. We do |
541 | | * this even if the audio codec is not available. C'est la lazy. |
542 | | */ |
543 | 0 | up->fd_audio = fd_audio; |
544 | 0 | up->gain = 127; |
545 | 0 | up->comp[0] = up->comp[OFFSET] = 0.; |
546 | 0 | up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; |
547 | 0 | up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; |
548 | 0 | step = 2.; |
549 | 0 | for (i = 3; i < OFFSET; i++) { |
550 | 0 | up->comp[i] = up->comp[i - 1] + step; |
551 | 0 | up->comp[OFFSET + i] = -up->comp[i]; |
552 | 0 | if (i % 16 == 0) |
553 | 0 | step *= 2.; |
554 | 0 | } |
555 | 0 | DTOLFP(1. / SECOND, &up->tick); |
556 | 0 | #endif /* HAVE_AUDIO */ |
557 | 0 | #ifdef ICOM |
558 | 0 | temp = 0; |
559 | 0 | #ifdef DEBUG |
560 | 0 | if (debug > 1) |
561 | 0 | temp = P_TRACE; |
562 | 0 | #endif |
563 | 0 | if (peer->ttl > 0) { |
564 | 0 | if (peer->ttl & 0x80) |
565 | 0 | up->fd_icom = icom_init("/dev/icom", B1200, |
566 | 0 | temp); |
567 | 0 | else |
568 | 0 | up->fd_icom = icom_init("/dev/icom", B9600, |
569 | 0 | temp); |
570 | 0 | } |
571 | 0 | if (up->fd_icom > 0) { |
572 | 0 | if (chu_newchan(peer, 0) != 0) { |
573 | 0 | msyslog(LOG_NOTICE, "icom: radio not found"); |
574 | 0 | close(up->fd_icom); |
575 | 0 | up->fd_icom = 0; |
576 | 0 | } else { |
577 | 0 | msyslog(LOG_NOTICE, "icom: autotune enabled"); |
578 | 0 | } |
579 | 0 | } |
580 | 0 | #endif /* ICOM */ |
581 | 0 | return (1); |
582 | 0 | } |
583 | | |
584 | | |
585 | | /* |
586 | | * chu_shutdown - shut down the clock |
587 | | */ |
588 | | static void |
589 | | chu_shutdown( |
590 | | int unit, /* instance number (not used) */ |
591 | | struct peer *peer /* peer structure pointer */ |
592 | | ) |
593 | 0 | { |
594 | 0 | struct chuunit *up; |
595 | 0 | struct refclockproc *pp; |
596 | |
|
597 | 0 | pp = peer->procptr; |
598 | 0 | up = pp->unitptr; |
599 | 0 | if (up == NULL) |
600 | 0 | return; |
601 | | |
602 | 0 | io_closeclock(&pp->io); |
603 | 0 | #ifdef ICOM |
604 | 0 | if (up->fd_icom > 0) |
605 | 0 | close(up->fd_icom); |
606 | 0 | #endif /* ICOM */ |
607 | 0 | free(up); |
608 | 0 | } |
609 | | |
610 | | |
611 | | /* |
612 | | * chu_receive - receive data from the audio or serial device |
613 | | */ |
614 | | static void |
615 | | chu_receive( |
616 | | struct recvbuf *rbufp /* receive buffer structure pointer */ |
617 | | ) |
618 | 0 | { |
619 | 0 | #ifdef HAVE_AUDIO |
620 | 0 | struct chuunit *up; |
621 | 0 | struct refclockproc *pp; |
622 | 0 | struct peer *peer; |
623 | |
|
624 | 0 | peer = rbufp->recv_peer; |
625 | 0 | pp = peer->procptr; |
626 | 0 | up = pp->unitptr; |
627 | | |
628 | | /* |
629 | | * If the audio codec is warmed up, the buffer contains codec |
630 | | * samples which need to be demodulated and decoded into CHU |
631 | | * characters using the software UART. Otherwise, the buffer |
632 | | * contains CHU characters from the serial port, so the software |
633 | | * UART is bypassed. In this case the CPU will probably run a |
634 | | * few degrees cooler. |
635 | | */ |
636 | 0 | if (up->fd_audio > 0) |
637 | 0 | chu_audio_receive(rbufp); |
638 | 0 | else |
639 | 0 | chu_serial_receive(rbufp); |
640 | | #else |
641 | | chu_serial_receive(rbufp); |
642 | | #endif /* HAVE_AUDIO */ |
643 | 0 | } |
644 | | |
645 | | |
646 | | #ifdef HAVE_AUDIO |
647 | | /* |
648 | | * chu_audio_receive - receive data from the audio device |
649 | | */ |
650 | | static void |
651 | | chu_audio_receive( |
652 | | struct recvbuf *rbufp /* receive buffer structure pointer */ |
653 | | ) |
654 | 0 | { |
655 | 0 | struct chuunit *up; |
656 | 0 | struct refclockproc *pp; |
657 | 0 | struct peer *peer; |
658 | |
|
659 | 0 | double sample; /* codec sample */ |
660 | 0 | u_char *dpt; /* buffer pointer */ |
661 | 0 | int bufcnt; /* buffer counter */ |
662 | 0 | l_fp ltemp; /* l_fp temp */ |
663 | |
|
664 | 0 | peer = rbufp->recv_peer; |
665 | 0 | pp = peer->procptr; |
666 | 0 | up = pp->unitptr; |
667 | | |
668 | | /* |
669 | | * Main loop - read until there ain't no more. Note codec |
670 | | * samples are bit-inverted. |
671 | | */ |
672 | 0 | DTOLFP((double)rbufp->recv_length / SECOND, <emp); |
673 | 0 | L_SUB(&rbufp->recv_time, <emp); |
674 | 0 | up->timestamp = rbufp->recv_time; |
675 | 0 | dpt = rbufp->recv_buffer; |
676 | 0 | for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { |
677 | 0 | sample = up->comp[~*dpt++ & 0xff]; |
678 | | |
679 | | /* |
680 | | * Clip noise spikes greater than MAXAMP. If no clips, |
681 | | * increase the gain a tad; if the clips are too high, |
682 | | * decrease a tad. |
683 | | */ |
684 | 0 | if (sample > MAXAMP) { |
685 | 0 | sample = MAXAMP; |
686 | 0 | up->clipcnt++; |
687 | 0 | } else if (sample < -MAXAMP) { |
688 | 0 | sample = -MAXAMP; |
689 | 0 | up->clipcnt++; |
690 | 0 | } |
691 | 0 | chu_rf(peer, sample); |
692 | 0 | L_ADD(&up->timestamp, &up->tick); |
693 | | |
694 | | /* |
695 | | * Once each second ride gain. |
696 | | */ |
697 | 0 | up->seccnt = (up->seccnt + 1) % SECOND; |
698 | 0 | if (up->seccnt == 0) { |
699 | 0 | chu_gain(peer); |
700 | 0 | } |
701 | 0 | } |
702 | | |
703 | | /* |
704 | | * Set the input port and monitor gain for the next buffer. |
705 | | */ |
706 | 0 | if (pp->sloppyclockflag & CLK_FLAG2) |
707 | 0 | up->port = 2; |
708 | 0 | else |
709 | 0 | up->port = 1; |
710 | 0 | if (pp->sloppyclockflag & CLK_FLAG3) |
711 | 0 | up->mongain = MONGAIN; |
712 | 0 | else |
713 | 0 | up->mongain = 0; |
714 | 0 | } |
715 | | |
716 | | |
717 | | /* |
718 | | * chu_rf - filter and demodulate the FSK signal |
719 | | * |
720 | | * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz |
721 | | * and space 2025 Hz. It uses a bandpass filter followed by a soft |
722 | | * limiter, FM discriminator and lowpass filter. A maximum-likelihood |
723 | | * decoder samples the baseband signal at eight times the baud rate and |
724 | | * detects the start bit of each character. |
725 | | * |
726 | | * The filters are built for speed, which explains the rather clumsy |
727 | | * code. Hopefully, the compiler will efficiently implement the move- |
728 | | * and-muiltiply-and-add operations. |
729 | | */ |
730 | | static void |
731 | | chu_rf( |
732 | | struct peer *peer, /* peer structure pointer */ |
733 | | double sample /* analog sample */ |
734 | | ) |
735 | 0 | { |
736 | 0 | struct refclockproc *pp; |
737 | 0 | struct chuunit *up; |
738 | 0 | struct surv *sp; |
739 | | |
740 | | /* |
741 | | * Local variables |
742 | | */ |
743 | 0 | double signal; /* bandpass signal */ |
744 | 0 | double limit; /* limiter signal */ |
745 | 0 | double disc; /* discriminator signal */ |
746 | 0 | double lpf; /* lowpass signal */ |
747 | 0 | double dist; /* UART signal distance */ |
748 | 0 | int i, j; |
749 | |
|
750 | 0 | pp = peer->procptr; |
751 | 0 | up = pp->unitptr; |
752 | | |
753 | | /* |
754 | | * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered |
755 | | * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB, |
756 | | * phase delay 0.24 ms. |
757 | | */ |
758 | 0 | signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01; |
759 | 0 | signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01; |
760 | 0 | signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00; |
761 | 0 | signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00; |
762 | 0 | signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00; |
763 | 0 | signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00; |
764 | 0 | signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00; |
765 | 0 | signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01; |
766 | 0 | up->bpf[0] = sample - signal; |
767 | 0 | signal = up->bpf[0] * 6.176213e-03 |
768 | 0 | + up->bpf[1] * 3.156599e-03 |
769 | 0 | + up->bpf[2] * 7.567487e-03 |
770 | 0 | + up->bpf[3] * 4.344580e-03 |
771 | 0 | + up->bpf[4] * 1.190128e-02 |
772 | 0 | + up->bpf[5] * 4.344580e-03 |
773 | 0 | + up->bpf[6] * 7.567487e-03 |
774 | 0 | + up->bpf[7] * 3.156599e-03 |
775 | 0 | + up->bpf[8] * 6.176213e-03; |
776 | |
|
777 | 0 | up->monitor = signal / 4.; /* note monitor after filter */ |
778 | | |
779 | | /* |
780 | | * Soft limiter/discriminator. The 11-sample discriminator lag |
781 | | * interval corresponds to three cycles of 2125 Hz, which |
782 | | * requires the sample frequency to be 2125 * 11 / 3 = 7791.7 |
783 | | * Hz. The discriminator output varies +-0.5 interval for input |
784 | | * frequency 2025-2225 Hz. However, we don't get to sample at |
785 | | * this frequency, so the discriminator output is biased. Life |
786 | | * at 8000 Hz sucks. |
787 | | */ |
788 | 0 | limit = signal; |
789 | 0 | if (limit > LIMIT) |
790 | 0 | limit = LIMIT; |
791 | 0 | else if (limit < -LIMIT) |
792 | 0 | limit = -LIMIT; |
793 | 0 | disc = up->disc[up->discptr] * -limit; |
794 | 0 | up->disc[up->discptr] = limit; |
795 | 0 | up->discptr = (up->discptr + 1 ) % LAG; |
796 | 0 | if (disc >= 0) |
797 | 0 | disc = SQRT(disc); |
798 | 0 | else |
799 | 0 | disc = -SQRT(-disc); |
800 | | |
801 | | /* |
802 | | * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1. |
803 | | */ |
804 | 0 | lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02; |
805 | 0 | lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01; |
806 | 0 | lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01; |
807 | 0 | lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01; |
808 | 0 | lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01; |
809 | 0 | lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01; |
810 | 0 | lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01; |
811 | 0 | lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01; |
812 | 0 | lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01; |
813 | 0 | lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01; |
814 | 0 | lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01; |
815 | 0 | lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01; |
816 | 0 | lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01; |
817 | 0 | lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00; |
818 | 0 | lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01; |
819 | 0 | lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01; |
820 | 0 | lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01; |
821 | 0 | lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01; |
822 | 0 | lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01; |
823 | 0 | lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01; |
824 | 0 | lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01; |
825 | 0 | lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01; |
826 | 0 | lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01; |
827 | 0 | lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01; |
828 | 0 | lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01; |
829 | 0 | lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01; |
830 | 0 | lpf += up->lpf[0] = disc * 2.538771e-02; |
831 | | |
832 | | /* |
833 | | * Maximum-likelihood decoder. The UART updates each of the |
834 | | * eight survivors and determines the span, slice level and |
835 | | * tentative decoded character. Valid 11-bit characters are |
836 | | * framed so that bit 10 and bit 11 (stop bits) are mark and bit |
837 | | * 1 (start bit) is space. When a valid character is found, the |
838 | | * survivor with maximum distance determines the final decoded |
839 | | * character. |
840 | | */ |
841 | 0 | up->baud += 1. / SECOND; |
842 | 0 | if (up->baud > 1. / (BAUD * 8.)) { |
843 | 0 | up->baud -= 1. / (BAUD * 8.); |
844 | 0 | up->decptr = (up->decptr + 1) % 8; |
845 | 0 | sp = &up->surv[up->decptr]; |
846 | 0 | sp->cstamp = up->timestamp; |
847 | 0 | chu_uart(sp, -lpf * AGAIN); |
848 | 0 | if (up->dbrk > 0) { |
849 | 0 | up->dbrk--; |
850 | 0 | if (up->dbrk > 0) |
851 | 0 | return; |
852 | | |
853 | 0 | up->decpha = up->decptr; |
854 | 0 | } |
855 | 0 | if (up->decptr != up->decpha) |
856 | 0 | return; |
857 | | |
858 | 0 | dist = 0; |
859 | 0 | j = -1; |
860 | 0 | for (i = 0; i < 8; i++) { |
861 | | |
862 | | /* |
863 | | * The timestamp is taken at the last bit, so |
864 | | * for correct decoding we reqire sufficient |
865 | | * span and correct start bit and two stop bits. |
866 | | */ |
867 | 0 | if ((up->surv[i].uart & 0x601) != 0x600 || |
868 | 0 | up->surv[i].span < SPAN) |
869 | 0 | continue; |
870 | | |
871 | 0 | if (up->surv[i].dist > dist) { |
872 | 0 | dist = up->surv[i].dist; |
873 | 0 | j = i; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | if (j < 0) |
877 | 0 | return; |
878 | | |
879 | | /* |
880 | | * Process the character, then blank the decoder until |
881 | | * the end of the next character.This sets the decoding |
882 | | * phase of the entire burst from the phase of the first |
883 | | * character. |
884 | | */ |
885 | 0 | up->maxsignal = up->surv[j].span; |
886 | 0 | chu_decode(peer, (up->surv[j].uart >> 1) & 0xff, |
887 | 0 | up->surv[j].cstamp); |
888 | 0 | up->dbrk = 88; |
889 | 0 | } |
890 | 0 | } |
891 | | |
892 | | |
893 | | /* |
894 | | * chu_uart - maximum-likelihood UART |
895 | | * |
896 | | * This routine updates a shift register holding the last 11 envelope |
897 | | * samples. It then computes the slice level and span over these samples |
898 | | * and determines the tentative data bits and distance. The calling |
899 | | * program selects over the last eight survivors the one with maximum |
900 | | * distance to determine the decoded character. |
901 | | */ |
902 | | static void |
903 | | chu_uart( |
904 | | struct surv *sp, /* survivor structure pointer */ |
905 | | double sample /* baseband signal */ |
906 | | ) |
907 | 0 | { |
908 | 0 | double es_max, es_min; /* max/min envelope */ |
909 | 0 | double slice; /* slice level */ |
910 | 0 | double dist; /* distance */ |
911 | 0 | double dtemp; |
912 | 0 | int i; |
913 | | |
914 | | /* |
915 | | * Save the sample and shift right. At the same time, measure |
916 | | * the maximum and minimum over all eleven samples. |
917 | | */ |
918 | 0 | es_max = -1e6; |
919 | 0 | es_min = 1e6; |
920 | 0 | sp->shift[0] = sample; |
921 | 0 | for (i = 11; i > 0; i--) { |
922 | 0 | sp->shift[i] = sp->shift[i - 1]; |
923 | 0 | if (sp->shift[i] > es_max) |
924 | 0 | es_max = sp->shift[i]; |
925 | 0 | if (sp->shift[i] < es_min) |
926 | 0 | es_min = sp->shift[i]; |
927 | 0 | } |
928 | | |
929 | | /* |
930 | | * Determine the span as the maximum less the minimum and the |
931 | | * slice level as the minimum plus a fraction of the span. Note |
932 | | * the slight bias toward mark to correct for the modem tendency |
933 | | * to make more mark than space errors. Compute the distance on |
934 | | * the assumption the last two bits must be mark, the first |
935 | | * space and the rest either mark or space. |
936 | | */ |
937 | 0 | sp->span = es_max - es_min; |
938 | 0 | slice = es_min + .45 * sp->span; |
939 | 0 | dist = 0; |
940 | 0 | sp->uart = 0; |
941 | 0 | for (i = 1; i < 12; i++) { |
942 | 0 | sp->uart <<= 1; |
943 | 0 | dtemp = sp->shift[i]; |
944 | 0 | if (dtemp > slice) |
945 | 0 | sp->uart |= 0x1; |
946 | 0 | if (i == 1 || i == 2) { |
947 | 0 | dist += dtemp - es_min; |
948 | 0 | } else if (i == 11) { |
949 | 0 | dist += es_max - dtemp; |
950 | 0 | } else { |
951 | 0 | if (dtemp > slice) |
952 | 0 | dist += dtemp - es_min; |
953 | 0 | else |
954 | 0 | dist += es_max - dtemp; |
955 | 0 | } |
956 | 0 | } |
957 | 0 | sp->dist = dist / (11 * sp->span); |
958 | 0 | } |
959 | | #endif /* HAVE_AUDIO */ |
960 | | |
961 | | |
962 | | /* |
963 | | * chu_serial_receive - receive data from the serial device |
964 | | */ |
965 | | static void |
966 | | chu_serial_receive( |
967 | | struct recvbuf *rbufp /* receive buffer structure pointer */ |
968 | | ) |
969 | 0 | { |
970 | 0 | struct peer *peer; |
971 | |
|
972 | 0 | u_char *dpt; /* receive buffer pointer */ |
973 | |
|
974 | 0 | peer = rbufp->recv_peer; |
975 | |
|
976 | 0 | dpt = (u_char *)&rbufp->recv_space; |
977 | 0 | chu_decode(peer, *dpt, rbufp->recv_time); |
978 | 0 | } |
979 | | |
980 | | |
981 | | /* |
982 | | * chu_decode - decode the character data |
983 | | */ |
984 | | static void |
985 | | chu_decode( |
986 | | struct peer *peer, /* peer structure pointer */ |
987 | | int hexhex, /* data character */ |
988 | | l_fp cstamp /* data character timestamp */ |
989 | | ) |
990 | 0 | { |
991 | 0 | struct refclockproc *pp; |
992 | 0 | struct chuunit *up; |
993 | |
|
994 | 0 | l_fp tstmp; /* timestamp temp */ |
995 | 0 | double dtemp; |
996 | |
|
997 | 0 | pp = peer->procptr; |
998 | 0 | up = pp->unitptr; |
999 | | |
1000 | | /* |
1001 | | * If the interval since the last character is greater than the |
1002 | | * longest burst, process the last burst and start a new one. If |
1003 | | * the interval is less than this but greater than two |
1004 | | * characters, consider this a noise burst and reject it. |
1005 | | */ |
1006 | 0 | tstmp = up->timestamp; |
1007 | 0 | if (L_ISZERO(&up->laststamp)) |
1008 | 0 | up->laststamp = up->timestamp; |
1009 | 0 | L_SUB(&tstmp, &up->laststamp); |
1010 | 0 | up->laststamp = up->timestamp; |
1011 | 0 | LFPTOD(&tstmp, dtemp); |
1012 | 0 | if (dtemp > BURST * CHAR) { |
1013 | 0 | chu_burst(peer); |
1014 | 0 | up->ndx = 0; |
1015 | 0 | } else if (dtemp > 2.5 * CHAR) { |
1016 | 0 | up->ndx = 0; |
1017 | 0 | } |
1018 | | |
1019 | | /* |
1020 | | * Append the character to the current burst and append the |
1021 | | * character timestamp to the timestamp list. |
1022 | | */ |
1023 | 0 | if (up->ndx < BURST) { |
1024 | 0 | up->cbuf[up->ndx] = hexhex & 0xff; |
1025 | 0 | up->cstamp[up->ndx] = cstamp; |
1026 | 0 | up->ndx++; |
1027 | |
|
1028 | 0 | } |
1029 | 0 | } |
1030 | | |
1031 | | |
1032 | | /* |
1033 | | * chu_burst - search for valid burst format |
1034 | | */ |
1035 | | static void |
1036 | | chu_burst( |
1037 | | struct peer *peer |
1038 | | ) |
1039 | 0 | { |
1040 | 0 | struct chuunit *up; |
1041 | 0 | struct refclockproc *pp; |
1042 | |
|
1043 | 0 | int i; |
1044 | |
|
1045 | 0 | pp = peer->procptr; |
1046 | 0 | up = pp->unitptr; |
1047 | | |
1048 | | /* |
1049 | | * Correlate a block of five characters with the next block of |
1050 | | * five characters. The burst distance is defined as the number |
1051 | | * of bits that match in the two blocks for format A and that |
1052 | | * match the inverse for format B. |
1053 | | */ |
1054 | 0 | if (up->ndx < MINCHARS) { |
1055 | 0 | up->status |= RUNT; |
1056 | 0 | return; |
1057 | 0 | } |
1058 | 0 | up->burdist = 0; |
1059 | 0 | for (i = 0; i < 5 && i < up->ndx - 5; i++) |
1060 | 0 | up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]); |
1061 | | |
1062 | | /* |
1063 | | * If the burst distance is at least MINDIST, this must be a |
1064 | | * format A burst; if the value is not greater than -MINDIST, it |
1065 | | * must be a format B burst. If the B burst is perfect, we |
1066 | | * believe it; otherwise, it is a noise burst and of no use to |
1067 | | * anybody. |
1068 | | */ |
1069 | 0 | if (up->burdist >= MINDIST) { |
1070 | 0 | chu_a(peer, up->ndx); |
1071 | 0 | } else if (up->burdist <= -MINDIST) { |
1072 | 0 | chu_b(peer, up->ndx); |
1073 | 0 | } else { |
1074 | 0 | up->status |= NOISE; |
1075 | 0 | return; |
1076 | 0 | } |
1077 | | |
1078 | | /* |
1079 | | * If this is a valid burst, wait a guard time of ten seconds to |
1080 | | * allow for more bursts, then arm the poll update routine to |
1081 | | * process the minute. Don't do this if this is called from the |
1082 | | * timer interrupt routine. |
1083 | | */ |
1084 | 0 | if (peer->outdate != current_time) |
1085 | 0 | peer->nextdate = current_time + 10; |
1086 | 0 | } |
1087 | | |
1088 | | |
1089 | | /* |
1090 | | * chu_b - decode format B burst |
1091 | | */ |
1092 | | static void |
1093 | | chu_b( |
1094 | | struct peer *peer, |
1095 | | int nchar |
1096 | | ) |
1097 | 0 | { |
1098 | 0 | struct refclockproc *pp; |
1099 | 0 | struct chuunit *up; |
1100 | |
|
1101 | 0 | u_char code[11]; /* decoded timecode */ |
1102 | 0 | char tbuf[80]; /* trace buffer */ |
1103 | 0 | char * p; |
1104 | 0 | size_t chars; |
1105 | 0 | size_t cb; |
1106 | 0 | int i; |
1107 | |
|
1108 | 0 | pp = peer->procptr; |
1109 | 0 | up = pp->unitptr; |
1110 | | |
1111 | | /* |
1112 | | * In a format B burst, a character is considered valid only if |
1113 | | * the first occurence matches the last occurence. The burst is |
1114 | | * considered valid only if all characters are valid; that is, |
1115 | | * only if the distance is 40. Note that once a valid frame has |
1116 | | * been found errors are ignored. |
1117 | | */ |
1118 | 0 | snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ", |
1119 | 0 | up->status, up->maxsignal, nchar, -up->burdist); |
1120 | 0 | cb = sizeof(tbuf); |
1121 | 0 | p = tbuf; |
1122 | 0 | for (i = 0; i < nchar; i++) { |
1123 | 0 | chars = strlen(p); |
1124 | 0 | if (cb < chars + 1) { |
1125 | 0 | msyslog(LOG_ERR, "chu_b() fatal out buffer"); |
1126 | 0 | exit(1); |
1127 | 0 | } |
1128 | 0 | cb -= chars; |
1129 | 0 | p += chars; |
1130 | 0 | snprintf(p, cb, "%02x", up->cbuf[i]); |
1131 | 0 | } |
1132 | 0 | if (pp->sloppyclockflag & CLK_FLAG4) |
1133 | 0 | record_clock_stats(&peer->srcadr, tbuf); |
1134 | 0 | #ifdef DEBUG |
1135 | 0 | if (debug) |
1136 | 0 | printf("%s\n", tbuf); |
1137 | 0 | #endif |
1138 | 0 | if (up->burdist > -40) { |
1139 | 0 | up->status |= BFRAME; |
1140 | 0 | return; |
1141 | 0 | } |
1142 | | |
1143 | | /* |
1144 | | * Convert the burst data to internal format. Don't bother with |
1145 | | * the timestamps. |
1146 | | */ |
1147 | 0 | for (i = 0; i < 5; i++) { |
1148 | 0 | code[2 * i] = hexchar[up->cbuf[i] & 0xf]; |
1149 | 0 | code[2 * i + 1] = hexchar[(up->cbuf[i] >> |
1150 | 0 | 4) & 0xf]; |
1151 | 0 | } |
1152 | 0 | if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut, |
1153 | 0 | &pp->year, &up->tai, &up->dst) != 5) { |
1154 | 0 | up->status |= BFORMAT; |
1155 | 0 | return; |
1156 | 0 | } |
1157 | 0 | up->status |= BVALID; |
1158 | 0 | if (up->leap & 0x8) |
1159 | 0 | up->dut = -up->dut; |
1160 | 0 | } |
1161 | | |
1162 | | |
1163 | | /* |
1164 | | * chu_a - decode format A burst |
1165 | | */ |
1166 | | static void |
1167 | | chu_a( |
1168 | | struct peer *peer, |
1169 | | int nchar |
1170 | | ) |
1171 | 0 | { |
1172 | 0 | struct refclockproc *pp; |
1173 | 0 | struct chuunit *up; |
1174 | |
|
1175 | 0 | char tbuf[80]; /* trace buffer */ |
1176 | 0 | char * p; |
1177 | 0 | size_t chars; |
1178 | 0 | size_t cb; |
1179 | 0 | l_fp offset; /* timestamp offset */ |
1180 | 0 | int val; /* distance */ |
1181 | 0 | int temp; |
1182 | 0 | int i, j, k; |
1183 | |
|
1184 | 0 | pp = peer->procptr; |
1185 | 0 | up = pp->unitptr; |
1186 | | |
1187 | | /* |
1188 | | * Determine correct burst phase. There are three cases |
1189 | | * corresponding to in-phase, one character early or one |
1190 | | * character late. These cases are distinguished by the position |
1191 | | * of the framing digits 0x6 at positions 0 and 5 and 0x3 at |
1192 | | * positions 4 and 9. The correct phase is when the distance |
1193 | | * relative to the framing digits is maximum. The burst is valid |
1194 | | * only if the maximum distance is at least MINSYNC. |
1195 | | */ |
1196 | 0 | up->syndist = k = 0; |
1197 | | // val = -16; |
1198 | 0 | for (i = -1; i < 2; i++) { |
1199 | 0 | temp = up->cbuf[i + 4] & 0xf; |
1200 | 0 | if (i >= 0) |
1201 | 0 | temp |= (up->cbuf[i] & 0xf) << 4; |
1202 | 0 | val = chu_dist(temp, 0x63); |
1203 | 0 | temp = (up->cbuf[i + 5] & 0xf) << 4; |
1204 | 0 | if (i + 9 < nchar) |
1205 | 0 | temp |= up->cbuf[i + 9] & 0xf; |
1206 | 0 | val += chu_dist(temp, 0x63); |
1207 | 0 | if (val > up->syndist) { |
1208 | 0 | up->syndist = val; |
1209 | 0 | k = i; |
1210 | 0 | } |
1211 | 0 | } |
1212 | | |
1213 | | /* |
1214 | | * Extract the second number; it must be in the range 2 through |
1215 | | * 9 and the two repititions must be the same. |
1216 | | */ |
1217 | 0 | temp = (up->cbuf[k + 4] >> 4) & 0xf; |
1218 | 0 | if (temp < 2 || temp > 9 || k + 9 >= nchar || temp != |
1219 | 0 | ((up->cbuf[k + 9] >> 4) & 0xf)) |
1220 | 0 | temp = 0; |
1221 | 0 | snprintf(tbuf, sizeof(tbuf), |
1222 | 0 | "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status, |
1223 | 0 | up->maxsignal, nchar, up->burdist, k, up->syndist, |
1224 | 0 | temp); |
1225 | 0 | cb = sizeof(tbuf); |
1226 | 0 | p = tbuf; |
1227 | 0 | for (i = 0; i < nchar; i++) { |
1228 | 0 | chars = strlen(p); |
1229 | 0 | if (cb < chars + 1) { |
1230 | 0 | msyslog(LOG_ERR, "chu_a() fatal out buffer"); |
1231 | 0 | exit(1); |
1232 | 0 | } |
1233 | 0 | cb -= chars; |
1234 | 0 | p += chars; |
1235 | 0 | snprintf(p, cb, "%02x", up->cbuf[i]); |
1236 | 0 | } |
1237 | 0 | if (pp->sloppyclockflag & CLK_FLAG4) |
1238 | 0 | record_clock_stats(&peer->srcadr, tbuf); |
1239 | 0 | #ifdef DEBUG |
1240 | 0 | if (debug) |
1241 | 0 | printf("%s\n", tbuf); |
1242 | 0 | #endif |
1243 | 0 | if (up->syndist < MINSYNC) { |
1244 | 0 | up->status |= AFRAME; |
1245 | 0 | return; |
1246 | 0 | } |
1247 | | |
1248 | | /* |
1249 | | * A valid burst requires the first seconds number to match the |
1250 | | * last seconds number. If so, the burst timestamps are |
1251 | | * corrected to the current minute and saved for later |
1252 | | * processing. In addition, the seconds decode is advanced from |
1253 | | * the previous burst to the current one. |
1254 | | */ |
1255 | 0 | if (temp == 0) { |
1256 | 0 | up->status |= AFORMAT; |
1257 | 0 | } else { |
1258 | 0 | up->status |= AVALID; |
1259 | 0 | up->second = pp->second = 30 + temp; |
1260 | 0 | offset.l_ui = 30 + temp; |
1261 | 0 | offset.l_uf = 0; |
1262 | 0 | i = 0; |
1263 | 0 | if (k < 0) |
1264 | 0 | offset = up->charstamp; |
1265 | 0 | else if (k > 0) |
1266 | 0 | i = 1; |
1267 | 0 | for (; i < nchar && (i - 10) < k; i++) { |
1268 | 0 | up->tstamp[up->ntstamp] = up->cstamp[i]; |
1269 | 0 | L_SUB(&up->tstamp[up->ntstamp], &offset); |
1270 | 0 | L_ADD(&offset, &up->charstamp); |
1271 | 0 | if (up->ntstamp < MAXSTAGE - 1) |
1272 | 0 | up->ntstamp++; |
1273 | 0 | } |
1274 | 0 | while (temp > up->prevsec) { |
1275 | 0 | for (j = 15; j > 0; j--) { |
1276 | 0 | up->decode[9][j] = up->decode[9][j - 1]; |
1277 | 0 | up->decode[19][j] = |
1278 | 0 | up->decode[19][j - 1]; |
1279 | 0 | } |
1280 | 0 | up->decode[9][j] = up->decode[19][j] = 0; |
1281 | 0 | up->prevsec++; |
1282 | 0 | } |
1283 | 0 | } |
1284 | | |
1285 | | /* |
1286 | | * Stash the data in the decoding matrix. |
1287 | | */ |
1288 | 0 | i = -(2 * k); |
1289 | 0 | for (j = 0; j < nchar; j++) { |
1290 | 0 | if (i < 0 || i > 18) { |
1291 | 0 | i += 2; |
1292 | 0 | continue; |
1293 | 0 | } |
1294 | 0 | up->decode[i][up->cbuf[j] & 0xf]++; |
1295 | 0 | i++; |
1296 | 0 | up->decode[i][(up->cbuf[j] >> 4) & 0xf]++; |
1297 | 0 | i++; |
1298 | 0 | } |
1299 | 0 | up->burstcnt++; |
1300 | 0 | } |
1301 | | |
1302 | | |
1303 | | /* |
1304 | | * chu_poll - called by the transmit procedure |
1305 | | */ |
1306 | | static void |
1307 | | chu_poll( |
1308 | | int unit, |
1309 | | struct peer *peer /* peer structure pointer */ |
1310 | | ) |
1311 | 0 | { |
1312 | 0 | struct refclockproc *pp; |
1313 | |
|
1314 | 0 | pp = peer->procptr; |
1315 | 0 | pp->polls++; |
1316 | 0 | } |
1317 | | |
1318 | | |
1319 | | /* |
1320 | | * chu_second - process minute data |
1321 | | */ |
1322 | | static void |
1323 | | chu_second( |
1324 | | int unit, |
1325 | | struct peer *peer /* peer structure pointer */ |
1326 | | ) |
1327 | 0 | { |
1328 | 0 | struct refclockproc *pp; |
1329 | 0 | struct chuunit *up; |
1330 | 0 | l_fp offset; |
1331 | 0 | char synchar, qual, leapchar; |
1332 | 0 | int minset, i; |
1333 | 0 | double dtemp; |
1334 | |
|
1335 | 0 | pp = peer->procptr; |
1336 | 0 | up = pp->unitptr; |
1337 | | |
1338 | | /* |
1339 | | * This routine is called once per minute to process the |
1340 | | * accumulated burst data. We do a bit of fancy footwork so that |
1341 | | * this doesn't run while burst data are being accumulated. |
1342 | | */ |
1343 | 0 | up->second = (up->second + 1) % 60; |
1344 | 0 | if (up->second != 0) |
1345 | 0 | return; |
1346 | | |
1347 | | /* |
1348 | | * Process the last burst, if still in the burst buffer. |
1349 | | * If the minute contains a valid B frame with sufficient A |
1350 | | * frame metric, it is considered valid. However, the timecode |
1351 | | * is sent to clockstats even if invalid. |
1352 | | */ |
1353 | 0 | chu_burst(peer); |
1354 | 0 | minset = ((current_time - peer->update) + 30) / 60; |
1355 | 0 | dtemp = chu_major(peer); |
1356 | 0 | qual = 0; |
1357 | 0 | if (up->status & (BFRAME | AFRAME)) |
1358 | 0 | qual |= SYNERR; |
1359 | 0 | if (up->status & (BFORMAT | AFORMAT)) |
1360 | 0 | qual |= FMTERR; |
1361 | 0 | if (up->status & DECODE) |
1362 | 0 | qual |= DECERR; |
1363 | 0 | if (up->status & STAMP) |
1364 | 0 | qual |= TSPERR; |
1365 | 0 | if (up->status & BVALID && dtemp >= MINMETRIC) |
1366 | 0 | up->status |= INSYNC; |
1367 | 0 | synchar = leapchar = ' '; |
1368 | 0 | if (!(up->status & INSYNC)) { |
1369 | 0 | pp->leap = LEAP_NOTINSYNC; |
1370 | 0 | synchar = '?'; |
1371 | 0 | } else if (up->leap & 0x2) { |
1372 | 0 | pp->leap = LEAP_ADDSECOND; |
1373 | 0 | leapchar = 'L'; |
1374 | 0 | } else if (up->leap & 0x4) { |
1375 | 0 | pp->leap = LEAP_DELSECOND; |
1376 | 0 | leapchar = 'l'; |
1377 | 0 | } else { |
1378 | 0 | pp->leap = LEAP_NOWARNING; |
1379 | 0 | } |
1380 | 0 | snprintf(pp->a_lastcode, sizeof(pp->a_lastcode), |
1381 | 0 | "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d", |
1382 | 0 | synchar, qual, pp->year, pp->day, pp->hour, pp->minute, |
1383 | 0 | pp->second, leapchar, up->dst, up->dut, minset, up->gain, |
1384 | 0 | up->ident, dtemp, up->ntstamp); |
1385 | 0 | pp->lencode = strlen(pp->a_lastcode); |
1386 | | |
1387 | | /* |
1388 | | * If in sync and the signal metric is above threshold, the |
1389 | | * timecode is ipso fatso valid and can be selected to |
1390 | | * discipline the clock. |
1391 | | */ |
1392 | 0 | if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) && |
1393 | 0 | dtemp > MINMETRIC) { |
1394 | 0 | if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT, |
1395 | 0 | up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) { |
1396 | 0 | up->errflg = CEVNT_BADTIME; |
1397 | 0 | } else { |
1398 | 0 | offset.l_uf = 0; |
1399 | 0 | for (i = 0; i < up->ntstamp; i++) |
1400 | 0 | refclock_process_offset(pp, offset, |
1401 | 0 | up->tstamp[i], PDELAY + |
1402 | 0 | pp->fudgetime1); |
1403 | 0 | pp->lastref = up->timestamp; |
1404 | 0 | refclock_receive(peer); |
1405 | 0 | } |
1406 | 0 | } |
1407 | 0 | if (dtemp > 0) |
1408 | 0 | record_clock_stats(&peer->srcadr, pp->a_lastcode); |
1409 | 0 | #ifdef DEBUG |
1410 | 0 | if (debug) |
1411 | 0 | printf("chu: timecode %d %s\n", pp->lencode, |
1412 | 0 | pp->a_lastcode); |
1413 | 0 | #endif |
1414 | 0 | #ifdef ICOM |
1415 | 0 | chu_newchan(peer, dtemp); |
1416 | 0 | #endif /* ICOM */ |
1417 | 0 | chu_clear(peer); |
1418 | 0 | if (up->errflg) |
1419 | 0 | refclock_report(peer, up->errflg); |
1420 | 0 | up->errflg = 0; |
1421 | 0 | } |
1422 | | |
1423 | | |
1424 | | /* |
1425 | | * chu_major - majority decoder |
1426 | | */ |
1427 | | static double |
1428 | | chu_major( |
1429 | | struct peer *peer /* peer structure pointer */ |
1430 | | ) |
1431 | 0 | { |
1432 | 0 | struct refclockproc *pp; |
1433 | 0 | struct chuunit *up; |
1434 | |
|
1435 | 0 | u_char code[11]; /* decoded timecode */ |
1436 | 0 | int metric; /* distance metric */ |
1437 | 0 | int val1; /* maximum distance */ |
1438 | 0 | int synchar; /* stray cat */ |
1439 | 0 | int temp; |
1440 | 0 | int i, j, k; |
1441 | |
|
1442 | 0 | pp = peer->procptr; |
1443 | 0 | up = pp->unitptr; |
1444 | | |
1445 | | /* |
1446 | | * Majority decoder. Each burst encodes two replications at each |
1447 | | * digit position in the timecode. Each row of the decoding |
1448 | | * matrix encodes the number of occurences of each digit found |
1449 | | * at the corresponding position. The maximum over all |
1450 | | * occurrences at each position is the distance for this |
1451 | | * position and the corresponding digit is the maximum- |
1452 | | * likelihood candidate. If the distance is not more than half |
1453 | | * the total number of occurences, a majority has not been found |
1454 | | * and the data are discarded. The decoding distance is defined |
1455 | | * as the sum of the distances over the first nine digits. The |
1456 | | * tenth digit varies over the seconds, so we don't count it. |
1457 | | */ |
1458 | 0 | metric = 0; |
1459 | 0 | for (i = 0; i < 9; i++) { |
1460 | 0 | val1 = 0; |
1461 | 0 | k = 0; |
1462 | 0 | for (j = 0; j < 16; j++) { |
1463 | 0 | temp = up->decode[i][j] + up->decode[i + 10][j]; |
1464 | 0 | if (temp > val1) { |
1465 | 0 | val1 = temp; |
1466 | 0 | k = j; |
1467 | 0 | } |
1468 | 0 | } |
1469 | 0 | if (val1 <= up->burstcnt) |
1470 | 0 | up->status |= DECODE; |
1471 | 0 | metric += val1; |
1472 | 0 | code[i] = hexchar[k]; |
1473 | 0 | } |
1474 | | |
1475 | | /* |
1476 | | * Compute the timecode timestamp from the days, hours and |
1477 | | * minutes of the timecode. Use clocktime() for the aggregate |
1478 | | * minutes and the minute offset computed from the burst |
1479 | | * seconds. Note that this code relies on the filesystem time |
1480 | | * for the years and does not use the years of the timecode. |
1481 | | */ |
1482 | 0 | if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, |
1483 | 0 | &pp->hour, &pp->minute) != 4) |
1484 | 0 | up->status |= DECODE; |
1485 | 0 | if (up->ntstamp < MINSTAMP) |
1486 | 0 | up->status |= STAMP; |
1487 | 0 | return (metric); |
1488 | 0 | } |
1489 | | |
1490 | | |
1491 | | /* |
1492 | | * chu_clear - clear decoding matrix |
1493 | | */ |
1494 | | static void |
1495 | | chu_clear( |
1496 | | struct peer *peer /* peer structure pointer */ |
1497 | | ) |
1498 | 0 | { |
1499 | 0 | struct refclockproc *pp; |
1500 | 0 | struct chuunit *up; |
1501 | 0 | int i, j; |
1502 | |
|
1503 | 0 | pp = peer->procptr; |
1504 | 0 | up = pp->unitptr; |
1505 | | |
1506 | | /* |
1507 | | * Clear stuff for the minute. |
1508 | | */ |
1509 | 0 | up->ndx = up->prevsec = 0; |
1510 | 0 | up->burstcnt = up->ntstamp = 0; |
1511 | 0 | up->status &= INSYNC | METRIC; |
1512 | 0 | for (i = 0; i < 20; i++) { |
1513 | 0 | for (j = 0; j < 16; j++) |
1514 | 0 | up->decode[i][j] = 0; |
1515 | 0 | } |
1516 | 0 | } |
1517 | | |
1518 | | #ifdef ICOM |
1519 | | /* |
1520 | | * chu_newchan - called once per minute to find the best channel; |
1521 | | * returns zero on success, nonzero if ICOM error. |
1522 | | */ |
1523 | | static int |
1524 | | chu_newchan( |
1525 | | struct peer *peer, |
1526 | | double met |
1527 | | ) |
1528 | 0 | { |
1529 | 0 | struct chuunit *up; |
1530 | 0 | struct refclockproc *pp; |
1531 | 0 | struct xmtr *sp; |
1532 | 0 | int rval; |
1533 | 0 | double metric; |
1534 | 0 | int i; |
1535 | |
|
1536 | 0 | pp = peer->procptr; |
1537 | 0 | up = pp->unitptr; |
1538 | | |
1539 | | /* |
1540 | | * The radio can be tuned to three channels: 0 (3330 kHz), 1 |
1541 | | * (7850 kHz) and 2 (14670 kHz). There are five one-minute |
1542 | | * dwells in each cycle. During the first dwell the radio is |
1543 | | * tuned to one of the three channels to measure the channel |
1544 | | * metric. The channel is selected as the one least recently |
1545 | | * measured. During the remaining four dwells the radio is tuned |
1546 | | * to the channel with the highest channel metric. |
1547 | | */ |
1548 | 0 | if (up->fd_icom <= 0) |
1549 | 0 | return (0); |
1550 | | |
1551 | | /* |
1552 | | * Update the current channel metric and age of all channels. |
1553 | | * Scan all channels for the highest metric. |
1554 | | */ |
1555 | 0 | sp = &up->xmtr[up->chan]; |
1556 | 0 | sp->metric -= sp->integ[sp->iptr]; |
1557 | 0 | sp->integ[sp->iptr] = met; |
1558 | 0 | sp->metric += sp->integ[sp->iptr]; |
1559 | 0 | sp->probe = 0; |
1560 | 0 | sp->iptr = (sp->iptr + 1) % ISTAGE; |
1561 | 0 | metric = 0; |
1562 | 0 | for (i = 0; i < NCHAN; i++) { |
1563 | 0 | up->xmtr[i].probe++; |
1564 | 0 | if (up->xmtr[i].metric > metric) { |
1565 | 0 | up->status |= METRIC; |
1566 | 0 | metric = up->xmtr[i].metric; |
1567 | 0 | up->chan = i; |
1568 | 0 | } |
1569 | 0 | } |
1570 | | |
1571 | | /* |
1572 | | * Start the next dwell. If the first dwell or no stations have |
1573 | | * been heard, continue round-robin scan. |
1574 | | */ |
1575 | 0 | up->dwell = (up->dwell + 1) % DWELL; |
1576 | 0 | if (up->dwell == 0 || metric == 0) { |
1577 | 0 | rval = 0; |
1578 | 0 | for (i = 0; i < NCHAN; i++) { |
1579 | 0 | if (up->xmtr[i].probe > rval) { |
1580 | 0 | rval = up->xmtr[i].probe; |
1581 | 0 | up->chan = i; |
1582 | 0 | } |
1583 | 0 | } |
1584 | 0 | } |
1585 | | |
1586 | | /* Retune the radio at each dwell in case somebody nudges the |
1587 | | * tuning knob. |
1588 | | */ |
1589 | 0 | rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] + |
1590 | 0 | TUNE); |
1591 | 0 | snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan); |
1592 | 0 | memcpy(&pp->refid, up->ident, 4); |
1593 | 0 | memcpy(&peer->refid, up->ident, 4); |
1594 | 0 | if (metric == 0 && up->status & METRIC) { |
1595 | 0 | up->status &= ~METRIC; |
1596 | 0 | refclock_report(peer, CEVNT_PROP); |
1597 | 0 | } |
1598 | 0 | return (rval); |
1599 | 0 | } |
1600 | | #endif /* ICOM */ |
1601 | | |
1602 | | |
1603 | | /* |
1604 | | * chu_dist - determine the distance of two octet arguments |
1605 | | */ |
1606 | | static int |
1607 | | chu_dist( |
1608 | | int x, /* an octet of bits */ |
1609 | | int y /* another octet of bits */ |
1610 | | ) |
1611 | 0 | { |
1612 | 0 | int val; /* bit count */ |
1613 | 0 | int temp; |
1614 | 0 | int i; |
1615 | | |
1616 | | /* |
1617 | | * The distance is determined as the weight of the exclusive OR |
1618 | | * of the two arguments. The weight is determined by the number |
1619 | | * of one bits in the result. Each one bit increases the weight, |
1620 | | * while each zero bit decreases it. |
1621 | | */ |
1622 | 0 | temp = x ^ y; |
1623 | 0 | val = 0; |
1624 | 0 | for (i = 0; i < 8; i++) { |
1625 | 0 | if ((temp & 0x1) == 0) |
1626 | 0 | val++; |
1627 | 0 | else |
1628 | 0 | val--; |
1629 | 0 | temp >>= 1; |
1630 | 0 | } |
1631 | 0 | return (val); |
1632 | 0 | } |
1633 | | |
1634 | | |
1635 | | #ifdef HAVE_AUDIO |
1636 | | /* |
1637 | | * chu_gain - adjust codec gain |
1638 | | * |
1639 | | * This routine is called at the end of each second. During the second |
1640 | | * the number of signal clips above the MAXAMP threshold (6000). If |
1641 | | * there are no clips, the gain is bumped up; if there are more than |
1642 | | * MAXCLP clips (100), it is bumped down. The decoder is relatively |
1643 | | * insensitive to amplitude, so this crudity works just peachy. The |
1644 | | * routine also jiggles the input port and selectively mutes the |
1645 | | */ |
1646 | | static void |
1647 | | chu_gain( |
1648 | | struct peer *peer /* peer structure pointer */ |
1649 | | ) |
1650 | 0 | { |
1651 | 0 | struct refclockproc *pp; |
1652 | 0 | struct chuunit *up; |
1653 | |
|
1654 | 0 | pp = peer->procptr; |
1655 | 0 | up = pp->unitptr; |
1656 | | |
1657 | | /* |
1658 | | * Apparently, the codec uses only the high order bits of the |
1659 | | * gain control field. Thus, it may take awhile for changes to |
1660 | | * wiggle the hardware bits. |
1661 | | */ |
1662 | 0 | if (up->clipcnt == 0) { |
1663 | 0 | up->gain += 4; |
1664 | 0 | if (up->gain > MAXGAIN) |
1665 | 0 | up->gain = MAXGAIN; |
1666 | 0 | } else if (up->clipcnt > MAXCLP) { |
1667 | 0 | up->gain -= 4; |
1668 | 0 | if (up->gain < 0) |
1669 | 0 | up->gain = 0; |
1670 | 0 | } |
1671 | 0 | audio_gain(up->gain, up->mongain, up->port); |
1672 | 0 | up->clipcnt = 0; |
1673 | 0 | } |
1674 | | #endif /* HAVE_AUDIO */ |
1675 | | |
1676 | | |
1677 | | #else |
1678 | | NONEMPTY_TRANSLATION_UNIT |
1679 | | #endif /* REFCLOCK */ |